• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states*

    2021-05-24 02:28:22FengLu盧峰JintaoCui崔錦韜PanLiu劉盼MeichenLin林玫辰YahuiCheng程雅慧HuiLiu劉暉WeichaoWang王衛(wèi)超KyeongjaeChoandWeiHuaWang王維華
    Chinese Physics B 2021年5期
    關(guān)鍵詞:王維

    Feng Lu(盧峰), Jintao Cui(崔錦韜), Pan Liu(劉盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(劉暉),Weichao Wang(王衛(wèi)超), Kyeongjae Cho, and Wei-Hua Wang(王維華),?

    1Department of Electronic Science and Engineering,and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology,Engineering Research Center of Thin Film Optoelectronics Technology(Ministry of Education),Nankai University,Tianjin 300350,China

    2Department of Material Science and Engineering,the University of Texas at Dallas,Richardson,75080,USA

    Keywords: high-throughput calculation, one-dimensional atomic wires, electronic structure, first principles calculation

    1. Introduction

    Low dimensional van der Waals (vdW) materials are more flexible in designing electronic devices with high performance.[1,2]Since the discovery of graphene in 2004,the low dimensional materials[3–14]such as graphene and other two-dimensional (2D) materials,[3–12]one-dimensional(1D) materials like carbine[13]and metal trihydride MH3[14]have attracted extensive attention. Different from threedimensional (3D) bulks, the low dimensional systems possess a variety of unconventionally physical properties owing to unique band structures, charge screenings, and electron–phonon couplings modulated by the dimensionality.[15–18]For instance, 3D diamond, 2D graphene, and 1D carbine display completely distinguished properties owing to their different hybridization orbitals under different dimensions. Especially for 1D quantum materials,their potential applications in nanoelectronics,spintronic devices,and sensors are promising because they reach the physical limit scale of the electronic materials with periodic crystal structures. Thus,exploring realistic 1D quantum materials and unveiling their properties have been one of the central and significant topics in fields of condensedmatter physics and materials science.

    Among 1D materials, one special kind of systems can be defined as 1D atomic wires (AWs) because their width is in few-atoms scale. In the past two decades, 1D AWs have demonstrated rich and unique properties, such as Peierls transition,[19,20]spin–charge separation,[21]Tomonaga–Luttinger liquids,[22]strongly quantum fluctuation,[23]and superconductivity.[24]Meanwhile,the electronic properties would change with the dimension reduction. For instance, the band gap type of 1D Sb2S3and Nb2Se9shows a transition from indirect to direct with the dimension reduction from 3D to 1D.[25,26]Moreover,the conducting property from metallic to semiconducting takes place in Mo6Te6with the dimension reduction to 1D.[27]From the viewpoint of magnetic properties, 1D AW of CoH3is a half-metal with 100% spin-polarization.[14]1D Mn/Fe-benzenetetramines are bipolar magnetic semiconductors, which could be modulated into half metals by carrier doping.[28]In addition, thermoelectric and catalytic performances of ultrafine 1D AWs would also be improved.[29–31]Therefore,1D AW materials are more suitable to be applied in high-performance sensors,transistors,catalysts,etc.[30–33]

    Similar to exfoliating graphene from graphite, the 1D AWs could be exfoliated from the vdW bulks. Although preliminary classification on vdW bulk materials has been reported by Cheon et al. in 2017[34]and the progress on some 1D materials has been achieved, few excellent 1D AW candidates could be practically applied in devices due to lack of enough reliable 1D AWs. To solve this issue,the comprehensive database of 1D AWs is urgently required to be established based on 3D solid crystal database. Moreover, the stabilities,exfoliating feasibilities, and electronic properties of 1D AWs are demanded to be examined and provided.Without the direct connection between the reliable 1D AWs and their electronic properties, it severely limits the fundamental explorations on 1D AWs and their practical applications in devices. Herein,the detailed classifications on 367 kinds of potential 1D AW candidates and systematic investigations on their geometrical structures,electronic structures,possibly magnetic properties,and stabilities have been performed. At the meanwhile, all computational results are stored in the database with format of JavaScript Object Notation(JSON),which provides a comprehensive 1D AW candidate resource and a significant platform for the scientific community to further undertake theoretical analysis, experimental verification, and practical applications in devices using suitable 1D AW systems.

    2. Computational methods and usage notes of the database

    In this work, all the calculations were performed based on density functional theory (DFT) within Vienna ab initio simulation package (VASP).[35]The generalized gradient approximation (GGA) with Perdew–Burke–Ernzerhof(PBE) functional was adopted for the exchange–correlation potential.[36]Considering the weak vdW interactions between inter-wires in bulk materials,the Grimme’s DFT-D3 approach was involved.[37]For 1D AWs, the vacuum thickness was set as 30 ?A in order to minimize the interaction between periodic AWs. The plane-wave cutoff energy was set as 500 eV in all of the calculations. All the atomic positions were fully optimized to converge until the force on each atom was less than 0.02 eV/?A with the fixed bulk lattice constants along the wires. In the electronic structure calculations,the energy convergence was set as 10?5eV.In order to investigate the structural stability of 1D AWs,phonon dispersions were studied by using Phonopy code based on the interface with VASP.[35,38,39]

    All the computational results, including the structures,electronic structures, magnetic states, and stabilities of 367 1D AW candidates, are compiled in the supplementary materials (SM) in PDF format. To help researchers easily search some specific information from a large amount of data, these results are also stored in the database with format of JavaScript Object Notation(JSON).For the JSON format file, three nested layers of objects are included, where one can extract the required information according to the keys in each layer. The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004.

    3. Results and discussion

    3.1. Screening and identification of 1D atomic wires

    In order to obtain the potential 1D AWs, the possible 1D AW candidates can initially be explored by sweeping 3D crystal structure databases, such as Inorganic Crystal Structure Database (ICSD),[40,41]Materials Project (MP)database,[42]etc. The primary task is to discriminate the vdW bulk materials from the databases. In other words, how to distinguish the vdW interaction is the key issue. One of the common methods to identify the vdW interaction is through comparing the distance(d)of two atoms with the sum of their covalent bond radii, which effectively identifies 2D and 1D vdW solids and 2D/1D heterostructures materials by Cheon et al.[34]After tremendous screening of the possible vdW bulks list[34]combined with the latest MP database[42](https://materialsproject.org)using data mining algorithm,the possible 1D AWs have been obtained. Meanwhile, it is required that the bond length along the 1D AW direction is smaller than the shortest distance between two nearest interwires in the parent bulk phase. Moreover,the f-electrons systems are not considered here since they could not be accurately described by GGA[36]or local density approximation(LDA)[43]based on DFT. Consequently, 367 1D AW candidates are obtained and considered in this work.

    The structure,electronic structure,and stability information of 1D AWs are compiled in SM in PDF format. For facilitating the scientific researches to extract some specific information from a large amount of data in SM,an additional SM in JSON format is also provided. For the JSON format file,three nested layers of objects are included, where one can extract the required information according to the keys in each layer.Table 1 summarizes the keys corresponding to the objects in each layer. For example, one can get the structural information of 1D AW AuBr through the keys‘Binary 1D AWs’and‘AuBr’. It is worth noting that all the figures are encoded with Base64 format. Besides, a python code is also offered as an example to extract the data from the JSON file. To run the python code, the python relevant packages like json module and base64 module are required to be pre-installed.

    Based on the 1D vdW parent materials,a statistical classification and analysis is presented in Fig. 1. In terms of the crystal structure classification in Fig.1(a),it is found that the systems with monoclinic and orthorhombic symmetries hold~37% and ~39%, respectively. The system with triclinic symmetry is ~10%,and other systems only hold smaller proportions with ~5% for tetragonal, ~6% for hexagonal, and~3%for trigonal. Based on the point group distribution,it is found that the majority of ~34% is 2/m, followed by mmm with ~31%. A complete list of the crystal structure information among our predicted 367 1D AW materials is provided in SM.Figures 1(b)and 1(c)display the chemical formula types and composition species of these 1D AWs. Among them,halides,chalcogenides,and pnictides are partially overlapped.In details,248 halides account for a large proportion of ~68%since their valence state of ?1 is easier to be satisfied. Besides,230 chalcogenides and 111 phosphides exist in Fig.1(c).Moreover,123 binary and 176 ternary compounds are the major parts with ratios of 34%and 48%in Fig.1(b).Furthermore,according to the chemical formula prototypes in Fig.1(b),the major format is AB2,which is followed by AB3,ABC3,AB4,ABC,etc.

    Table 1. Description of keys in JSON file.

    Fig.1.Statistics on 1D vdW parent materials.Classification of 1D vdW bulk materials in terms of(a)crystal structures and point groups,(b)species of chemical elements and chemical formula prototypes,(c)chemical compositions.

    3.2. Electronic structures and magnetic properties of some specific 1D atomic wires

    With the dimension reduction, the electronic properties of 1D AWs may demonstrate evident changes relative to 3D bulks. 1D BeCl2and 1D SnCl2as typical 1D AWs show the band gap type transition and the band gap reduction compared with 3D bulks, respectively. In details, the bulk BeCl2is an indirect band gap semiconductor, but it turns into a direct band gap semiconductor for 1D AW in Fig. 2(a), implying that 1D BeCl2would be used in sub-nm optoelectronic devices. In general, 316 semiconductors and 51 metals are present among 367 kinds of 1D AWs, whose detailed band structures and density of states(DOS)are provided in the SM.Since the electronic correlation effect on the band structures could not be accurately described by GGA-PBE functional,the band gaps are usually underestimated. Thus, more accurate method such as Heyd–Scuseria–Ernzerhof (HSE) functional or GW correction is required to produce more accurate band structures and band gaps.As shown in Fig.S1 in SM,the band gap of the semiconducting 1D AW BPS4increases with HSE functional compared with those using GGA-PBE functional, and the metallic character of ICl2and Ta4SiTe4using HSE functional is maintained. Even for the transition metal compounds like MoCl3O,the band gap is still absent and the metallic band structure is preserved after the HSE functional is considered. Thus, the qualitatively properties of most systems reported here may not change much in this work. In fact,the GW correction or dynamical mean field theory (DMFT)should be considered to obtain more accurate electronic states of transition metal compounds in further studies. From the vdW bulk materials to 1D AWs, several evident changes occur in the electronic structures owing to the bond length variation and the symmetry lowering,which deserves further thorough investigations. For most of 1D semiconducting AWs,the band gaps of most 1D AWs are enlarged compared with their bulks owing to the conventionally quantum confinement effect,which is basically induced by the reduced electronic interaction between the inter-wires. In contrast, some 1D AWs in the SM demonstrate decreased band gaps compared to the bulks. Taking SnCl2as an example in Fig. 2(b), the band gap of bulk SnCl2is 3.15 eV,but it shrinks to 2.95 eV for its 1D AW.The band gap reduction results from the bond length reduction of Sn–Cl from bulk to 1D AW.

    The 1D magnetism is also a significant topic in the low dimensional materials, especially among 3d transition metal compounds. As listed in Table 2, the stable magnetic configurations of 1D AWs with 3d transition metal elements have been explored through comparing the energies of nonmagnetic, ferromagnetic (FM), and N′eel antiferromagnetic(AFM) states. Generally, 61 kinds of 1D AWs show stable magnetic ground states,including 39 antiferromagnets and 22 ferromagnets. The magnetic configurations and magnetic moments of these 1D AWs are listed in Section VI of the SM.

    Fig.2. Crystal and electronic structures of two typical 1D vdW bulks and their 1D AWs. (a1)Side view of bulk BeCl2. (a2)Top and(a3)side views for 1D AW of BeCl2. The band structures of bulk BeCl2 (a4)and 1D AW of BeCl2 (a5). (b1)Side view of bulk SnCl2. (b2)Top and(b3)side views for 1D AW of SnCl2. The band structures of bulk SnCl2 (b4)and 1D AW of SnCl2 (b5).

    Table 2.Detailed list of 61 kinds of 1D magnetic AWs based on FM/AFM ground states and electrical properties of metal/semiconductors.Detailed magnetic and electronic properties are presented in Section VI of the SM.

    Fig. 3. Crystal and band structures of three representative 1D AW materials. (a1) Top and (a2) side views for 1D AW of MoP4. (a3) The band structures for 1D AW of MoP4. (b1)Top and(b2)side views for 1D AW of GaSbCl6. (b3)The band structures for 1D AW of GaSbCl6. (c1)Top and(c2)side views for 1D AW of MoOF4. (c3)The band structures for 1D AW of MoOF4.

    Among the metallic 1D AWs,some behave like semimetals. As shown in Fig.3(a3),MoP4displays a linear dispersion character near Fermi level(EF). The similar linear dispersions are also present in 1D AWs of InI, NiO2, CuO2, TiI3, TcCl4,CrP4,Ta4SiTe4,CuSb2(XeF8)2,which are all listed in the SM.It implies the ultrafast carrier motilities and promising applications of these 1D AWs in high-speed electronic devices.[44,45]

    In addition, the discovery of Mott insulators and superconductors in magic-angle graphene superlattices has stimulated extensive interest in the community to look for the systems with flat-bands structures.[46,47]From the theoretical results in SM,it is found that 123 kinds of 1D AWs demonstrate the flat-bands characters. Compared with the binary 1D AWs,the flat-bands prefer to occur in ternary and multi-element composed 1D AWs. For instance,the electron(hole)effective masses of 1D GaSbCl6and MoOF4are 132.7 m(14.5 m)and 77.4 m (26.5 m), respectively, where m is the mass of a free electron. The bandwidths of the conduction (valence) bands for 1D GaSbCl6and MoOF4are only 13.7 (28.5) meV and 23.4 (45.2) meV. The obvious difference between GaSbCl6in Fig. 3(b3) and MoOF4in Fig. 3(c3) originates from the valence band components near EF, which is completely contributed by Cl-3p orbitals in GaSbCl6and by the hybridized O-2p and F-2p orbitals in MoOF4. It also indicates that the flat bands show complex orbital dependencies in different 1D AWs. It is noted that the flat band physics here is nontrivial since the flat band occurs along the wire direction rather than the quantum confinement direction. Further considering the correlation effect between electrons in these flat bands systems,the 1D AWs may display various exotic quantum states, such as Hubbard insulators and superconductors.Thus, the flat-bands characters make these 1D AWs in particular the multi-element composed 1D AWs be ideal low dimensional systems to explore the correlated effect and exotic quantum phases.

    4. Stability and exfoliation energy

    Through analyzing the electronic structures, phonon spectra,and exfoliation energies of 1D AWs,the most promising and possibly synthesizable 1D AWs in experiments are proposed as follows. In terms of the thermodynamical stabilities and relatively lower exfoliation energies in SM,1D AWs of CuO2and MnF4are FM metal and FM semiconductor,respectively. Besides, 1D AWs of VBr3and VS2display AFM metal and AFM semiconductor characters,respectively.Moreover,1D AWs of TeBr2, SiCl2,and BeCl2demonstrate semiconducting properties with direct band gaps,which are in the range of ~0.66 eV–6.84 eV.Thus,these typical 1D AWs are highly expected to be prepared and applied in versatile electronic and optoelectronic devices with smaller scale. In this work, the undistorted 1D AWs have been systematically explored. In fact, due to the strong electronphonon coupling,these 1D AWs may undergo interesting Peierls distortions.For example, 1D carbon chain will form a dimerization configuration along the chain direction to minimize the total energy,resulting in the transition of 1D carbon chain from the metallic to insulating. For 1D AWs with more complex structures,the atoms would move and twist within 3D space,inducing more complex and interesting Peierls distortions. It is deserved to exploit in further work.

    Fig. 4. Distribution of the exfoliation energies of unary and binary 1D AWs. The exfoliation energies of most 1D AWs are in the range of 50–200 meV/atom. The specific values of the exfoliation energies for all 1D AWs are listed in Table S1 in the SM.

    5. Conclusion and perspectives

    In this work,a database of 367 types of 1D AWs has been established,where the crystal structures,electronic properties,and stabilities are included based on DFT calculations. It is found that ~81% of 1D AWs are binary and ternary compounds. Furthermore, the unary and binary 1D AWs with relatively small exfoliation energy tend to be thermodynamically stable and 72% unary and binary 1D AWs are suitable to be mechanically exfoliated from their bulks. More significantly,the rich physical properties and quantum phases,such as 1D semiconductors,1D metals/semimetals,1D magnetism,shed light on potential applications of these 1D AWs in nextgeneration sub-nm electronic, spintronic, and energy relevant devices,etc. In addition,some 1D AWs possessing flat bands characters would provide an exciting and ideal platform to explore strongly correlated phenomena. Therefore,this database will offer a valuable resource for the scientific community to further explore 1D exotic quantum states and exploit practical 1D device applications based on 1D AW systems.

    Acknowledgments

    We are grateful for insightful suggestions and discussions from Dr. D.Y.Liu, Prof. L.J.Zou, and Dr. J.G.Geng. We also thank the computational resources and technical support from the National Supercomputer Center in Tianjin (TianHe-1 (A)) and the Supercomputing Center of Nankai University(NKSC).

    猜你喜歡
    王維
    大海里并不能自由往來
    走哪條路好
    偷襲與反偷襲
    穿越密林
    勤勞的工蜂
    鳥鳴澗
    兒童繪本(2018年18期)2018-10-31 14:47:42
    誰是誰
    新教育(2018年9期)2018-07-12 09:14:48
    山居秋暝
    愛勞動的小白兔
    山中送別
    麻豆乱淫一区二区| 色精品久久人妻99蜜桃| 国产精品香港三级国产av潘金莲 | 国产亚洲av高清不卡| 免费黄色在线免费观看| 亚洲精品国产区一区二| 黑人巨大精品欧美一区二区蜜桃| 久久国产精品男人的天堂亚洲| 黄片小视频在线播放| 岛国毛片在线播放| 美女大奶头黄色视频| 久久性视频一级片| 久久99精品国语久久久| 日韩伦理黄色片| 精品国产乱码久久久久久小说| 亚洲av成人不卡在线观看播放网 | 国产在视频线精品| 久久综合国产亚洲精品| 国产精品一区二区在线不卡| 欧美日韩视频高清一区二区三区二| 爱豆传媒免费全集在线观看| 日本一区二区免费在线视频| 日韩一区二区视频免费看| 最近的中文字幕免费完整| 欧美精品人与动牲交sv欧美| 我的亚洲天堂| 99精品久久久久人妻精品| 国产又色又爽无遮挡免| 色吧在线观看| 1024视频免费在线观看| 免费女性裸体啪啪无遮挡网站| videos熟女内射| 一本—道久久a久久精品蜜桃钙片| 久久精品亚洲av国产电影网| 叶爱在线成人免费视频播放| 男女午夜视频在线观看| a 毛片基地| 国产精品一区二区在线不卡| 国产av码专区亚洲av| 搡老乐熟女国产| 亚洲,一卡二卡三卡| 青青草视频在线视频观看| 亚洲婷婷狠狠爱综合网| 日韩 亚洲 欧美在线| 中文乱码字字幕精品一区二区三区| 丝袜脚勾引网站| 热re99久久精品国产66热6| 在线亚洲精品国产二区图片欧美| 国产精品久久久av美女十八| 国产淫语在线视频| 久久天堂一区二区三区四区| 天天影视国产精品| 老熟女久久久| 女的被弄到高潮叫床怎么办| 一级黄片播放器| 少妇猛男粗大的猛烈进出视频| 久久久久人妻精品一区果冻| 久久久久视频综合| 老鸭窝网址在线观看| 91成人精品电影| 亚洲五月色婷婷综合| 一区二区三区乱码不卡18| 国产免费视频播放在线视频| 色综合欧美亚洲国产小说| 亚洲伊人久久精品综合| 老司机亚洲免费影院| 黄片小视频在线播放| 国产av码专区亚洲av| 亚洲人成电影观看| 国产精品人妻久久久影院| 久久综合国产亚洲精品| av不卡在线播放| 九草在线视频观看| 国产一区二区三区综合在线观看| 国产成人精品久久二区二区91 | 香蕉丝袜av| 亚洲精品日韩在线中文字幕| 中文字幕色久视频| 卡戴珊不雅视频在线播放| 777久久人妻少妇嫩草av网站| 狠狠精品人妻久久久久久综合| 国产色婷婷99| 99国产综合亚洲精品| 免费人妻精品一区二区三区视频| 日韩av免费高清视频| 大片免费播放器 马上看| 亚洲精品国产区一区二| 国产不卡av网站在线观看| 亚洲av电影在线进入| 超色免费av| 亚洲综合色网址| 卡戴珊不雅视频在线播放| 曰老女人黄片| videos熟女内射| 久久久久精品人妻al黑| 久久天躁狠狠躁夜夜2o2o | 69精品国产乱码久久久| 午夜激情久久久久久久| 中文字幕高清在线视频| 另类精品久久| av视频免费观看在线观看| 午夜福利在线免费观看网站| 一区在线观看完整版| 欧美少妇被猛烈插入视频| 午夜日韩欧美国产| 热re99久久精品国产66热6| 在线观看人妻少妇| 亚洲中文av在线| 如日韩欧美国产精品一区二区三区| www.精华液| 免费在线观看视频国产中文字幕亚洲 | 国产一区亚洲一区在线观看| 精品国产国语对白av| 丝袜在线中文字幕| 人妻一区二区av| 日韩av在线免费看完整版不卡| 亚洲成国产人片在线观看| 男男h啪啪无遮挡| 免费看av在线观看网站| 男女午夜视频在线观看| 国产探花极品一区二区| 亚洲精品视频女| 操美女的视频在线观看| 欧美日韩视频高清一区二区三区二| 最近2019中文字幕mv第一页| 精品一区二区三卡| 久久国产精品大桥未久av| 99精品久久久久人妻精品| 又粗又硬又长又爽又黄的视频| 日本爱情动作片www.在线观看| 亚洲精品日本国产第一区| 最近2019中文字幕mv第一页| 午夜福利乱码中文字幕| 亚洲第一区二区三区不卡| 午夜老司机福利片| 男男h啪啪无遮挡| 狂野欧美激情性bbbbbb| 80岁老熟妇乱子伦牲交| 亚洲国产欧美一区二区综合| 啦啦啦在线观看免费高清www| 9191精品国产免费久久| 人人妻,人人澡人人爽秒播 | 亚洲成国产人片在线观看| 亚洲婷婷狠狠爱综合网| 男女无遮挡免费网站观看| 久久天躁狠狠躁夜夜2o2o | 悠悠久久av| 国产高清不卡午夜福利| 久久久国产一区二区| 日韩中文字幕欧美一区二区 | 99精品久久久久人妻精品| 好男人视频免费观看在线| 国产免费又黄又爽又色| 亚洲国产欧美一区二区综合| 久久青草综合色| 丝瓜视频免费看黄片| 狠狠婷婷综合久久久久久88av| 国产激情久久老熟女| 麻豆乱淫一区二区| 亚洲av电影在线进入| 啦啦啦在线观看免费高清www| 韩国av在线不卡| 久久精品国产亚洲av涩爱| 亚洲伊人久久精品综合| 黄色视频在线播放观看不卡| 不卡视频在线观看欧美| 少妇的丰满在线观看| 九色亚洲精品在线播放| 九草在线视频观看| 亚洲综合色网址| 一区二区三区激情视频| 精品国产露脸久久av麻豆| 高清av免费在线| 热re99久久精品国产66热6| 色94色欧美一区二区| 777米奇影视久久| 亚洲欧美激情在线| 亚洲成色77777| 国产男人的电影天堂91| 亚洲精品在线美女| 人体艺术视频欧美日本| 久久久久精品国产欧美久久久 | 美女福利国产在线| 亚洲av电影在线观看一区二区三区| 999久久久国产精品视频| 制服丝袜香蕉在线| 精品一区二区三区av网在线观看 | 欧美亚洲 丝袜 人妻 在线| 亚洲精品av麻豆狂野| tube8黄色片| 免费高清在线观看视频在线观看| 99九九在线精品视频| 免费黄频网站在线观看国产| 欧美日本中文国产一区发布| 日日撸夜夜添| 亚洲精品国产av成人精品| 99久久人妻综合| 人成视频在线观看免费观看| av在线播放精品| 欧美在线黄色| 一区二区三区精品91| 丝袜美足系列| 亚洲国产看品久久| 少妇被粗大猛烈的视频| 最近2019中文字幕mv第一页| 亚洲成人av在线免费| 男女边吃奶边做爰视频| 狠狠精品人妻久久久久久综合| 国产成人精品久久二区二区91 | 亚洲精品一二三| 亚洲国产av影院在线观看| av女优亚洲男人天堂| 不卡视频在线观看欧美| 狂野欧美激情性xxxx| 日韩一区二区三区影片| 中文字幕另类日韩欧美亚洲嫩草| 黄片播放在线免费| 在线观看一区二区三区激情| 亚洲天堂av无毛| 午夜福利视频精品| 一区二区日韩欧美中文字幕| 亚洲国产av影院在线观看| 少妇 在线观看| 看十八女毛片水多多多| √禁漫天堂资源中文www| 悠悠久久av| 精品福利永久在线观看| 久久韩国三级中文字幕| 亚洲欧美成人精品一区二区| 国产成人欧美在线观看 | 国产精品二区激情视频| 自拍欧美九色日韩亚洲蝌蚪91| 啦啦啦啦在线视频资源| 午夜福利网站1000一区二区三区| 亚洲成人手机| 黄片小视频在线播放| 各种免费的搞黄视频| 免费看av在线观看网站| 亚洲av欧美aⅴ国产| 中文字幕高清在线视频| 人妻一区二区av| 99热网站在线观看| 丰满饥渴人妻一区二区三| 免费观看av网站的网址| 一二三四中文在线观看免费高清| 国产不卡av网站在线观看| 桃花免费在线播放| 老司机靠b影院| 天天操日日干夜夜撸| 日日爽夜夜爽网站| 蜜桃在线观看..| 各种免费的搞黄视频| 老司机影院成人| 精品少妇黑人巨大在线播放| 日本猛色少妇xxxxx猛交久久| 悠悠久久av| 亚洲精品aⅴ在线观看| 黄色毛片三级朝国网站| 国产毛片在线视频| 国产亚洲欧美精品永久| 乱人伦中国视频| 电影成人av| 天天躁日日躁夜夜躁夜夜| 高清视频免费观看一区二区| 午夜久久久在线观看| 韩国精品一区二区三区| 国产 一区精品| 国产老妇伦熟女老妇高清| 美女高潮到喷水免费观看| 精品一区在线观看国产| 青春草视频在线免费观看| 国产极品粉嫩免费观看在线| 亚洲av综合色区一区| 纵有疾风起免费观看全集完整版| 日韩欧美精品免费久久| 大香蕉久久网| 天堂8中文在线网| 久久婷婷青草| 女人精品久久久久毛片| 女的被弄到高潮叫床怎么办| 亚洲美女搞黄在线观看| 亚洲精品久久久久久婷婷小说| av不卡在线播放| 久久精品人人爽人人爽视色| 亚洲色图综合在线观看| 免费在线观看完整版高清| 亚洲精品国产一区二区精华液| 亚洲美女搞黄在线观看| 少妇被粗大猛烈的视频| 婷婷成人精品国产| 久久性视频一级片| 久久人人爽人人片av| 男女之事视频高清在线观看 | 亚洲综合精品二区| 国产精品.久久久| 丰满迷人的少妇在线观看| 巨乳人妻的诱惑在线观看| 国产精品秋霞免费鲁丝片| 久久久精品区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲一区中文字幕在线| 国产伦人伦偷精品视频| 日韩欧美精品免费久久| 90打野战视频偷拍视频| 久久国产亚洲av麻豆专区| 欧美老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 搡老岳熟女国产| 极品人妻少妇av视频| 丰满饥渴人妻一区二区三| 日韩一本色道免费dvd| 一本大道久久a久久精品| av有码第一页| 国精品久久久久久国模美| 久久久欧美国产精品| 亚洲国产欧美在线一区| 一级爰片在线观看| 少妇的丰满在线观看| 亚洲精品一区蜜桃| 日韩不卡一区二区三区视频在线| 久久久久久人人人人人| 中文字幕人妻熟女乱码| 欧美亚洲日本最大视频资源| 黄片无遮挡物在线观看| 麻豆乱淫一区二区| 最新的欧美精品一区二区| 国产精品久久久久久精品电影小说| 国产av码专区亚洲av| av卡一久久| 黄色视频不卡| 久久青草综合色| 男女床上黄色一级片免费看| 天堂8中文在线网| 18禁国产床啪视频网站| 搡老乐熟女国产| av视频免费观看在线观看| 午夜激情久久久久久久| 久久狼人影院| 国产成人啪精品午夜网站| 搡老岳熟女国产| 一本—道久久a久久精品蜜桃钙片| 亚洲av在线观看美女高潮| 久久久久精品久久久久真实原创| 人人妻人人添人人爽欧美一区卜| 亚洲男人天堂网一区| 一级毛片电影观看| 成人午夜精彩视频在线观看| 可以免费在线观看a视频的电影网站 | 男女下面插进去视频免费观看| 午夜91福利影院| 人人妻人人澡人人爽人人夜夜| 天堂8中文在线网| 免费在线观看完整版高清| av天堂久久9| 国产成人午夜福利电影在线观看| 中国国产av一级| 1024香蕉在线观看| 人人澡人人妻人| 国产伦理片在线播放av一区| 人人澡人人妻人| 亚洲男人天堂网一区| 成人18禁高潮啪啪吃奶动态图| 两个人免费观看高清视频| 精品久久蜜臀av无| 搡老岳熟女国产| 国产一区亚洲一区在线观看| 国产精品香港三级国产av潘金莲 | 九色亚洲精品在线播放| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 制服诱惑二区| 黄色 视频免费看| 国产熟女午夜一区二区三区| 18禁观看日本| 99热网站在线观看| 午夜影院在线不卡| 亚洲av福利一区| 免费少妇av软件| 亚洲av福利一区| 男人添女人高潮全过程视频| 欧美少妇被猛烈插入视频| 人妻 亚洲 视频| 久久久久精品国产欧美久久久 | 国产 精品1| 精品福利永久在线观看| 秋霞在线观看毛片| 亚洲熟女精品中文字幕| 免费黄网站久久成人精品| 一区二区av电影网| 一个人免费看片子| 啦啦啦在线观看免费高清www| 美女午夜性视频免费| 色综合欧美亚洲国产小说| 男人添女人高潮全过程视频| 国产片内射在线| 国产不卡av网站在线观看| 国产日韩一区二区三区精品不卡| 亚洲国产日韩一区二区| 9191精品国产免费久久| 国产成人精品久久久久久| 国产精品熟女久久久久浪| 纵有疾风起免费观看全集完整版| 韩国av在线不卡| 亚洲美女黄色视频免费看| 老汉色∧v一级毛片| 日本午夜av视频| 精品国产超薄肉色丝袜足j| 1024视频免费在线观看| 国产精品久久久久成人av| 黄色一级大片看看| 国产麻豆69| av又黄又爽大尺度在线免费看| 国产成人a∨麻豆精品| 日韩一区二区视频免费看| 国产精品人妻久久久影院| 狠狠精品人妻久久久久久综合| 国产精品国产三级专区第一集| 女性被躁到高潮视频| 国产成人精品福利久久| 久久久精品94久久精品| 精品亚洲成a人片在线观看| 欧美日韩福利视频一区二区| 亚洲欧美激情在线| 黄片小视频在线播放| 国产福利在线免费观看视频| 女人精品久久久久毛片| 久久久久久久国产电影| 免费观看av网站的网址| 日日爽夜夜爽网站| 老汉色av国产亚洲站长工具| 欧美久久黑人一区二区| 青春草视频在线免费观看| 日本wwww免费看| 97人妻天天添夜夜摸| 亚洲七黄色美女视频| 日日爽夜夜爽网站| 考比视频在线观看| 国产精品亚洲av一区麻豆 | 狠狠婷婷综合久久久久久88av| 亚洲欧洲精品一区二区精品久久久 | 日韩一本色道免费dvd| 国产成人a∨麻豆精品| 蜜桃在线观看..| 少妇的丰满在线观看| 飞空精品影院首页| 婷婷色麻豆天堂久久| 一本大道久久a久久精品| 19禁男女啪啪无遮挡网站| 久久久久久久久免费视频了| 秋霞伦理黄片| 狂野欧美激情性xxxx| 极品少妇高潮喷水抽搐| 中文字幕人妻熟女乱码| 久久久精品区二区三区| 日韩大码丰满熟妇| 久久久久人妻精品一区果冻| 一区二区日韩欧美中文字幕| 看免费av毛片| 欧美日韩一区二区视频在线观看视频在线| 狂野欧美激情性bbbbbb| 免费高清在线观看视频在线观看| 男人舔女人的私密视频| av又黄又爽大尺度在线免费看| 另类亚洲欧美激情| 日韩成人av中文字幕在线观看| 亚洲av电影在线进入| 久久久久网色| 亚洲激情五月婷婷啪啪| 美女视频免费永久观看网站| 最近最新中文字幕免费大全7| 国产精品香港三级国产av潘金莲 | 一级毛片我不卡| 日韩电影二区| 熟女av电影| 国产精品人妻久久久影院| 天天躁夜夜躁狠狠躁躁| 又大又爽又粗| 国产乱来视频区| 婷婷色麻豆天堂久久| 黄网站色视频无遮挡免费观看| 国产免费福利视频在线观看| 日本欧美国产在线视频| 女人久久www免费人成看片| 久久 成人 亚洲| 99国产精品免费福利视频| 久久热在线av| 久久精品国产亚洲av涩爱| 黄色怎么调成土黄色| 亚洲国产日韩一区二区| 中文字幕av电影在线播放| 国产精品一区二区在线观看99| 国产成人a∨麻豆精品| 十八禁网站网址无遮挡| 欧美中文综合在线视频| 亚洲精品久久成人aⅴ小说| 国产精品人妻久久久影院| av在线app专区| 十八禁网站网址无遮挡| 久久99热这里只频精品6学生| 中文字幕人妻丝袜一区二区 | 国产日韩欧美亚洲二区| 久久这里只有精品19| 亚洲av成人不卡在线观看播放网 | videos熟女内射| 久久精品久久久久久噜噜老黄| 久久久久久久大尺度免费视频| 精品国产乱码久久久久久小说| 纯流量卡能插随身wifi吗| 观看av在线不卡| 18禁观看日本| 国产精品秋霞免费鲁丝片| 国产成人午夜福利电影在线观看| 免费av中文字幕在线| 午夜免费观看性视频| 久久久精品94久久精品| 久久天堂一区二区三区四区| 亚洲av电影在线观看一区二区三区| 亚洲久久久国产精品| 久久99热这里只频精品6学生| 欧美激情极品国产一区二区三区| 一二三四中文在线观看免费高清| 成人免费观看视频高清| 精品卡一卡二卡四卡免费| 99精国产麻豆久久婷婷| 夜夜骑夜夜射夜夜干| 亚洲av日韩精品久久久久久密 | 日韩中文字幕欧美一区二区 | 狠狠婷婷综合久久久久久88av| 亚洲四区av| 高清黄色对白视频在线免费看| 国产精品99久久99久久久不卡 | 水蜜桃什么品种好| 日韩av在线免费看完整版不卡| 国产 精品1| 中文欧美无线码| 女人被躁到高潮嗷嗷叫费观| 别揉我奶头~嗯~啊~动态视频 | 久久综合国产亚洲精品| 人妻一区二区av| 国精品久久久久久国模美| 午夜福利在线免费观看网站| 天天躁日日躁夜夜躁夜夜| 欧美xxⅹ黑人| 五月天丁香电影| 色精品久久人妻99蜜桃| 麻豆精品久久久久久蜜桃| 麻豆av在线久日| 日韩中文字幕欧美一区二区 | 侵犯人妻中文字幕一二三四区| 亚洲国产精品一区二区三区在线| 欧美日韩精品网址| 亚洲精品自拍成人| 另类精品久久| 久久精品久久久久久噜噜老黄| 99久久人妻综合| 中国三级夫妇交换| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久电影中文字幕| 日韩欧美一区二区三区在线观看| 两个人看的免费小视频| 亚洲久久久国产精品| 精品久久久久久久人妻蜜臀av | 校园春色视频在线观看| 亚洲国产看品久久| 伦理电影免费视频| 亚洲精品美女久久av网站| 欧美久久黑人一区二区| av有码第一页| 成人永久免费在线观看视频| 夜夜爽天天搞| 免费无遮挡裸体视频| 午夜免费激情av| 国产成人欧美| av片东京热男人的天堂| 巨乳人妻的诱惑在线观看| 亚洲国产精品久久男人天堂| 亚洲男人天堂网一区| 中文字幕av电影在线播放| 国产精品av久久久久免费| 色老头精品视频在线观看| 中国美女看黄片| 女人被躁到高潮嗷嗷叫费观| 免费不卡黄色视频| 国产一区在线观看成人免费| 午夜成年电影在线免费观看| 美女高潮喷水抽搐中文字幕| 亚洲 欧美一区二区三区| 亚洲狠狠婷婷综合久久图片| 欧美乱码精品一区二区三区| 国产成人精品久久二区二区91| 在线观看免费视频日本深夜| 午夜精品久久久久久毛片777| 午夜福利高清视频| 成年女人毛片免费观看观看9| 久久亚洲精品不卡| 亚洲欧美日韩高清在线视频| 成在线人永久免费视频| 亚洲av成人一区二区三| 亚洲黑人精品在线| 色哟哟哟哟哟哟| 国产区一区二久久| 久久精品国产亚洲av香蕉五月| 我的亚洲天堂| 成人免费观看视频高清| 精品久久久精品久久久| 满18在线观看网站| 午夜两性在线视频| 很黄的视频免费| 男人舔女人下体高潮全视频| 欧美大码av| 亚洲中文av在线| 香蕉久久夜色| www.www免费av| 12—13女人毛片做爰片一| 最新在线观看一区二区三区|