• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical research on the transport and ionization rate coefficients in glow discharge dusty plasma

    2020-04-24 05:49:48YongganLIANG梁勇敢JianWU吳健HuiLI李輝RuihuanTIAN田瑞煥ChengxunYUAN袁承勛YingWANG王瑩ZhongxiangZHOU周忠祥andHaoTIAN田浩
    Plasma Science and Technology 2020年3期
    關(guān)鍵詞:王瑩李輝

    Yonggan LIANG (梁勇敢),Jian WU (吳健),Hui LI (李輝),3,Ruihuan TIAN (田瑞煥),Chengxun YUAN (袁承勛),Ying WANG (王瑩),Zhongxiang ZHOU (周忠祥) and Hao TIAN (田浩)

    1 School of Physics,Harbin Institute of Technology,Harbin 150001,People’s Republic of China

    2 National Key Laboratory of Electromagnetic Environment (LEME),China Research Institute of Radio Wave Propagation,Beijing 102206,People’s Republic of China

    3 Authors to whom any correspondence should be addressed.

    Abstract

    Keywords:glow discharge,dusty plasma,kinetic model,transport coefficient,ionization rate coefficient

    1.Introduction

    Dusty plasma is usually defined as a partly ionized gas containing dispersed micro-sized particles with large negative charge.The plasma properties will change when dust particles are introduced since the dust particles serve as an additional sink of electrons and ions.In the last few decades,dusty plasma is of great interest in many different fields,such as formation of cosmic clouds[1,2],technological plasma processes [3–5],fusion related researches [6–8],and so on.

    Under laboratory conditions,dusty plasma is widely studied in direct current (DC),radio frequency (RF) and microwave(MW) discharges due to their importance in fields like plasma chemistry,thin film deposition,plasma etching,and so on[9–12].The hydrodynamic models are usually employed to describe these discharge dusty plasmas,in which the electrons and ions are assumed to be in Maxwellian equilibrium [5,13–15].With the assumption of Maxwellian equilibrium,the electron transport and ionization rate coefficients that are of great significance for simulating these discharge processes are obtained and used in these hydrodynamic models[16,17].However,as we know that for most of low-temperature plasmas,their electron energy distribution functions (EEDFs) will always deviate from the Maxwellian distribution to a certain extent because of many kinds of electron collisions[18,19].Also,it has been proven that plasma EEDFs can be affected by dust particles too [11,20].It means that,under some discharge conditions,inaccurate electron transport(mobility and diffusion)and ionization rate coefficients will be obtained by the use of Maxwellian distribution,since these parameters are directly related to the EEDFs.

    Though the influence of dust particles on plasma EEDFs has been studied by many researchers[11,21–23],the most used simplification method in these studies is still the local approximation.While the local approximation is not always valid for some discharge conditions,especially for the relatively low gas pressure [24].For the glow discharge plasmas in a cylindrical tube,the local approximation is applicable only if the inequality R/2.4?λεis satisfied[25],where R is the tube radius,R/2.4 is the characteristic diffusion length,and λεis the electron energy relaxation length.In gas discharge dusty plasma,the value of λεmainly depends on the EEDF,gas pressure,dust density,size,and so on.When the inequality R/2.4?λεcannot be satisfied,the nonlocal approach [26]is usually a preferred method to simplify the Boltzmann equation to obtain more accurate EEDF profiles and corresponding plasma parameters.

    In this paper,the local approximation and nonlocal approach are employed respectively to simplify the Boltzmann equation to compare their difference.The detailed model description is presented in section 2.The EEDFs are obtained by simultaneously solving the simplified kinetic equations and the dust charging equations.The finite difference method(FDM)is employed to conduct the calculation procedure.Then the electron transport (mobility and diffusion) and ionization rate coefficients are calculated on the basis of the obtained EEDFs.The calculation results and analysis are shown in section 3.Finally,the conclusion is presented in section 4.

    2.Model description

    In this paper,the kinetic models based on the local approximation and nonlocal approach are developed for dusty plasma in positive column of argon DC glow discharge.The electron–dust collisions are considered in the kinetic equation as additional collision terms.Electron and ion charging currents are calculated by the orbital motion limited (OML) method and collision enhanced collection(CEC)approximation.The cross sections of electron scattering (elastic collision) and collection (inelastic collision) by dust particles are deduced from the dust surface potential.Then the electron transport(mobility and diffusion)and ionization rete coefficients are calculated according to the EEDFs and total electron momentum transfer frequency.

    2.1.Electron kinetic equations

    The EEDF of plasma is usually deduced from the Boltzmann equation that expressed as

    where feis the electron velocity distribution function(EVDF);v is the electron velocity;e is the electron elementary charge;merepresents the electron mass;E is the electric field;andrepresents the electron collision terms.

    Usually,the anisotropy part of the EVDF is very low compared with its isotropy part.So the EVDF can be well represented by the two-term approximation,which expands the EVDF to first order in a small deviation from isotropy,and it is expressed as

    Using the two-term approximation,and taking the electron kinetic energy u (u=mev2/(2e)) as variable instead of v,the Boltzmann equation (1) can be simplified as a second-order partial differential equation (see equation (3)) to describe the isotropic part of dusty plasma EEDF f0[27]

    Here,νm=(ngσea+ndσed)v is the total electron momentum transfer frequency;ngand ndare neutral atom number density and dust density;σeaand σedrepresent the electron–neutral and electron–dust momentum transfer cross sections.Sea(f0)represents the electron-atom collision terms.Note that electron–dust collisions have been considered as additional collision terms Sed(f0) in equation (3).For discharges with relative high pressure (usually judged byfor glow discharge in a cylindrical tube),the electrons collide strongly with other particles,and the electron energy variations caused by the spatial inhomogeneity are negligible compared with the collision terms and energy diffusion.In this situation,the local approximation that neglects all spatial gradient terms is applicable for simplifying equation(3).The corresponding local kinetic equation is deduced as

    On the other hand,if the gas pressure is low(usually judged byfor glow discharge in a cylindrical tube),the spatial gradient terms can be important to the EEDF and the local approximation will not be applicable any more.In this case,the nonlocal approach should be used to simplify equation(3).In the nonlocal approach,the total electron energy ε=u+Φ(r) is used to replace kinetic energy u as variable of EEDFs,where Φ(r)is the potential in radial direction.Then the corresponding nonlocal kinetic equation can be deduced as

    To solve the nonlocal kinetic equation(5)in an easier form,it is further simplified by spatially averaging over the radial path that electrons can reach [26,28].In this way,the nonlocal kinetic equation is finally approximated as follow

    The averaged terms in equation (6) are determined by equation (7)

    where Uwis the absolute value of the tube wall potential.The integral upper limit r(ε) in equation (7) is calculated from equation (8)

    The radial potential distribution Φ(r) of dust-free and dusty plasma is estimated with the fluid model developed in[29].The presence of dust particles can reduce the absolute value of radial potential,which will influence the EEDF profiles to some extent.

    2.2.Dust charging processes

    Dust particles in glow discharge plasma are usually negatively charged since electron velocity is much higher than ion velocity.The dust particle charge number and surface potentials are determined by the charging currents balance equation.The OML theory [30]is the most widely used model to estimate the electron charging current of dust particles,which is derived as

    Here,neis electron density;rdand φsare radius and surface potential of dust particles,respectively.

    As for the ion charging process,the CEC approximation[31]is employed to estimate the corresponding charging current since the ion-neutral collisions may have a significant influence on the ion charging process.The ion velocity distribution is usually assumed to be Maxwellian,then the ion charging current can be deduced as

    Here,niis ion density;Tirepresents ion temperature;miis the ion mass;λDis the Debye length of dusty plasma;liis the ion mean free path.Then the charging currents balance equation can be expressed as

    Combining the electroneutrality condition for dusty plasma

    where|Zd|is charge number of dust particle,which is usually determined by dust radius and dust surface potential.The surface potential of dust particles can be obtained by solving equations (11) and (12).

    2.3.Electron collisions terms for the kinetic equation

    Generally speaking,in glow discharge plasma,the electron–electron collision can be neglected when calculating the EEDF profiles under ionization degree β<10?5(β=ne/ng)[32].Under calculation conditions used in this paper,the ionization degree β is less than 10?6(see the results and discussion part),so the electron–electron collision is not considered.Then,only electron–neutral and electron–dust collisions are considered in this study.

    The electron–neutral collision consists of two parts:elastic and inelastic collisions.For electron–neutral elastic collision,its corresponding collision term is expressed as

    whereis the elastic collision frequency of electron-atom.

    As for the electron–neutral inelastic collision,it can be divided into two main parts corresponding to excitation and ionization processes.The different level of electron excited and ionized states can be reduced as a single electronic state to simplify the calculation in gas discharge plasma[33].Then the corresponding excitation and ionization collision terms are written as follows

    whereandare excitation and ionization collision frequencies;Uexand Uiare excitation and ionization threshold energy,and which are set as 11.72 eV and 15.6 eV,respectively,for argon plasma.The electron–neutral cross sections are from [34].

    The electron–dust collisions consist of the electron scattering(elastic collision)and collection(inelastic collision)processes by dust particles,and their corresponding collision terms are shown below [11]

    where md=(4/3)πrd3ρdis dust particle mass,and dust material density is set as ρd=3 g cm?3in this study,is the electron–dust momentum transfer frequency andis electron collection frequency.In dusty plasma,the cross section of electron–dust momentum transfer can be expressed as [35]

    where rC(u) is defined as Coulomb radius of electron–dust collision and is calculated by rC(u)=rdeφs/(2u);ρc(u) corresponds to the maximum impact parameter in collection process,which is defined as

    The electron–dust collection cross section is expressed as[35]

    With the electron–neutral and electron–dust collision terms described above,the nonlocal kinetic equation (6) can be written in detail as

    2.4.The transport and ionization rate coefficients for dusty plasmas

    The transport and ionization rate coefficients are of crucial importance for simulating the gas discharge process and they are calculated based on the plasma EEDFs.The electron mobility μeand diffusion coefficient Defor dusty plasma are given by [36]

    Many kinds of coefficients are defined to calculate the reaction rates appearing in the source terms of fluid equations.The most straightforward one is to define the corresponding rate coefficients as follow [36]

    where σiis electron-atom ionization cross section.From equations (21)–(23),it can be seen that electron mobility,diffusion and ionization rate coefficients are all calculated based on the EEDF.Dust particles can influence these parameters by influencing the total electron momentum transfer frequency and EEDF profiles.

    3.Results and discussion

    The normalized local and nonlocal EEDFs are calculated by solving the corresponding kinetic equations (4) and (6)numerically.The kinetic equations are solved by using the finite-difference method.Then the electron effective temperature,electron mobility and diffusion coefficient,and ionization rate coefficient are obtained and analyzed according to the obtained EEDFs.These calculations are simultaneously carried out for dust-free and dusty plasmas to analyze the influence of dust particle on these parameters.The calculation is performed in the positive column of argon DC glow discharge.Detailed calculation conditions are presented as:discharge tube radius R=1 cm,gas pressure P=0.5 torr,gas density ng=1.7×1016cm?3,ion density ni=1010cm?3,gas and ion temperature Tg=Ti=300 K (0.026 eV),dust radius rd=1 μm and dust density nd=106cm?3for dusty plasmas.Note that,with the calculation conditions listed above,the ratio R/(2.4λε)is estimated to be smaller than one for dust-free and dusty case,which means that the nonlocal kinetic model is more appropriately to calculate and analyze the plasma properties.The main calculation results of the presented model are shown in the following figures 1–7.

    The local and nonlocal EEDF results of dust-free and dusty plasma are shown in figures 1 and 2.It can be seen that,for dust-free plasma,the population of the high energy component of the nonlocal EEDF is enhanced compared with that part of local EEDF since the use of averaged collision terms in nonlocal kinetic equation leads to a lower electron collision frequency.The difference can substantially influence the calculated values of the rate coefficients for the excitation and ionization reactions with high threshold energies.Meanwhile,from figure 1 we can see that the local and nonlocal EEDFs clearly deviate from their original profiles(the dust-free ones) with nd=106cm?3when the axial electric field is low.The introduction of dust particles decreases the energetic electron number and increases the low energy electron number due to the collection of high energy electrons by negatively charged dust particles and energy loss caused by electron–dust momentum transfer collisions.With the increase of the axial electric field (see figure 2),the influence of dust particles on the EEDFs becomes less noticeable since the averaged electron energy becomes higher and the proportion of the high energy electron collected by dust particle is reduced.Note that the difference between nonlocal dust-free and dusty EEDFs is larger than the difference between local cases,because the radial potential used for dusty plasma is different with the dust-free case in their nonlocal kinetic models.

    Figure 1.The local and nonlocal EEDFs of dust-free and dusty plasmas for E=5 V cm?1.

    Figure 2.The local and nonlocal EEDFs of dust-free and dusty plasmas for E=15 V cm?1.

    Figure 3.The dependence of ratio nd|Zd|/ne on axial electric field E.

    Figure 4.Effective electron temperature as function of axial electric field E.

    Figure 3 presents the dependence of ratio nd|Zd|/neon axial electric field E.It can be seen that the ratio nd|Zd|/neincreases with the increasing axial electric field since the averaged electron energy increases with the increasing axial electric field.The ratio nd|Zd|/neis always smaller than 1,which means that the electron density does not decrease much when dust particles are introduced.

    The effective electron temperature defined as=Teffis illustrated in figure 4.The effective electron temperature increases with the increasing axial electric field,because more energy is injected by the axial electric field.The effective electron temperature Teffobtained from the nonlocal model is higher than that from the local model,since averaged collision terms in the nonlocal kinetic equation leads to a lower electron collision frequency and electrons lose less energy through collisions.With the increase of axial electric field,the increase of Teffcalculated from nonlocal model should be higher than the local case to hold the energy balance between electric field and electron–neutral collisions.When dust particles are introduced,the decrease of Teffin nonlocal model is more obvious compared with the local case since the high energy electron proportion in nonlocal EEDFs is higher.With the increase of the electric field,the influence of dust particles on the Teffbecomes less noticeable since the effect of dust particles on EEDFs becomes smaller.

    Figure 5.Dependences of electron mobility on the axial electric field E.

    Figure 6.Dependences of diffusion coefficient on the axial electric field E.

    Figure 7.Dependences of ionization rate coefficient on the axial electric field E.

    Figures 5 and 6 illustrate the dependences of electron mobility and diffusion coefficients on the axial electric field.It can be seen that,in dust-free plasmas,electron mobility does not change much with the increasing axial electric field and there is no significant difference between the local and nonlocal results.The electron diffusion coefficient decreases with the increasing axial electric field,because the electron collision frequency increases with the increasing axial electric field.When dust particles are introduced(nd=106cm?3),we find that the electron mobility calculated from the local and nonlocal kinetic models increases obviously at low axial electric field since the anisotropy of EEDFs is visibly enhanced by dust particles.Also,the effect of dust particles on nonlocal mobility is more obvious compared with the local case since the high energy electron(which can be collected by dust particles) proportion in nonlocal EEDFs is higher.With the increase of axial electric field,the mobility obtained from the local and nonlocal kinetic model decreases since the influence of dust particles on EEDF profiles becomes weaker.The diffusion coefficients calculated from the local and nonlocal kinetic model decrease when dust particles appear since the additional electron–dust collisions are introduced.

    The ionization rate coefficients for dust-free and dusty plasmas are plotted as a function of axial electric field E in figure 7.With the increase of axial electric field,the ionization rate coefficients have a similar variation trend with electron effective temperature since both of them are positively proportional to electron energy.Dust particles can dramatically decrease the ionization rate coefficient at low axial electric field since the proportional of the high energy electrons collected by dust particle is relatively high at low axial electric field.Meanwhile,ionization rate coefficients calculated from the local and nonlocal kinetic model also have some difference to some extent due to the difference between the local and nonlocal EEDF profiles.

    4.Conclusion

    The local and nonlocal kinetic models are developed for analyzing the EEDF,electron transport and ionization rate coefficients of DC glow discharge dusty plasma.The influences of dust particles and the simplification method (local approximation or nonlocal approach)used for the Boltzmann equation on these plasma properties are calculated and discussed.The corresponding conclusions are presented as follows.

    For both of dust-free and dusty plasmas,the EEDFs calculated based on the local and nonlocal kinetic models are different and all deviate significantly from the Maxwellian distribution.Dust particles reduce the population of high energy electrons and dramatically make the profiles of EEDFs shift to lower energy because of the collection of energetic electrons by dust particles.With the increase of axial electric field,the influence of dust particles on EEDFs becomes less noticeable.For dust-free plasma,the electron mobility calculated based on the local and nonlocal EEDFs does not differ much and changes slightly with the increasing axial electric field.The electron diffusion coefficient obtained from the nonlocal kinetic model is lower than that from the local model and both of them decrease with the increasing axial electric field.When dust particles are introduced(nd=106cm?3),the local and nonlocal electron mobility gets much higher at low axial electric fields and decreases with the increasing axial electric field.The effect of dust particles on nonlocal mobility is more obvious compared with the local case since the high energy electron proportion in nonlocal EEDFs is higher.Meanwhile,the diffusion coefficients calculated from the local and nonlocal kinetic model decrease when dust particles appear since additional electron–dust collisions are introduced.The ionization rate coefficients have a similar variation trend with electron effective temperature since both of them are positively proportional to electron energy.And the dust particles can dramatically decrease the ionization rate coefficient at low electric field.

    Based on the calculation results in this paper,we reach a conclusion that the electron transport and ionization rate coefficients can be obviously affected by dust particles and the choice of simplification method for the Boltzmann equation.For simulating the gas discharge process with dust particles more accurately,the electron transport and ionization rate coefficients should be calculated with a proper kinetic model and dust particles should be considered too.

    Acknowledgments

    The research has been financially supported by National Natural Science Foundation of China (Nos.11775062 and 61601419),and the Key Laboratory Foundation of National Key Laboratory of Electromagnetic Environment (No.614240319010303).

    ORCID iDs

    Yonggan LIANG (梁勇敢)IANG (梁勇敢) https://orcid.org/0000-0002-9266-7499 https://orcid.org/0000-0002-9266-7499

    猜你喜歡
    王瑩李輝
    Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft
    巧用比較策略,突破學(xué)生的學(xué)習(xí)難點(diǎn)
    Mechanism of microweld formation and breakage during Cu–Cu wire bonding investigated by molecular dynamics simulation
    Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer*
    王瑩作品賞析
    王瑩作品賞析
    萊儷青年藝術(shù)獎獲獎?wù)?王瑩:《租賃一平方米》的力量
    王瑩作品
    王瑩作品
    李輝廢塑料加工設(shè)備技術(shù)升級產(chǎn)量高更賺錢
    色播亚洲综合网| 国产激情偷乱视频一区二区| 一区二区三区高清视频在线| 日韩av免费高清视频| 国产成人a∨麻豆精品| 日韩一区二区三区影片| 亚洲av中文字字幕乱码综合| 久久久午夜欧美精品| 爱豆传媒免费全集在线观看| 成人无遮挡网站| 亚洲国产成人一精品久久久| 欧美激情国产日韩精品一区| 国产精品福利在线免费观看| 日韩成人av中文字幕在线观看| 午夜激情欧美在线| 日韩成人伦理影院| 大话2 男鬼变身卡| 高清av免费在线| 午夜免费激情av| 蜜桃亚洲精品一区二区三区| 特级一级黄色大片| eeuss影院久久| 乱人视频在线观看| 女人被狂操c到高潮| 免费看不卡的av| 成人毛片60女人毛片免费| 一级毛片 在线播放| av卡一久久| 欧美 日韩 精品 国产| 91狼人影院| 国产黄色免费在线视频| 一级毛片电影观看| 非洲黑人性xxxx精品又粗又长| 亚洲三级黄色毛片| 日韩av不卡免费在线播放| 中文精品一卡2卡3卡4更新| 精品久久久久久久末码| 国产 一区 欧美 日韩| 亚洲av二区三区四区| 婷婷色综合大香蕉| av卡一久久| 丝瓜视频免费看黄片| 岛国毛片在线播放| 久久99热这里只有精品18| 免费观看无遮挡的男女| 久久精品国产亚洲av天美| 免费大片黄手机在线观看| 亚洲国产精品sss在线观看| 一级二级三级毛片免费看| 非洲黑人性xxxx精品又粗又长| 午夜免费男女啪啪视频观看| 日本与韩国留学比较| 搡老乐熟女国产| 在线免费观看不下载黄p国产| 欧美潮喷喷水| freevideosex欧美| 69人妻影院| 亚洲精品456在线播放app| 国产伦在线观看视频一区| av在线观看视频网站免费| 久久精品综合一区二区三区| 免费黄色在线免费观看| 亚洲人成网站在线观看播放| 亚洲精品自拍成人| 国产精品爽爽va在线观看网站| 在线观看av片永久免费下载| 舔av片在线| 国产中年淑女户外野战色| 少妇的逼水好多| 亚洲激情五月婷婷啪啪| 观看美女的网站| 嘟嘟电影网在线观看| 91精品一卡2卡3卡4卡| 1000部很黄的大片| 亚洲欧洲日产国产| 干丝袜人妻中文字幕| 久久久久国产网址| av免费在线看不卡| 午夜爱爱视频在线播放| 久久亚洲国产成人精品v| 亚洲真实伦在线观看| 成人漫画全彩无遮挡| 天堂俺去俺来也www色官网 | 日韩av在线免费看完整版不卡| 男女国产视频网站| 超碰97精品在线观看| 熟妇人妻久久中文字幕3abv| 九九久久精品国产亚洲av麻豆| 性插视频无遮挡在线免费观看| 亚洲不卡免费看| 免费av不卡在线播放| 久久久成人免费电影| 亚洲va在线va天堂va国产| 国产高清三级在线| 亚洲av国产av综合av卡| 久久6这里有精品| 国产91av在线免费观看| 肉色欧美久久久久久久蜜桃 | 中文乱码字字幕精品一区二区三区 | 日本-黄色视频高清免费观看| 久久久久久久久久黄片| 韩国高清视频一区二区三区| 搞女人的毛片| 久久久久久伊人网av| 国内精品宾馆在线| 亚洲人成网站在线观看播放| 3wmmmm亚洲av在线观看| 老司机影院成人| 亚洲丝袜综合中文字幕| 亚洲国产精品sss在线观看| 一二三四中文在线观看免费高清| 国产日韩欧美在线精品| 亚洲精品,欧美精品| 视频中文字幕在线观看| 免费黄频网站在线观看国产| 日韩精品青青久久久久久| 超碰av人人做人人爽久久| 如何舔出高潮| 欧美三级亚洲精品| 中国国产av一级| 国产精品伦人一区二区| 亚洲国产高清在线一区二区三| 国产成人福利小说| 中文字幕亚洲精品专区| 寂寞人妻少妇视频99o| 国产成人福利小说| 内地一区二区视频在线| 国产爱豆传媒在线观看| 国产成人a∨麻豆精品| 国产精品麻豆人妻色哟哟久久 | 嘟嘟电影网在线观看| 亚洲经典国产精华液单| xxx大片免费视频| 亚洲精品第二区| 欧美人与善性xxx| 免费播放大片免费观看视频在线观看| 熟女人妻精品中文字幕| 欧美激情久久久久久爽电影| 2018国产大陆天天弄谢| 秋霞在线观看毛片| 国产成人精品福利久久| 最近最新中文字幕免费大全7| 中文乱码字字幕精品一区二区三区 | 在线免费观看的www视频| 成人av在线播放网站| 亚洲欧美成人精品一区二区| 亚洲国产av新网站| 在线免费观看不下载黄p国产| 99re6热这里在线精品视频| 热99在线观看视频| 51国产日韩欧美| 久久精品国产亚洲av涩爱| 国产精品av视频在线免费观看| 禁无遮挡网站| 久久亚洲国产成人精品v| 亚洲欧美成人综合另类久久久| 高清欧美精品videossex| 人人妻人人看人人澡| 深夜a级毛片| 国语对白做爰xxxⅹ性视频网站| 亚洲av中文字字幕乱码综合| eeuss影院久久| 亚洲最大成人手机在线| 亚洲性久久影院| 国内揄拍国产精品人妻在线| 欧美xxxx性猛交bbbb| 免费看光身美女| 日韩不卡一区二区三区视频在线| 欧美激情在线99| 欧美高清性xxxxhd video| 亚洲色图av天堂| av在线观看视频网站免费| 天天躁日日操中文字幕| 18+在线观看网站| eeuss影院久久| 一本一本综合久久| 欧美激情久久久久久爽电影| av一本久久久久| 中文字幕制服av| 国产一级毛片七仙女欲春2| 美女xxoo啪啪120秒动态图| 日本三级黄在线观看| 国产免费一级a男人的天堂| 久久综合国产亚洲精品| 最近最新中文字幕大全电影3| 男女啪啪激烈高潮av片| 一级毛片我不卡| 80岁老熟妇乱子伦牲交| 又大又黄又爽视频免费| 秋霞在线观看毛片| av在线蜜桃| 一级毛片久久久久久久久女| av在线老鸭窝| 亚洲欧美精品专区久久| 国产人妻一区二区三区在| 精品少妇黑人巨大在线播放| 精品久久久久久久久av| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 91在线精品国自产拍蜜月| 真实男女啪啪啪动态图| 美女大奶头视频| 高清欧美精品videossex| 亚洲性久久影院| 美女黄网站色视频| 成人二区视频| 久久久久久九九精品二区国产| 一夜夜www| 成人综合一区亚洲| 亚洲av男天堂| 久久久久性生活片| 成人高潮视频无遮挡免费网站| 777米奇影视久久| 久久草成人影院| 人妻夜夜爽99麻豆av| 久久97久久精品| 国产淫语在线视频| 免费av毛片视频| 韩国av在线不卡| 老司机影院毛片| 午夜激情久久久久久久| 熟妇人妻不卡中文字幕| 神马国产精品三级电影在线观看| 最后的刺客免费高清国语| 久久久久免费精品人妻一区二区| 精品午夜福利在线看| 婷婷色av中文字幕| av网站免费在线观看视频 | 尾随美女入室| 国产亚洲91精品色在线| 国产91av在线免费观看| 国产黄色免费在线视频| 精品欧美国产一区二区三| 国产毛片a区久久久久| 男女边吃奶边做爰视频| av在线老鸭窝| 亚洲怡红院男人天堂| 少妇人妻精品综合一区二区| 欧美日韩一区二区视频在线观看视频在线 | 爱豆传媒免费全集在线观看| 亚洲人成网站在线播| 亚洲精品日韩在线中文字幕| 2021少妇久久久久久久久久久| 久久精品国产亚洲av涩爱| 国产黄a三级三级三级人| 别揉我奶头 嗯啊视频| 免费看a级黄色片| 禁无遮挡网站| 成年版毛片免费区| 日本免费a在线| 夜夜爽夜夜爽视频| 欧美bdsm另类| 啦啦啦啦在线视频资源| 汤姆久久久久久久影院中文字幕 | 伦理电影大哥的女人| 国产一区二区亚洲精品在线观看| 日本一本二区三区精品| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色视频一区二区在线观看| 精品国产露脸久久av麻豆 | 国产激情偷乱视频一区二区| 777米奇影视久久| 欧美高清性xxxxhd video| 国产av在哪里看| 2021少妇久久久久久久久久久| 欧美激情久久久久久爽电影| 校园人妻丝袜中文字幕| 国产午夜精品论理片| 九色成人免费人妻av| 欧美高清性xxxxhd video| 亚洲精品,欧美精品| 精品一区二区三区视频在线| 永久网站在线| 99久久精品国产国产毛片| 亚洲最大成人中文| 日本av手机在线免费观看| 亚洲丝袜综合中文字幕| 一级片'在线观看视频| 精品久久久久久成人av| 哪个播放器可以免费观看大片| 国产麻豆成人av免费视频| 精品不卡国产一区二区三区| 在线观看免费高清a一片| av在线亚洲专区| 久久久国产一区二区| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区三区av在线| 亚洲欧美一区二区三区国产| 男的添女的下面高潮视频| 一本久久精品| 国产熟女欧美一区二区| 国产精品久久视频播放| 少妇熟女aⅴ在线视频| 久久久精品94久久精品| 国产色婷婷99| 欧美精品国产亚洲| 亚洲人成网站高清观看| 亚洲av.av天堂| 亚洲久久久久久中文字幕| 亚洲成人精品中文字幕电影| 干丝袜人妻中文字幕| 91午夜精品亚洲一区二区三区| 99久国产av精品国产电影| 老司机影院毛片| 欧美zozozo另类| 国产精品不卡视频一区二区| 久久精品综合一区二区三区| 赤兔流量卡办理| 亚洲18禁久久av| 直男gayav资源| 少妇被粗大猛烈的视频| 午夜精品国产一区二区电影 | 菩萨蛮人人尽说江南好唐韦庄| 欧美成人精品欧美一级黄| 日日啪夜夜撸| 国产精品一二三区在线看| 一区二区三区高清视频在线| 成人性生交大片免费视频hd| 精品人妻偷拍中文字幕| 成人av在线播放网站| 欧美xxⅹ黑人| 久久国内精品自在自线图片| 精品国产露脸久久av麻豆 | 日韩,欧美,国产一区二区三区| 99九九线精品视频在线观看视频| av在线亚洲专区| 国产视频首页在线观看| 赤兔流量卡办理| 精品久久国产蜜桃| 午夜视频国产福利| 狂野欧美激情性xxxx在线观看| 国产免费又黄又爽又色| 日韩av免费高清视频| 国产成人精品一,二区| 美女黄网站色视频| 亚洲在线自拍视频| 亚洲18禁久久av| 日本一本二区三区精品| 亚洲av成人av| 亚洲三级黄色毛片| 国国产精品蜜臀av免费| kizo精华| 亚洲av一区综合| 国产伦在线观看视频一区| 我要看日韩黄色一级片| 欧美日本视频| 深爱激情五月婷婷| 久久久久久久久久成人| 久久97久久精品| 看免费成人av毛片| 91精品伊人久久大香线蕉| 日韩,欧美,国产一区二区三区| 日本免费a在线| 国产伦一二天堂av在线观看| 国产综合精华液| 中文资源天堂在线| 天美传媒精品一区二区| 国产一区二区三区综合在线观看 | 成人特级av手机在线观看| 青春草视频在线免费观看| 黑人高潮一二区| 观看免费一级毛片| av又黄又爽大尺度在线免费看| 亚洲天堂国产精品一区在线| 免费电影在线观看免费观看| 老师上课跳d突然被开到最大视频| 亚洲av.av天堂| 乱码一卡2卡4卡精品| av免费在线看不卡| 欧美97在线视频| 少妇的逼好多水| 国产探花在线观看一区二区| a级毛片免费高清观看在线播放| 午夜免费观看性视频| 一边亲一边摸免费视频| 精品久久久久久久人妻蜜臀av| 久久久精品94久久精品| 日韩成人伦理影院| 一区二区三区四区激情视频| 女人久久www免费人成看片| 免费观看性生交大片5| 不卡视频在线观看欧美| 免费观看无遮挡的男女| 国产老妇女一区| 欧美日韩国产mv在线观看视频 | 久久精品国产鲁丝片午夜精品| 国产精品av视频在线免费观看| 丝瓜视频免费看黄片| 亚洲综合色惰| 久久久久久久亚洲中文字幕| 国产国拍精品亚洲av在线观看| 美女被艹到高潮喷水动态| 久久久精品94久久精品| 99re6热这里在线精品视频| 国产黄片视频在线免费观看| 女人久久www免费人成看片| 精品久久久久久久末码| 大话2 男鬼变身卡| 国产中年淑女户外野战色| 只有这里有精品99| 91精品国产九色| 国内揄拍国产精品人妻在线| 成年av动漫网址| 热99在线观看视频| 国产成人a区在线观看| 亚洲国产欧美在线一区| 国产又色又爽无遮挡免| 69人妻影院| 三级经典国产精品| 亚洲最大成人手机在线| 日韩av在线免费看完整版不卡| 国产视频内射| 又大又黄又爽视频免费| 国产色爽女视频免费观看| 一级片'在线观看视频| 国产在线男女| 一级毛片久久久久久久久女| 网址你懂的国产日韩在线| 精品久久久精品久久久| 我的老师免费观看完整版| 午夜激情欧美在线| av国产免费在线观看| 亚洲人成网站在线播| 日日撸夜夜添| 午夜免费观看性视频| 乱人视频在线观看| 少妇高潮的动态图| 国产在视频线精品| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲高清精品| 亚洲一级一片aⅴ在线观看| 国产日韩欧美在线精品| 国产高清国产精品国产三级 | 日韩一区二区视频免费看| 青春草亚洲视频在线观看| 高清视频免费观看一区二区 | 边亲边吃奶的免费视频| 少妇熟女欧美另类| 少妇丰满av| 最近最新中文字幕大全电影3| 少妇的逼好多水| 在线播放无遮挡| 国产黄色小视频在线观看| 大香蕉久久网| 春色校园在线视频观看| 亚洲av国产av综合av卡| 亚洲精品国产av蜜桃| 国产精品久久久久久精品电影| av在线老鸭窝| 嫩草影院精品99| 十八禁网站网址无遮挡 | 亚洲精品日韩在线中文字幕| 中文字幕制服av| 色吧在线观看| 亚洲丝袜综合中文字幕| 天美传媒精品一区二区| 熟女电影av网| 久久人人爽人人片av| 久久国产乱子免费精品| 国产 一区 欧美 日韩| 国产亚洲午夜精品一区二区久久 | 精品人妻视频免费看| 免费黄网站久久成人精品| 日韩三级伦理在线观看| 日韩成人伦理影院| 久久午夜福利片| 两个人的视频大全免费| 国产精品伦人一区二区| 日韩大片免费观看网站| 午夜视频国产福利| 一二三四中文在线观看免费高清| 三级国产精品欧美在线观看| 啦啦啦啦在线视频资源| 久久97久久精品| 三级男女做爰猛烈吃奶摸视频| 男人爽女人下面视频在线观看| 亚洲精品,欧美精品| 国产久久久一区二区三区| 亚洲av成人av| 99re6热这里在线精品视频| 成人无遮挡网站| 日韩人妻高清精品专区| 狠狠精品人妻久久久久久综合| 国产欧美另类精品又又久久亚洲欧美| 日韩成人伦理影院| 能在线免费看毛片的网站| 精品人妻偷拍中文字幕| 午夜精品国产一区二区电影 | 综合色丁香网| 国产熟女欧美一区二区| 久久久久性生活片| 免费av毛片视频| 成人午夜精彩视频在线观看| 最近中文字幕高清免费大全6| 亚洲国产高清在线一区二区三| 久久人人爽人人片av| 热99在线观看视频| a级一级毛片免费在线观看| 天美传媒精品一区二区| 亚洲欧美精品自产自拍| 国产视频内射| 免费电影在线观看免费观看| 亚洲国产日韩欧美精品在线观看| 欧美日韩国产mv在线观看视频 | 我的老师免费观看完整版| 干丝袜人妻中文字幕| 一级毛片 在线播放| 免费看不卡的av| 亚洲婷婷狠狠爱综合网| 日韩精品青青久久久久久| 熟妇人妻不卡中文字幕| 久久久久久久午夜电影| 黄色日韩在线| 国产成人aa在线观看| 久久久久精品久久久久真实原创| 成人综合一区亚洲| 久久97久久精品| 成人毛片60女人毛片免费| 久热久热在线精品观看| 一级片'在线观看视频| 国产成人freesex在线| 最近手机中文字幕大全| 午夜福利在线在线| 中文在线观看免费www的网站| 搡老乐熟女国产| 欧美日韩综合久久久久久| 韩国av在线不卡| 久久久久久久久大av| 赤兔流量卡办理| 亚洲婷婷狠狠爱综合网| 汤姆久久久久久久影院中文字幕 | 精品久久久久久久久亚洲| 精品一区二区三卡| 一二三四中文在线观看免费高清| 久久热精品热| 直男gayav资源| 亚洲最大成人av| 亚洲成色77777| 熟女人妻精品中文字幕| 亚洲国产av新网站| 亚洲欧美成人精品一区二区| 亚洲综合精品二区| av在线观看视频网站免费| 国产亚洲av片在线观看秒播厂 | 波多野结衣巨乳人妻| 嫩草影院入口| 亚洲精品亚洲一区二区| 直男gayav资源| 噜噜噜噜噜久久久久久91| 九九在线视频观看精品| 亚洲成人一二三区av| 日韩三级伦理在线观看| 少妇熟女aⅴ在线视频| 亚洲国产色片| 少妇丰满av| 小蜜桃在线观看免费完整版高清| 97热精品久久久久久| 国产黄频视频在线观看| 国产高清三级在线| 啦啦啦中文免费视频观看日本| 中文天堂在线官网| 亚洲久久久久久中文字幕| 亚洲精品国产成人久久av| 最近中文字幕2019免费版| 欧美丝袜亚洲另类| 我的女老师完整版在线观看| 国产伦理片在线播放av一区| 亚洲四区av| 国产不卡一卡二| 久久这里有精品视频免费| 大片免费播放器 马上看| 免费高清在线观看视频在线观看| 亚洲人成网站高清观看| 女人十人毛片免费观看3o分钟| 欧美精品一区二区大全| 精品久久久久久成人av| 久久久精品欧美日韩精品| 成年女人看的毛片在线观看| 欧美日韩亚洲高清精品| 激情五月婷婷亚洲| 最近中文字幕2019免费版| 国产精品伦人一区二区| 精品久久国产蜜桃| 最近中文字幕2019免费版| 免费看日本二区| 国国产精品蜜臀av免费| 熟女电影av网| 18禁动态无遮挡网站| 亚洲精品国产成人久久av| 夜夜看夜夜爽夜夜摸| 特大巨黑吊av在线直播| 国产一区二区亚洲精品在线观看| 九九在线视频观看精品| 极品教师在线视频| 精品久久国产蜜桃| 国产av码专区亚洲av| 国产精品蜜桃在线观看| 久久久久久国产a免费观看| 熟女电影av网| 中文字幕亚洲精品专区| 激情 狠狠 欧美| 精品熟女少妇av免费看| 99热这里只有精品一区| 成人漫画全彩无遮挡| 永久免费av网站大全| 成年av动漫网址| 偷拍熟女少妇极品色| 人妻夜夜爽99麻豆av| 久久久久久久久久久丰满| or卡值多少钱| 麻豆久久精品国产亚洲av| 久久久久久久久久久丰满| 国产黄色小视频在线观看| 亚洲精品亚洲一区二区| 人妻系列 视频|