• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanism of microweld formation and breakage during Cu–Cu wire bonding investigated by molecular dynamics simulation

    2022-01-23 06:34:54BeikangGu顧倍康ShengnanShen申勝男andHuiLi李輝
    Chinese Physics B 2022年1期
    關(guān)鍵詞:李輝

    Beikang Gu(顧倍康) Shengnan Shen(申勝男) and Hui Li(李輝)

    1School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072,China

    2The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China

    Keywords: Cu-Cu wire bonding,bonding mechanism,atomic stress,molecular dynamics simulation

    1. Introduction

    Currently, wire bonding is the most popular first-level interconnection technology used between the die and package terminals.[1]It has been widely used as an interconnection technique in the electronic packaging industry since it was invented in the 1960s.[2]Approximately 9 trillion wires in electronic devices were bonded globally by this technique in 2008.[3]Owing to the cost and flexibility, it will still play an important role for a long period.[4]Recently, gold has been extensively used in wire bonding because of its excellent performance.[5]Conversely,copper wire exhibits better tensile strength and lower cost compared with gold wire, increasing its use as a substitute for gold wire.[6]Nonetheless,it presents several drawbacks owing to its oxidation, high strength, and high hardness.[7]Therefore, the bonding mechanism of copper needs to be further evaluated.

    Despite its long-term and excessive usage,the wire bonding mechanisms have not been completely evaluated,[8]and the fundamental research is still required. From the chemical point of view, the wire bonding mechanism consists of the formation of solid-state metallic bonds between the surfaces of wire and substrate to achieve the required connecting strength.[9]Several methods have been used to form metal bonds that meet the bonding conditions,such as the ultrasonic wire bonding. In this method,the ultrasonic energy is applied onto the contact interface to break the oxide films presented on the surface of the wire and substrate,[10]which gets metal atoms close enough to build metal bonds. In the past, experimental methods were used to analyze the changes;[8]however, these methods presented drawbacks like being destructive and were not able to detect microscale changes.[11]Because of that,it is difficult to identify the changes in the reaction zone between the contact surfaces. Therefore,simulation is the only possible approach to evaluate the wire bonding.Although finite-element(FE)simulations are widely used to predict mechanical behavior, the results depend on phenomenological models, which rely on experimental observations and practical inverse analysis of the bulk behavioral laws.[12]However,experimental data are difficult to obtain,and some macro mechanisms are no longer applicable from the micro perspective, hindering the use of the FE method to perform simulations with acceptable quality. Dinget al.[13]and Ding and Kim[14]established a 3D model and a 2D model to analyze the contact pressure and temperature rise on the contact surface,in which only the normal force was considered and the vibration was coarsely added in the analysis. The result showed that the largest contact pressure was located at the interface perimeter, which disagrees with the result reported by Winchell and Berg.[15]Consequently, a microscale approach is needed to deal with this problem.

    Molecular dynamics (MD) simulation is more appropriate to investigate the local changes of microwelds as the changes of microwelds occur at an atomic level. Per-atom modeling,simple and accurate kinematic equations,complete and reliable potential function, and not high computational workload make MD suitable for studying the behavior of metal systems. Dinget al.[16]simulated the interfacial contact in Au-Au ultrasonic wire bonding and adhesion in pull test of the weld and obtained the estimated tensile strength. Longet al.investigated the evolution of surface morphology in the friction process based on the nano-friction model and discovered that the weld can be formed or broken instantly.[8]However,atomic stress analysis during the wire bonding process has not been evaluated yet. It is necessary to study the atomic stress during the contact process of Cu-Cu wire bonding, which is helpful to understand the mechanism of wire bonding and get better bonding parameters.

    In this study, the contact model for the nanoindentation process between the wire and substrate was developed to simulate the contact process of the Cu wire and Cu substrate. The mechanism of microweld formation and breakage during Cu-Cu wire bonding was investigated by MD simulation. The evolution of the indentation morphology and distribution of the atomic stress were investigated through the loading and unloading processes.

    2. Molecular dynamics modeling

    All the mechanical behaviors involved in this study were performed in the large-scale atomic/molecular massively parallel simulator (LAMMPS)[17]and employed a simulation time step of 0.01 ps. The model was visually analyzed by using the open visualization tool(OVITO).[18]The embeddedatom method,which was developed by Daw and Baskes,[19,20]was applied to govern the energetics and dynamics of all the Cu atoms in every layer of the model. The total potential energyEof a single atomiis calculated as follows:

    whereFis the embedding energy, which is a function of the atomic electron densityρ,Φis a pair potential interaction,andαandβare the element types ofiandjatoms, respectively.Both sums in the formula are over all atomineighbors within the cutoff distance. In this work,the potential parameters are contributed by Foileset al.[21]

    In this study, a local part of the wire and corresponding local part of the substrate were developed to model the nanoindentation,contact,and separation of the wire and substrate.[8]The basic geometry of the model is shown in Fig. 1. There are two parts in the model: Cu wire and Cu substrate. The Cu wire consists of two different layers: a sliding layer and a Newton layer. The Cu substrate consists of three different layers: a sliding layer, a thermo-layer, and a Newton layer. The Newton layers perform the contact behavior during the simulation with the NVE ensemble. The sliding layers were used to provide the desired displacements. In the Cu wire,the sliding layer was used to make the indenter move correctly. In the Cu substrate, the sliding layer was used to fix the bottom of the model,and the velocity of the atoms in sliding layer is set to be 0 m/s. The thermo-layer was used to control the temperature with the NVT ensemble (constant number of atoms,volume, and temperature).[22]The initial temperature of the thermo-layer was set at 0.1 K and kept during the whole process because the fluctuations of the atomic stress distributions due to the thermal effects can be significantly decreased.[23]

    Fig.1. Geometries of the Cu-Cu wire bonding models.

    According to previous studies,[24,25]the indentation speed of 10 m/s was used in this simulation. Prior to the indentation process, the system was allowed to have 100 ps of relaxation to decrease its energy. The nanoindentation process consists of two steps: the loading and unloading processes.Firstly, during the loading process, a speed of 10 m/s was added to the Cu wire part(indenter)to move it along the negative direction of theZ-axis toward the Cu substrate by 30 ?A.Secondly,during the unloading process,the Cu wire part(indenter) was added at a speed of 10 m/s to move it along the positive direction of theZ-axis and separate it from the Cu substrate by 30 ?A. The loading force was calculated by summing the atomic forces of Newton layer atoms of the Cu wire part in theZdirection. Because the indenter deforms, theZ-coordinate of the vertex was taken when the indenter was not deformed as the abscissa of the load-depth curve. For the atomic stress analysis,the six components of the atomic stress tensor were calculated based on the spatial and temporal ensemble averages of the atomic virial stress[8,26]

    whereσvm(i)is the von Mises stress of atomi,andσmn(i)is the atomic stress tensor in the order ofm,n(x,y,orz).

    3. Results and discussion

    3.1. Indentation and retraction

    Figure 2 shows an atomic[010]slice of the Cu wire and substrate during the loading and unloading processes. An attractive force between the wire and the substrate is observed when the wire is close to the substrate, which displays the bulging of the substrate surface atoms under the wire tip, as shown in Fig.2(a). The attraction force increases with the decrease of the distance between the substrate and wire.The substrate surface atoms are rapidly contacted by the wire atoms,as shown in Fig. 2(b). As the wire continues to press downward, the repulsion between the substrate and wire becomes the main force. Because the substrate atoms are compressed at the lower end of the wire,the atomic lattice begins to deform and the strain energy increases. When the repulsion exceeds a certain value, the lattice structure breaks, and the substrate atoms start to rearrange and the strain energy is released, as shown in Fig. 2(c). During the unloading process, the main force acting on the substrate atoms changes from repulsion to attraction.Upon retraction of the wire away from the substrate surface, a small portion of the substrate atoms adheres to the indenter surface,as shown in Fig.2(d). Continuing the retraction of the wire, a neckband is formed between the indenter and substrate,as shown in Fig.2(e). At the time of 484 ps,the wire separates from the substrate,as shown in Fig.2(f).

    The variations of the Cu wire load force versus the model indentation displacement are shown in Fig. 3, which consists of the load-distance curve and unload-distance curve. During the initial contact stage,in which the indentation displacement is-3.6 ?A,the attractive force between the wire and substrate appears and increases significantly. This instability corresponds to the jump-to-contact(JC)phenomenon.[27]During the JC process,the kinetic temperature of the system increases due to the bulging of the surface atoms, then this temperature rise is dissipated to the ambiance through stochastic collisions. At the onset of contact formation, in which the tip approach is-0.75 ?A, the maximum attractive force reaches a value of 23.5 nN. As the indentation displacement continues to increase, the repulsive force increases and becomes the main force. When the indentation displacement equals to 2.32 ?A,the contact load is approximately zero, and the attractive and repulsive forces between the wire and substrate achieve the equilibrium point. Further indenting the wire to the substrate, the contact load increases linearly by increasing the indentation displacement. When the indentation displacement reaches 4.50 ?A,it meets the yielding point and the plastic deformation starts. During the unloading process, the repulsive force considerably decreases and changes to attractive force as the indentation displacement reaches 4.57 ?A.The loading and unloading curves do not coincide,and the unloading curve presents hysteresis. This is explained by the wire indenter retraction away from the substrate, that is, a neckband forms and breaks between the indenter and substrate because of the adhesion force,as shown in Fig.2(f).

    Fig.2. Atomic configurations of loading and unloading.

    Fig.3. Load force of the Cu wire versus indentation displacement.

    3.2. Analysis of indentation morphology

    To evaluate the deformation behavior of the contact surface,the indentation morphology at the atomic level is investigated. Figure 4 shows the indentation morphologies of the model during the loading and unloading processes. The color change corresponds to the change in atomic displacement.Blue color represents atoms without movement(0 ?A),and red color represents atoms that moved furthest(1 ?A).Atoms near the contact region of the wire and substrate change from blue to red,indicating the generation of deformations. Corresponding to the load force of the Cu wire versus the indentation displacement curve, when the indentation displacement reaches-1.0 ?A, the attractive force makes the atoms on the surface bulging and bonded together.With the increase of the indentation displacement, the repulsive force increases, and the attractive force decreases; therefore, the atomic displacement decreases. For the substrate, when the indentation displacement reaches 2.6 ?A,the atomic displacement of the substrate reaches approximately 0 ?A, due to the equilibrium of the attractive and repulsive forces. After that, the substrate atomic displacement increases by increasing the indentation displacement. For the wire,the atomic displacement of the wire firstly increases because of the attractive force. Thus,it reduces because of the attraction and repulsion equilibrium. After the indentation displacement reaches 2.6 ?A,dislocations in the middle area of the Cu wire slice are observed and the atomic displacement of the wire increases by increasing the indentation displacement.

    During the unloading process,the total force acting on the substrate atoms changes from repulsion to attraction with the continuation of the unloading. The repulsive force at the indentation displacement of 4.3 ?A is smaller than that of 4.6 ?A.Moreover,the substrate deformation near the contact region at the indentation displacement of 4.3 ?A is smaller than that of 4.6 ?A.There are still dislocations in the wire at the indentation displacement from 4.3 ?A to 2.9 ?A. By continuing to retract the wire, the main force changes to an attractive force. The deformation of the substrate near the contact region increases by increasing the attractive force. At the indentation displacement of 2.0 ?A, the wire atoms start to rearrange, the strain energy is released, and the deformation of the substrate near the contact region reduces. At the indentation displacement of 1.0 ?A,the strain energy in the wire fails to rearrange the atoms,and dislocations are generated in the atomic lattice. After retracting the indentation displacement to-2.3 ?A,a neckband is formed between the wire and substrate. The deformation near the contact region increases by increasing the attractive force.

    Fig.4. Atomic[010]slice of the indentation morphology during the loading and unloading processes.

    3.3. Analysis of the atomic stress distribution

    Figure 5 shows the contours of von Mises stress on the slice of atomic [010]. During the loading process, the main force acting on the substrate atoms changes from attraction to repulsion. For the substrate, an indentation displacement of-1.0 ?A is observed. The maximum von Mises stress on the substrate is under the wire and close to the surface. This is because the attractive force between the wire and substrate appears and increases significantly during the initial contact stage. As the indentation displacement continues to increase,the equivalent von Mises stress at the contact edges of the substrate is higher than that at the center of contact. For the wire,after the indentation displacement reaches 2.8 ?A,dislocations in the middle area of the Cu wire are observed. Therefore,the stress concentration occurs around dislocations.

    During the unloading process, the equivalent von Mises stress value in the substrate firstly reduces and then increases.This is because the total force acting on the substrate atoms changes from repulsion to attraction with the continuation of the unloading. Stress concentration is observed in the wire because of the dislocations.

    Fig.5. Contours of the equivalent von Mises stress on the slice of atomic[010].

    Fig.6. Equivalent von Mises stress distribution along the line AA′ of the substrate during the(a)loading process and(b)unloading process.

    Figure 6 shows the equivalent von Mises stress distribution along the lineAA′of the substrate during the loading and unloading processes. During the loading process, at the indentation displacement of-1.0 ?A,the maximum von Mises is under the wire tip;moreover,it is under the JC process and the main force is attractive. As the indentation displacement increases from 2.0 ?A to 4.6 ?A,the main force changes to a repulsive force.The maximum von Mises stress increases and shifts toward the edge of the contact area,as shown in Fig.6(a).During the unloading process,the main force changes from repulsive to attractive. As retracting the indentation displacement from 2.9 ?A to-2.6 ?A,the main force is the attraction force,as displayed in Fig.3. The maximum von Mises stress increases by increasing the attractive force. It is higher at the contact edges of the substrate than at the center of contact, as shown in Fig. 6(b). At the indentation displacement of-18.4 ?A, a neckband forms and breaks between the wire and substrate.The minimum von Mises stress is observed under the wire tip,corresponding to the narrowest band.

    4. Conclusions

    In this study,a MD nanoindentation model of weld in the wire bonding process was developed. Through the loading and unloading processes, the mechanism of the Cu wire and Cu substrate contact was investigated by using the analysis of load force versus the indentation displacement curve,indentation morphology,and atomic stress distribution.The following conclusions could be drawn:

    (1)During the loading process,at the initial contact stage,the main force was an attractive force because of the wire and substrate adhesion.At the indentation displacement of 2.32 ?A,the contact load was zero. Further indenting the wire to the substrate, the main force changed to repulsive. During the unloading process,the repulsive force decreased significantly,changing to an attractive force. The loading and unloading curves did not coincide, and the unloading curve exhibited hysteresis.

    (2) For the substrate, at the initial contact stage of the loading process, the maximum von Mises is under the tip of the wire.As increasing the indentation displacement,the maximum von Mises stress is increased and shift toward the edge of the contact area.The equivalent von Mises stress at the contact edges of the substrate is higher than that at the center of contact. During the unloading process,the value of equivalent von Mises stress in the substrate is reduced firstly and then increased. And it is higher at the contact edges of the substrate than that at the center of contact. There is the minimum von Mises stress at the indentation displacement of-18.4 ?A,corresponding to the most narrow band.

    (3) For the wire, stress concentration occurs around dislocations in the middle area of the Cu wire during the loading and unloading process.

    (4)Microwelds can be formed and broken in an extremely short time.The attractive force between the two parts occurred and created bonds at the initial stage of contact between the wire and substrate.

    Acknowledgements

    Project supported by the National Key R&D Program of China (Grant No. 2019YFB1704600) and the Hubei Provincial Natural Science Foundation of China (Grant No.2020CFA032).

    猜你喜歡
    李輝
    Detecting the meteoroid by measuring the electromagnetic waves excited by the collision between the hypervelocity meteoroid and spacecraft
    高流量呼吸濕化治療儀在喉癌術(shù)后患者氣道濕化中的應(yīng)用
    Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer*
    Theoretical research on the transport and ionization rate coefficients in glow discharge dusty plasma
    司機(jī)倒車未發(fā)生碰撞 旁邊老人摔倒而亡該擔(dān)責(zé)嗎
    樂活老年(2018年5期)2018-06-30 03:18:22
    李輝廢塑料加工設(shè)備技術(shù)升級(jí)產(chǎn)量高更賺錢
    眼線
    故事林(2017年7期)2017-04-25 09:18:55
    特殊任務(wù)
    Design,analysis and control for an antarctic modular manipulator
    獨(dú)行者
    久久综合国产亚洲精品| 观看av在线不卡| 大香蕉久久网| 日本欧美视频一区| 国产精品久久久久久精品古装| 丁香六月欧美| 日韩中文字幕视频在线看片| 亚洲美女黄色视频免费看| 免费女性裸体啪啪无遮挡网站| 亚洲成av片中文字幕在线观看| 亚洲国产毛片av蜜桃av| 超碰97精品在线观看| 老司机深夜福利视频在线观看 | 亚洲欧美清纯卡通| 大片电影免费在线观看免费| 又大又黄又爽视频免费| 午夜福利免费观看在线| a级片在线免费高清观看视频| 黄网站色视频无遮挡免费观看| 日日爽夜夜爽网站| 国产极品天堂在线| 在线看a的网站| 午夜日本视频在线| 国产精品久久久久久人妻精品电影 | 男女高潮啪啪啪动态图| 免费高清在线观看视频在线观看| 国产又爽黄色视频| 97精品久久久久久久久久精品| 日本爱情动作片www.在线观看| 午夜av观看不卡| 肉色欧美久久久久久久蜜桃| 天天影视国产精品| 亚洲精品一区蜜桃| av不卡在线播放| 在线观看国产h片| 国产精品亚洲av一区麻豆 | 人妻人人澡人人爽人人| 一级毛片电影观看| 欧美日韩成人在线一区二区| 纵有疾风起免费观看全集完整版| 美女大奶头黄色视频| 久久99精品国语久久久| 在线观看免费午夜福利视频| 日韩中文字幕视频在线看片| 国产一区二区 视频在线| 热re99久久国产66热| 97人妻天天添夜夜摸| 国产一级毛片在线| 国产亚洲av片在线观看秒播厂| 亚洲av成人不卡在线观看播放网 | bbb黄色大片| 99精品久久久久人妻精品| 黄片无遮挡物在线观看| 波多野结衣一区麻豆| 五月开心婷婷网| 精品亚洲成a人片在线观看| 蜜桃国产av成人99| av国产久精品久网站免费入址| 国产精品免费大片| 精品久久久久久电影网| 婷婷色麻豆天堂久久| 日韩熟女老妇一区二区性免费视频| kizo精华| 国产av一区二区精品久久| 精品亚洲成a人片在线观看| 久久久久久久大尺度免费视频| 一区二区三区乱码不卡18| 欧美久久黑人一区二区| 亚洲免费av在线视频| 两性夫妻黄色片| 亚洲精品自拍成人| 老司机影院毛片| 国产午夜精品一二区理论片| 波多野结衣av一区二区av| 韩国精品一区二区三区| 美女视频免费永久观看网站| 97精品久久久久久久久久精品| 日韩免费高清中文字幕av| 亚洲精品一二三| 热99国产精品久久久久久7| 亚洲欧美一区二区三区久久| 国产免费视频播放在线视频| 天美传媒精品一区二区| 国产一区二区 视频在线| 丰满迷人的少妇在线观看| 精品一区在线观看国产| 大码成人一级视频| 最新在线观看一区二区三区 | 亚洲,欧美,日韩| 秋霞伦理黄片| 在线观看一区二区三区激情| 99久久人妻综合| 十八禁高潮呻吟视频| 国产爽快片一区二区三区| 久久久久久久大尺度免费视频| 美女视频免费永久观看网站| 丝袜在线中文字幕| 久久久久久久国产电影| 亚洲精品在线美女| 男女国产视频网站| 久久久久视频综合| 视频在线观看一区二区三区| 日韩av不卡免费在线播放| 欧美精品人与动牲交sv欧美| 午夜福利网站1000一区二区三区| 久久精品国产亚洲av高清一级| 黑丝袜美女国产一区| 欧美日韩综合久久久久久| 叶爱在线成人免费视频播放| 成人免费观看视频高清| 国产欧美亚洲国产| 国产成人午夜福利电影在线观看| 欧美在线黄色| 日韩视频在线欧美| 青春草视频在线免费观看| 人人妻,人人澡人人爽秒播 | 十八禁高潮呻吟视频| 捣出白浆h1v1| 亚洲av中文av极速乱| 大片电影免费在线观看免费| 一级毛片我不卡| 亚洲精品中文字幕在线视频| 国产av一区二区精品久久| 男女之事视频高清在线观看 | 欧美在线一区亚洲| 日韩精品有码人妻一区| 欧美日韩视频高清一区二区三区二| 色播在线永久视频| 亚洲欧美日韩另类电影网站| 韩国精品一区二区三区| 人妻一区二区av| 中文字幕另类日韩欧美亚洲嫩草| 国产精品偷伦视频观看了| 国产97色在线日韩免费| 亚洲欧洲日产国产| 天堂8中文在线网| 久久久久人妻精品一区果冻| 国产男人的电影天堂91| 国产男女内射视频| 青春草亚洲视频在线观看| 9色porny在线观看| 人人澡人人妻人| 美女福利国产在线| 欧美 亚洲 国产 日韩一| 下体分泌物呈黄色| 亚洲欧美日韩另类电影网站| 一区二区三区激情视频| 黑人巨大精品欧美一区二区蜜桃| 一级爰片在线观看| 亚洲精品美女久久av网站| 男女免费视频国产| 男人操女人黄网站| 中文字幕色久视频| 精品一区二区三区av网在线观看 | 桃花免费在线播放| 欧美中文综合在线视频| 精品第一国产精品| 亚洲国产欧美网| 黄色视频在线播放观看不卡| 性色av一级| 乱人伦中国视频| 男人添女人高潮全过程视频| 免费在线观看完整版高清| 成人亚洲欧美一区二区av| 亚洲av中文av极速乱| 日日撸夜夜添| 丰满乱子伦码专区| 最近中文字幕高清免费大全6| 美女福利国产在线| 免费日韩欧美在线观看| 国产亚洲av高清不卡| 国产爽快片一区二区三区| 国产亚洲精品第一综合不卡| 久久久欧美国产精品| 成人免费观看视频高清| 国产精品久久久久久人妻精品电影 | 欧美成人精品欧美一级黄| 一级爰片在线观看| 成人亚洲欧美一区二区av| 满18在线观看网站| 免费人妻精品一区二区三区视频| 国产熟女午夜一区二区三区| 少妇人妻久久综合中文| √禁漫天堂资源中文www| 国产视频首页在线观看| 中文字幕av电影在线播放| 美国免费a级毛片| 一边摸一边抽搐一进一出视频| 日韩中文字幕欧美一区二区 | 777久久人妻少妇嫩草av网站| 久久精品久久久久久久性| 日韩制服丝袜自拍偷拍| 青春草视频在线免费观看| 亚洲,欧美,日韩| 黑丝袜美女国产一区| 老鸭窝网址在线观看| 18在线观看网站| 日本wwww免费看| 国产精品三级大全| 天堂8中文在线网| 精品久久久精品久久久| 亚洲五月色婷婷综合| 免费黄网站久久成人精品| 在线观看一区二区三区激情| 欧美黄色片欧美黄色片| 黄色一级大片看看| 最近最新中文字幕大全免费视频 | 精品国产露脸久久av麻豆| 老鸭窝网址在线观看| 别揉我奶头~嗯~啊~动态视频 | 波多野结衣av一区二区av| 1024香蕉在线观看| 国产成人精品在线电影| 国产成人精品久久二区二区91 | av网站在线播放免费| av一本久久久久| 丁香六月欧美| 9热在线视频观看99| 欧美亚洲日本最大视频资源| 丝袜喷水一区| 国产成人一区二区在线| 人体艺术视频欧美日本| 久久99精品国语久久久| 午夜老司机福利片| 熟女少妇亚洲综合色aaa.| 综合色丁香网| 五月天丁香电影| 亚洲国产成人一精品久久久| 搡老岳熟女国产| 99国产精品免费福利视频| 国产精品av久久久久免费| 国产黄色免费在线视频| 精品一区在线观看国产| 亚洲五月色婷婷综合| 久久精品国产a三级三级三级| 巨乳人妻的诱惑在线观看| 精品国产乱码久久久久久男人| 一级,二级,三级黄色视频| 国产极品粉嫩免费观看在线| 狂野欧美激情性xxxx| 精品第一国产精品| 日韩欧美精品免费久久| 欧美精品亚洲一区二区| 欧美日韩亚洲高清精品| 青春草视频在线免费观看| 亚洲在久久综合| 亚洲第一区二区三区不卡| 亚洲av中文av极速乱| 99久久精品国产亚洲精品| 搡老乐熟女国产| 亚洲国产欧美网| 午夜激情av网站| 亚洲国产成人一精品久久久| 日韩电影二区| 国产一区二区三区综合在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产精品麻豆| 精品国产露脸久久av麻豆| 久久久国产精品麻豆| 国产伦人伦偷精品视频| 在线观看免费日韩欧美大片| 色婷婷av一区二区三区视频| 激情五月婷婷亚洲| 大片免费播放器 马上看| 在线免费观看不下载黄p国产| 99久久人妻综合| 黄片小视频在线播放| 人体艺术视频欧美日本| 亚洲精品,欧美精品| 操美女的视频在线观看| 黄片播放在线免费| 亚洲四区av| 日韩精品免费视频一区二区三区| 色精品久久人妻99蜜桃| 国产精品女同一区二区软件| 一二三四在线观看免费中文在| 亚洲男人天堂网一区| 性少妇av在线| 99久国产av精品国产电影| 1024香蕉在线观看| 亚洲av成人精品一二三区| 女性被躁到高潮视频| 欧美黄色片欧美黄色片| 亚洲欧洲国产日韩| 欧美国产精品va在线观看不卡| 人人妻人人澡人人看| 一级毛片我不卡| 精品一区二区三卡| 国产 一区精品| 我要看黄色一级片免费的| 97在线人人人人妻| a级毛片在线看网站| 啦啦啦中文免费视频观看日本| 一个人免费看片子| 只有这里有精品99| 又黄又粗又硬又大视频| 欧美变态另类bdsm刘玥| bbb黄色大片| 午夜激情av网站| 老汉色av国产亚洲站长工具| 18禁裸乳无遮挡动漫免费视频| 午夜激情av网站| 国产在线免费精品| 在线观看免费午夜福利视频| 亚洲 欧美一区二区三区| 国产在线一区二区三区精| 亚洲国产欧美一区二区综合| 中文字幕av电影在线播放| 午夜免费观看性视频| 亚洲一卡2卡3卡4卡5卡精品中文| 男人爽女人下面视频在线观看| 国产成人一区二区在线| 久久久久国产一级毛片高清牌| 亚洲成人一二三区av| 国产福利在线免费观看视频| 观看美女的网站| 一个人免费看片子| 日本色播在线视频| 午夜激情av网站| videosex国产| 欧美久久黑人一区二区| 女人高潮潮喷娇喘18禁视频| 伊人亚洲综合成人网| xxxhd国产人妻xxx| 国产爽快片一区二区三区| 亚洲欧美一区二区三区黑人| 久久久久久久久免费视频了| 人人妻,人人澡人人爽秒播 | 天天躁狠狠躁夜夜躁狠狠躁| a级毛片在线看网站| 国产99久久九九免费精品| 日本欧美视频一区| 青草久久国产| 欧美日韩国产mv在线观看视频| 秋霞伦理黄片| 免费在线观看黄色视频的| 欧美精品亚洲一区二区| 欧美日本中文国产一区发布| 亚洲成国产人片在线观看| 一级黄片播放器| 国产免费现黄频在线看| √禁漫天堂资源中文www| 国产精品久久久久久久久免| av.在线天堂| 亚洲精品久久午夜乱码| 欧美97在线视频| 婷婷色麻豆天堂久久| 丝袜美足系列| 十八禁高潮呻吟视频| 欧美激情高清一区二区三区 | 亚洲精品久久成人aⅴ小说| 99精品久久久久人妻精品| 女性被躁到高潮视频| 久久精品国产亚洲av涩爱| 精品久久蜜臀av无| 悠悠久久av| 人成视频在线观看免费观看| 亚洲精品久久午夜乱码| 男女无遮挡免费网站观看| 日韩伦理黄色片| 国产 精品1| 亚洲人成77777在线视频| 久久ye,这里只有精品| 国产亚洲精品第一综合不卡| 久久精品亚洲av国产电影网| 亚洲婷婷狠狠爱综合网| 免费少妇av软件| 免费高清在线观看视频在线观看| 亚洲色图综合在线观看| 日本91视频免费播放| 亚洲av国产av综合av卡| 一二三四中文在线观看免费高清| 在线观看人妻少妇| 18在线观看网站| 欧美日韩国产mv在线观看视频| 午夜福利一区二区在线看| 久久人妻熟女aⅴ| 大码成人一级视频| 国产精品一区二区精品视频观看| 热99久久久久精品小说推荐| 91aial.com中文字幕在线观看| 啦啦啦中文免费视频观看日本| 中文字幕亚洲精品专区| 老司机影院毛片| 亚洲国产欧美在线一区| 成年人午夜在线观看视频| 成年动漫av网址| 久久久久久久久久久久大奶| 国产精品欧美亚洲77777| 建设人人有责人人尽责人人享有的| 亚洲成av片中文字幕在线观看| 日本一区二区免费在线视频| 亚洲综合精品二区| 男女无遮挡免费网站观看| 这个男人来自地球电影免费观看 | 亚洲国产毛片av蜜桃av| av网站免费在线观看视频| 欧美久久黑人一区二区| 18禁动态无遮挡网站| 大陆偷拍与自拍| 又粗又硬又长又爽又黄的视频| 国产精品免费视频内射| 黄片小视频在线播放| 免费在线观看黄色视频的| 天天躁日日躁夜夜躁夜夜| 在线观看一区二区三区激情| 亚洲国产欧美一区二区综合| 成人18禁高潮啪啪吃奶动态图| 老司机靠b影院| 99精国产麻豆久久婷婷| 熟女少妇亚洲综合色aaa.| 天堂俺去俺来也www色官网| 黄色一级大片看看| 国产成人欧美在线观看 | av网站免费在线观看视频| 久久久久精品国产欧美久久久 | 亚洲精品美女久久av网站| 色婷婷av一区二区三区视频| 亚洲欧美中文字幕日韩二区| 亚洲精品一二三| 国产国语露脸激情在线看| 欧美日韩精品网址| 日韩熟女老妇一区二区性免费视频| 中文精品一卡2卡3卡4更新| 国产高清国产精品国产三级| 黑人巨大精品欧美一区二区蜜桃| 久久天躁狠狠躁夜夜2o2o | 久久青草综合色| 亚洲精品久久成人aⅴ小说| 最黄视频免费看| 在线 av 中文字幕| 不卡视频在线观看欧美| 精品久久蜜臀av无| 亚洲精品国产区一区二| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品一区三区| 国产一级毛片在线| 欧美xxⅹ黑人| xxxhd国产人妻xxx| 日韩 欧美 亚洲 中文字幕| 国产 一区精品| 色婷婷久久久亚洲欧美| 亚洲,欧美,日韩| 大码成人一级视频| 如何舔出高潮| 亚洲欧美精品自产自拍| 日本爱情动作片www.在线观看| 精品国产一区二区三区四区第35| 午夜av观看不卡| 亚洲欧美精品综合一区二区三区| 午夜免费观看性视频| e午夜精品久久久久久久| 亚洲欧美精品综合一区二区三区| 高清不卡的av网站| 欧美 日韩 精品 国产| 久久人妻熟女aⅴ| 久久人人爽av亚洲精品天堂| 天天躁夜夜躁狠狠躁躁| 久久精品国产亚洲av高清一级| 亚洲情色 制服丝袜| 精品亚洲成a人片在线观看| 亚洲av中文av极速乱| 国产免费一区二区三区四区乱码| av视频免费观看在线观看| 亚洲欧美成人综合另类久久久| 亚洲欧美中文字幕日韩二区| www.av在线官网国产| 熟女少妇亚洲综合色aaa.| 午夜精品国产一区二区电影| 亚洲国产精品一区二区三区在线| 综合色丁香网| 久久国产精品男人的天堂亚洲| 亚洲熟女精品中文字幕| 欧美人与性动交α欧美软件| 熟女av电影| 久久久久视频综合| 性色av一级| 亚洲欧美一区二区三区黑人| xxxhd国产人妻xxx| 午夜福利乱码中文字幕| 日本vs欧美在线观看视频| 女人被躁到高潮嗷嗷叫费观| 日韩一本色道免费dvd| 老司机在亚洲福利影院| 男女免费视频国产| 中文乱码字字幕精品一区二区三区| 精品国产露脸久久av麻豆| 国产免费一区二区三区四区乱码| 伦理电影大哥的女人| 啦啦啦在线免费观看视频4| 岛国毛片在线播放| 久久久久久久精品精品| 日韩欧美一区视频在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲伊人色综图| 国产麻豆69| 亚洲精品一区蜜桃| 国产精品秋霞免费鲁丝片| 狠狠精品人妻久久久久久综合| 操出白浆在线播放| 国产深夜福利视频在线观看| 亚洲伊人久久精品综合| 伊人久久国产一区二区| 亚洲一级一片aⅴ在线观看| 国产日韩欧美在线精品| 久久久国产一区二区| 成人午夜精彩视频在线观看| av天堂久久9| 久久精品国产亚洲av涩爱| 啦啦啦视频在线资源免费观看| 国产精品一区二区在线观看99| 亚洲综合精品二区| 男女之事视频高清在线观看 | 男女边吃奶边做爰视频| 考比视频在线观看| 久久久国产一区二区| 精品视频人人做人人爽| 日日撸夜夜添| 晚上一个人看的免费电影| 99热国产这里只有精品6| 亚洲国产成人一精品久久久| 99热国产这里只有精品6| 老熟女久久久| 日韩大片免费观看网站| 天天影视国产精品| 男女边吃奶边做爰视频| 亚洲,欧美精品.| 免费观看性生交大片5| 黄色视频不卡| 色播在线永久视频| av.在线天堂| 免费日韩欧美在线观看| 午夜福利网站1000一区二区三区| 国产精品久久久久久精品电影小说| 国产女主播在线喷水免费视频网站| 色婷婷久久久亚洲欧美| 男的添女的下面高潮视频| 一二三四在线观看免费中文在| 日韩av不卡免费在线播放| 少妇人妻精品综合一区二区| 欧美精品一区二区大全| 99久久99久久久精品蜜桃| 99精国产麻豆久久婷婷| 一区二区三区乱码不卡18| 久久人妻熟女aⅴ| 男人爽女人下面视频在线观看| 国产精品成人在线| 搡老岳熟女国产| 国产99久久九九免费精品| 亚洲精品aⅴ在线观看| 婷婷成人精品国产| 日韩av免费高清视频| 啦啦啦 在线观看视频| 老司机在亚洲福利影院| 亚洲国产av新网站| 久久天堂一区二区三区四区| 女人爽到高潮嗷嗷叫在线视频| 国产极品天堂在线| 亚洲国产毛片av蜜桃av| av国产精品久久久久影院| 欧美精品人与动牲交sv欧美| 老汉色∧v一级毛片| 熟女少妇亚洲综合色aaa.| 亚洲av日韩精品久久久久久密 | 亚洲av综合色区一区| 色综合欧美亚洲国产小说| av有码第一页| 国产精品一区二区精品视频观看| 亚洲伊人久久精品综合| 深夜精品福利| 99久国产av精品国产电影| 欧美日韩一级在线毛片| 两个人免费观看高清视频| 亚洲欧美一区二区三区久久| 亚洲美女黄色视频免费看| 日韩视频在线欧美| 啦啦啦在线免费观看视频4| 色精品久久人妻99蜜桃| 丁香六月天网| av在线播放精品| 男女边摸边吃奶| 国产亚洲av片在线观看秒播厂| 精品少妇久久久久久888优播| 国产福利在线免费观看视频| www.自偷自拍.com| 9色porny在线观看| 永久免费av网站大全| 老熟女久久久| 欧美日韩视频高清一区二区三区二| 永久免费av网站大全| 亚洲av在线观看美女高潮| 国产精品久久久久久人妻精品电影 | 下体分泌物呈黄色| 午夜老司机福利片| 国产伦理片在线播放av一区| 毛片一级片免费看久久久久| 国产精品偷伦视频观看了| 午夜影院在线不卡| 男男h啪啪无遮挡| 人成视频在线观看免费观看| 中文字幕亚洲精品专区| 亚洲欧洲精品一区二区精品久久久 | 波多野结衣一区麻豆| 精品人妻在线不人妻| 亚洲国产最新在线播放| 成人黄色视频免费在线看| 考比视频在线观看| 高清欧美精品videossex| 日韩精品有码人妻一区| 久久av网站| 黄色视频在线播放观看不卡| 国产97色在线日韩免费| 国产在线免费精品| 黄网站色视频无遮挡免费观看| 欧美日韩亚洲国产一区二区在线观看 |