• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation*

    2021-05-24 02:23:52LijieHuang黃黎杰LinLi李琳ZhenShang尚震MaoWang王茂JunjieKang康俊杰WeiLuo羅巍ZhiwenLiang梁智文SlawomirPrucnalUlrichKentschYandaJi吉彥達(dá)FabiZhang張法碧QiWang王琦YeYuan袁冶QianSun孫錢ShengqiangZhou周生強(qiáng)andXinqiangWang王新強(qiáng)
    Chinese Physics B 2021年5期
    關(guān)鍵詞:王琦

    Lijie Huang(黃黎杰), Lin Li(李琳), Zhen Shang(尚震), Mao Wang(王茂), Junjie Kang(康俊杰),Wei Luo(羅巍), Zhiwen Liang(梁智文), Slawomir Prucnal, Ulrich Kentsch, Yanda Ji(吉彥達(dá)),Fabi Zhang(張法碧), Qi Wang(王琦), Ye Yuan(袁冶),?, Qian Sun(孫錢),Shengqiang Zhou(周生強(qiáng)), and Xinqiang Wang(王新強(qiáng)),

    1Songshan Lake Materials Laboratory,Dongguan 523808,China

    2Helmholtz-Zentrum Dresden-Rossendorf,Institute of Ion Beam Physics and Materials Research,01314,Dresden,Germany

    3College of Mathematics and Physics,Beijing University of Chemical Technology,Beijing 100029,China

    4Department of Applied Physics,College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

    5Dongguan Institute of Optoelectronics,Peking University,Dongguan 523808,China

    6Key Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences(CAS),Suzhou 215123,China

    7Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology,Guilin 541004,China

    Keywords: ion implantation,GaN,defects

    1. Introduction

    The strong c-axis polarization in wurtzite nitride semiconductor has been regarded as one of main obstacles to prohibit overall application in optoelectronic device. For example, the polarization-induced quantum confine Stark effect prevents the recombination between holes and electrons in the charge area.[1–3]The enhanced polarization also causes the irradiation transformation from transverse-electric to transverse-magnetic model, therefore decreases the illumination area in light-emitting diode (LED).[4–6]Therefore,to solve the dilemma induced by such a polarization along the c axis in nitride semiconductor, a lot of efforts have been devoted to the development of non-polar face nitride compounds.[7–9]However, the doping in non-polar face GaN growth is relatively hard when compared with in conventional c-face GaN due to the different growth processes. Ion implantation acts as a proper solution to fulfill the requirement by implanting Si or Mg ions into GaN matrix,afterwards annealing treatment is employed to activate implanted dopants. Therefore, it is meaningful to track the ion implantation-induced modification,[10]e.g., crystalline damages and strain, in the as-implanted matrix in order to predetermine the optimal annealing parameters. Actually, several efforts have been made on Si-or Mg-implanted c-plane GaN,[11–13]however the study on the non-polar a-or m-plane GaN is still limited.

    In the present work, the structural modification of Siimplanted GaN is systematically investigated by various methods. According to the analysis by Rutherford backscattering/channeling spectrometry (RBS/C) and polarized Raman,the epitaxial nature of the implanted layer is well preserved with the presence of lattice disorder. Additionally, the implanted layer presents a uniaxial lattice expansion along the out-of-plane direction. Regarding the luminescence behavior,both the near bandgap emission and the yellow band emission are gradually quenched with increasing implantation fluence,probably due to the irradiation-induced non-radiative recombination centers.

    2. Experiment

    The non-polar a-plane GaN samples were grown on rsapphire by horizontal metalorganic chemical vapor deposition (MOCVD). Before the GaN preparation, a 60-nm thick AlN was pre-grown at 1150°C as a buffer. Subsequently, a three-dimensional(3D)growth mode of GaN was introduced at a pressure of 200 mbar (1 bar=105Pa) and with a V/III ratio of 2162 to control the growth dynamics, and the thickness of GaN is around 2μm. More details about the as-grown sample were discussed in Refs.[14,15]. To achieve more uniform distribution of Si in GaN, a bi-implantation with energies of 100 eV and 30 keV was set, and the wafer normal was tilted by 7°with respect to the ion beam to avoid channeling. Four samples were implanted. The implantation fluences at 100 keV were 4×1013,2×1014,8×1014,and 4×1015.The corresponding fluences at 30 keV were 1×1013,5×1013,2×1014, and 1×1015cm?2, respectively. Sample names are entitled as GaN 1,GaN 2,GaN 3,and GaN 4,accordingly. To make a comparison,an as grown sample named as GaN virgin is picked up as a reference. The lattice damage of the Si implanted a-plane GaN was investigated by Rutherford backscattering spectrometry (RBS)/channeling spectrometry. During the RBS measurement,a collimated 1.7-MeV He+beam with a 10 nA–20 nA beam current of 10 nA–20 nA was applied,and the scattered ions were collected at a backscattering angle of 170°. The channeling spectra were recorded by aligning the GaN[2ˉ1ˉ10]axis parallel to the impinging He+beam.Raman measurements were performed in the backscattering geometry using the 532-nm line of a Nd:YAG laser by treating the out-of-plane direction as x axis, in x(zz)ˉx and x(yy)ˉx backscattering configurations using a LabRam HR800 spectrometer(HORIBA Jobin Yvon GmbH,Bensheim,Germany)aided with an optical microscope Olympus BX40 (Olympus Corporation,Hamburg,Germany). A 40×objective lens was used to focus the laser beam and to collect the Raman signal. X-ray diffraction (XRD) measurements were performed on a Panalytical Empyrean diffractometer equipped with an Anton-paar DHS 1100 domed hot stage. The Cu target emitted x-ray was filtered with a 1/4 slit and then further filtered with a commercial Ge(220)hybrid monochromator for a highly collimated Ka1beam (1.54059-?A wavelength). The radius of the diffraction circle is 240 mm. The PIXcel onedimensional (1D) detector has 256 matrix channels, and the resolution for each channel is 55 lm. The optical properties of the as-grown and irradiated GaN thin films were investigated by room-temperature photoluminines (PL), and the measurements were excited by a 405-nm laser coupled to a monochromator for the selective PL excitation. The emitted PL light from the sample was guided through a set of lenses and a long pass filter to a Jobin Yvon Triax 320 monochromator and then recorded by a Hamamatsu Si photomultiplier.

    3. Results and discussion

    According to the simulation by the stopping and range of ions in matter(SRIM)code,[16]the depth dependent distribution of implanted Si atoms and generated vacancies are shown in Fig.1.In Fig.1(a),it is clearly observed that the distribution of Si atoms presents bi-maximal signals at the depth of 25 nm and 100 nm, respectively, which is ascribed to the process of bi-implantation. Fortunately, in the near surface 100-nm depth, the concentration of Si dopant presents quasi-constant and the average value is 4.6×1018, 2.3×1019, 9.1×1019, and 4.5×1020cm?3for samples GaN 1,GaN 2,GaN 3,and GaN 4,respectively. Actually, during the implantation process, due to collisions between implanted ions and atoms in the lattice,various types of vacancies are produced in the matrix where the implantation fluence is not sufficient high to totally amorphize the target region.Accordingly,the densities of generated vacancies are calculated by SRIM.In agreement with the implanted dopant distribution,the produced vacancies distribute constantly in the surficial 100-nm region, and the depth profiles are shown in Fig. 1(b). Upon gradually increasing the implantation fluence, the vacancy densities are calculated as 3.7×1021,1.8×1022,7.1×1022,and 3.7×1023cm?3,respectively. However,the immediate vacancy recombination during the irradiation process is no considered in the SRIM calculation, therefore the real vacancy densities are far below the simulated values. The structural and optical properties will be displayed and discussed in the next sections.

    Fig. 1. Stopping and range of ions in matter (SRIM) calculated (a) silicon ion distribution (squares) and (b) induced vacancy distribution proflies for samples GaN 1 (squares), GaN 2 (circles), GaN 3 (diamonds), and GaN 4(hexagons). The calculation does not consider the dynamic recombination.Most of the vacancies recombine immediately after the collision. The real vacancy density is much smaller than the calculated one.

    Figure 2 shows RBS random and channeling spectra of all implanted GaN samples. The ion-channeling behavior, the large reduction of the backscattering yield when the He-beam is along the crystalline axis, is very prominent even though the Si implantation fluence is as high as 5×1015cm?2. This verifies their preservation of epitaxially single-crystalized nature and no signature of large-scale amorphization is observed.[17,18]The minimum yield(χmin),which is defined as the yield-ratio between the channeling and random signal,can be used for assessing the quality of crystallization. Herein, the χmin(energy from 1200 keV to 1250 keV)are calculated as 1.8%, 3.5%, 5.8%, and 8.0% for samples GaN 1, GaN 2, GaN 3, and GaN 4, respectively. The low value of 1.8% implies the fact that the quality of the sample GaN 1 is comparable with the c-GaN single-crystal.[19–21]However, upon increasing implantation fluences, the gradually raised χminindicates the lattice disorder. Particularly,the increasing backscattering yield at 706 and 753 channel numbers in the inset of Fig.2 suggests that the implantation-caused defects gradually accumulate at the near surface and the projected range. Such an effect has been observed in implanted c-plane GaN.[13,19,22]Actually,such a surficial disorder results from the fact that during implantation process there is decomposition of GaN and N is preferentially sputtered. Therefore,after ion implantation the surface is damaged and Ga-rich.This phenomenon indicates that it is necessary to add a capping layer to prevent the N evaporation before the implantation.

    Fig.2. RBS random and〈2ˉ1ˉ10〉aligned channeling spectra(C)of samples of GaN 1,GaN 2,GaN 3,and GaN 4,respectively. The random spectra of all samples are the same since the signal of Si is too weak and only one of them is present. Inset: Zoom of channeling spectra from energy 1200 keV to 1450 keV.

    In order to further explore the structural information of Si-implanted a-plane GaN,the Raman spectroscopy is used at two geometries of x(z,z)ˉx and x(y,y)ˉx by defining the outof-plane direction as the x axis, and aligning y and z axes in the basal face and along the c axis of the GaN hexagon structure, respectively. As shown in Fig. 3, the first order phonon scattering peaks from GaN and Al2O3are observed,however the signal from AlN buffer is invisible. As previous study, the peaks at wave numbers of 378, 416, 429, 448, and 643 cm?1,correspond to Eg,A1g,Eg,Eg,and A1gmodes from Al2O3substrate.[23,24]Interestingly, although the wavenumber of one GaN second-order Raman signal (418 cm?1) is consistent with the peak at 416 cm?1, its strong intensity excludes such an assumption. In the case of GaN, four firstorder vibration modes,A1+E1+2E2,are Raman-active at the Γ point, although there are eight sets of predicted phonon modes in thespace group: 2A1+2E1+2B1+2E2of which one A1and E1modes are acoustic and two B1modes are silent.[25]Of above-mentioned four Raman-sensitive modes,A1and E1symmetries are polar thus can split into transverse(TO) and longitudinal (LO) components.[26]In the backscattering configurations of x(z,z)ˉx andx(y,y)ˉx, the selection rules only predict the presence of A1(TO) and A1(TO) +E2(TO), respectively,[25]which seems to be violated by our results shown in Fig. 3. It is worth noting that the observation of small E1(TO) signal in both cases has been discussed in previous works:[27]The incident and scattered lights are not precisely parallel with the coordinate axis due to the introduced defects during the growth of non-polar GaN. Those defects result in the so-called disorder-activated Raman scattering(DARS)mode.

    Fig. 3. Polarized Raman scattering spectra of a-plane GaN at the surface geometry of(a)x(z,z)ˉx and(b)x(y,y)ˉx. The x axis is along the GaN a axis(out-of-plane direction),while y and z axes are along the m and c axes(both are in the plane),respectively.

    If only A1, E1, and E2resonance peaks from GaN are considered, with gradually increasing implantation fluences,all Raman peaks keep their original frequencies,however their intensity declines and the linewidth raises. By multi-peak fitting, the linewidth of three peaks is obtained, and the values are shown in Figs. 6(b) and 6(c). Actually, the linewidth is used to evaluate the perfection of the crystal. In addition to the A1(TO)signal at the x(yy)geometry,the linewidth of all peaks enhances, again indicating that the implantation is destructive to the crystal lattice. At the measurement minimal edge at 300 cm?1, an upturn instead of a sharp peak is seen for all implanted samples but absent in the as-grown sample.This has been observed in various ion irradiated c-plane GaN according to previous study,[28]and it is ascribed to the highest acoustic-phonon branch at the zone boundary.[28,29]

    Fig. 4. The high-resolution reciprocal space mappings (RSM) of [(a)–(e)] qz–qx and [(f)–(j)] qz–qy modes for samples [(a), (f)] virgin a-plane GaN,[(b),(g)]GaN 1,[(c),(h)]GaN 2,[(d),(i)]GaN 3,and[(e),(j)]GaN 4 at around GaN(2ˉ1ˉ10)peak.

    Fig. 5. The high-resolution RSM of [(a), (f)] virgin a-plane GaN, [(b), (g)] GaN 1, [(c), (h)] GaN 2, [(d), (i)] GaN 3, and [(e), (j)] GaN 4 at around(20ˉ20)[(a)–(e)]and(2ˉ1ˉ12)peaks[(f)–(j)]of GaN.

    According to previous studies, ion irradiation results in the expansion of lattice in both a-plane and c-plane GaN.[30,31]Therefore, systematic investigations are performed based on high-resolution XRD reciprocal space mapping of around(2ˉ1ˉ10), (20ˉ20), and(2ˉ1ˉ12)peaks, and the results are shown in Figs. 4 and 5. In all RSM results, the implanted samples give rise to two peaks. One is located as the same coordinate as in the virgin sample, and the second reveals lattice expansion. This implies that the whole GaN layer can be described

    as a combination of an irradiated region and another unirradiated region along the depth. The latter corresponds to the virgin film. In the as-grown sample, the out-of-plane lattice spacing along(2ˉ1ˉ10)corresponding to the a axis is 1.5963 ?A.On the basis of measured (20ˉ20) and(2ˉ1ˉ12)peaks, the derived in-plane lattice constant of(0002)and(02ˉ20)planes are about 2.5858 ?A and 1.3771 ?A, respectively. When compared with the values of bulk GaN:1.5950,2.5945,and 1.3813 ?A for(2ˉ1ˉ10),(0002),and(02ˉ20)planes,respectively,our as-grown a-plane GaN on r-plane sapphire undergoes tensile strain from the substrate. Upon increasing fluences, the measured three planes all exhibit expansion behavior given by the decreased qzvalue till the sample GaN 3. As shown in Figs. 6(d) and 6(g), the lattice parameter saturates when the irradiation fluence reaches 5×1015cm?2,and this is probably interpreted by the surface amorphization resulted from high irradiation dose.

    By playing the diffraction vector in the reciprocal space,the evolution of lattice parameters of planes (02ˉ20) (along the m axis) and (0002) (along the c axis) are tracked, as displayed in Figs. 6(e) and 6(f). Interestingly, neither monotonical change nor obvious lattice distortion is seen for abovementioned two planes, which is similar to Eu-implanted aplane GaN.[30]In our case,although(20ˉ20)planes are somehow equal to (020) planes in the bulk materials, the (20ˉ20)plane exhibits expansion due to the fact that it is equipped with an out-of-plane component vector. Therefore, it is concluded that raising irradiation fluence results in the uniaxial expansion of lattice along the out-of-plane direction till the presence of high-dense defects induced by over-dosed implantation. In addition to GaN diffraction signals,several peaks nearby from the AlN buffer and Al2O3are also detected,as shown in Figs.4 and 5, however, since the implanted layer is far away from them,thus none of any peak-shifting is observed.

    Fig.6. The implantation fluence dependence of(a)χmin,(b)and(c)Raman linewidth as well as lattice parameters(left)and lattice mismatch(right)of(d)(20ˉ20),(e)(02ˉ20),(f)(0002),and(g)(2ˉ1ˉ10)diffraction peaks.

    Fig.7. Photoluminescence spectra of samples excited by 405-nm laser.

    To examine the optical properties of the ion implanted aplane GaN,photoluminescence was measured by 325-nm and 405-nm excitations. Interestingly, for 325-nm excited measurements, all implanted samples present quenched PL emission even including the near band edge. The results measured by 405-nm excitation are displayed in Fig.7,and a strong yellow luminescence is observed in the as-grown sample. According to previous studies, the origin of such zero-phonon energy yellow luminescence has been under debate for a long time in the past decades: the emission may result from the transition between deep level impurity states and undefined energy level, e.g., shallow donor[32–34]or conduction band edge.[35]Actually, it has been reported that the a-plane GaN grown on r-face sapphire by hydride vapor phase epitaxy as well as some other types of as-grown GaN exhibit similar strong yellow light emission.[36]In our case, upon increasing irradiation fluences, such a yellow emission is gradually suppressed, as shown in Fig. 7. Actually, a similar quench phenomenon, particularly for the yellow emission, has been observed in electron irradiated GaN.[37]It is most likely due to that induced defects create a lot of non-radiative recombination centers.

    4. Conclusion

    By fully employing RBS, polarized Raman and highresolution reciprocal space mapping by XRD, systematic investigations are performed for Si-implanted non-polar a-plane GaN epitaxial layers. With increasing implantation fluence,disorder is introduced into the matrix although the sample still keeps the epitaxial nature. The implantation-induced defects result in the uniaxial lattice expansion along the out-of-plane direction and the broadening of the Raman peaks. Moreover,the intensity of both the near band and yellow band emission is largely quenched with increasing the implantation fluence.It is probably due to the fact that the implantation generates the new competing recombination centers, particularly nonradiative ones. These results provide useful information for using ion implantation as a doping approach for non-polar GaN.

    猜你喜歡
    王琦
    Stability and Convergence of Non-standard Finite Difference Method for Space Fractional Partial Differential Equation
    Angle robust transmitted plasmonic colors with different surroundings utilizing localized surface plasmon resonance
    Ultra-broadband absorber based on cascaded nanodisk arrays
    Stability of Linear θ-Method for Delay Partial Functional Differential Equations with Neumann Boundary Conditions
    Briefly Talking About Methods Of Infiltrating Mental Health Education In Ideological And Political Teaching
    Pf- D mrt4, a potential factor in sexual development in the pearl oyster Pinctada f ucata*
    Comparison ofintestinal microbiota and activities of digestive and immune-related enzymes of sea cucumberApostichopus japonicusin two habitats*
    《皇帝的新裝》后傳
    源于現(xiàn)實之上的詩性想象
    Experimental study of flow patterns and pressure drops of heavy oil-water-gas vertical flow*
    在线精品无人区一区二区三| 国产男人的电影天堂91| 久久97久久精品| a级毛片黄视频| 丝袜在线中文字幕| 国产又色又爽无遮挡免| 男女下面插进去视频免费观看| 视频区图区小说| 我的亚洲天堂| 亚洲熟女毛片儿| avwww免费| 狠狠婷婷综合久久久久久88av| 成人手机av| 亚洲国产中文字幕在线视频| 亚洲欧美中文字幕日韩二区| 男女午夜视频在线观看| 欧美日韩亚洲综合一区二区三区_| 如日韩欧美国产精品一区二区三区| 亚洲欧洲日产国产| 九色亚洲精品在线播放| 秋霞伦理黄片| 狠狠婷婷综合久久久久久88av| 精品一区二区免费观看| 一级毛片我不卡| 三上悠亚av全集在线观看| 国产午夜精品一二区理论片| 日韩大码丰满熟妇| av天堂久久9| a 毛片基地| 国产亚洲av片在线观看秒播厂| 美女高潮到喷水免费观看| 日本av免费视频播放| 2018国产大陆天天弄谢| 欧美精品亚洲一区二区| 亚洲国产看品久久| 1024视频免费在线观看| 精品第一国产精品| 悠悠久久av| 人人妻人人爽人人添夜夜欢视频| 大香蕉久久成人网| 一级毛片电影观看| 国产亚洲一区二区精品| 99国产精品免费福利视频| 国产精品国产三级专区第一集| 又粗又硬又长又爽又黄的视频| 精品第一国产精品| 精品久久久精品久久久| 18在线观看网站| 久久久欧美国产精品| 人人妻人人爽人人添夜夜欢视频| 国产成人午夜福利电影在线观看| 国产乱人偷精品视频| 三上悠亚av全集在线观看| 黄网站色视频无遮挡免费观看| 国产 精品1| av女优亚洲男人天堂| 青春草国产在线视频| 国产欧美日韩一区二区三区在线| 国产一区有黄有色的免费视频| 国产又色又爽无遮挡免| 国产在线视频一区二区| 欧美人与善性xxx| 日韩熟女老妇一区二区性免费视频| 男女之事视频高清在线观看 | 高清在线视频一区二区三区| 人妻 亚洲 视频| 久久天堂一区二区三区四区| 黄色视频在线播放观看不卡| 国产爽快片一区二区三区| 少妇 在线观看| 亚洲欧美中文字幕日韩二区| 亚洲情色 制服丝袜| 国产av国产精品国产| 亚洲一区中文字幕在线| 如何舔出高潮| 精品人妻在线不人妻| 成人亚洲精品一区在线观看| 中文欧美无线码| 亚洲一级一片aⅴ在线观看| www.熟女人妻精品国产| 亚洲 欧美一区二区三区| 满18在线观看网站| 欧美在线一区亚洲| 最黄视频免费看| 久久久国产一区二区| 丁香六月欧美| 欧美日韩精品网址| www.自偷自拍.com| av视频免费观看在线观看| 看免费成人av毛片| 欧美日韩成人在线一区二区| 亚洲精品乱久久久久久| 高清不卡的av网站| 色播在线永久视频| 美女国产高潮福利片在线看| av女优亚洲男人天堂| 精品卡一卡二卡四卡免费| 中文乱码字字幕精品一区二区三区| 国产乱来视频区| 999久久久国产精品视频| 丰满饥渴人妻一区二区三| 超碰97精品在线观看| 新久久久久国产一级毛片| 精品国产一区二区三区四区第35| 亚洲国产精品999| 午夜福利免费观看在线| a级毛片在线看网站| 日本vs欧美在线观看视频| 婷婷色综合www| 一级爰片在线观看| 最新的欧美精品一区二区| 青春草亚洲视频在线观看| 亚洲av综合色区一区| 黄色视频不卡| 国产成人欧美在线观看 | 777久久人妻少妇嫩草av网站| 日韩视频在线欧美| 精品少妇黑人巨大在线播放| 岛国毛片在线播放| 天堂中文最新版在线下载| 亚洲精品久久久久久婷婷小说| 亚洲免费av在线视频| 丁香六月欧美| 国产精品国产三级国产专区5o| 如何舔出高潮| 老汉色∧v一级毛片| 国产亚洲av片在线观看秒播厂| 少妇被粗大的猛进出69影院| 国产成人午夜福利电影在线观看| 久久久欧美国产精品| 老司机影院毛片| 肉色欧美久久久久久久蜜桃| 国产黄色免费在线视频| av免费观看日本| 成人三级做爰电影| 高清不卡的av网站| 在线观看人妻少妇| 国产精品国产三级专区第一集| 色视频在线一区二区三区| 亚洲专区中文字幕在线 | 欧美精品亚洲一区二区| 99re6热这里在线精品视频| 久久精品久久久久久噜噜老黄| 欧美乱码精品一区二区三区| 日韩一区二区视频免费看| 亚洲精品,欧美精品| 精品少妇久久久久久888优播| 国产爽快片一区二区三区| 免费观看人在逋| 亚洲欧洲日产国产| 丝瓜视频免费看黄片| 肉色欧美久久久久久久蜜桃| 一本色道久久久久久精品综合| 国产视频首页在线观看| 国产成人精品在线电影| 亚洲av日韩精品久久久久久密 | 久久久国产精品麻豆| 成人国语在线视频| 秋霞在线观看毛片| av在线老鸭窝| 热99久久久久精品小说推荐| 国产成人啪精品午夜网站| 日韩av免费高清视频| 中文字幕最新亚洲高清| 两个人看的免费小视频| 嫩草影院入口| 丝袜脚勾引网站| 999久久久国产精品视频| 美女中出高潮动态图| 人妻一区二区av| 国产福利在线免费观看视频| 欧美在线一区亚洲| 久久久精品国产亚洲av高清涩受| 国产高清国产精品国产三级| 亚洲欧美一区二区三区久久| 一级a爱视频在线免费观看| kizo精华| 国产成人欧美在线观看 | 男人舔女人的私密视频| 日韩av不卡免费在线播放| xxxhd国产人妻xxx| 国产精品久久久av美女十八| 精品国产乱码久久久久久小说| 99久国产av精品国产电影| 午夜免费男女啪啪视频观看| 一本—道久久a久久精品蜜桃钙片| 欧美精品亚洲一区二区| 99国产综合亚洲精品| 国产精品免费大片| 黄网站色视频无遮挡免费观看| 欧美在线黄色| 性高湖久久久久久久久免费观看| 日韩大码丰满熟妇| 黑人猛操日本美女一级片| 日韩视频在线欧美| 亚洲成色77777| 亚洲色图 男人天堂 中文字幕| 国产亚洲欧美精品永久| 热re99久久国产66热| 久热爱精品视频在线9| 亚洲伊人色综图| 国产一区有黄有色的免费视频| 午夜福利一区二区在线看| 精品一品国产午夜福利视频| 少妇被粗大的猛进出69影院| av.在线天堂| av免费观看日本| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区四区激情视频| 水蜜桃什么品种好| 亚洲国产毛片av蜜桃av| 亚洲成人av在线免费| 最黄视频免费看| 91精品伊人久久大香线蕉| 美女午夜性视频免费| 国产一区二区三区av在线| 日韩免费高清中文字幕av| 亚洲第一青青草原| 精品午夜福利在线看| 婷婷成人精品国产| 满18在线观看网站| 咕卡用的链子| 亚洲成人国产一区在线观看 | 极品人妻少妇av视频| 无遮挡黄片免费观看| 欧美av亚洲av综合av国产av | 电影成人av| 婷婷色综合大香蕉| 少妇被粗大猛烈的视频| 久久久久人妻精品一区果冻| 婷婷色综合www| 亚洲美女搞黄在线观看| 不卡视频在线观看欧美| 男的添女的下面高潮视频| 日韩人妻精品一区2区三区| e午夜精品久久久久久久| 丁香六月欧美| 最近的中文字幕免费完整| av在线老鸭窝| 天天添夜夜摸| 最黄视频免费看| 欧美久久黑人一区二区| 日本欧美国产在线视频| 精品亚洲成国产av| 亚洲成色77777| 街头女战士在线观看网站| 欧美久久黑人一区二区| 国产又爽黄色视频| 国产精品秋霞免费鲁丝片| 国产亚洲av高清不卡| 精品国产乱码久久久久久男人| 成人漫画全彩无遮挡| 天天躁狠狠躁夜夜躁狠狠躁| 看非洲黑人一级黄片| 国产精品99久久99久久久不卡 | 亚洲精品日本国产第一区| 亚洲国产日韩一区二区| 男女国产视频网站| 精品国产一区二区三区四区第35| 最新在线观看一区二区三区 | 日韩制服丝袜自拍偷拍| 国产黄色免费在线视频| 97人妻天天添夜夜摸| 久久女婷五月综合色啪小说| 啦啦啦在线免费观看视频4| 涩涩av久久男人的天堂| 亚洲成人av在线免费| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美精品济南到| 搡老乐熟女国产| 欧美 亚洲 国产 日韩一| 老汉色∧v一级毛片| 午夜免费观看性视频| 免费女性裸体啪啪无遮挡网站| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 免费在线观看视频国产中文字幕亚洲 | 久热这里只有精品99| 色精品久久人妻99蜜桃| 欧美另类一区| 人妻人人澡人人爽人人| 99久久人妻综合| videosex国产| 国产精品无大码| 青春草亚洲视频在线观看| 欧美成人午夜精品| 午夜福利,免费看| 久久天躁狠狠躁夜夜2o2o | 日韩 亚洲 欧美在线| 晚上一个人看的免费电影| 亚洲欧美成人精品一区二区| 亚洲av日韩在线播放| 国产亚洲欧美精品永久| 美国免费a级毛片| 国产在线一区二区三区精| 黄色视频不卡| av片东京热男人的天堂| 午夜福利视频精品| 天天躁夜夜躁狠狠躁躁| 亚洲精华国产精华液的使用体验| 国产精品偷伦视频观看了| 黄片播放在线免费| 美国免费a级毛片| 日日啪夜夜爽| 电影成人av| 男女国产视频网站| 伊人久久大香线蕉亚洲五| av.在线天堂| 欧美中文综合在线视频| 巨乳人妻的诱惑在线观看| 亚洲欧美成人综合另类久久久| 久久久久久免费高清国产稀缺| 国产精品久久久久久人妻精品电影 | 无遮挡黄片免费观看| 日本一区二区免费在线视频| 国产精品久久久久久精品古装| 久久天躁狠狠躁夜夜2o2o | 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 日韩大码丰满熟妇| 国产亚洲欧美精品永久| 国产成人精品久久久久久| 一区二区av电影网| 成人漫画全彩无遮挡| 性色av一级| 午夜福利免费观看在线| 日韩精品有码人妻一区| 久久精品久久精品一区二区三区| 飞空精品影院首页| 亚洲,欧美,日韩| 日韩伦理黄色片| 丝袜美足系列| 午夜福利视频在线观看免费| 看十八女毛片水多多多| 亚洲伊人久久精品综合| 色播在线永久视频| 日韩欧美一区视频在线观看| 国产成人精品无人区| 在线观看国产h片| 亚洲国产成人一精品久久久| 精品国产露脸久久av麻豆| 日韩大片免费观看网站| 美女国产高潮福利片在线看| 国产成人一区二区在线| 日本vs欧美在线观看视频| 国产精品国产三级国产专区5o| a级毛片在线看网站| 国产片特级美女逼逼视频| 肉色欧美久久久久久久蜜桃| 热99国产精品久久久久久7| 国产高清不卡午夜福利| 99九九在线精品视频| 国产一区二区激情短视频 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产成人一精品久久久| 成人国产麻豆网| 如何舔出高潮| 成人国产麻豆网| 亚洲国产成人一精品久久久| 午夜老司机福利片| 老熟女久久久| 国产国语露脸激情在线看| 在线亚洲精品国产二区图片欧美| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 婷婷色麻豆天堂久久| 少妇 在线观看| 一级,二级,三级黄色视频| 欧美精品亚洲一区二区| 日韩大码丰满熟妇| 久久精品久久久久久久性| 91国产中文字幕| 韩国av在线不卡| 汤姆久久久久久久影院中文字幕| 啦啦啦啦在线视频资源| 亚洲熟女精品中文字幕| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人看| 三上悠亚av全集在线观看| 日韩人妻精品一区2区三区| 91精品伊人久久大香线蕉| 国产精品久久久av美女十八| 夫妻性生交免费视频一级片| 国产成人啪精品午夜网站| 亚洲图色成人| 日韩av不卡免费在线播放| 丰满少妇做爰视频| 青春草视频在线免费观看| 哪个播放器可以免费观看大片| 老司机影院成人| 欧美黑人精品巨大| 两性夫妻黄色片| 99久国产av精品国产电影| 精品人妻熟女毛片av久久网站| 爱豆传媒免费全集在线观看| 久久久精品区二区三区| 在线精品无人区一区二区三| 可以免费在线观看a视频的电影网站 | 欧美 日韩 精品 国产| 51午夜福利影视在线观看| 青春草亚洲视频在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲第一区二区三区不卡| 黑人欧美特级aaaaaa片| 18禁观看日本| 欧美精品人与动牲交sv欧美| 一二三四中文在线观看免费高清| 亚洲成av片中文字幕在线观看| 国产精品欧美亚洲77777| 精品亚洲成a人片在线观看| 免费观看a级毛片全部| 悠悠久久av| 成人国产麻豆网| 亚洲少妇的诱惑av| 亚洲国产av影院在线观看| 亚洲精品国产区一区二| 美女高潮到喷水免费观看| 美女中出高潮动态图| 精品国产一区二区三区久久久樱花| 夫妻午夜视频| 人人妻人人添人人爽欧美一区卜| 国产乱人偷精品视频| 国产精品一国产av| 丝袜美足系列| 青春草视频在线免费观看| 桃花免费在线播放| 999精品在线视频| 在线看a的网站| 日日爽夜夜爽网站| 熟女av电影| 色综合欧美亚洲国产小说| 久久精品国产a三级三级三级| 丝袜人妻中文字幕| a级毛片黄视频| 国产熟女欧美一区二区| 久久久久人妻精品一区果冻| 国产乱人偷精品视频| 最黄视频免费看| 亚洲精品第二区| 人成视频在线观看免费观看| 精品久久久精品久久久| 19禁男女啪啪无遮挡网站| 青春草亚洲视频在线观看| 日本欧美视频一区| 这个男人来自地球电影免费观看 | 欧美在线黄色| 极品人妻少妇av视频| 熟妇人妻不卡中文字幕| 99精品久久久久人妻精品| 久久久久久免费高清国产稀缺| 亚洲av欧美aⅴ国产| 日本vs欧美在线观看视频| 亚洲伊人久久精品综合| 免费黄网站久久成人精品| 国产熟女午夜一区二区三区| 建设人人有责人人尽责人人享有的| 精品免费久久久久久久清纯 | 欧美久久黑人一区二区| 欧美乱码精品一区二区三区| 19禁男女啪啪无遮挡网站| 亚洲美女视频黄频| 热re99久久国产66热| 大香蕉久久网| 久久久久久久久免费视频了| 亚洲欧美成人精品一区二区| 搡老乐熟女国产| kizo精华| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 亚洲国产欧美在线一区| 免费黄频网站在线观看国产| 精品国产一区二区久久| 狠狠精品人妻久久久久久综合| 免费观看人在逋| 欧美 亚洲 国产 日韩一| 亚洲七黄色美女视频| 无限看片的www在线观看| 久久人妻熟女aⅴ| 欧美 亚洲 国产 日韩一| 狠狠婷婷综合久久久久久88av| 国产精品久久久久成人av| 丝袜美腿诱惑在线| 亚洲欧美一区二区三区久久| 国产av精品麻豆| 夜夜骑夜夜射夜夜干| 免费女性裸体啪啪无遮挡网站| 日本欧美国产在线视频| 人体艺术视频欧美日本| 亚洲成人手机| 天天添夜夜摸| 一本久久精品| 成年美女黄网站色视频大全免费| 亚洲综合精品二区| 精品免费久久久久久久清纯 | 日韩一本色道免费dvd| 国产精品久久久久久精品电影小说| 国产福利在线免费观看视频| 丰满少妇做爰视频| 欧美日韩亚洲综合一区二区三区_| 国产免费一区二区三区四区乱码| 国产成人精品在线电影| 亚洲国产精品一区三区| 一本一本久久a久久精品综合妖精| 久久ye,这里只有精品| 国产精品久久久人人做人人爽| 国产精品三级大全| 一区二区日韩欧美中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 欧美亚洲 丝袜 人妻 在线| 欧美日韩视频高清一区二区三区二| 日韩制服丝袜自拍偷拍| 91国产中文字幕| 老司机在亚洲福利影院| 永久免费av网站大全| 丝袜美足系列| 日韩,欧美,国产一区二区三区| av又黄又爽大尺度在线免费看| 精品人妻一区二区三区麻豆| 欧美亚洲 丝袜 人妻 在线| 在线 av 中文字幕| av.在线天堂| 久久久久人妻精品一区果冻| 国产伦理片在线播放av一区| 亚洲精品国产色婷婷电影| 国产精品久久久久久久久免| 十八禁人妻一区二区| 一级黄片播放器| 老汉色av国产亚洲站长工具| 欧美中文综合在线视频| 国产成人系列免费观看| 国产极品粉嫩免费观看在线| 少妇人妻精品综合一区二区| 男的添女的下面高潮视频| 国产成人免费无遮挡视频| 午夜福利免费观看在线| 久久97久久精品| 女人久久www免费人成看片| 9热在线视频观看99| 最黄视频免费看| 国产淫语在线视频| 亚洲精品av麻豆狂野| 欧美在线一区亚洲| 久久久久久久国产电影| 夫妻午夜视频| 午夜福利免费观看在线| 亚洲五月色婷婷综合| 菩萨蛮人人尽说江南好唐韦庄| 热99久久久久精品小说推荐| 丰满少妇做爰视频| 在线观看免费日韩欧美大片| 国产一区有黄有色的免费视频| 亚洲av电影在线观看一区二区三区| 天天添夜夜摸| 天堂俺去俺来也www色官网| 国产成人免费观看mmmm| 深夜精品福利| 色婷婷久久久亚洲欧美| 欧美日韩福利视频一区二区| 午夜免费观看性视频| 丝袜美足系列| 亚洲人成电影观看| 波多野结衣av一区二区av| 久久热在线av| 国产免费福利视频在线观看| 在线亚洲精品国产二区图片欧美| 国产精品三级大全| 亚洲av电影在线进入| 久久久久国产精品人妻一区二区| 99久久精品国产亚洲精品| 亚洲,欧美精品.| 高清不卡的av网站| 国产成人精品在线电影| 黑人欧美特级aaaaaa片| 高清欧美精品videossex| 亚洲av电影在线进入| 国产免费一区二区三区四区乱码| 色94色欧美一区二区| 99久久99久久久精品蜜桃| 一级毛片黄色毛片免费观看视频| 在现免费观看毛片| 日韩av在线免费看完整版不卡| 啦啦啦啦在线视频资源| 蜜桃国产av成人99| 又大又爽又粗| 亚洲国产精品成人久久小说| 亚洲国产精品一区二区三区在线| 老司机亚洲免费影院| 51午夜福利影视在线观看| 最近2019中文字幕mv第一页| 丝袜人妻中文字幕| 水蜜桃什么品种好| 视频在线观看一区二区三区| 下体分泌物呈黄色| 亚洲激情五月婷婷啪啪| 另类精品久久| 国产麻豆69| 免费少妇av软件| 国产视频首页在线观看| 亚洲国产日韩一区二区| 人妻人人澡人人爽人人| 母亲3免费完整高清在线观看| 性色av一级| 少妇人妻 视频| 搡老岳熟女国产| 久久午夜综合久久蜜桃| 五月开心婷婷网| 老司机深夜福利视频在线观看 | 国产精品99久久99久久久不卡 | 性色av一级| 久久这里只有精品19| 美女午夜性视频免费| 丰满迷人的少妇在线观看| www.av在线官网国产| 国产精品熟女久久久久浪| 99精品久久久久人妻精品|