• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GLOBAL WEAK SOLUTIONS TO THE α-MODEL REGULARIZATION FOR 3D COMPRESSIBLE EULER-POISSON EQUATIONS?

    2021-06-17 13:58:48任亞伯
    關(guān)鍵詞:亞伯

    (任亞伯)

    Faculty of Science,Beijing University of Technology,Beijing 100124,China

    E-mail:ryb2018@emails.bjut.edu.cn

    Boling GUO(郭柏靈)

    Institute of Applied Physics and Computational Mathematics,P.O.Box 8009,Beijing 100088,China

    E-mail:gbl@iapcm.ac.cn

    Shu WANG(王術(shù))

    Faculty of Science,Beijing University of Technology,Beijing 100124,China

    E-mail:wangshu@bjut.edu.cn

    AbstractGlobal in time weak solutions to the α-model regularization for the three dimensional Euler-Poisson equations are considered in this paper.We prove the existence of global weak solutions to α-model regularization for the three dimension compressible Euler-Poisson equations by using the Fadeo-Galerkin method and the compactness arguments on the condition that the adiabatic constant satisfies γ>

    Key wordsGlobal weak solutions;α-model regularization for Euler-Poisson equations;Faedo-Galerkin method

    1 Introduction

    The motion of a compressible isentropic perfect fluid with self-gravitation is modeled by the Euler-Poisson equations in three space dimensions:

    where t≥0,x∈T3,ρ,u=(u1,u2,u3),P(ρ)and Φ represent the fluid density,velocity,pressure and gravitational potential,respectively.We assume that the pressure function P(ρ)satisfies the usual γ-law,

    for some γ>1.

    In this paper,we consider the global weak solutions to Euler-Poisson equations with a viscosity term:

    with the initial conditions

    Equation(1.3)is also known as the α-model regularization for the Euler-Poisson equations.The term?α2Δutis a small perturbation,representing some kind of friction.The term on the right hand side of the second equation in(1.3)describes the internal force of gradient vector field produced by potential function,which can be uniquely solved by the Poisson equation(1.3)3.The potential function is given by

    where G(x,y)denotes the Green’s function of the Poisson part.

    In particular,if without the term?α2Δut,the equations(1.3)will be reduced to the Euler-Poisson equations.This describes the motion of a compressible isentropic perfect fluid with selfgravitation in three space dimensions(compare[11]).T.Luo and J.Smoller proved in[14]that the non-linear dynamical stability of compressible Euler-Poisson equations with perturbations have the same total mass and symmetry as the rotating star solution.A rigorous mathematical theory for rotating stars of compressible fluids was initiated by Auchmuty and Besls[15]in 1971.The existence and properties of rotating star solutions were obtained by Auchmuty and Besls[15],Auchmuty[13],Caffarelli and Friedman[16],Friedman and Turkington[17,25],Li,Chami-llo and Li[19],and Luo and Smoller[20].In[24],McCann proved an existence result for rotating binary stars.In contrast,the existence and properties of stationary non-rotating star solutions is classical(see[11]).

    In this paper,we prove the existence of weak solutions to(1.3)by using the Faedo-Galerkin method(see[4,23]).When we deduce the energy estimates and B-D entropy,the estimates will depend on the index?,δ and η,so we need to be very careful as we deduce these estimates because we need to tend the?,η,δ to zero step by step later in the proof of the main theorem.In addition,B-D entropy can also be applied to other equations;for more details,the reader can refer to[12,18,21,22]and references therein.

    1.1 Formulation of the weak solutions and main result

    For the smooth solutions(ρ,u,Φ(ρ)),multiplying equation(1.3)2and integrating by parts,we can deduce the following energy inequality:

    However,the above energy estimate is not enough to prove the stability of the weak solutions(ρ,u,Φ(ρ))of(1.3).We will obtain the following B-D entropy estimate,which was first introduced by Bresh-Desjardins in[10]:

    where C is bounded by the initial energy.Thus the initial data should satisfy the following:

    Definition 1.1We will say that(ρ,u,Φ)is the finite energy weak solution of problems(1.3)and(1.4)if the following is satisfied:

    1.ρ,u belong to the classes

    2.The equations(1.3)1–(1.3)2hold in the sense of D′((0,T)×T3),(1.3)3holds a.e.for(t,x)∈((0,T)×T3);

    3.(1.4)holds in D′(T3);

    4.(1.6)and(1.7)hold for almost every t∈[0,T].

    NotationsThroughout this paper,C denotes a generic positive constant which may depend on the initial data or some other constant independently of the indexes?,η,δ and r0,and C(·)>0 means that the constant C depends particularly on the parameters in the bracket.

    We now state our main results.

    Theorem 1.2Letting γ>and letting the initial data be satisfied by(1.8),for any time T there exists a weak solution(ρ,u,Φ)to(1.3)–(1.4)in the sense of Definition 1.1.

    The rest of this paper is organized as follows:in Section 2,we state some elementary inequalities and compactness theorems which will be used frequently throughout the proof.To prove our main result,we use the weak compactness analysis method and need to pass to the limits at several approximate levels.In Section 3,following the method used in[12],we show the existence of global-in-time weak solutions to the approximate equations by using the Faedo-Galerkin method.In Section 4,we deduce the Bresch-Dejardins entropy estimates and pass to the limits as?,μ→0.In Sections 5–6,by using the standard compactness arguments,we pass to the limits as η→0,r0→0 and δ→0,step by step.

    2 Preliminaries

    First,we recall some inequalities of Sobolev and Gagliardo-Nirenberg type used later when we deduce the energy estimates and B-D entropy.

    Lemma 2.1([3]) Let ? be any bounded domain in R3with a smooth boundary.Then

    (i)‖f‖L∞(?)≤C‖f‖H2(?)

    (ii)‖f‖Lp(?)≤C‖f‖H1(?), 2≤p≤6

    for some constant C>0,depending only on ?.

    Lemma 2.2([7])(Gagliardo-Nirenberg interpolation inequality) For function u:?→R defined on a bounded Lipschitz domain ??Rn,?1≤q,r≤∞and a natural number m,suppose also that a real number β and a natural j are such that

    The following two lemmas are standard compactness results and will help us get the strong convergence of solutions:

    Lemma 2.3([1,2])(Aubin-Lions Lemma) Let B0,B and B1be three Banach spaces with B0?B?B1.Suppose that B0is compactly embedded in B and that B is continuously embedded in B1.For 1≤p,q≤+∞,let

    Then,

    (i)if p<+∞,then the embedding of W into Lp([0,T];B)is compact;

    (ii)if p=+∞and q>1,then the embedding of W into C([0,T];B)is compact.

    Lemma 2.4([4])(Egoroffs theorem about uniform convergence) Let fn→f a.e.in ?,with a bounded measurable set in Rn,with f finite a.e.Then,for any?>0,there exists a measurable subset ???? such that|??ε|

    we have fn→f strong in Ls,for any s∈[1,p).

    ProofSince fn→f a.e.in ? and fnis uniformly bounded in Lp(?),due to Egoroff’s theorem,we have

    3 Faedo-Galerkin Approximation

    In this section,we construct the approximate system to the original problem by using the Faedo-Galerkin method.We proceed similarly in[5]and[6].

    3.1 Approximate system

    In order to prove the global existence of weak solutions to the α-model regularization for the three-dimensional Euler-Poisson equations,we consider the following approximate system:

    The extra terms?η?ρ?6and?δρ?Δ3ρ are necessary to keep the density bounded and bounded away from below with a positive constant for all time.This enables us to takeas a test function to derive the B-D entropy.The term r0u is used to control the density near the vacuum.?α2Δutis used to make sure that√ρu is a strong convergence in L∞([0,T];L2)at the last approximate level.

    Letting T>0,we define a finite-dimensional space Xn=span{φ1,···,φn},n∈N,where{φk}is an orthonormal basis of L2(T3)which is also an orthogonal basis of H1(T3).Let(ρ0,u0)∈C∞(T3)be some initial data satisfying ρ0≥ξ>0 for x∈T3for some ξ>0,and let the velocity u∈C([0,T];Xn)satisfy

    Since Xnis a finite-dimensional space,all the norms are equivalence on Xn.Thus,u is bounded in C([0,T];Ck(T3))for any k∈N,and there exists a constant C>0 depending on k such that

    Then the approximate of continuity equation is defined as follows:

    First,to show the well-posedness of the parabolic problem(3.3),we introduce the following lemma:

    Lemma 3.1([8]) Let T3be a domain of class C2,θ,θ∈(0,1),and let u∈C([0,T];Xn)be a given vector field.If the initial data ρ0≥ζ>0,ρ0∈C2(T3),then problem(3.3)possesses a unique classical solution ρ=ρu.More specifically,

    Furthermore,because u∈C([0,T];Xn)is a given vector field,by using the bootstrap method and Lemma 3.1,it is easy to prove that system(3.3)exists a unique classical solution ρ∈C1([0,T];C7(T3)).Moreover,if 0<ρ≤ρ≤ρ and divu∈L1([0,T];L∞(T3)),through the maximum principle it provides ρ(x,t)≥0.

    Then if we define Lρ=?tρ+div(ρu)??Δρ,by direct calculation we can obtain

    Next we will show that the solution of equation(3.3)depends on the velocity u continuously.Let ρ1,ρ2be two solutions with the same initial data,that is,

    Subtracting the above two equations,multiplying the resulting equation by?Δ(ρ1?ρ2)and integrating by parts with respect to x over T3,we have

    Since ρ1and ρ2satisfy Lemma 3.1,by using Cauchy-Schwartz inequality,Poincaré’s inequality and Gronwall’s inequality,we can obtain

    Moreover,for u∈C([0,T];Xn)being a given vector field,by using the bootstrap method and compactness analysis,we can prove that

    Thus if we introduce the operator S:C([0,T];Xn)→C([0,T];C7(T3))by S(u)=ρ,we have the following proposition:

    Proposition 3.2If 0<ρ≤ρ≤ρ,ρ0∈C∞(T3),u∈C([0,T];Xn),then there exists an operator S:C([0,T];Xn)→C([0,T];C7(T3))satisfying that

    for any τ∈[0,T]and u1,u2∈MK={u∈C([0,T];Xn);‖u‖C([0,T];Xn)≤k,t∈[0,T]}.

    Remark 3.3Proposition 3.2 suggests that the operator S is Lipschitz continuous for sufficiently small time t.

    3.2 Fadeo-Galerkin approximation

    Next,we hope to solve the momentum equation on the space Xnby using the Faedo-Galerkin approximation method.To this end,for given ρ=S(u),we are looking for an approximate solution un=C([0,T];Xn)satisfying

    for any test function ?∈Xn.

    To solve(3.7),we follow the same arguments as in[5,6,9],and introduce the following family of operators:

    In a fashion similar to[9],it is easy to check that the operater M[ρ]satisfies the following operators:

    for some α>0,and all ρ1,ρ2∈L1(T3),such that ρ1,ρ2≥ρ>0.

    ProofHere we omit the proof;for more details,we refer readers to[5,6,9]. □

    By using the operators M and ρ=S(un),the integral equation(3.7)can be rephrased as

    In view of Lipschitz continuous estimates for S and M?1,equation(3.8)can be solved by the fixed-point theorem of Banach for a short time[0,T′],where T′≤T,on the space C([0,T];Xn).Thus there exists a unique local-in-time solution(ρn,un,Φ(ρn))to(3.3)and(3.8).Next we will extend this local solution that we have obtained to be a global one.

    Differentiating(3.7)with respect to time t,taking φ=unand integrating by parts with respect to x over T3,we have the following energy estimate:

    First,we estimate the terms on the left hand side one by one as follows:

    and where we use the approximate mass equation(3.3)and integration by parts:

    Next we will deal with the cold pressure and high order derivative of the density terms as follows:

    Finally,we will estimate the Poisson term on the right hand side as follows:

    where we have used equation(1.3)3.

    Then,substituting(3.10)–(3.14)into(3.7)and integrating the resulting equation with respect to t over[0,T]yields

    where 0

    Then substituting(3.16)into(3.15)we get

    where ?′is a sufficient small positive constant,and C is a generic positive constant depending only on the initial data and T.

    Thus the energy inequality(3.20)yieldswhere C(?,δ)denotes a positive constant depending particularly on?,δ,but independent of n,and due to dimXn≤+∞and(3.5),the density is bounded and bounded away from below with a positive constant,which means that there exists a constant c>0 such that

    for all t∈[0,T?).Moreover,the energy inequality also gives us

    which,together with(3.21),(3.22)and energy inequality,implies that

    where we used the fact that all the norms are equivalent on Xn.Then we can repeat the above argument many times and,using the compactness analysis,we can obtain un∈C([0,T];Xn),so we can extend T?to T.Thus there exists a global solution(ρn,un,Φ(ρn))to(3.3),(3.7)for any time T.

    To conclude this part,we have the following proposition on the approximate solutions(ρn,un,Φ(ρn)):

    Proposition 3.4Let(ρn,un,Φ(ρn))be the solutions of(3.3),(3.7)on(0,T)×T3constructed above.Then the solutions must satisfy the energy inequality(3.20).In particular,we have the following estimates:

    3.3 Passing to the limits as n→∞.

    We perform first the limit with n→∞,?,η,δ,r0>0 being fixed.Based on the above estimates,which are uniform on n and in accordance with the Aubin-Lions Lemma,we have the following compactness results:

    3.3.1Step 1Convergence of ρn,Pressure?and gravitational force?Φ(ρn)

    Lemma 3.5The following estimates hold for any fixed positive constants?,η,δ and r0:

    where K is independent of n,and depends on?,η,δ,r0,initial data and T.Furthermore,up to an extracted subsequence,

    ProofBy(3.3),we have that

    holds for any ?∈L2([0,T];H1),which yields?tρn∈L2([0,T];H?1).

    This,together with ρn∈L∞([0,T];H3)TL2([0,T];H4),and using the Aubin-Lions Lemma,allows us to claim that ρn∈C([0,T];H3),so,up to a subsequence,we have

    Next,we show that the density is bounded away from zero with a positive constant for all time t∈[0,T]by using the Sobolev inequality.

    The proof of this lemma is complete. □

    3.3.2Step 2Convergence of ρnun?α2Δun

    Lemma 3.6Up to an extracted subsequence,

    ProofFrom the energy estimates,we know that unis bounded in L∞([0,T];H1),so up to a subsequence,we have un?u in L∞([0,T];H1).

    Recall that ρn→ρ strongly in C([0,T];H3),so we have

    Moreover,since ρn∈L∞([0,T];H3),and un∈L∞([0,T];C∞),we can show that

    Together with ρnun∈L∞([0,T];L2),we have ρnun∈L∞([0,T];H2).Next,in order to use the Aubin-Lions Lemma,we only need to prove that

    Since

    based on the energy estimates,it is easy to check that?t(ρnun?α2Δun)∈L2([0,T];H?3),so by using the Aubin-Lions Lemma,we can show

    Thus the proof of this lemma is complete. □

    3.3.3Step 3Convergence of nonlinear diffusion terms

    Thus we have

    With the above compactness results in hand,we are ready to pass to the limits as n→∞in the approximate system(3.3),(3.7).Thus,we can show that(ρ,u,Φ)solves

    and for any test function ?,the following holds:

    Thanks to the lower semicontinuity of norms,we can pass to the limits in the energy estimate(3.20),and we have the following energy inequality in the sense of distributions on(0,T):

    Thus,we have the following proposition on the existence of weak solutions at this level approximate system:

    Proposition 3.7There exists a weak solution to the following system:

    with suitable initial data,for any T>0.In particular,the weak solutions(ρ,u,Φ)satisfy the energy inequality(3.32).

    4 B-D Entropy and Passing to the Limits as?,μ→0

    In this section,we deduce the B-D entropy estimate for the approximate system in Proposition 3.7,which was first introduced by Bresch and Desjardins in[10];this B-D entropy will give a higher regularity of the density and will help us to get the compactness of ρ.By(3.24),(3.28)and u∈L2([0,T];H2),we have

    4.1 B-D entropy

    Substituting(4.3)–(4.5)into(4.2)and integrating it with respect to the time t over[0,T],we have

    where we have used the energy inequality(3.32).Then we need to control the rest of the terms on the right hand side of(4.6):

    Next,we control the terms I4?I11as follows:

    For some large fixed constant s>0,

    Then,substituting(4.7)–(4.15)into(4.2),we have

    where C(δ,η,T)denotes that C particularly depends on δ,η and time T.

    4.2 Passing to the limits asμ,?→0

    We use(ρμ,?,uμ,?,Φ(ρμ,?))to denote the solutions at this level of approximation.From(4.17)and(4.18),it is easy to show that(ρμ,?,uμ,?,Φ(ρμ,?))has the following uniform regularities:

    Lemma 4.2Letting(ρμ,?,uμ,?,Φ(ρμ,?))be weak solutions to(3.33),in combination with(4.19)and(4.20),we have

    and using the Aubin-Lions Lemma,we have the following compactness results:

    ProofThe proof is similar to the compactness analysis in Section 3,so for simplicity,we omit the details here. □

    With the above compactness results in hand,we pass to the limits asμ=?→0.Here we only focus on the terms involving?andμ.First,because ρμ,?is bounded in L∞(H3)TL2(H4)uniformly on?,we have that

    So passing to the limits asμ=?→0 in(3.33),we have that

    holds in the sense of distribution on(0,T)×T3,and that

    Furthermore,thanks to the lower semi-continuity of the convex function and the strong convergence of ρμ,?,uμ,?,Φ(ρμ,?),we can pass to the limits in the energy inequality(3.32)and B-D entropy(4.17)asμ=?→0 with δ,η,r0being fixed as follows:

    Thus,to conclude this part,we have the following proposition:

    Proposition 4.3There exist the weak solutions to systems(4.24),(4.26)and(4.27)with suitable initial data,for any T>0.In particular,the weak solutions(ρ,u,Φ)satisfy the energy inequality(4.29)and the B-D entropy(4.30).

    5 Passing to the Limits as η→0

    In this section,we pass to the limits as η→0 with δ,r0being fixed.We denote that(ρη,uη,Φ(ρη))are weak solutions at this level.From Proposition 4.3,we have the following regularities:

    It is easy to check that we have the same estimates as in Lemma 4.2 in terms of the level with η,thus we deduce the same compactness for(ρη,uη,Φ(ρη))as follows:

    Thus,at this level of approximation,we only focus on the convergence of the term η?.

    Here we state the following lemma:

    Lemma 5.1For ρηdefined as in Proposition 4.3,we have that

    as η→0.

    ProofThe proof is inspired by Vasseur and Yu[12].From the B-D entropy(4.30),we have that

    Note that

    is a convex continuous function.Moreover,in combination with the property of the convex function and Fatou’s Lemma,this yields

    Moreover,using the interpolation inequality,that yields

    This,together with(5.6)and Eogroff’s theorem,yields

    Thus,by using the compactness results(5.2),we can pass to the limit as η→0 in(4.24),(4.27)and(4.28):

    Similarly,due to the lower semi-continuity of convex functions,we can obtain the energy inequality and B-D entropy by passing to the limits in(4.29)and(4.30)as η→0,so we have

    Thus,we have the following Proposition on the existence of weak solutions at this level of approximation:

    Proposition 5.2There exist weak solutions to system(5.7)with suitable initial data,for any T>0.In particular,the weak solutions(ρ,u,Φ(ρ))satisfy the energy inequality(5.8)and the B-D entropy(5.9).

    6 Passing to the Limits as δ,r0→0

    At this level,the weak solutions satisfy the energy inequality(5.8)and the B-D entropy(5.9),thus we have the following regularities:

    Next,we will proceed to examine the compactness arguments in several steps.

    6.1 Step 1 Convergence of

    Lemma 6.1Letting(ρδ,r0,uδ,r0Φ(ρδ,r0))satisfy Proposition 5.2,we have

    As a consequence,up to a subsequence,converges almost everywhere and strongly in L2([0,T];L2),which means that

    Moreover,we have

    and hence,we have

    Thus the proof of Lemma 6.1 is complete. □

    6.2 Step 2 Convergence of

    Lemma 6.2The termsatisfies the regularityand up to a subsequence,we havea.e.,andstrongly in L1([0,T];L1).

    ProofThe proof is as the same as it is in Section 2,so we omit the details here. □

    6.3 Step 3 Convergence of the momentum and the term?α2Δ

    Lemma 6.3Up to a subsequence,the momentum and α-regular ofis

    Note that we can define u(x,t)=m(x,t)/ρ(x,t)outside the vacuum set{x|ρ(x,t)=0}.

    ProofSince

    In order to apply the Aubin-Lions Lemma,we also need to show that

    Actually,using the momentum equation(5.7)2,it is easy to check that

    Hence,using the Aubin-Lions Lemma,Lemma 6.3 is proved. □

    6.4 Step 4 Convergence of

    Lemma 6.4We havestrongly in L2([0,T];L2),and there exists a function u(x,t)such that m(x,t)=ρ(x,t)u(x,t)and

    ProofRecalling Lemma 6.3,we define velocity u(x,t)by setting u(x,t)=m(x,t)/ρ(x,t),so we have m(x,t)=ρ(x,t)u(x,t).

    Moreover,Fatou’s lemma yields that

    as r0=δ→0 and M→+∞.Thus we have proven that

    6.5 Step 5 Convergence of the terms

    Focussing on the most difficult term,

    Similarly,we can deal with the other terms from

    With all of the above compactness results,we can pass to the limits in(5.7)as δ→0,so we have that

    Furthermore,thanks to the lower semi-continuity of the convex function,we can obtain the following energy inequality and B-D entropy by using the limits as δ=r0→0:

    and

    Thus we have completed the proof of Theorem 1.2.

    猜你喜歡
    亞伯
    假牙
    讀者(2024年4期)2024-02-21 05:45:10
    假牙
    真正的毒蛇
    該隱與亞伯
    譯林(2018年3期)2018-05-24 11:08:36
    摩西
    中國攝影(2017年11期)2017-11-22 23:18:00
    恐怖分子的自殺謎案
    顛倒世界
    曹亞伯的對聯(lián)
    世紀(2012年1期)2012-07-23 02:05:32
    華金·莫內(nèi)格羅的悲劇性掙扎——《亞伯·桑切斯》對《圣經(jīng)》經(jīng)典段落的重述
    文教資料(2011年36期)2011-08-15 00:42:55
    母象王妃的驚天情殤
    久久国产亚洲av麻豆专区| 亚洲av成人av| 丰满的人妻完整版| 国产成人系列免费观看| 午夜久久久在线观看| 久久香蕉激情| 黄色片一级片一级黄色片| 欧美激情 高清一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 曰老女人黄片| 日韩人妻精品一区2区三区| 亚洲av第一区精品v没综合| 久久中文看片网| 一区二区三区激情视频| 中文字幕精品免费在线观看视频| 国产在线精品亚洲第一网站| 嫁个100分男人电影在线观看| 亚洲精品中文字幕一二三四区| 免费看十八禁软件| 三级毛片av免费| bbb黄色大片| 美女扒开内裤让男人捅视频| 91精品国产国语对白视频| 不卡av一区二区三区| 国产精品亚洲一级av第二区| 国产精品影院久久| 精品电影一区二区在线| 天天影视国产精品| 亚洲精品一二三| 国产一区在线观看成人免费| 久久久久精品人妻al黑| а√天堂www在线а√下载 | 亚洲欧洲精品一区二区精品久久久| 人妻丰满熟妇av一区二区三区 | 久久国产精品影院| 黑人巨大精品欧美一区二区蜜桃| 精品视频人人做人人爽| 美女高潮喷水抽搐中文字幕| 日本a在线网址| 日韩精品免费视频一区二区三区| 亚洲三区欧美一区| 国产一区二区三区视频了| 在线观看66精品国产| 人人妻人人添人人爽欧美一区卜| 欧美 亚洲 国产 日韩一| 丝袜在线中文字幕| 精品国产一区二区三区四区第35| 91精品三级在线观看| 亚洲九九香蕉| 欧美成狂野欧美在线观看| 老司机午夜福利在线观看视频| 久久影院123| 国产精品免费大片| 久久国产亚洲av麻豆专区| 免费日韩欧美在线观看| 极品教师在线免费播放| 午夜福利在线观看吧| 日韩制服丝袜自拍偷拍| 久久久国产成人精品二区 | 亚洲专区中文字幕在线| 亚洲精品久久午夜乱码| 在线观看免费午夜福利视频| 法律面前人人平等表现在哪些方面| 亚洲色图综合在线观看| 黄色毛片三级朝国网站| 久久 成人 亚洲| 国产亚洲av高清不卡| 免费少妇av软件| 午夜福利免费观看在线| 欧美亚洲 丝袜 人妻 在线| 自拍欧美九色日韩亚洲蝌蚪91| 欧美国产精品一级二级三级| 黑人操中国人逼视频| 欧美成人午夜精品| 国产xxxxx性猛交| 欧美在线黄色| 亚洲性夜色夜夜综合| 国产欧美日韩一区二区精品| 伦理电影免费视频| 老熟妇乱子伦视频在线观看| av天堂在线播放| 天堂√8在线中文| 18禁裸乳无遮挡免费网站照片 | 欧美日韩国产mv在线观看视频| 麻豆乱淫一区二区| 亚洲第一av免费看| videosex国产| 69精品国产乱码久久久| 成人18禁高潮啪啪吃奶动态图| 免费日韩欧美在线观看| 精品亚洲成a人片在线观看| 日韩三级视频一区二区三区| 久久人妻福利社区极品人妻图片| av福利片在线| 搡老乐熟女国产| 老司机亚洲免费影院| 乱人伦中国视频| 国产精品免费一区二区三区在线 | 很黄的视频免费| 中文字幕最新亚洲高清| 美女国产高潮福利片在线看| 国产在线观看jvid| av有码第一页| 亚洲人成电影观看| 熟女少妇亚洲综合色aaa.| 王馨瑶露胸无遮挡在线观看| 亚洲三区欧美一区| 久久国产乱子伦精品免费另类| 人人妻人人澡人人爽人人夜夜| 久久久国产成人免费| 国产成人av激情在线播放| 成人永久免费在线观看视频| 黄片播放在线免费| 中国美女看黄片| 久久人妻福利社区极品人妻图片| 狠狠婷婷综合久久久久久88av| 啦啦啦免费观看视频1| 国产又爽黄色视频| 天堂俺去俺来也www色官网| 午夜成年电影在线免费观看| 黄色怎么调成土黄色| 少妇的丰满在线观看| 欧美另类亚洲清纯唯美| 亚洲在线自拍视频| 亚洲色图综合在线观看| 黄色丝袜av网址大全| 午夜精品在线福利| 午夜福利在线免费观看网站| 国产精品1区2区在线观看. | 国产精品偷伦视频观看了| 久久精品91无色码中文字幕| 日韩有码中文字幕| 黄色a级毛片大全视频| 动漫黄色视频在线观看| 午夜免费观看网址| av超薄肉色丝袜交足视频| 国产成人啪精品午夜网站| 亚洲一区中文字幕在线| 午夜福利视频在线观看免费| 久久人妻福利社区极品人妻图片| 国产成人免费观看mmmm| 高清欧美精品videossex| videos熟女内射| 男女床上黄色一级片免费看| 久久精品人人爽人人爽视色| 亚洲av第一区精品v没综合| 日本撒尿小便嘘嘘汇集6| 正在播放国产对白刺激| 免费在线观看亚洲国产| 交换朋友夫妻互换小说| 国产单亲对白刺激| 亚洲欧美一区二区三区久久| 丝瓜视频免费看黄片| 欧美日本中文国产一区发布| av超薄肉色丝袜交足视频| 亚洲av成人不卡在线观看播放网| 成在线人永久免费视频| 午夜福利一区二区在线看| 热re99久久精品国产66热6| 精品午夜福利视频在线观看一区| 久久久久久久精品吃奶| 热99久久久久精品小说推荐| 国产高清视频在线播放一区| 精品国产超薄肉色丝袜足j| 色播在线永久视频| 高清在线国产一区| 一进一出抽搐动态| 久久久久久久久久久久大奶| videosex国产| 精品国产一区二区三区四区第35| 91精品三级在线观看| 国产亚洲精品一区二区www | 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品国产区一区二| 亚洲人成伊人成综合网2020| 99riav亚洲国产免费| 久久精品国产亚洲av高清一级| 老司机在亚洲福利影院| 无限看片的www在线观看| bbb黄色大片| 国产成人影院久久av| 怎么达到女性高潮| 午夜福利视频在线观看免费| 亚洲一区二区三区欧美精品| 国产激情欧美一区二区| 日本欧美视频一区| 嫁个100分男人电影在线观看| 中文字幕高清在线视频| 亚洲片人在线观看| 成人黄色视频免费在线看| 亚洲中文日韩欧美视频| 免费少妇av软件| 91国产中文字幕| 久久热在线av| 91九色精品人成在线观看| 色婷婷久久久亚洲欧美| 女人爽到高潮嗷嗷叫在线视频| 丝袜美足系列| 欧美日韩国产mv在线观看视频| 亚洲精品国产区一区二| 80岁老熟妇乱子伦牲交| 精品电影一区二区在线| 中文字幕色久视频| 真人做人爱边吃奶动态| 久久久久视频综合| 亚洲avbb在线观看| 亚洲精品乱久久久久久| 免费在线观看亚洲国产| 成人国语在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 夜夜爽天天搞| 午夜福利在线观看吧| 午夜福利在线观看吧| 欧美成狂野欧美在线观看| 99香蕉大伊视频| 国产97色在线日韩免费| 国产国语露脸激情在线看| 欧美丝袜亚洲另类 | 搡老乐熟女国产| 侵犯人妻中文字幕一二三四区| 久久中文看片网| 精品国产一区二区久久| 国产精品国产高清国产av | 咕卡用的链子| 黄色女人牲交| 日本wwww免费看| 激情在线观看视频在线高清 | 美女福利国产在线| 一区福利在线观看| 麻豆国产av国片精品| 看黄色毛片网站| 日韩精品免费视频一区二区三区| 欧美色视频一区免费| 看片在线看免费视频| 欧美av亚洲av综合av国产av| 国产精品偷伦视频观看了| 麻豆av在线久日| 国产亚洲一区二区精品| 激情在线观看视频在线高清 | 久久精品国产清高在天天线| 18禁国产床啪视频网站| 亚洲精品美女久久av网站| 亚洲熟妇熟女久久| 国产一区在线观看成人免费| 国产三级黄色录像| 亚洲国产中文字幕在线视频| 大型黄色视频在线免费观看| 人成视频在线观看免费观看| 日日摸夜夜添夜夜添小说| 欧美在线黄色| 中文欧美无线码| 成人永久免费在线观看视频| 99热只有精品国产| 99精品久久久久人妻精品| 亚洲色图av天堂| 十八禁网站免费在线| 99久久综合精品五月天人人| 丰满饥渴人妻一区二区三| 亚洲av日韩精品久久久久久密| 国产精品免费大片| 自线自在国产av| 午夜福利在线观看吧| 免费在线观看日本一区| 国产一区有黄有色的免费视频| 久久精品亚洲av国产电影网| 啦啦啦视频在线资源免费观看| 老汉色∧v一级毛片| 狠狠狠狠99中文字幕| 亚洲精品久久午夜乱码| 新久久久久国产一级毛片| 高清毛片免费观看视频网站 | 国产精品免费视频内射| 久久精品人人爽人人爽视色| 欧美一级毛片孕妇| 一二三四在线观看免费中文在| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三区四区五区乱码| 国产精品久久电影中文字幕 | 狠狠狠狠99中文字幕| 亚洲伊人色综图| 久久精品亚洲熟妇少妇任你| 亚洲在线自拍视频| 看片在线看免费视频| 欧美日韩av久久| 国产精品98久久久久久宅男小说| 亚洲熟女毛片儿| 老熟妇仑乱视频hdxx| 精品视频人人做人人爽| 一本一本久久a久久精品综合妖精| 久久人妻熟女aⅴ| 欧美日韩视频精品一区| 大码成人一级视频| 精品一区二区三区av网在线观看| 国产亚洲精品一区二区www | 午夜激情av网站| 丰满饥渴人妻一区二区三| 国产免费av片在线观看野外av| 国产免费现黄频在线看| 免费女性裸体啪啪无遮挡网站| 天堂中文最新版在线下载| 香蕉丝袜av| 国产成人av教育| 一级毛片精品| 老司机靠b影院| 一二三四社区在线视频社区8| 午夜精品在线福利| 精品久久久久久久久久免费视频 | 久久人人爽av亚洲精品天堂| 亚洲三区欧美一区| 国产91精品成人一区二区三区| 亚洲人成电影观看| 亚洲情色 制服丝袜| 又紧又爽又黄一区二区| 久久国产精品大桥未久av| 精品一区二区三区av网在线观看| 国产在线观看jvid| 女人精品久久久久毛片| 自线自在国产av| 免费观看a级毛片全部| 麻豆成人av在线观看| 精品免费久久久久久久清纯 | 男女之事视频高清在线观看| 亚洲中文日韩欧美视频| 午夜福利,免费看| 色尼玛亚洲综合影院| 波多野结衣av一区二区av| 国产欧美日韩综合在线一区二区| 999久久久精品免费观看国产| a级毛片在线看网站| 又黄又爽又免费观看的视频| 大陆偷拍与自拍| 日日夜夜操网爽| 人人妻人人爽人人添夜夜欢视频| 国产人伦9x9x在线观看| 成年动漫av网址| 首页视频小说图片口味搜索| 韩国精品一区二区三区| 后天国语完整版免费观看| 一级黄色大片毛片| 亚洲av熟女| 超碰成人久久| 国产伦人伦偷精品视频| 99国产精品99久久久久| 日韩三级视频一区二区三区| 人妻丰满熟妇av一区二区三区 | 午夜久久久在线观看| 久久久国产欧美日韩av| 亚洲人成伊人成综合网2020| 成人国产一区最新在线观看| 欧美人与性动交α欧美精品济南到| 亚洲三区欧美一区| a在线观看视频网站| 国产乱人伦免费视频| 亚洲七黄色美女视频| 日韩免费高清中文字幕av| 成人亚洲精品一区在线观看| 久久 成人 亚洲| www.999成人在线观看| 国产aⅴ精品一区二区三区波| 欧美黑人精品巨大| 人妻久久中文字幕网| 亚洲欧美色中文字幕在线| 性少妇av在线| 乱人伦中国视频| 操出白浆在线播放| 女人被躁到高潮嗷嗷叫费观| 久久午夜亚洲精品久久| 亚洲三区欧美一区| 桃红色精品国产亚洲av| 久久久精品区二区三区| 久久性视频一级片| 天堂俺去俺来也www色官网| 免费人成视频x8x8入口观看| 国产精品国产高清国产av | 日韩中文字幕欧美一区二区| 亚洲五月天丁香| 手机成人av网站| 欧美在线一区亚洲| 久久久久国产精品人妻aⅴ院 | 变态另类成人亚洲欧美熟女 | 日本黄色日本黄色录像| 精品人妻熟女毛片av久久网站| 校园春色视频在线观看| 精品视频人人做人人爽| 国产精品亚洲av一区麻豆| 亚洲国产毛片av蜜桃av| 少妇的丰满在线观看| 免费看a级黄色片| 热99re8久久精品国产| 18禁观看日本| 国产精品美女特级片免费视频播放器 | 99热只有精品国产| 国产日韩一区二区三区精品不卡| 国产av一区二区精品久久| 熟女少妇亚洲综合色aaa.| 国产淫语在线视频| 国产精品欧美亚洲77777| 亚洲片人在线观看| 中文字幕最新亚洲高清| 日韩欧美三级三区| 午夜免费鲁丝| 国产亚洲欧美在线一区二区| 亚洲国产欧美网| 黑丝袜美女国产一区| 午夜91福利影院| 日韩熟女老妇一区二区性免费视频| 午夜日韩欧美国产| 大陆偷拍与自拍| 亚洲va日本ⅴa欧美va伊人久久| 亚洲aⅴ乱码一区二区在线播放 | 亚洲,欧美精品.| 两个人看的免费小视频| www.999成人在线观看| 啦啦啦视频在线资源免费观看| 亚洲av电影在线进入| 91九色精品人成在线观看| 国产精品av久久久久免费| 国产亚洲精品一区二区www | 免费在线观看影片大全网站| 国产精品秋霞免费鲁丝片| av天堂在线播放| 国产97色在线日韩免费| 精品视频人人做人人爽| 制服人妻中文乱码| 99国产精品免费福利视频| 精品国内亚洲2022精品成人 | 久久青草综合色| 大香蕉久久网| 在线观看舔阴道视频| 少妇裸体淫交视频免费看高清 | 黄网站色视频无遮挡免费观看| 久久性视频一级片| 亚洲精品一卡2卡三卡4卡5卡| 性色av乱码一区二区三区2| 亚洲av电影在线进入| 人妻丰满熟妇av一区二区三区 | 美女午夜性视频免费| 女人精品久久久久毛片| 国产男靠女视频免费网站| 性少妇av在线| 黄色 视频免费看| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 满18在线观看网站| 老司机深夜福利视频在线观看| 日本黄色日本黄色录像| 丰满迷人的少妇在线观看| 91麻豆精品激情在线观看国产 | 国产99久久九九免费精品| 91精品三级在线观看| 成人特级黄色片久久久久久久| 99久久99久久久精品蜜桃| 成在线人永久免费视频| 亚洲国产精品合色在线| 国产成人影院久久av| 欧美 日韩 精品 国产| 国产成人一区二区三区免费视频网站| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线不卡| 黄色视频不卡| 99国产精品一区二区三区| a级毛片在线看网站| 身体一侧抽搐| 国产亚洲欧美98| 久久狼人影院| 免费观看精品视频网站| 国产精品av久久久久免费| 老司机在亚洲福利影院| 欧美色视频一区免费| 国产男靠女视频免费网站| 美女扒开内裤让男人捅视频| 亚洲精品美女久久久久99蜜臀| 亚洲中文日韩欧美视频| 国产精品久久久久久人妻精品电影| 黑人巨大精品欧美一区二区mp4| 国产av又大| 国产在线一区二区三区精| 91麻豆av在线| 在线免费观看的www视频| 国产成人精品久久二区二区免费| 亚洲国产精品一区二区三区在线| 热re99久久精品国产66热6| 一进一出抽搐动态| 亚洲第一av免费看| 制服人妻中文乱码| 精品久久久久久久毛片微露脸| a级毛片黄视频| 久久午夜亚洲精品久久| 日韩成人在线观看一区二区三区| 男女高潮啪啪啪动态图| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品二区激情视频| 国产在视频线精品| 丝袜人妻中文字幕| 成人国产一区最新在线观看| 亚洲国产中文字幕在线视频| 19禁男女啪啪无遮挡网站| 亚洲专区字幕在线| 一边摸一边抽搐一进一小说 | 国产男女内射视频| 日韩三级视频一区二区三区| 在线十欧美十亚洲十日本专区| 又大又爽又粗| 午夜免费成人在线视频| 成人18禁在线播放| 久久精品人人爽人人爽视色| 777久久人妻少妇嫩草av网站| 中文字幕人妻熟女乱码| 国产精品久久久av美女十八| 丰满迷人的少妇在线观看| 国产精品九九99| 黑人操中国人逼视频| 亚洲一码二码三码区别大吗| 天堂俺去俺来也www色官网| 日韩有码中文字幕| 国产一区有黄有色的免费视频| 国产精品 欧美亚洲| 99re6热这里在线精品视频| 亚洲av片天天在线观看| 亚洲欧美一区二区三区黑人| 午夜两性在线视频| 在线观看日韩欧美| 男女午夜视频在线观看| 美女扒开内裤让男人捅视频| 亚洲成av片中文字幕在线观看| 在线国产一区二区在线| cao死你这个sao货| 欧美日韩黄片免| aaaaa片日本免费| 国产又爽黄色视频| 欧美精品av麻豆av| 黄色视频不卡| av不卡在线播放| 99riav亚洲国产免费| 亚洲专区中文字幕在线| 亚洲成国产人片在线观看| 国产免费av片在线观看野外av| 精品国内亚洲2022精品成人 | 国产精品免费大片| 美女高潮喷水抽搐中文字幕| 男男h啪啪无遮挡| 久久人妻熟女aⅴ| 一边摸一边做爽爽视频免费| 国产国语露脸激情在线看| 色在线成人网| av天堂久久9| 大香蕉久久网| 亚洲一区中文字幕在线| 99热网站在线观看| av视频免费观看在线观看| 最近最新中文字幕大全电影3 | 中文字幕最新亚洲高清| 国内毛片毛片毛片毛片毛片| 热re99久久精品国产66热6| 成年女人毛片免费观看观看9 | 男女高潮啪啪啪动态图| 黄色视频,在线免费观看| 建设人人有责人人尽责人人享有的| 99热网站在线观看| 美女高潮喷水抽搐中文字幕| 欧美国产精品va在线观看不卡| 国产av又大| 国产淫语在线视频| 亚洲中文日韩欧美视频| 18禁裸乳无遮挡免费网站照片 | 99久久国产精品久久久| 日韩欧美一区视频在线观看| 亚洲午夜理论影院| 91国产中文字幕| 在线视频色国产色| 50天的宝宝边吃奶边哭怎么回事| 日本a在线网址| 一进一出抽搐gif免费好疼 | 午夜两性在线视频| 久久草成人影院| 国产一区二区三区综合在线观看| 国产精品国产高清国产av | 国产高清激情床上av| 99久久99久久久精品蜜桃| 在线观看免费日韩欧美大片| 精品久久久久久,| 国产99久久九九免费精品| 69av精品久久久久久| 大型黄色视频在线免费观看| 搡老乐熟女国产| 日本a在线网址| 91字幕亚洲| 欧洲精品卡2卡3卡4卡5卡区| 女人久久www免费人成看片| 不卡av一区二区三区| 老鸭窝网址在线观看| 91老司机精品| 在线观看66精品国产| a级毛片在线看网站| 一级黄色大片毛片| tocl精华| 午夜视频精品福利| 成人国语在线视频| a级片在线免费高清观看视频| 正在播放国产对白刺激| 国产不卡av网站在线观看| 精品国内亚洲2022精品成人 | 丝袜人妻中文字幕| 999久久久国产精品视频| 777米奇影视久久| 国产精品免费一区二区三区在线 | 十八禁高潮呻吟视频| 777米奇影视久久| 欧美激情 高清一区二区三区| 一级毛片高清免费大全| 国内毛片毛片毛片毛片毛片| 亚洲欧美精品综合一区二区三区| 久久久国产成人免费| 国产精品久久久av美女十八| 久久影院123|