• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical spectroscopy study of damage evolution in 6H-SiC by H+2 implantation*

    2021-05-24 02:28:18YongWang王勇QingLiao廖慶MingLiu劉茗PengFeiZheng鄭鵬飛XinyuGao高新宇ZhengJia賈政ShuaiXu徐帥andBingShengLi李炳生
    Chinese Physics B 2021年5期
    關(guān)鍵詞:賈政王勇鵬飛

    Yong Wang(王勇), Qing Liao(廖慶), Ming Liu(劉茗), Peng-Fei Zheng(鄭鵬飛),Xinyu Gao(高新宇), Zheng Jia(賈政), Shuai Xu(徐帥), and Bing-Sheng Li(李炳生),4,?

    1China Institute for Radiation Protection,Taiyuan 030006,China

    2State Key Laboratory for Environment-Friendly Energy Materials,

    Southwest University of Science and Technology,Mianyang 621010,China

    3Southwestern Institute of Physics,Chengdu 610041,China

    4Engineering Research Center of Biomass Materials,Ministry of Education,

    Southwest University of Science and Technology,Mianyang 621010,China

    Keywords: SiC,H+2 implantation,Raman scattering spectroscopy,photoluminescence spectrum

    1. Introduction

    Silicon carbide(SiC),as an important semiconductor material with interesting physical, optical, and electronic properties, is widely used in high-voltage, high-frequency, hightemperature switching devices, as well as in numerous optoelectronic applications.[1]Besides semiconductor industry,SiC can also be used in nuclear power plants because of its low cross-section for neutron capture,excellent chemical,mechanical,and structural stability,as well as low diffusion rate of fission products.[2]In future nuclear reactor,SiC is considered an ideal fuel cladding material for high-temperature gascooled fission reactors.[3]Although there are over 200 polytypes of SiC, only face cubic SiC (3C-SiC), considered for nuclear applications and hexagonal 4H-SiC and 6H-SiC having wide-band gap, high-electron mobility, and low-leakage current used in the semiconductor industry, have been extensively investigated so far. To perform selective-area doping in hexagonal SiC, ion implantation has been widely used in the past.

    It is well known that RBS/C and TEM methods have some drawbacks with respect to particle analysis. Generally,RBS/C analysis uses 2.0-MeV He ions and fabrication of TEM samples is needed due to required transparency to 200-keV or 300-keV electrons. After RBS/C analysis,He ion implantation induces surface color being changed from green to black, due to the increase in the absorption coefficient (not shown).[11]Optical characterization is a good way to avoid sample modification/destruction during measurement. Raman scattering spectrometry technology is widely performed to investigate ions implanted SiC,and it can precisely characterize the evolution of lattice damage with an implantation dose,similar to the result obtained via Rutherford backscattering in channeling geometry.[12–16]Furthermore,Raman scattering spectrometry is sensitive to a low defect concentration via the decrease in Raman scattering intensity, broadening of phonon Raman bands, and frequency shift.[12]In this study, confocal Raman scattering spectroscopy and photoluminescence spectrum are employed to investigate the H+2-implanted 6H-SiC followed by thermal annealing. The defect recovery with annealing temperature is characterized by different methods. These two kinds of optical characterizations of lattice damage are compared.

    2. Experimental process

    Cz-grown N-doped (1018cm?3–1019cm?3), 〈0001〉-oriented single crystalline 6H-SiC wafers with 2 inch(1 inch=2.54 cm)in diameter and 0.35 mm in thickness(supplied by HF-Kejing Inc.), were cut into 1 cm × 1 cm pieces and implanted at room temperature and elevated temperatures (300°C and 500°C) with 134-keV H+2molecular ions at several fluences ranging from 0.5 × 1016H+2·cm?2to 5× 1016H+2·cm?2, respectively. The nominal H concentration depth distribution was obtained from SRIM-2010 using the quick cascade calculation.[17]The mean-projected range Rpwas estimated to 393 nm with a straggling ΔRpof approximately 46 nm(using the density of 3.21 g·cm?3and the threshold displacement energies of 20 eV and 35 eV for C and Si sublattices, respectively). In order to investigate the defect recovery in the sample, isochronal annealing at three different temperatures(700°C,900°C,and 1100°C)for 15 min in vacuum(~10?3Pa)was carried out.Surface blisters and exfoliation were observed by scanning electron microscopy when the sample was implanted to a fluence of 1.5×1016H2·cm?2followed by 1100-°C annealing. An arc-shaped crack located at a depth of approximately 410 nm was formed inside the sample, where is good consistent with the projected range of hydrogen deposition, as shown in Fig. 1. The Raman scattering spectroscopy was performed using a Horiba Join Yvon HR800 spectrometer at room temperature in the backscattering configuration. The excitation wavelength was 532 nm from the Ar+laser with a spectral resolution of approximately 0.5 cm?1,and the measurement range was from 100 cm?1to 1000 cm?1. Spectra were recorded with an acquisition time of 30 s. Micro-Raman spectroscopy was employed and the laser spot was approximately 1 μm using a microscopy lens system.The scattered light was detected by a Jobin Yvon T64000 spectrometer with an LN2cooled charge-coupled device. The penetration depth of the exciting wavelength is expressed as d =1/2α, where α is the absorption coefficient of the crystalline SiC.[18]The absorption coefficient of single-crystalline 6H-SiC is 115 cm?1at 532 nm based on the UV-visible optical transmittance spectrometer measurement.[12]Therefore,the penetration depth of the exciting wavelength in the singlecrystalline 6H-SiC reaches 43μm,which is far larger than the H+2ion penetration depth. Samples were excited by 325-nm light from a suitably filtered He–Cd laser on the Shimadzu RF-5301 photoluminescence spectroscopy. The measurement was carried out at room temperature(RT),and the exciting wavelength was 340 nm. The measurement range was from 350 nm to 1000 nm.

    Fig. 1. Cross-sectional scanning electron microscopy, (a) secondary electron image, (b) backscattering electron image of 6H-SiC implanted with 134-keV H+2 ions at a fluence of 1.5×1016 H+2·cm?2 at 300 °C followed by 1100 °C annealing for 15-min observed by secondary electron (a) and backscattering electron(b),superposed the distribution of damage and hydrogen deposition of the H+2-implanted 6H-SiC simulated by SRIM-2010(c).Blisters and exfoliation are observed in panel(a)and a crack exhibiting black contrast is clearly observed in panel(c).

    3. Results and discussion

    Figure 2 presents the change of photoluminescence spectra after H+2-ion implantation followed by the thermal treatment. An emission peak located at 590 nm was clearly observed. In the present experiment,n-type 6H-SiC due to nitrogen doping was chosen. Meanwhile, using boron as acceptor doping compensates nitrogen doping. Kawai et al.[19]argued that the emission peak located at 590 nm is attributed to donor–acceptor pair emission in a SiC crystal. This emission in the range of visible light is convenient for various optical devices,with the intensity of the emission peak being an important parameter in the fabrication process. It is generally regarded that the donor–acceptor pair emission itself is very strong in highquality SiC.[19]As a result,the emission intensity strongly depends on the quality of the H+2ions-implanted SiC. Figure 2 shows that the location of emission peak did not change significantly after the H+2ion implantation,except for 134-keV H+2-implanted SiC at 500°C after 1100-°C annealing,where large blisters and craters are formed on the surface.[6]This result demonstrates that the donor–acceptor pair emission plays the main role in photoluminescence emission of SiC before and after H+2ion implantation. Moreover, the emission intensity decreased significantly after H+2implantation. The detailed change of the emission intensity versus fluence and temperature is presented in Fig.3.

    The Raman spectra of 6H-SiC samples before and after the 134-keV H+2-ion implantation to fluences ranging from 0.5×1016H+2·cm?2to 5×1016H+2·cm?2at RT or 2.5×1016H+2·cm?2at RT,300°C,and 500°C,were investigated.In the range of 100 cm?1–1000 cm?1, the group-theoretical analysis indicates that the Raman-active modes of wurtzite structure(C6vsymmetry for hexagonal polytypes)are A1,E1,and E2modes.[20]In addition, A1and E1phonon modes are split into longitudinal(LO)and transverse(TO)optical modes,respectively.In backscattering configuration,Al(LO),E1(LO),and E2phonons are observable in Raman spectra.

    Figure 3 presents the Raman spectra of 6H-SiC samples, observed Raman peaks located at 144 cm?1/150 cm?1,266 cm?1, 505 cm?1/513 cm?1, 768 cm?1/790 cm?1,798 cm?1, 968 cm?1are attributed to E2(TA), E2(TA),A1(LA), E2(TO), E1(TO), A1(LO) phonons, respectively.[21]It can be seen that Raman peaks shift to a lower wavenumber after H+2-ion implantation, as shown in Fig. 3(h). The red shift can be attributed to the hydrostatic strain caused by implantation-induced defects.[22]It is interesting to note that one broad band located at 578 cm?1is observed in the H+2ions implanted 6H-SiC after 1100-°C annealing(like 8#SiC),except for 5#SiC.This phonon peak is attributed to the vibration mode of CSiVCcomplexes.[23]It is consistent with recent research indicating that many carbon antisite–vacancy pairs formed after 1100-°C annealing measured by transmission electron microscopy and positron annihilation spectrum.[24]It can be seen that the background intensity increased after the H+2ion implantation. This is related to Rayleigh scattering from the implantation-induced damage.However,background intensity increased in the H+2ions implanted 6H-SiC with the thermal treatment, except for 5#SiC. It is associated with the vibrations of silicon and disorder silicon carbide.[21]In addition,the intensities of Raman peaks decreased after H+2ion implantation. The intensities of Raman scattering spectroscopy and photoluminescence spectrum were analyzed and the result is present in Fig.4.

    Fig.2. Photoluminescence spectra from 134-keV H+2 ions-implanted 6H-SiC to different fluences after thermal annealing for 15 min. Note that 5#SiC,6#SiC,8#SiC,and 10#SiC stand for the implantation fluence of 5×1015 H+2·cm?2,1.5×1016 H+2·cm?2,5×1016 H+2·cm?2,and 2.5×1016 H+2·cm?2 at RT,respectively. 12#SiC and 13#SiC stand for the implantation fluence of 2.5×1016 H+2·cm?2 at 300 °C and 500 °C,respectively.

    Fig.3. Raman scattering spectra from 134-keV H+2 ions-implanted 6H-SiC to different fluences after thermal annealing for 15 min in vacuum. Note that 11#SiC stands for the implantation fluence of 3.75×1015 H+2·cm?2 at RT.The left shift of the A1(LO)peak after H+2 ion implantation in the 5#SiC sample before and after annealing is observed in panel(h). (i)The expanded version of Raman spectra in panel(d)shows a broad band at 578 cm?1indicated by a black arrow.

    H+2-ion implantation can induce dense lattice defects,which destroy lattice structure and decrease the intensity of observed peaks. In general,researchers use the integrated intensity,but not peak intensity,to calculate observed Raman peaks after ion implantation.[11–13]In this study,integrated intensity ΔA of the photoluminescence emission from 400 nm to 850 nm is normalized to the value ΔAas?grownof the as-grown sample,and the result is shown in Fig.4(a).Similarly,integrated intensity ΔA of the Al(LO)phonon from 940 cm?1to 1000 cm?1is normalized to the value ΔAas?grownof the as-grown sample and the result is shown as Fig.4(b).Compared with the relative intensity between photoluminescence emission and Raman scattering, a similar change trend as a function of the annealing temperature is observed. After 700-°C annealing, the profile slope is positive, except for 12#SiC. Meanwhile, the profile slope is small, which is indicated that the defect recovery is not significant after 700-°C annealing. As for 12#SiC,the relative intensity decreases after 700-°C annealing. It is a reverse annealing phenomenon,which is usually observed by gas ion implantation,such as H+,He+. The growing gas bubbles during high-temperature annealing squeeze around C and Si sublattice atoms, which result in punching out self-interstitials,known as loop punching.[25–27]Because the threshold temperature for Si vacancy migration in SiC is above 900°C and C vacancy needs higher temperature,[28]it is reasonable to regard that bubbles cannot be formed after 700-°C annealing.The possible reason is the migration and accumulation of interstitials into interstitial-type clusters after 700-°C annealing.The intensity of the photoluminescence emission depends on the donor–acceptor pair number,while the intensity of the Raman scatting depends on the optical absorption coefficient.The decrease in relative intensity indicates the reduction in the donor–acceptor pair number and the increase in the optical absorption coefficient via these interstitial-type clusters.[12,16,21]With increasing annealing temperature from 700°C to 900°C,all profiles have positive slopes,indicating the defect recovery after 900-°C annealing. With increasing annealing temperature from 900°C to 1100°C,the profile slope is positive,except for 13#SiC.It can be attributed to the growth of vacancytype defects, like micro-cracks after 1100-°C annealing. The microstructure in the H+2ions-implanted 6H-SiC after 1100-°C annealing is reported in our recent article.[6]The difference between the two methods is the range of the relative intensity.In the whole, the relative intensity of the photoluminescence emission is smaller than that of Raman scattering, which indicates that lattice defects have more influence on the number of donor–acceptor pair than the optical absorption coefficient.As for an important semiconductor and optical material,fabrication of p–n junction via ion-doping into SiC,implantationinduced lattice defects should be taken into consideration.

    Besides the lattice defects,the focused condition also affects the Raman scattering intensity. In order to reduce the influence of the focused condition on the Raman peaks,the peak intensity of E2(TO)phonon divides by Al(LO)phonon(Δh=hE2/hA1,and relative intensity is Δh/Δhas?grown)is chosen to calculate the defect recovery after annealing. One can see a sharp difference between ΔA/ΔAas?grownand Δh/Δhas?grown.First, the relative intensity is different. The integrated intensity is near zero for 11#SiC and 8#SiC,while the peak intensity of E2(TO)phonon divides by Al(LO)phonon is near 60%for the same sample. The microstructure shows an amorphous layer formed in the 11#SiC and 8#SiC,resulting in the disappearance of characteristic SiC Raman scattering peaks. Secondly,the change of the profile slope is different.For example,there is no change basically with annealing temperature for the 5#SiC via the calculation of Δh/Δhas?grown,while the relative intensity increased with annealing temperature via the calculation of ΔA/ΔAas?grown. Generally, the as-implanted sample has the largest concentration of survival defects,while Frenkel pairs migrate and recombine each other to reduce the survival defects after 700-°C annealing. As for the 5#SiC,lattice disorder recovery after the thermal treatment is precisely characterized by ΔA/ΔAas?grown,but not Δh/Δhas?grown. In addition,the ΔA/ΔAas?growndecreases after 1100-°C annealing for the 13#SiC. On the contrary, the Δh/Δhas?grownincreases. Our previous result shows an obvious micro-crack formed in the 13#SiC after 1100-°C annealing. There are dense frank loops formed around the micro-crack.[6]These frank loops and some undiscovered defects induce the decrease in the Raman scattering intensity and the increase in the asymmetry of Al(LO)phonon. The asymmetry of Al(LO)phonon cannot be characterized by Δh/Δhas?grown. Therefore,using the peak intensity of E2(TO) phonon divides by Al(LO) phonon is not accurate for characterizing the lattice disorder.

    To investigate the asymmetry of Al(LO) phonon, the intensity of the asymmetry is described by Δτ = (Ileft?Iright)/Iright,where I is the intensity of Raman scattering baseline. Based on experimental results, Irightat x=1000 cm?1,and Ileftat x = 936 cm?1(the Al(LO) peak located at 968 cm?1) are observed and the calculation result is shown in Fig. 4(d). It can be seen that there is a linear change with annealing temperature for the 6#SiC and 13#SiC, while Δτ increases initially and then decreases with the annealing temperature for the other samples. It is a surprise that the relative intensity of 6#SiC is the largest compared with other as-implanted samples. Because 6#SiC is implanted with a fluence of 1.5×1016H+2·cm?2,the implantation-induced lattice defects are less than the case of 10#SiC. The asymmetric broadening of the A1(LO) phonon can be accounted for as a“spatial correlation”model that implantation-induced defects can induce q-vector relaxation.[29]The increase in defect density induces an asymmetry of A1(LO) phonon with an obvious tail in the range of 900 cm?1–967 cm?1. Two potential reasons are used to explain why the number of Δτ for the 6#SiC is the largest. The first reason is the growth of the optical absorption coefficient with increasing fluence. Raman scattering intensity decreases with increasing optical absorption coefficient.[12,16,21]Meanwhile, the decrease in Irightis faster than that of Ileft. The Raman scatting results show that the intensity of Raman scattering baseline does not increase with growing lattice disorder. The second reason is that the lattice defects enhance Raman activation, such as a peak located at 935 cm?1–940 cm?1due to the vibration of disordered SiC.[21]Based on the above analysis, using(Ileft?Iright)/Irightcannot precisely characterize the asymmetry of Al(LO)phonon.

    Figure 4(e) shows the relative integrated intensity of the sample implanted at RT without annealing. It can be clearly seen that the curve exhibits an exponential decrease with increasing the fluence. It is consistent with previous research that disorder accumulation can be explained by direct impact/defect simulation model or multi-step transformation process.[30,31]Figure 4(f) shows the relative integrated intensity of the sample implanted at elevated temperature without annealing. It exhibits a linear growth of intensity with increasing the implantation temperature. This result indicates the recovery of the same type of lattice defects during implantation at 300°C and 500°C,where only interstitial-type defects can migrate.

    4. Conclusion

    In this study,the formation and evolution of lattice disorder in the H+2ions-implanted 6H-SiC are investigated by using Raman scattering spectroscopy and photoluminescence spectrum. The influence of lattice disorder on the intensity of observed peaks is discussed in details. The lattice disorder has a more pronounced effect on the intensity of photoluminescence emission, compared to the intensity change measured by Raman scattering. This conclusion demonstrates that the number of donor–acceptor pair decreases significantly when SiC crystal contains lattice defects.It is recommended to pay particular attention to lattice damage in performing selective-area doping technique via ion implantation. It is the integrated intensity of Raman scattering,but not the peak intensity of E2(TO)phonon divided by Al(LO)phonon and(Ileft?Iright)/Iright,that can precisely characterize the evolution of lattice disorder in SiC.

    Acknowledgement

    The authors appreciate the Laboratory of 320-kV High-Voltage Platform in the Institute of Modern Physics, Chinese Academy of Sciences for the helium implantation. We would like to thank Dr. Vladimir Krsjak for the writing revision.

    猜你喜歡
    賈政王勇鵬飛
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    王勇智斗財(cái)主
    王勇:我的想法就是“堅(jiān)持”
    金橋(2018年12期)2019-01-29 02:47:44
    MACROSCOPIC REGULARITY FOR THE BOLTZMANN EQUATION?
    王勇智斗財(cái)主
    賈政也有溫情時(shí)
    從寶玉挨打看賈政其人
    久久久精品94久久精品| 午夜福利在线观看免费完整高清在| 毛片女人毛片| 精品国产三级普通话版| 久久热精品热| 小说图片视频综合网站| 亚洲在久久综合| 亚洲在线自拍视频| 国产亚洲5aaaaa淫片| 久久精品国产鲁丝片午夜精品| 能在线免费看毛片的网站| av视频在线观看入口| 嫩草影院精品99| 日本猛色少妇xxxxx猛交久久| 日韩在线高清观看一区二区三区| 久久精品夜色国产| 97人妻精品一区二区三区麻豆| 天堂网av新在线| 天天躁日日操中文字幕| www日本黄色视频网| 久久精品91蜜桃| 欧美极品一区二区三区四区| 91久久精品国产一区二区成人| 校园人妻丝袜中文字幕| 国产亚洲午夜精品一区二区久久 | 精品无人区乱码1区二区| 久久精品夜色国产| 建设人人有责人人尽责人人享有的 | 看非洲黑人一级黄片| 亚洲色图av天堂| 国产亚洲av片在线观看秒播厂 | 少妇的逼水好多| 亚洲最大成人手机在线| 91在线精品国自产拍蜜月| 国产亚洲91精品色在线| 亚洲精品久久久久久婷婷小说 | 人体艺术视频欧美日本| 久久精品熟女亚洲av麻豆精品 | 午夜精品在线福利| 免费观看人在逋| 深爱激情五月婷婷| 亚洲精品久久久久久婷婷小说 | 日韩精品有码人妻一区| 午夜a级毛片| eeuss影院久久| 国产极品天堂在线| 久久热精品热| ponron亚洲| 亚洲精品自拍成人| 亚洲精品自拍成人| 婷婷色麻豆天堂久久 | 麻豆国产97在线/欧美| av免费观看日本| 欧美又色又爽又黄视频| 22中文网久久字幕| 22中文网久久字幕| 久久热精品热| 欧美又色又爽又黄视频| 免费人成在线观看视频色| 国产精品一区www在线观看| 精品久久久久久久末码| 亚洲av.av天堂| 久久久午夜欧美精品| 插逼视频在线观看| 色综合色国产| 看黄色毛片网站| 99热这里只有是精品50| 中文在线观看免费www的网站| 老司机福利观看| 一级av片app| 国产单亲对白刺激| 国产69精品久久久久777片| 建设人人有责人人尽责人人享有的 | 国产乱人偷精品视频| 麻豆av噜噜一区二区三区| 99国产精品一区二区蜜桃av| 91午夜精品亚洲一区二区三区| 夜夜爽夜夜爽视频| 久久久色成人| 观看美女的网站| 99热网站在线观看| 国产精品一区二区在线观看99 | 欧美性猛交黑人性爽| 欧美潮喷喷水| 亚洲人成网站在线播| 亚洲国产精品久久男人天堂| 99热这里只有精品一区| 久久精品国产鲁丝片午夜精品| 高清在线视频一区二区三区 | 国产亚洲精品av在线| 伦精品一区二区三区| 三级毛片av免费| 成人漫画全彩无遮挡| 3wmmmm亚洲av在线观看| 在线a可以看的网站| 久久精品国产亚洲av天美| 免费观看的影片在线观看| 国产精品女同一区二区软件| 久久久久久久久久黄片| 亚洲欧美日韩无卡精品| 麻豆乱淫一区二区| 嘟嘟电影网在线观看| 国产片特级美女逼逼视频| 一二三四中文在线观看免费高清| 男女国产视频网站| 亚洲自偷自拍三级| 久久亚洲精品不卡| 久久99蜜桃精品久久| 亚洲av中文av极速乱| 看免费成人av毛片| 日韩在线高清观看一区二区三区| 天堂网av新在线| 特大巨黑吊av在线直播| 国产精品久久久久久精品电影小说 | 少妇熟女aⅴ在线视频| 国产伦一二天堂av在线观看| 久久精品国产亚洲av涩爱| 国产午夜精品论理片| 国产免费男女视频| 少妇的逼水好多| 欧美3d第一页| 插阴视频在线观看视频| 99九九线精品视频在线观看视频| 成人特级av手机在线观看| 丰满乱子伦码专区| 久久亚洲精品不卡| 久久久久精品久久久久真实原创| 七月丁香在线播放| 国产午夜精品久久久久久一区二区三区| 天堂中文最新版在线下载 | 亚洲人成网站在线观看播放| 亚洲欧美成人精品一区二区| 赤兔流量卡办理| 久久精品国产亚洲av天美| 少妇猛男粗大的猛烈进出视频 | 精品欧美国产一区二区三| 舔av片在线| 亚洲国产欧美人成| 美女大奶头视频| 国产熟女欧美一区二区| 国产激情偷乱视频一区二区| 99热全是精品| 能在线免费观看的黄片| 女人被狂操c到高潮| 欧美另类亚洲清纯唯美| av在线老鸭窝| 亚洲精华国产精华液的使用体验| 成人高潮视频无遮挡免费网站| 美女脱内裤让男人舔精品视频| 国产精品一区二区性色av| 美女脱内裤让男人舔精品视频| 国产伦理片在线播放av一区| 免费人成在线观看视频色| 麻豆乱淫一区二区| 91久久精品国产一区二区成人| 日本猛色少妇xxxxx猛交久久| 亚洲欧洲日产国产| 床上黄色一级片| 精品一区二区免费观看| 亚洲国产精品sss在线观看| av在线观看视频网站免费| 午夜福利在线在线| 亚洲精品乱码久久久久久按摩| 一区二区三区高清视频在线| 国产成人精品久久久久久| 全区人妻精品视频| 99视频精品全部免费 在线| .国产精品久久| h日本视频在线播放| 九草在线视频观看| .国产精品久久| av线在线观看网站| 水蜜桃什么品种好| 18禁裸乳无遮挡免费网站照片| 女人十人毛片免费观看3o分钟| 男插女下体视频免费在线播放| 水蜜桃什么品种好| 欧美高清性xxxxhd video| 日韩欧美国产在线观看| 欧美97在线视频| 黄色配什么色好看| 内射极品少妇av片p| 国产v大片淫在线免费观看| 免费搜索国产男女视频| 午夜亚洲福利在线播放| 久久久久久伊人网av| 久久精品国产自在天天线| 日韩一本色道免费dvd| 国产免费福利视频在线观看| 丰满少妇做爰视频| 久久6这里有精品| videossex国产| 最近2019中文字幕mv第一页| 成人亚洲精品av一区二区| 欧美97在线视频| 欧美人与善性xxx| 亚洲av日韩在线播放| 美女大奶头视频| 又粗又硬又长又爽又黄的视频| 国产精品综合久久久久久久免费| 欧美精品一区二区大全| 伦理电影大哥的女人| 又爽又黄a免费视频| 国产又黄又爽又无遮挡在线| 国产精品久久久久久久久免| 国产91av在线免费观看| 热99re8久久精品国产| 禁无遮挡网站| 国产真实乱freesex| 欧美另类亚洲清纯唯美| 国产久久久一区二区三区| 国产 一区 欧美 日韩| 18+在线观看网站| 亚洲色图av天堂| 日韩av不卡免费在线播放| 亚洲欧美成人综合另类久久久 | 2021少妇久久久久久久久久久| 啦啦啦啦在线视频资源| 精品无人区乱码1区二区| 国产亚洲av嫩草精品影院| 国产精品久久视频播放| 超碰av人人做人人爽久久| 欧美xxxx黑人xx丫x性爽| 嫩草影院精品99| 偷拍熟女少妇极品色| 最近中文字幕高清免费大全6| 色播亚洲综合网| 男插女下体视频免费在线播放| 能在线免费观看的黄片| 美女高潮的动态| 国产精品永久免费网站| 亚洲在线自拍视频| av在线亚洲专区| 国产极品精品免费视频能看的| 亚洲av中文av极速乱| 国产av在哪里看| 丰满人妻一区二区三区视频av| 国产一区二区在线av高清观看| 我要搜黄色片| 亚洲五月天丁香| 好男人在线观看高清免费视频| 最近的中文字幕免费完整| 国产大屁股一区二区在线视频| 不卡视频在线观看欧美| 日韩av在线免费看完整版不卡| 我的女老师完整版在线观看| 卡戴珊不雅视频在线播放| 午夜激情福利司机影院| 亚洲国产精品久久男人天堂| 99久久人妻综合| 国产免费又黄又爽又色| av专区在线播放| 少妇的逼水好多| 美女脱内裤让男人舔精品视频| 美女大奶头视频| 久久久久久伊人网av| 69人妻影院| 国产精品一区www在线观看| 国产成人aa在线观看| 丰满少妇做爰视频| 六月丁香七月| 两个人视频免费观看高清| 日本av手机在线免费观看| 搡老妇女老女人老熟妇| 亚洲熟妇中文字幕五十中出| 少妇的逼好多水| 免费不卡的大黄色大毛片视频在线观看 | 少妇的逼好多水| 国国产精品蜜臀av免费| 午夜福利在线观看免费完整高清在| 午夜视频国产福利| 青春草国产在线视频| 国产黄片视频在线免费观看| 国产一区亚洲一区在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 菩萨蛮人人尽说江南好唐韦庄 | 国产成人aa在线观看| 建设人人有责人人尽责人人享有的 | 免费看a级黄色片| 国产国拍精品亚洲av在线观看| 午夜福利在线观看吧| 成年av动漫网址| 久久精品国产亚洲av涩爱| 日韩人妻高清精品专区| 国产成人91sexporn| 久99久视频精品免费| 乱系列少妇在线播放| 干丝袜人妻中文字幕| 精品人妻一区二区三区麻豆| 秋霞伦理黄片| 国产黄片美女视频| 欧美又色又爽又黄视频| 在线免费观看的www视频| 狠狠狠狠99中文字幕| 亚洲成人久久爱视频| 国产在视频线在精品| 搞女人的毛片| 亚洲激情五月婷婷啪啪| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 偷拍熟女少妇极品色| 国产美女午夜福利| 天堂影院成人在线观看| 日韩国内少妇激情av| 高清午夜精品一区二区三区| 日日啪夜夜撸| 色综合站精品国产| 国内精品宾馆在线| 99热这里只有是精品50| 日本黄色视频三级网站网址| 草草在线视频免费看| 一区二区三区免费毛片| videos熟女内射| 插逼视频在线观看| 亚洲国产欧美在线一区| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久av不卡| 午夜激情欧美在线| 最近最新中文字幕大全电影3| 亚洲,欧美,日韩| 亚洲精品日韩在线中文字幕| 偷拍熟女少妇极品色| 欧美3d第一页| 91精品一卡2卡3卡4卡| 亚洲精品久久久久久婷婷小说 | 午夜亚洲福利在线播放| 国产精品久久久久久久久免| 精品酒店卫生间| 午夜a级毛片| av在线播放精品| 直男gayav资源| 欧美日韩综合久久久久久| 久久婷婷人人爽人人干人人爱| 精品久久久久久久末码| 级片在线观看| 永久网站在线| 亚洲精品aⅴ在线观看| 国产不卡一卡二| 精品久久久久久久久av| 大香蕉97超碰在线| 久久精品国产亚洲网站| 精品久久久久久久人妻蜜臀av| 欧美不卡视频在线免费观看| 天天躁夜夜躁狠狠久久av| 婷婷色综合大香蕉| 亚洲国产欧洲综合997久久,| 99国产精品一区二区蜜桃av| 热99re8久久精品国产| 精品久久久噜噜| 国产高清不卡午夜福利| 99久久中文字幕三级久久日本| 久久久色成人| 一级毛片aaaaaa免费看小| 又粗又爽又猛毛片免费看| 听说在线观看完整版免费高清| 婷婷色av中文字幕| 伊人久久精品亚洲午夜| 男女下面进入的视频免费午夜| 卡戴珊不雅视频在线播放| 特大巨黑吊av在线直播| 日日摸夜夜添夜夜添av毛片| 国产免费福利视频在线观看| 3wmmmm亚洲av在线观看| av视频在线观看入口| 老女人水多毛片| 永久免费av网站大全| 亚州av有码| 亚洲国产最新在线播放| 乱码一卡2卡4卡精品| 国产伦理片在线播放av一区| АⅤ资源中文在线天堂| 人妻系列 视频| 国产伦理片在线播放av一区| 久久久久久九九精品二区国产| 又粗又硬又长又爽又黄的视频| 一本一本综合久久| 高清在线视频一区二区三区 | 天堂中文最新版在线下载 | 18禁在线无遮挡免费观看视频| 中文字幕亚洲精品专区| 国产高清不卡午夜福利| 久久久久久久久久黄片| 午夜精品在线福利| 夜夜爽夜夜爽视频| 亚洲精品日韩在线中文字幕| 丝袜美腿在线中文| 尤物成人国产欧美一区二区三区| 永久免费av网站大全| 色综合站精品国产| 成人亚洲精品av一区二区| 欧美日韩一区二区视频在线观看视频在线 | 国产精品国产三级专区第一集| 国产视频首页在线观看| 成人鲁丝片一二三区免费| 亚洲最大成人中文| 色综合亚洲欧美另类图片| 亚洲高清免费不卡视频| 成人欧美大片| 亚洲精品成人久久久久久| 一边摸一边抽搐一进一小说| 亚洲av中文字字幕乱码综合| 天堂中文最新版在线下载 | 18禁裸乳无遮挡免费网站照片| 麻豆一二三区av精品| 久久久久精品久久久久真实原创| 欧美色视频一区免费| 亚洲性久久影院| 美女国产视频在线观看| 国产麻豆成人av免费视频| 欧美不卡视频在线免费观看| 亚洲国产欧美在线一区| 久久久国产成人精品二区| 精品国产一区二区三区久久久樱花 | 最近2019中文字幕mv第一页| 亚洲在线观看片| 国产真实伦视频高清在线观看| 长腿黑丝高跟| 免费黄色在线免费观看| a级一级毛片免费在线观看| 91久久精品电影网| 日本猛色少妇xxxxx猛交久久| 好男人在线观看高清免费视频| 成人美女网站在线观看视频| 成年女人看的毛片在线观看| 久久久久久久久久黄片| 少妇熟女欧美另类| 亚洲国产精品合色在线| 亚洲精品乱久久久久久| 国产精品一二三区在线看| 色网站视频免费| 青春草亚洲视频在线观看| 又爽又黄a免费视频| 中文天堂在线官网| 亚洲国产精品成人综合色| 国产一区有黄有色的免费视频 | 欧美变态另类bdsm刘玥| 久久精品久久久久久噜噜老黄 | 熟女电影av网| 中国国产av一级| 亚洲人成网站在线播| 亚洲av日韩在线播放| 成人特级av手机在线观看| 狂野欧美白嫩少妇大欣赏| 国产色婷婷99| 国产极品天堂在线| 欧美zozozo另类| 观看免费一级毛片| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 久久人妻av系列| 久久欧美精品欧美久久欧美| 91久久精品国产一区二区成人| 天堂网av新在线| 亚洲欧美精品专区久久| 啦啦啦观看免费观看视频高清| 久久热精品热| 欧美xxxx黑人xx丫x性爽| 亚洲国产日韩欧美精品在线观看| 亚洲av福利一区| 婷婷色av中文字幕| 日本黄大片高清| 日韩成人av中文字幕在线观看| 亚洲av成人精品一区久久| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影小说 | 国产精华一区二区三区| 亚洲在久久综合| 少妇的逼好多水| 亚洲美女搞黄在线观看| 午夜日本视频在线| 免费观看的影片在线观看| 亚洲国产精品合色在线| 日韩强制内射视频| 一卡2卡三卡四卡精品乱码亚洲| 欧美一区二区精品小视频在线| 精品久久久久久久末码| 亚洲性久久影院| 亚洲内射少妇av| 真实男女啪啪啪动态图| 日本与韩国留学比较| 乱系列少妇在线播放| 波野结衣二区三区在线| 国产精品精品国产色婷婷| 国产免费又黄又爽又色| 男人舔女人下体高潮全视频| 丰满少妇做爰视频| 亚洲成av人片在线播放无| 免费电影在线观看免费观看| 一卡2卡三卡四卡精品乱码亚洲| 日韩一本色道免费dvd| 能在线免费看毛片的网站| 免费看光身美女| 久久久久久大精品| 国产色爽女视频免费观看| 亚洲欧美精品专区久久| 亚洲欧美日韩高清专用| 大香蕉久久网| 淫秽高清视频在线观看| 夜夜爽夜夜爽视频| 久久婷婷人人爽人人干人人爱| 国产69精品久久久久777片| 日韩欧美 国产精品| 一区二区三区乱码不卡18| 九草在线视频观看| 日本猛色少妇xxxxx猛交久久| 亚洲图色成人| 国产三级在线视频| 国内精品宾馆在线| 人妻制服诱惑在线中文字幕| 97在线视频观看| 真实男女啪啪啪动态图| 亚洲欧美成人综合另类久久久 | 99久久九九国产精品国产免费| 精品久久久久久久久av| 亚洲人成网站高清观看| 国产精品av视频在线免费观看| 色视频www国产| 久久99精品国语久久久| 水蜜桃什么品种好| 日本-黄色视频高清免费观看| 好男人视频免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看| 色综合站精品国产| 午夜精品一区二区三区免费看| 搡女人真爽免费视频火全软件| 国产精品伦人一区二区| 日韩av在线免费看完整版不卡| 午夜精品在线福利| 国产高清不卡午夜福利| 久久6这里有精品| 麻豆成人av视频| 久久久久久大精品| 人人妻人人看人人澡| 亚洲伊人久久精品综合 | 色噜噜av男人的天堂激情| 国产精品国产三级国产专区5o | 国产69精品久久久久777片| 只有这里有精品99| 日本黄色片子视频| 国产精品一区二区性色av| 天天躁日日操中文字幕| 中国美白少妇内射xxxbb| 五月玫瑰六月丁香| 老女人水多毛片| 婷婷色综合大香蕉| 狂野欧美白嫩少妇大欣赏| 中文字幕av成人在线电影| 日韩欧美精品免费久久| 亚洲在久久综合| 校园人妻丝袜中文字幕| 免费一级毛片在线播放高清视频| 九九久久精品国产亚洲av麻豆| 嘟嘟电影网在线观看| 久久久久久九九精品二区国产| 1024手机看黄色片| 午夜福利在线观看免费完整高清在| 日韩欧美精品免费久久| 一级黄色大片毛片| 成人无遮挡网站| 三级经典国产精品| 免费搜索国产男女视频| 亚洲色图av天堂| 久久韩国三级中文字幕| 成年版毛片免费区| 少妇猛男粗大的猛烈进出视频 | 欧美性感艳星| 国产伦理片在线播放av一区| 激情 狠狠 欧美| 亚洲欧美成人精品一区二区| 一级二级三级毛片免费看| 国产精品不卡视频一区二区| 激情 狠狠 欧美| 亚洲精华国产精华液的使用体验| 有码 亚洲区| 国产精品电影一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | АⅤ资源中文在线天堂| 亚洲三级黄色毛片| 国产精品一区二区三区四区久久| 久久人妻av系列| 亚州av有码| 亚洲人成网站高清观看| 免费不卡的大黄色大毛片视频在线观看 | 91久久精品国产一区二区三区| 国产精品野战在线观看| 国产黄a三级三级三级人| 联通29元200g的流量卡| 国产亚洲91精品色在线| 国产色婷婷99| 少妇的逼好多水| 亚洲丝袜综合中文字幕| 精品久久久久久久久av| 美女被艹到高潮喷水动态| 国产精品三级大全| 看片在线看免费视频| 九九热线精品视视频播放| 少妇的逼水好多| 舔av片在线| 欧美人与善性xxx| 搡老妇女老女人老熟妇| 成年版毛片免费区| 天天躁日日操中文字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲国产最新在线播放| 插逼视频在线观看| 大香蕉97超碰在线| 一区二区三区高清视频在线| 水蜜桃什么品种好| 神马国产精品三级电影在线观看| 日韩一区二区三区影片| 日本午夜av视频| 内地一区二区视频在线| 国产精品av视频在线免费观看| 国产久久久一区二区三区| 国产成人91sexporn| 天堂网av新在线|