• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of tellurium(Te4+)irradiation on microstructure and associated irradiation-induced hardening*

    2021-05-24 02:28:20HefeiHuang黃鶴飛JizhaoLiu劉繼召GuanhongLei雷冠虹OndrejMuranskyTaoWeiandMihailIonescu
    Chinese Physics B 2021年5期
    關(guān)鍵詞:黃鶴

    Hefei Huang(黃鶴飛), Jizhao Liu(劉繼召), Guanhong Lei(雷冠虹),Ondrej Mur′ansky, Tao Wei, and Mihail Ionescu

    1

    Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2School of Nuclear Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    3Australian Nuclear Science and Technology Organisation(ANSTO),Lucas Heights,Sydney,NSW,2234,Australia

    4University of New South Wales(UNSW),Kensington,Sydney,NSW,2052,Australia

    Keywords: GH3535 alloy,Te ions irradiation,microstructural evolution,irradiation hardening

    1. Introduction

    The molten salt reactor(MSR)system is one of the generation IV reactors which provides inherent safety(operating at low pressure), high efficiency, and simplified fuel cycle.[1–3]However, the deployment of MSR systems is currently hindered by the availability of structural materials capable of withstanding combination of harsh operating conditions(high temperature,molten salt corrosion,and neutron radiation)for an extended period of time. For instance,the neutron irradiation damage is expected to reach 100 dpa for the core components while the operation temperature is expected to reach of above 750°C.[4,5]

    The Ni–Mo–Cr Hastelloy-N alloy developed by Oak Ridge National Laboratory (ORNL) during the Molten-Salt Reactor Experiment (MSRE)[6]in the 60’s is still considered as one of the most promising candidate structural materials for MSR due to its outstanding corrosion resistance.[3]Recently,China has produced a domestic product of the Hastelloy N alloy(GH3535)intended for use in Chine Thorium Molten-Salt Reactor(TMSR).[7]Since,the irradiation damage of these alloys is of paramount importance,a number of researches have used ion irradiation as a surrogate for expected neutrons.[8–11]For instance,in our previous work[12]we showed the temperature effect on the radiation damage in Ni–Mo–Cr(GH3535)alloy weld metal by 8-MeV Ni3+ion irradiation. Similarly,the microstructural changes induced by Xe26+ions irradiation with a dose of up to 10 dpa at different temperatures in GH3535 alloy has been investigated in Ref.[13].

    In the present study, we aim to build upon our previous work by using Te4+ions for irradiation. Te is of particular interest in MSR because it is one of the fission products known to cause an embrittlement of Ni-based alloys.[14]GH3535 alloy samples were Te4+ion(15 MeV)irradiated at 650°C.The irradiation hardening and microstructural evolution were then characterized by nano-indentation and transmission electron microscopy (TEM), respectively. The thicknesses of TEM samples were determined by the convergent beam electron diffraction (CBED) method. The thickness of sample S2, S4and S5are about 100 nm and the thickness of sample S3is about 71 nm. The irradiation hardening was also estimated using dispersed barrier hardening(DBH)model based on the TEM micrographs. Moreover, the elements distribution of unirradiated and irradiated samples was characterized by electron probe microanalysis(EPMA).

    2. Experimental details

    The chemical composition of the studied Ni–Mo–Cr GH3535 alloy is shown in Table 1. Five samples(S1?5)with nominal dimensions of 5 mm×5 mm×1 mm were precisioncut using electrical discharge machining before being progressively polished to the EBSD standards. Samples(S2?5)were then irradiated with 15-MeV Te4+ions at 650°C to the fluence of 2.25×1014(S2),1.35×1015(S3),4.50×1015(S4),and 9.00×1015(S5) ions/cm2, respectively. Their peak damages are 0.5 dpa(S2),3.0 dpa(S3),10 dpa(S4),and 20 dpa(S5),respectively, as predicted by SRIM-2013 using Kinchin–Pease Method.[15]Note that S1sample was kept in the unirradiated solution-annealed condition and is used as a reference throughout this paper. Figure 1 shows the Te concentration and dpa profile as a function of depth (the distance from the irradiated surface). Based on SRIM simulations in Fig.1 it is expected that the maximum penetration depth of Te atoms is<3000 nm,while the Te concentration peak is at the depth of about 2250 nm and the peak damage is at the depth of about 1950 nm.

    Table 1. The chemical composition of the as-received GH3535 alloy(in unit wt%).

    Fig. 1. SRIM predictions of (a) Te atomic concentration and (b) radiationinduced displacement damage for GH3535 alloy at following Te4+ ion fluences: 2.25×1014,1.35×1015,4.50×1015,and 9.00×1015 ions/cm2.

    The Te distribution in the post-irradiated samples was analyzed using the electron probe microanalysis (EPMA, SHIMADZU 1720)while the microstructural evolution was studied using transmission electron microscope(TEM,FEI Tecnai G2 F20). The cross-sectional TEM samples were extracted from perpendicular to the irradiated surface using a focused ion beam (FIB, FEI Helios Nano-lab 600) system with the model of Helios.Lastly,we performed nanoindentation(G200 nanoindenter) in order to infer the radiation-induced hardening of the alloy. The continuous stiffness measurement(CSM)mode was employed to obtain the profile of nanohardness depth dependence.

    3. Results and discussion

    Figure 2 presents the cross-section Te maps (EPMA) of four samples S1(unirradiated),S3(3 dpa),S4(10 dpa),and S5(20 dpa). No Te atoms(above the background noise)were detected in the S1(unirradiated),S2(0.5 dpa,not shown in Fig.2)and S3(3 dpa) samples. These results suggest that EPMA is not sensitive enough to detect the small amount of Te atoms(Fig.1)in S1and S2samples having Te peak concentration of~35 appm,and ~210 appm,respectively. In the S4(10 dpa,~710 appm)and S5(20 dpa,~1410 appm)samples the layer of increased Te concentration is clearly visible see Figs. 2(c)and 2(d).

    Fig. 2. The Te element distribution mappings of (a) the as-received sample and these irradiated samples with irradiated dose of(b)3 dpa,(c)10 dpa,and(d)20 dpa.

    However, interestingly the peak Te concentration is detected in the depth of about 2700 nm, while the SRIM predictions shown in Fig.1 suggest the peak Te concentration at the depth of about 2250 nm under the surface. It is believed that the observed discrepancy between the simulations and the observations is caused by the thermal diffusion of Te atoms during high temperature (650°C) irradiation. Note that the SRIM calculation does not take into the account the temperature effect.[15]In addition, the calculation process of SRIM does not consider the cumulative effect of damage.This calculation method assumes that the displacement energy of atoms would not change during the entire irradiation process. In fact,as long as there is local damage,the atoms displace more easily due to looser coupling between the crystal lattices. In other words, the displacement energy of atoms in the irradiation damage region will gradually decrease as the irradiation progresses. Hence, the peak of Te concentration detected by EPMA results is deeper than the SRIM prediction.

    The TEM micrograph of the entire irradiation-damage layer of the sample S2(0.5 dpa)is shown in Fig.3(a).It can be seen that the peak damage is located at the depth from about 1800 nm to 2100 nm, which is in agreement with SRIM calculations as shown in Fig. 1. Hence, unlike the depth (position) of the Te peak concentration, the position of the peak damage seems to be unaffected by the temperature. Inserts in Figs.3(b)and 3(c)show TEM micrographs of the peak damage region obtained with the zone-axis close to [011] under the beam condition g = [11ˉ1]. The white dots in Fig. 3(b)(weak-beam dark-field micrograph) become dark in Fig. 3(c)(bright-field micrograph) indicating the formation of dislocation loops, some of the formed dislocation loops are marked by red circles to help the guide the eye.

    Fig.3. (a)TEM bright-field micrograph of the sample S2 after 15-MeV Te to 0.5 dpa. Weak-beam dark-field(g/3g)micrograph(b)and the corresponding bright-field micrograph(c)showing the formation of dislocation loops.

    It is well known that during ion irradiation process, matrix atoms are knocked out from their equilibrium positions by impacting ions, resulting in the formation of interstitials and vacancies.[16]In the process of diffusion, these point defects may encounter each other leading to formation of interstitial and vacancy defect clusters or annihilation of vacancyinterstitial pairs.[17]Formed point defect clusters can then act as embryos for dislocation loops.[18]Compared with vacancytype dislocation loops, interstitial-type dislocation loops are easier to form and grow due to the lower activation energy of migration of interstitial clusters.[19]

    Figure 4 shows the bright-field and weak-beam dark-field(g/3g)micrographs of the samples S3(3 dpa),S4(10 dpa),and S5(20 dpa). These micrographs were obtained in the zoneaxis close to[011]under the beam[11ˉ1](g)condition. It can be seen that the number of observed dislocation loops is proportional to the irradiation dose—increasing from S3to S5.In the sample S3(3 dpa)the dislocation loops are relatively dispersed and easily distinguished while in the S4(10 dpa) and S5(20 dpa) samples, cascade collisions led to significantly greater number of dislocation loops which are harder to distinguish. In order to evaluate the size and density of formed dislocation loops we have Nano-Measurer software[12]to analyze collected TEM micrographs.

    Table 2. The mean diameters and number densities of dislocation loops in samples S2,S3,S4,and S5.

    The mean diameter of formed dislocation loops together with their density are shown in Fig.5 and summarized in Table 2. It became clear that the density of dislocation loops increase with increasing irradiation dose,while their mean diameter is initially increasing with the dose but saturates at 10 dpa reaching about 7 nm. This observation can be explained as follows. In the process of ion irradiation,a concentration gradient of point defects will be established between the position closing to fixed sinks and the position far away from these sinks.[12]The gradient can maintain a flow of point defects towards these sinks to increase the mean diameters of solute clusters or dislocation loops[12]When the defect clusters grow to a certain size,such gradient will disappear. In other words,further ion irradiation will not lead to larger dislocation loops.

    Fig.4. TEM micrographs of the samples S3((a1)–(a3)),S4((b1)–(b3)),and S5 ((c1)–(c3)).

    It is generally accepted that irradiation defects can pin the movement of dislocations leading to irradiation-induced hardening, which is typically accompanied by the loss of ductility.[20,21]In order to estimate the effect of the irradiationinduced hardening we performed nano-indentation measurement on post-irradiated samples. To ensure that the measured nano-hardness come from different grains, the distance between indentations was set above 80μm(larger than reported grain size[13]). We have performed at least 7 indents on each sample to check the reliability of the measurement.

    The typical indentation-depth profiles of the nanohardness measurement are shown in Fig.6. It can be seen that at the indentation depth h >40 nm, nano-hardness decreases with increasing indentation depth. Such depth-dependent nano-hardness behavior is known to be caused by the indentation size effect(ISE).[22]In addition,nano-hardness increases with increasing indentation depth within h <40 nm,which is defined as inverse ISE.[23]The ISE can be explained by Nix–Gao model as the following equations:[24]

    where H is the nano-hardness in unit of GPa for a given indentation depth, H0is the nano-hardness at infinite depth in unit of GPa that can be referred to the bulk hardness,h is the indentation depth and h*is a characteristic length which depends on the material and the shape of indenter tip,h and h*are both in units of nm.

    Fig.5.(a)The mean diameters and(b)number densities of dislocation loops in samples S2,S3,S4,and S5.

    Fig.6.Indentation depth dependence of the nano-hardness in the as-received sample.

    Figure 7 presents the average nano-hardness as a function of the indentation depth in the unirradiated(S1)and irradiated(S2,S3,S4,S5)samples. In order to eliminate the uncertainty caused by the surface contamination and complex indenter tip interaction,[25]we have ignored measurements within 100 nm from the surface. Compared with the unirradiated sample,the irradiated samples exhibit clear hardening.It can be also found that the degree of hardening increases with an increasing irradiation dose.It is due to the fact that there are more irradiation defects in the sample under higher ion dose irradiation,which is consistent with results shown in Fig. 5. It has been confirmed that when the indenter presses on the sample surface,a hemispherical plasticity affected region will be formed below the indenter.[26]The radius of this plasticity affected region is approximately 6 to 7 times of the indentation depth.[27]In the other words,the nano-hardness value at a certain depth is the superposition of the nano-hardness of the entire plasticityaffected region. In order to infer the bulk hardness for irradiated materials,Kasada et al. adopted a new method,[28]where the hardness data are plotted as shown in Fig.7(b). The curve for the unirradiated sample shows a good linearity, whereas the curves for irradiated samples seem to have a bilinear character with a shoulder(hc)at about 460 nm. In this study, the critical indentation depth of 460 nm is around 1/7 to 1/6 of the damage layer, which agrees with previous study in Ref.[27].When the indentation depth is beyond the critical indentation depth,a contribution of softer unirradiated region to the measured hardness cannot be neglected. The bilinear behavior in these irradiated samples is due to the softer substrate effects(SSE),which is discussed extensively in Refs.[29,30].

    Hence, the bulk hardness can be obtained by the extrapolation of hardness data using the least squares fitting in the range of 100 nm <h for the unirradiated sample and in the range of 100 nm <h <460 nm for the irradiated samples.The H values for samples S1, S2, S3, S4, and S5are 2.42,3.51,3.62,4.56,and 5.00 GPa,respectively. In the study,the nano-hardness increment (ΔH) was defined by the value difference of H0between the irradiated and the unirradiated samples. The calculated values of ΔH for samples S2,S3,S4,and S5are 1.09,1.20,2.14,and 2.58 GPa,as shown in Fig.8. The nano-hardness increments tend to saturate at high nominal ion irradiation dose and follow the following rules:[12]

    where ΔH is the nano-hardness increment in unit of GPa,a and b are the fitting parameters. The values of a and b obtained by nonlinear curve fitting are 1.5 and 0.30, respectively. In the previous study,[12]the values of b given by Huang et al. in GH3535 alloy weld metal irradiated by nickel ions is approximately equal to 0.2. This difference may be due to the different microstructure(weld metal versus solution-annealed)and different irradiation conditions, such as type of ions and ion energy.

    Fig. 7. Plots of (a) H–h and (b) H2–1/h for the as-received sample and irradiated samples.

    The yield strength increment induced by irradiation defects can be estimated using the so-called dispersed barrier hardening(DBH)model[31,32]

    where α is the defect barrier strength, M is the Taylor factor (3.06 for fcc metal). For dislocation loops, the value of α should be 0.2.[33]μ is the shear modulus (83.2 GPa), b is the Burgers vector’s module (0.254 nm), N and d are the number densities and mean diameters of dislocation loops.According to Eq. (3), the increments of yield strength for samples S2, S3, S4, and S5are 272.40, 300.46, 427.65, and 476.60 MPa, respectively. The ratio of Δσ among the irradiated samples is 1:1.10:1.57:1.75. Based on the test results of nano-indentation, the ratio of ΔH for the irradiated samples is 1:1.10:1.96:2.37. Taking into account that ΔH is proportional to Δσ,[34]the ratios of ΔH and Δσ among the irradiated samples should be basically the same. In the study, the two ratios are roughly the same, although there are some differences, which are mainly due to the following reasons: In S4and S5samples, the high ion irradiation dose can produce a large number of dislocation loops. These dislocation loops are stacked in a disorderly manner, which brings certain difficulties to statistical work. In addition,there are some very small dislocation loops that were hardly detected by TEM will also contribute to the irradiation hardening.

    Fig. 8. The nano-hardness increment versus nominal ion irradiation dose.

    4. Conclusion

    In the present study,the GH3535 alloy samples were ion irradiated using 15-MeV Te4+at 650°C to a dose of 0.5 dpa(sample S2), 3.0 dpa (sample S3), 10 dpa (sample S4), and 20 dpa (sample S5), respectively. The concentration of implanted Te atoms in post-irradiated conditions was measured using EPMA, while the microstructure evolution was studied using TEM. Finally, we have employed nano-indentation to infer the ion-induced hardening of the studied alloy, respectively. The conclusions can be summarized as follows:

    (i) The peak depth positions of the Te peak concentration is underestimated by SRIM calculations, the calculated Te concentration peak is at the depth of 2250 nm, while the EPMA analysis showed that the Te peak concentration is at the depth of about 2700 nm. This discrepancy between the experimental results and SRIM simulations is believed to be caused by thermally driven diffusion of Te atoms.

    (ii) It is shown that the Te4+irradiation leads to the formation of dislocation loops. In the process of large ion dose irradiation, the disappearance of the point defects concentration gradient leads to the mean diameter of dislocation loops in samples S4and S5are almost unchanged.

    (iii)The ratio of the yield strength increments calculated by DBH model among the irradiated samples is roughly the same as that of the nano-hardness increments measured by nano-indenter. In addition, the 0.3 power law dependence of the nano-hardness increments on dpa is obtained for the GH3535 alloy samples irradiated by Te ions.

    猜你喜歡
    黃鶴
    跟著詩(shī)詞去旅行:黃鶴樓
    小讀者之友(2024年3期)2024-04-14 13:42:36
    “黃鶴去”與“白云去”究竟孰優(yōu)孰劣?——崔顥《黃鶴樓》首句異文考辨
    Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
    黃鶴手繪插圖作品
    歸來兮,遠(yuǎn)去的黃鶴
    文苑(2020年11期)2021-01-04 01:53:08
    黃鶴,很快就會(huì)回來!
    詩(shī)潮(2020年4期)2020-04-26 10:05:40
    黃鶴歸來
    青年歌聲(2020年4期)2020-04-24 01:45:58
    黃鶴樓的由來
    自動(dòng)扶貧
    我是一棵樹
    黑人操中国人逼视频| 国产综合懂色| 亚洲av成人一区二区三| 丁香欧美五月| 亚洲欧美精品综合一区二区三区| 成人精品一区二区免费| 中文字幕久久专区| 一级毛片女人18水好多| 国产激情偷乱视频一区二区| 国产熟女xx| 天天一区二区日本电影三级| 一个人看视频在线观看www免费 | 18禁裸乳无遮挡免费网站照片| 亚洲av日韩精品久久久久久密| 亚洲国产欧洲综合997久久,| 十八禁网站免费在线| 国产精品av久久久久免费| 亚洲熟妇中文字幕五十中出| 九色成人免费人妻av| 亚洲七黄色美女视频| 男女视频在线观看网站免费| 国产亚洲欧美在线一区二区| 久久香蕉国产精品| 深夜精品福利| 欧美午夜高清在线| 亚洲精品美女久久av网站| 变态另类丝袜制服| 国产不卡一卡二| 97超视频在线观看视频| 亚洲性夜色夜夜综合| 99国产精品一区二区蜜桃av| 亚洲精品久久国产高清桃花| 精品免费久久久久久久清纯| 日本黄大片高清| 国产av在哪里看| 999久久久国产精品视频| 成人国产一区最新在线观看| 小说图片视频综合网站| 久久天躁狠狠躁夜夜2o2o| 在线观看免费午夜福利视频| 男人和女人高潮做爰伦理| 免费观看的影片在线观看| 国产欧美日韩一区二区精品| e午夜精品久久久久久久| 国产高清videossex| 国产av一区在线观看免费| 特大巨黑吊av在线直播| 日本 av在线| 法律面前人人平等表现在哪些方面| 色视频www国产| 很黄的视频免费| 成人av在线播放网站| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品久久久com| 免费人成视频x8x8入口观看| 九九热线精品视视频播放| av在线蜜桃| 人人妻,人人澡人人爽秒播| 他把我摸到了高潮在线观看| 九色成人免费人妻av| 免费观看人在逋| 午夜福利在线观看吧| 久久久久性生活片| 精品国产乱子伦一区二区三区| 午夜日韩欧美国产| 变态另类成人亚洲欧美熟女| 成年版毛片免费区| 又粗又爽又猛毛片免费看| 丁香欧美五月| 日韩 欧美 亚洲 中文字幕| 亚洲片人在线观看| 99精品欧美一区二区三区四区| 天天添夜夜摸| 亚洲国产精品成人综合色| 亚洲人成电影免费在线| 99久国产av精品| 99国产精品99久久久久| 757午夜福利合集在线观看| 亚洲欧美日韩无卡精品| 老鸭窝网址在线观看| 蜜桃久久精品国产亚洲av| 老司机在亚洲福利影院| avwww免费| 免费av毛片视频| 国产精品野战在线观看| 99热这里只有是精品50| 欧美丝袜亚洲另类 | 88av欧美| 真实男女啪啪啪动态图| 久久天堂一区二区三区四区| 99久久精品一区二区三区| 99热这里只有是精品50| 亚洲成a人片在线一区二区| av片东京热男人的天堂| 国产精品美女特级片免费视频播放器 | 美女被艹到高潮喷水动态| 国产成人啪精品午夜网站| 国产精品亚洲av一区麻豆| 天堂网av新在线| 免费无遮挡裸体视频| 神马国产精品三级电影在线观看| 18禁国产床啪视频网站| 免费观看人在逋| 99久久精品国产亚洲精品| 中文字幕久久专区| 九九在线视频观看精品| 97人妻精品一区二区三区麻豆| 大型黄色视频在线免费观看| 老司机午夜十八禁免费视频| 午夜精品一区二区三区免费看| 网址你懂的国产日韩在线| 女同久久另类99精品国产91| 欧美三级亚洲精品| 国产精品久久久人人做人人爽| cao死你这个sao货| 国产精品亚洲av一区麻豆| 久久久精品大字幕| 亚洲欧美精品综合一区二区三区| 在线视频色国产色| 99久久精品热视频| 国产成人精品久久二区二区免费| 欧美不卡视频在线免费观看| 久久精品人妻少妇| a级毛片在线看网站| 国产综合懂色| 国产精品爽爽va在线观看网站| 级片在线观看| 老汉色∧v一级毛片| 精品一区二区三区视频在线观看免费| 国内精品久久久久久久电影| 久久精品国产亚洲av香蕉五月| 亚洲av中文字字幕乱码综合| 久99久视频精品免费| 人人妻人人澡欧美一区二区| 高清在线国产一区| 亚洲国产看品久久| 日韩欧美三级三区| 精品福利观看| 国产 一区 欧美 日韩| 午夜免费激情av| 他把我摸到了高潮在线观看| 在线国产一区二区在线| 天堂影院成人在线观看| 精品熟女少妇八av免费久了| 天堂√8在线中文| 日本黄色视频三级网站网址| 狂野欧美白嫩少妇大欣赏| 精品午夜福利视频在线观看一区| 禁无遮挡网站| 亚洲精品粉嫩美女一区| 麻豆成人av在线观看| 国产成人一区二区三区免费视频网站| 日韩欧美国产在线观看| 精品一区二区三区视频在线 | 少妇人妻一区二区三区视频| 麻豆久久精品国产亚洲av| 老熟妇乱子伦视频在线观看| 精品午夜福利视频在线观看一区| 亚洲人成网站在线播放欧美日韩| 亚洲在线观看片| 精品久久久久久久久久免费视频| 中文资源天堂在线| 搞女人的毛片| 九色国产91popny在线| 淫妇啪啪啪对白视频| 成熟少妇高潮喷水视频| 欧美在线一区亚洲| 国产精品久久久av美女十八| 好男人电影高清在线观看| 成年女人看的毛片在线观看| 手机成人av网站| 亚洲成av人片在线播放无| 观看免费一级毛片| 国产美女午夜福利| 91在线观看av| 亚洲欧美日韩东京热| 国产亚洲欧美98| 精品一区二区三区视频在线 | 91字幕亚洲| 日本熟妇午夜| 国产精品乱码一区二三区的特点| 亚洲色图av天堂| 成人永久免费在线观看视频| 一级黄色大片毛片| 曰老女人黄片| 12—13女人毛片做爰片一| 999久久久国产精品视频| 日本免费一区二区三区高清不卡| 久久国产乱子伦精品免费另类| 国产高清激情床上av| 少妇人妻一区二区三区视频| 国产高潮美女av| 少妇熟女aⅴ在线视频| 日韩欧美国产在线观看| 日韩欧美国产在线观看| 国产又黄又爽又无遮挡在线| 日韩欧美在线二视频| 久久久国产成人精品二区| 国产69精品久久久久777片 | 国产高潮美女av| 此物有八面人人有两片| 99国产极品粉嫩在线观看| 好男人电影高清在线观看| 五月伊人婷婷丁香| 97人妻精品一区二区三区麻豆| 国产欧美日韩一区二区三| 久久久色成人| 欧美不卡视频在线免费观看| 午夜福利免费观看在线| 国产av一区在线观看免费| 成人av一区二区三区在线看| 免费搜索国产男女视频| 小蜜桃在线观看免费完整版高清| 亚洲片人在线观看| 老司机午夜十八禁免费视频| 小说图片视频综合网站| 久久久精品欧美日韩精品| 精品久久久久久成人av| 日韩人妻高清精品专区| 老鸭窝网址在线观看| 欧美一级a爱片免费观看看| 国产av在哪里看| 两个人的视频大全免费| 国产精品影院久久| 久久香蕉国产精品| 亚洲国产精品久久男人天堂| 男人舔奶头视频| 制服丝袜大香蕉在线| 制服人妻中文乱码| 午夜两性在线视频| 久久国产精品影院| 欧美日韩福利视频一区二区| 亚洲国产精品999在线| 91在线观看av| 日本撒尿小便嘘嘘汇集6| 亚洲精华国产精华精| 99在线视频只有这里精品首页| 欧美日韩一级在线毛片| 国产单亲对白刺激| 两个人看的免费小视频| 99久久成人亚洲精品观看| 日韩大尺度精品在线看网址| 亚洲中文日韩欧美视频| 一级毛片高清免费大全| 在线国产一区二区在线| 亚洲国产高清在线一区二区三| 午夜福利在线在线| 亚洲真实伦在线观看| 国产一级毛片七仙女欲春2| 精品一区二区三区四区五区乱码| 老司机在亚洲福利影院| 香蕉久久夜色| 国产在线精品亚洲第一网站| 日韩欧美在线乱码| 人妻丰满熟妇av一区二区三区| 亚洲欧美激情综合另类| cao死你这个sao货| 久久久久久久午夜电影| 全区人妻精品视频| av欧美777| 听说在线观看完整版免费高清| 操出白浆在线播放| 日韩大尺度精品在线看网址| 久久人人精品亚洲av| 在线永久观看黄色视频| 成人午夜高清在线视频| 亚洲七黄色美女视频| 日韩有码中文字幕| 无限看片的www在线观看| 国产野战对白在线观看| 99re在线观看精品视频| 亚洲美女视频黄频| 久久性视频一级片| 99久久综合精品五月天人人| 亚洲最大成人中文| 午夜福利高清视频| 九色成人免费人妻av| 成人av在线播放网站| 丁香六月欧美| 人人妻,人人澡人人爽秒播| a级毛片a级免费在线| 两人在一起打扑克的视频| 亚洲自偷自拍图片 自拍| 少妇丰满av| 亚洲av熟女| 久久久精品大字幕| 午夜免费成人在线视频| 香蕉丝袜av| 欧美一区二区国产精品久久精品| 欧美在线一区亚洲| 中文字幕久久专区| 男女午夜视频在线观看| 丝袜人妻中文字幕| 99久久99久久久精品蜜桃| 国产高清激情床上av| 99国产精品一区二区蜜桃av| 欧美一级a爱片免费观看看| 日韩欧美 国产精品| 99热只有精品国产| 十八禁人妻一区二区| 精品久久久久久久人妻蜜臀av| 午夜福利欧美成人| 高清毛片免费观看视频网站| 亚洲中文日韩欧美视频| 精品国产三级普通话版| 狂野欧美白嫩少妇大欣赏| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲欧美在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 变态另类成人亚洲欧美熟女| 久久久国产精品麻豆| 法律面前人人平等表现在哪些方面| 日本免费一区二区三区高清不卡| 日韩av在线大香蕉| 国产精品野战在线观看| 热99在线观看视频| 老司机午夜十八禁免费视频| 国产亚洲av高清不卡| 久久婷婷人人爽人人干人人爱| 老司机在亚洲福利影院| 久久精品国产清高在天天线| 最近在线观看免费完整版| 校园春色视频在线观看| 9191精品国产免费久久| 999精品在线视频| 美女免费视频网站| 亚洲av成人av| 亚洲精品美女久久av网站| 日本在线视频免费播放| 亚洲国产中文字幕在线视频| 99久久成人亚洲精品观看| 欧美中文综合在线视频| xxx96com| 国产激情欧美一区二区| 一级毛片女人18水好多| 人妻久久中文字幕网| 国产精品,欧美在线| 18禁国产床啪视频网站| 噜噜噜噜噜久久久久久91| 色播亚洲综合网| www国产在线视频色| 欧美高清成人免费视频www| 12—13女人毛片做爰片一| or卡值多少钱| 亚洲av美国av| 久久香蕉国产精品| 美女 人体艺术 gogo| 激情在线观看视频在线高清| 草草在线视频免费看| 午夜激情福利司机影院| 动漫黄色视频在线观看| 亚洲精品中文字幕一二三四区| 精品久久蜜臀av无| 身体一侧抽搐| 最近最新免费中文字幕在线| 久久精品国产综合久久久| 国产精品一及| 免费看日本二区| 国产精品综合久久久久久久免费| 淫秽高清视频在线观看| 精品熟女少妇八av免费久了| 国产精品亚洲美女久久久| 99精品欧美一区二区三区四区| 夜夜夜夜夜久久久久| 国产午夜福利久久久久久| 69av精品久久久久久| 精品久久久久久久人妻蜜臀av| 波多野结衣高清无吗| 一夜夜www| 亚洲av片天天在线观看| 色吧在线观看| 精品99又大又爽又粗少妇毛片 | 中文字幕久久专区| 最新中文字幕久久久久 | 在线观看舔阴道视频| 国产av不卡久久| 亚洲国产精品合色在线| 91麻豆精品激情在线观看国产| 精品久久蜜臀av无| 99国产极品粉嫩在线观看| 亚洲欧美一区二区三区黑人| 国产激情偷乱视频一区二区| 国产主播在线观看一区二区| 国内精品久久久久久久电影| 亚洲一区二区三区色噜噜| 久久亚洲真实| 国产亚洲精品av在线| АⅤ资源中文在线天堂| 日韩欧美国产在线观看| 18禁黄网站禁片免费观看直播| 熟女人妻精品中文字幕| 精品国产亚洲在线| 嫩草影院精品99| 国产人伦9x9x在线观看| 午夜福利18| 青草久久国产| 亚洲精品一卡2卡三卡4卡5卡| 亚洲七黄色美女视频| 久久久久免费精品人妻一区二区| 岛国视频午夜一区免费看| 亚洲avbb在线观看| 亚洲真实伦在线观看| 欧美色视频一区免费| 国产毛片a区久久久久| 国产精品av久久久久免费| 国产精品电影一区二区三区| 久久这里只有精品中国| 欧美一级毛片孕妇| 国产三级在线视频| bbb黄色大片| 黄色 视频免费看| 久久久久九九精品影院| 岛国在线观看网站| 欧美性猛交╳xxx乱大交人| 久久国产精品人妻蜜桃| 五月伊人婷婷丁香| 亚洲成a人片在线一区二区| 麻豆久久精品国产亚洲av| 夜夜爽天天搞| 色老头精品视频在线观看| 亚洲七黄色美女视频| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 免费观看精品视频网站| 男女床上黄色一级片免费看| 日韩欧美国产在线观看| 九九久久精品国产亚洲av麻豆 | 亚洲午夜精品一区,二区,三区| 国内毛片毛片毛片毛片毛片| 精品久久久久久久人妻蜜臀av| 国产av不卡久久| 亚洲avbb在线观看| 国产又色又爽无遮挡免费看| 别揉我奶头~嗯~啊~动态视频| 成年女人看的毛片在线观看| 久久久久国内视频| 又黄又粗又硬又大视频| 国产精品爽爽va在线观看网站| 国产激情偷乱视频一区二区| 欧美黄色片欧美黄色片| 成人18禁在线播放| 国产精品香港三级国产av潘金莲| 91麻豆av在线| 亚洲国产精品999在线| 免费在线观看亚洲国产| 不卡一级毛片| 国产精华一区二区三区| 亚洲中文字幕日韩| 国模一区二区三区四区视频 | 伦理电影免费视频| 日韩欧美在线乱码| 波多野结衣高清作品| 99久久成人亚洲精品观看| 国产精品av视频在线免费观看| 叶爱在线成人免费视频播放| 亚洲成人免费电影在线观看| 国产av不卡久久| 日本三级黄在线观看| 我的老师免费观看完整版| 叶爱在线成人免费视频播放| 在线观看日韩欧美| 小说图片视频综合网站| 免费观看人在逋| 国产伦精品一区二区三区四那| 亚洲熟妇中文字幕五十中出| 法律面前人人平等表现在哪些方面| 国产三级在线视频| 精品久久蜜臀av无| 日韩 欧美 亚洲 中文字幕| 国产成人欧美在线观看| 国产乱人视频| 亚洲国产色片| 一区二区三区高清视频在线| 免费观看的影片在线观看| av天堂中文字幕网| 一个人免费在线观看电影 | 亚洲av免费在线观看| tocl精华| 国内精品一区二区在线观看| 国产精品一区二区三区四区久久| 亚洲欧美日韩高清在线视频| 天堂动漫精品| 法律面前人人平等表现在哪些方面| 亚洲成人中文字幕在线播放| 两人在一起打扑克的视频| 国产极品精品免费视频能看的| 中亚洲国语对白在线视频| 亚洲最大成人中文| 精品免费久久久久久久清纯| 欧美乱码精品一区二区三区| 床上黄色一级片| 黑人欧美特级aaaaaa片| 天堂网av新在线| 国产91精品成人一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲国产精品sss在线观看| e午夜精品久久久久久久| av天堂在线播放| 三级毛片av免费| 亚洲 国产 在线| 99久久国产精品久久久| 悠悠久久av| 久9热在线精品视频| 亚洲 欧美 日韩 在线 免费| 欧美xxxx黑人xx丫x性爽| 在线观看免费视频日本深夜| 日日干狠狠操夜夜爽| 熟妇人妻久久中文字幕3abv| 日本免费a在线| 午夜日韩欧美国产| 99在线人妻在线中文字幕| 人妻丰满熟妇av一区二区三区| 国产精品免费一区二区三区在线| 99久久成人亚洲精品观看| 国产精品久久久久久精品电影| www.熟女人妻精品国产| 国产欧美日韩一区二区三| 国产精品一区二区免费欧美| 日韩三级视频一区二区三区| 欧美大码av| 亚洲无线在线观看| 一级毛片高清免费大全| 国产亚洲欧美在线一区二区| 成年版毛片免费区| 成人性生交大片免费视频hd| 男女下面进入的视频免费午夜| 欧美一级a爱片免费观看看| 男女之事视频高清在线观看| 999精品在线视频| 中出人妻视频一区二区| 亚洲av免费在线观看| 亚洲专区字幕在线| 欧美成狂野欧美在线观看| 日本五十路高清| 在线播放国产精品三级| 久久久久久大精品| 小说图片视频综合网站| 桃色一区二区三区在线观看| 欧美黄色片欧美黄色片| 99国产精品一区二区三区| tocl精华| 色噜噜av男人的天堂激情| 国产av麻豆久久久久久久| 国产精品久久久久久人妻精品电影| av在线蜜桃| 国产v大片淫在线免费观看| 波多野结衣高清作品| www日本在线高清视频| 俺也久久电影网| 久久国产乱子伦精品免费另类| 中文在线观看免费www的网站| 国产一区二区三区在线臀色熟女| 亚洲成人免费电影在线观看| 又爽又黄无遮挡网站| 十八禁网站免费在线| 欧美激情久久久久久爽电影| 99精品久久久久人妻精品| 美女免费视频网站| 可以在线观看毛片的网站| 亚洲国产精品成人综合色| 国产精品综合久久久久久久免费| 亚洲国产精品久久男人天堂| 成人特级av手机在线观看| 岛国在线观看网站| 国产美女午夜福利| 一进一出好大好爽视频| 国产成+人综合+亚洲专区| 两性夫妻黄色片| 99re在线观看精品视频| 99国产精品99久久久久| 一个人观看的视频www高清免费观看 | 国产精品1区2区在线观看.| 在线观看日韩欧美| 久久99热这里只有精品18| 亚洲av成人一区二区三| 禁无遮挡网站| 国产不卡一卡二| 日韩欧美在线乱码| 青草久久国产| 日本五十路高清| 国产成人av激情在线播放| 日韩av在线大香蕉| 人人妻,人人澡人人爽秒播| 黑人欧美特级aaaaaa片| 欧美zozozo另类| 国产精品影院久久| 亚洲在线自拍视频| 99久久无色码亚洲精品果冻| 午夜福利高清视频| 中文在线观看免费www的网站| 性色av乱码一区二区三区2| 国产精品综合久久久久久久免费| 亚洲第一电影网av| 国产精品自产拍在线观看55亚洲| 日韩中文字幕欧美一区二区| 精品一区二区三区四区五区乱码| 美女高潮喷水抽搐中文字幕| 亚洲午夜精品一区,二区,三区| 老司机午夜十八禁免费视频| 国产高清视频在线观看网站| 国产精品99久久99久久久不卡| 日本黄色片子视频| 19禁男女啪啪无遮挡网站| 精品不卡国产一区二区三区| 国产v大片淫在线免费观看| 欧美日韩中文字幕国产精品一区二区三区| 熟女电影av网| 午夜福利成人在线免费观看| 天天添夜夜摸| 国产高潮美女av| 制服人妻中文乱码| 最近最新中文字幕大全免费视频| 97碰自拍视频| 亚洲欧美日韩高清在线视频| 精品久久久久久久末码|