• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved 4H-SiC UMOSFET with super-junction shield region*

    2021-05-24 02:28:08PeiShen沈培YingWang王穎XingJiLi李興冀JianQunYang楊劍群ChengHaoYu于成浩andFeiCao曹菲
    Chinese Physics B 2021年5期
    關鍵詞:王穎

    Pei Shen(沈培), Ying Wang(王穎),?, Xing-Ji Li(李興冀),Jian-Qun Yang(楊劍群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲)

    1Key Laboratory of RF Circuits and Systems,Ministry of Education,Hangzhou Dianzi University,Hangzhou 310018,China

    2National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment,Harbin Institute of Technology,Harbin 150080,China

    Keywords: breakdown voltage, specific on-resistance, silicon carbide, switching energy loss, super-junction(SJ),trench gate MOSFET

    1. Introduction

    The advantages of silicon carbide (SiC) include a good wide bandgap performance, high electron saturation drift velocity, and high thermal conductivity.[1]The SiC is therefore very suitable for the development of the next-generation power electronic components that possess a high conversion efficiency,high voltage capability and low conduction loss. Furthermore, through simulation studies, Yu and Sheng[2]have shown the possibility that a SiC device can perform beyond its unipolar theoretical limit.

    A SiC power trench gate MOSFET is a good candidate for serving as power switching in order to increase conversion efficiency. However, the UMOSFET does have a critical issue that it can generate a large E-field in the corner of the trench bottom, which affects the reliability of the device. To overcome this, some shielding methods and structures have been improved.[3–5]The most representative approach is to introduce the p+shielded region under the gate trench (conventional-UMOS).[6–9]However, the JFET region is formed between the p+shielded region and the p-base region, which increases the specific on-resistance. In order to achieve a better trade-off between specific on-resistance and avalanche voltage, a super-junction is a new structure, which improves the trade-off between specific on-resistance and avalanche voltage, and enables the low specific on-resistance in the industrial silicon power MOSFET.[10–12]Orouji et al.[13]studied the unique features that were exhibited by power in the 4H-SiC UMOSFET, where the n- and p-type columns in the drift region were incorporated in order to improve the breakdown voltage, on-resistance. In order to achieve lower on-resistance and better switching performance,Deng et al.[14]investigated a device structure that had a built-in floating component. In order to optimize the trade-off between on-resistance and short circuit ruggedness, He et al.[15]improved a 4H-SiC super-junction trench MOSFET by adding a grounded p+buried layer below the p-body,an oxide trench under the gate,and a p-region surrounding the oxide trench.

    Moreover, the practical feasibility of fabricating superjunction structures has been discussed in some papers.[16–21]Kobayashi et al.[16]for example,reported that the SJ structure was formed on the drift layer by using multi-epitaxial growth seven times,gaining a thickness of 0.65μm each,and then the p-column was formed by implanting aluminum into the driftlayer and multi-epitaxial layers eight times in total. Furthermore, Kosugi et al.[17]developed a novel trench-filling epitaxial growth method as a promising alternative and Harada et al.[18]presented the first demonstration of the dynamic characteristics for a SiC superjunction MOSFET that was realized by the multi-epitaxial growth method.

    This article investigates an improved 4H-SiC UMOSFET that has alternate p-type and n-type conductive pillars under the gate. The simulations indicate that the modified structure exhibits a good dynamic performance and improves the VBRand Ron,sp. The figure of merit of the conventional-UMOS is 563 MW/cm2, while the FOM of the modified-UMOS is 1008 MW/cm2. The VBRof the Gauss-doped structure is improved to 10.4%compared with that of the uniformdoped structure. The Gauss-doped and uniform-doped superjunction shield region gate–drain charges are the same.

    2. Description of device structure and fabrica tion procedure

    -

    Figures 1(a)and 1(b)show the schematic cross section of a conventional-UMOS and a modified-UMOS,which are both used for reference. The detailed simulation parameters of the structure are listed in Table 1.

    Figure 2 shows a feasible method of fabricating the modified-UMOS. An n-type epitaxial layer was grown on an n+substrate. The whole drift layer was about 10-μm thick with a doping concentration of 7.0×1015cm?3. The trench was formed by inductive coupled plasma reactive-ion etching (ICP-RIE) with SF6, O2, and HBr, using a Ni/Al2O3bilayer mask.[22,23]The n-pillars were formed by deposition[14]as shown in Fig. 2(a). The p-pillars, with a depth of 6 μm,were formed by a multi-epitaxial growth method[18]as shown in Fig.2(c).Finally,the p-body region,the light n-type current spreading layer,the n+source region,the p+source region,and the gate structure were implemented in a similar way to that adopted in the conventional-UMOS.

    Fig.1. Structures of studied trench MOSFET:(a)conventional-UMOS,and(b)modified-UMOS.

    Fig.2. Key fabrication process for the modified-UMOS.

    Table 1. Device parameters for simulations.

    3. Results and discussion

    In this work, the physical 4H-SiC MOSFET models, including the FLDMOB and ANALYTIC mobility models, are used. The FLDMOB is a parallel, E-field-dependent model,that requires the modeling of any type of velocity saturation effect;the ANALYTIC model is a concentration-temperaturedependent model;the Shockley–Read–Hall and AUGER models are composite models that are used to solve the electron/hole continuity equation, as well as the Poisson equation; IMPACT SELB is a Selberherr model and is recommended for most situations;and INCOMPLETE is an ionization model.[24]

    3.1. Static performance

    The two structures’ typical output characteristic curves of Vgs= 8 V, Vgs= 12 V, Vgs= 16 V, and Vgs= 20 V are shown in Fig. 3. The Ron,spof the modified-UMOS and the conventional-UMOS are estimated as ~1.9 m?·cm2and~2.4 m?·cm2at Vgs=16 V and Vds=1 V,respectively. The n-type conductive pillars and a thin NCSL provide two paths,which suppress the depletion region. The smaller the depletion region, the wider the current path for the electrons is.Moreover, a thin light doping of the NCSL causes the electrons to spread in the horizontal direction earlier. In addition,n-pillars under the gate allow the current to flow in the vertical direction. Therefore, the modified structure reduces the Ron,sp. Comparing with the conventional-UMOS,the Ron,spof the modified structure decreases by 22.2%. In the modified-UMOS, the n-type conductive pillars under the gate increase the electron concentration of the channel region,while the depletion region is reduced in order to increase the current path in the modified structure as shown in Fig.4.

    Fig.3. Typical output characteristic curves of two structures.

    Fig.4. Distribution of electron concentration(Conc.) for(a)conventional-UMOS and(b)modified-UMOS.

    The equation of the Ron,spcan be described as

    where WDis the maximum depletion width and the μnis the electrons mobility.

    Figure 5 shows reverse breakdown characteristic contours(at Vgs=0 V). The VBRof the two structures are calculated to be ~1167 V and ~1413 V respectively. The modified structure has a higher VBR,because the n-pillar and p-pillar at the bottom of the trench are configured to have a substantial charge balance in an SJ structure. When the doping density of the n-type conductive pillars is equal to the surface doping density of the p-type conductive pillars,the mutual depletion of the n-pillar and the p-pillar under the gate trench can achieve the charge balance of the SJ structure.

    For the conventional-UMOS, the peak E-field (~3.3 MV/cm)occurs in the corner of the gate trench,whereas in the modified structure,the peak E-field(~2.6 MV/cm)occurs at the bottom of the p-pillars. The critical gate oxide E-field of a conventional UMOS is ~2.1 MV/cm, which is higher than the ~1.2 MV/cm belonging to the modified-UMOS as shown in Fig. 6. This difference occurs because the protruding p-pillar has an excellent shielding effect. During the simulation, the breakdown voltage for the modified-UMOS has an improvement of 21.1% compared with the the breakdown voltage of the conventional-UMOS.

    Fig.5. Reverse breakdown characteristic(at Vgs =0 V)curves of two structures.

    Fig.6. OFF-state critical E-field curves of(a)conventional-UMOS,(b)modified-UMOS.

    3.2. Dynamic performance

    Figure 7 shows the curves of the input capacitance Ciss[Ciss=Cgd(gate–drain capacitance) + Cgs(gate–source capacitance)] and the reverse transfer capacitance (Crss=Cgd).[25,26]The smaller Cgdhelps improve the switching characteristic.

    The small ac signal works at 1 MHz to extract the capacitance,[27,28]and the capacitance cures of the modified-UMOS are not linear.[29,30]When Vds<Vt(at Vt= 75 V),the Crssis small because of the protruding p-pillar on the left,which shields Cgd. Thus,the capacitance at the bottom of the gate trench is mainly Cgs. When Vds>Vt, the p-pillar region will shrink,the shielding effect will be weakened and Crsswill slowly increase.

    Fig.7. Small signal capacitances Ciss and Crss of two structures.

    Figure 8 shows gate charge characteristic curves of the two structures.In the simulation,the test circuit is indicated as an inset in Fig.8. The FOM Ron,sp×Qgdis widely used.[31,32]Since the substantial charge balance of the SJ structure is achieved when the surface doping density in the p-type conductive pillar, the Qgdof the improved structure is a little smaller than that of the conventional-UMOS as can be seen in this figure. When the modified-UMOS is turned off,the twodimensional fast depletion of the n-type conductive pillar and p-type conductive pillar enables the charge carriers to be extracted quickly.The FOM Ron,sp×Qgdof the modified-UMOS shows an improvement of 43.3% in comparison with that of the conventional-UMOS. Detailed data are listed in Table 2.Using the double-pulse test(DPT),figure 9 shows the switching performance of the two structures. The area of the SiC MOSFET is set to be 0.09 cm2.For convenience,some parameters in the following simulation design are given as follows:a gate resistor is Rg=20 ?,the supply voltage is Vdd=400 V,the inductive load is LL=200 μH, and the stray inductance(LS)is assumed to be 10 mH in the power loop. The gate voltage is switched between 0 V and 20 V in order to turn-on and turn-off the device.

    Fig. 8. Gate charge tests on the modified-UMOS (red line) and on conventional-UMOS(black line),with insert showing test circuit.

    Figures 10(a) and 10(b) show the switching waveforms of the two structures with a test current of 20 A/cm2. As can be seen from Fig. 7, the low Crssin the modified-UMOS has a faster switching speed than that in the conventional-UMOS.Therefore,the conventional-UMOS needs a longer time period to arrive at a high Vdsand a high Idsas the switching characteristics are related to the charge and discharge of its Cissand the smaller Cisscan improve the switching characteristics.

    Fig.9. Double-pulse test circuit.

    Fig. 10. Switching waveforms for (a) modified-UMOS and (b) conventional-UMOS,showing that improved structure is much faster than conventional-UMOS.

    Figure 11 shows the switching energy losses for the conventional-UMOS and modified-UMOS. It can be discerned that in the modified structure, the losses during both turnon (Eon) and turn-off (Eoff) are reduced. For the modified-UMOS,the calculated value of Eonand Eoffare 33.5 mJ/cm2and 32.9 mJ/cm2,respectively,which correspondingly reduce 33.4% and 8.2% of the counterparts for the conventional-UMOS. The TOFFand TONof the two structures are listed in Table 2. The Eonand Eoffcan be expressed as

    where T1is the time when Vgs(on) reaches 10% of its value,T2is the time when Vddarrives at 10% of its value, T3is the time when Vgs(on)rises to 90%of its value,and T4is the time when Idsis 2%of its value.

    Fig.11. Switching energy losses of two structures.

    Table 2. Static performance and dynamic performance data.

    3.3. Parameter optimization

    Figure 12 shows FOM(V2BR/Ron,sp)as a function of Nrp,Nn, Nlp, and H in the modified-UMOS. The doping concentration(Nlp)of the protruding p-pillar,(Nrp)the p-pillar at the bottom of gate trench, (Nn), and the n-type conductive pillar,as well as the height (H) of pillars, have a great influence on the device performance. The p-type conductive pillars may have a doping concentration in a range from ~1×1016cm?3to ~1×1017cm?3. The doping concentration of the p-type and n-type pillars are denoted as Npand Nn,respectively,and the width of the p-type and n-type pillars are represented by Wpand Wn, respectively. The n-type pillar and p-type pillar at the bottom of the gate trench are configured to achieve a substantial charge balance in the SJ structure. This is achieved when the WncotNn=Wp·Np. If the conductive pillar is the one affected by the incomplete ionization,the current density is highly reduced, and the risk is that this leads to the total depletion of the p-type pillar, and consequentially, to no current flowing in the device.[33]The protruding p-pillar plays a critical role in shielding the high E-field of the trench bottom,therefore,the protruding p-pillar must have a high doping concentration in order to have the necessary efficacy to shield the high E-field. The Nncan be raised appropriately to reduce Ron,spand when increasing the doping concentrations of these pillars,Nrpand Nlpcan also be appropriately optimized to improve VBR.

    The maximum figure of merit values appear at Nrp=Nn=4×1016cm?3, and Nlp=6×1016cm?3. Figure 13 shows the maximum figure of merit values of the modified-UMOS at H=6μm. When the value of H is greater than 6μm,the epitaxial layer is likely to be cut through. Therefore,H=6μm is selected for designing the n-pillars and p-pillars. Finally, the parameters in the above simulation and discussion are used.The figure of merit values of the two structures are calculated to be ~1.008 kV2/(m?· cm2) and ~0.563 kV2/(m?· cm2),respectively. The modified-UMOS is 79.0% higher than that of the conventional-UMOS.

    Fig.12. FOM(V2BR/Ron,sp)as a function of Nrp,Nn,and Nlp,and with pillar height H=6μm.

    Fig.13. FOM versus column height of modified UMOS.

    Fig.14. Simulated VBR versus unbalance ratio for device structure with the impact ionization model.

    Figure 14 shows that the simulated VBRversus unbalance ratio for the device structure with the impact ionization models, where the unbalance ratio is defined as 100×abs(ND?NA)/max(NA, ND). For the balanced device, its charge imbalance (C.I.) is equal to 0% and is characterized by ND=NA=4×1016cm?3. The unbalance is indicated as a percentage and defined as

    3.4. Gauss-doped super-junction shield region

    The doping distribution in the super-junction shield region is shown in Fig. 15(a), in which the doping concentration in uniform-doped super-junction shield region is 4×1016cm?3, the doping concentration in Gauss-doped super-junction shield region is 1.0×1017cm?3, the doping concentration reduces 5.9×1015cm?3. Figure 15(b) shows the OFF-state characteristic curve of the Gauss-doped and uniform-doped region. The VBRof the Gauss-doped is improved to 10.4%compared with that of the uniform-doped region.

    Fig. 15. (a) Variation of the doping concentration at super-junction of two structures with Y axis and (b) variation of drain current density with drain voltage in Gauss-doped region and uniform-doped region.

    To compare the gate charges of the Gauss-doped and uniform-doped super-junction shield region, the gate charges of the two are simulated on condition that the total charge quantity of super-junction is the same, and the other parameters of the device are also the same. The time-varying curve of Qgand Vgsof the super-junction shield region are shown in Fig. 16. According to the calculation, the Qgdof uniformdoped super-junction shield region and Gauss-doped superjunction shield region are 307 nC/cm2and 327 nC/cm2. It can be seen that under the condition of the same total charge quantity of super-junction, gate-drain charge quantity in Gaussdoped and uniform-doped super-junction shield region are the same.

    Fig.16. Simulation curve of gate charge characteristics of Gauss-doped and uniform-doped super-junction shield region.

    4. Conclusions

    In this paper, an improved 4H-SiC UMOSFET with alternate n-pillars and p-pillars under the trench is investigated.The Ron,spof the modified structure reduces 22.2%compared with that of the conventional-UMOS. Moreover, the critical gate oxide E-field of the conventional-UMOS is higher than that of the modified-UMOS.The results in the breakdown voltage is improved by 21.1%in comparison with the results of the conventional-UMOS, thus avoiding a premature breakdown of the trench gate oxide. Furthermore, the modified structure shows excellent dynamic characteristics and reduces the switching energy loss. The calculated values of Eonand Eofffor the modified-UMOS are 33.5 mJ/cm2and 32.9 mJ/cm2,respectively,which show a decrease of 33.4%and 8.2%respectively,in comparison with the results of conventional-UMOS.The modified-UMOS structure shows a significant improvement over the conventional-UMOS. In addition, the Gaussdoped super-junction shield region can increase the VBRof the device without degradation of dynamic performance. For device stability as well as switching speed considerations,we believe that the modified structure is more attractive and shows more promising for high power applications.

    猜你喜歡
    王穎
    發(fā)現(xiàn)反復結(jié)構(gòu),輕松學寫故事
    Novel layout design of 4H-SiC merged PiN Schottky diodes leading to improved surge robustness
    郝睿揚、王潤雪、王穎、田雨作品
    大觀(2022年9期)2022-12-06 12:37:40
    A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
    地表水監(jiān)測中存在的問題及策略
    追本溯源刨根問底
    《水天一色》《踢球的女孩》《傍晚》
    文化交流(2019年12期)2019-01-09 07:06:30
    Solitary Vortex Evolution in Two-Dimensional Harmonically Trapped Bose-Einstein Condensates?
    Research and development trend of intelligent clothing
    東方教育(2018年3期)2018-03-30 09:19:36
    王穎作品
    两性午夜刺激爽爽歪歪视频在线观看 | av超薄肉色丝袜交足视频| 操出白浆在线播放| 99国产精品一区二区蜜桃av| 亚洲精品中文字幕一二三四区| 日韩av在线大香蕉| 午夜精品在线福利| 黄色片一级片一级黄色片| avwww免费| 国产av又大| 亚洲黑人精品在线| 最近最新中文字幕大全免费视频| 人成视频在线观看免费观看| 国产精品久久视频播放| 国产成人精品无人区| 精品久久久久久久毛片微露脸| 99精品欧美一区二区三区四区| or卡值多少钱| www日本黄色视频网| 日韩精品中文字幕看吧| 日韩欧美在线二视频| 国产精品亚洲av一区麻豆| tocl精华| 国产精品 国内视频| 国内少妇人妻偷人精品xxx网站 | 亚洲中文av在线| 成人国产一区最新在线观看| 变态另类成人亚洲欧美熟女| 熟女电影av网| 亚洲精品中文字幕在线视频| 亚洲三区欧美一区| 久久久久国产精品人妻aⅴ院| 久久精品91蜜桃| 婷婷精品国产亚洲av在线| 午夜视频精品福利| 精品国产一区二区三区四区第35| 十八禁网站免费在线| 满18在线观看网站| 免费看十八禁软件| av免费在线观看网站| 国产一区二区三区视频了| 国产av在哪里看| 一进一出抽搐gif免费好疼| 亚洲精品美女久久久久99蜜臀| 欧美在线黄色| 天天躁狠狠躁夜夜躁狠狠躁| 97碰自拍视频| 国产一区在线观看成人免费| 亚洲久久久国产精品| 亚洲一码二码三码区别大吗| 精品熟女少妇八av免费久了| 久久久久精品国产欧美久久久| 啦啦啦观看免费观看视频高清| 亚洲精品一卡2卡三卡4卡5卡| 人人妻,人人澡人人爽秒播| 黄色女人牲交| 十八禁网站免费在线| 在线免费观看的www视频| 久久精品影院6| 国产三级在线视频| 精品午夜福利视频在线观看一区| 久久久久久亚洲精品国产蜜桃av| √禁漫天堂资源中文www| 色尼玛亚洲综合影院| 啦啦啦观看免费观看视频高清| 久久国产精品影院| 国产又色又爽无遮挡免费看| 岛国视频午夜一区免费看| 最近最新中文字幕大全免费视频| 久9热在线精品视频| 色尼玛亚洲综合影院| 国产成人精品久久二区二区免费| 99国产精品99久久久久| 两个人看的免费小视频| 久久国产亚洲av麻豆专区| www日本在线高清视频| 一进一出抽搐gif免费好疼| 国产亚洲精品第一综合不卡| 国产av在哪里看| 欧美 亚洲 国产 日韩一| 两性夫妻黄色片| 中文字幕人妻熟女乱码| 精品欧美一区二区三区在线| 久久伊人香网站| 9191精品国产免费久久| 久久国产精品影院| 99re在线观看精品视频| videosex国产| 午夜亚洲福利在线播放| 亚洲av美国av| 深夜精品福利| 精品国产乱码久久久久久男人| 可以在线观看的亚洲视频| 国产av一区在线观看免费| 亚洲午夜理论影院| 妹子高潮喷水视频| 一区福利在线观看| 波多野结衣高清作品| 女性生殖器流出的白浆| av视频在线观看入口| 午夜老司机福利片| 国产激情欧美一区二区| 好看av亚洲va欧美ⅴa在| 亚洲精品一卡2卡三卡4卡5卡| ponron亚洲| 久久狼人影院| 欧美性猛交╳xxx乱大交人| 制服诱惑二区| 最近最新中文字幕大全电影3 | 精品一区二区三区视频在线观看免费| av在线播放免费不卡| 制服丝袜大香蕉在线| 黄色片一级片一级黄色片| 日本一本二区三区精品| 中文字幕精品免费在线观看视频| 在线观看66精品国产| 嫩草影视91久久| 国产成年人精品一区二区| 国产伦人伦偷精品视频| 国产成人av教育| 人人澡人人妻人| 曰老女人黄片| 亚洲成人久久性| 18禁黄网站禁片免费观看直播| 在线永久观看黄色视频| 久久人妻福利社区极品人妻图片| 后天国语完整版免费观看| 校园春色视频在线观看| 国产成人av激情在线播放| 在线观看免费午夜福利视频| av欧美777| 91成年电影在线观看| 一区二区三区精品91| 日本撒尿小便嘘嘘汇集6| 欧洲精品卡2卡3卡4卡5卡区| 国产片内射在线| 99精品在免费线老司机午夜| 热re99久久国产66热| 999精品在线视频| 男人舔女人下体高潮全视频| 久久久久久国产a免费观看| 一本一本综合久久| 成人18禁在线播放| 亚洲午夜理论影院| 女性被躁到高潮视频| 大型av网站在线播放| 变态另类成人亚洲欧美熟女| 一区二区三区高清视频在线| 亚洲国产精品999在线| 国产av不卡久久| 大型av网站在线播放| 国产欧美日韩一区二区精品| 99在线视频只有这里精品首页| av欧美777| 每晚都被弄得嗷嗷叫到高潮| 国产真人三级小视频在线观看| 女生性感内裤真人,穿戴方法视频| 国产成人精品无人区| bbb黄色大片| 天堂影院成人在线观看| 国产午夜福利久久久久久| 免费在线观看完整版高清| 国产成人影院久久av| 91麻豆av在线| netflix在线观看网站| 中文亚洲av片在线观看爽| 国产三级在线视频| 免费高清在线观看日韩| 丝袜人妻中文字幕| 欧美另类亚洲清纯唯美| 欧美 亚洲 国产 日韩一| 精品久久久久久,| 国产一区二区在线av高清观看| av超薄肉色丝袜交足视频| 日韩一卡2卡3卡4卡2021年| 成人手机av| 男女做爰动态图高潮gif福利片| 久久精品影院6| 两性夫妻黄色片| 一本精品99久久精品77| 亚洲va日本ⅴa欧美va伊人久久| 好男人电影高清在线观看| 亚洲熟妇中文字幕五十中出| 亚洲av熟女| 日韩有码中文字幕| 亚洲欧洲精品一区二区精品久久久| 欧美 亚洲 国产 日韩一| 亚洲全国av大片| 亚洲男人天堂网一区| 久久国产精品影院| 日日夜夜操网爽| 欧美激情久久久久久爽电影| 91字幕亚洲| 日韩三级视频一区二区三区| 精品熟女少妇八av免费久了| 国产亚洲精品综合一区在线观看 | 亚洲全国av大片| 亚洲,欧美精品.| 久久精品成人免费网站| 最新美女视频免费是黄的| 欧美精品亚洲一区二区| 一级黄色大片毛片| 久久久国产欧美日韩av| 色综合站精品国产| 亚洲色图 男人天堂 中文字幕| 国产又黄又爽又无遮挡在线| 欧美精品亚洲一区二区| 久久精品国产亚洲av香蕉五月| 精品国产乱码久久久久久男人| 国产熟女午夜一区二区三区| 国产片内射在线| 日本三级黄在线观看| 亚洲九九香蕉| 成年人黄色毛片网站| 国产成人av教育| 久久久久久久久中文| 亚洲精品国产区一区二| 国内揄拍国产精品人妻在线 | a在线观看视频网站| 亚洲一区高清亚洲精品| 成人一区二区视频在线观看| 午夜两性在线视频| 久久99热这里只有精品18| 久久久久久久精品吃奶| 一卡2卡三卡四卡精品乱码亚洲| 久久伊人香网站| 一个人免费在线观看的高清视频| 色老头精品视频在线观看| 亚洲 欧美 日韩 在线 免费| 91麻豆精品激情在线观看国产| 这个男人来自地球电影免费观看| 最新在线观看一区二区三区| 欧美 亚洲 国产 日韩一| www日本黄色视频网| 亚洲五月婷婷丁香| 窝窝影院91人妻| 自线自在国产av| 久久精品影院6| x7x7x7水蜜桃| 国产精品亚洲美女久久久| 国产又色又爽无遮挡免费看| 淫秽高清视频在线观看| 国内精品久久久久久久电影| 窝窝影院91人妻| 久久精品国产综合久久久| 久久草成人影院| 美国免费a级毛片| 99国产极品粉嫩在线观看| av有码第一页| 欧美日韩一级在线毛片| 观看免费一级毛片| 午夜两性在线视频| 香蕉av资源在线| 免费人成视频x8x8入口观看| 日本一区二区免费在线视频| 国产成人精品久久二区二区免费| av中文乱码字幕在线| 国产一区二区激情短视频| 国产一卡二卡三卡精品| 久久精品91蜜桃| 午夜福利18| 亚洲精品美女久久久久99蜜臀| 日韩av在线大香蕉| 成人欧美大片| 亚洲美女黄片视频| 午夜免费激情av| 色播在线永久视频| av在线播放免费不卡| 好男人在线观看高清免费视频 | 亚洲欧美日韩无卡精品| 黄片大片在线免费观看| 亚洲国产欧美网| 国产精品久久久人人做人人爽| 青草久久国产| 久久午夜综合久久蜜桃| 精品少妇一区二区三区视频日本电影| 亚洲第一青青草原| 两性夫妻黄色片| 夜夜躁狠狠躁天天躁| 精品电影一区二区在线| av在线天堂中文字幕| 日韩一卡2卡3卡4卡2021年| 久久久久国产精品人妻aⅴ院| 亚洲精品久久成人aⅴ小说| 女生性感内裤真人,穿戴方法视频| 亚洲人成电影免费在线| 男女那种视频在线观看| 国产av在哪里看| 色播亚洲综合网| 欧美成人免费av一区二区三区| 久久久久久久久中文| 亚洲中文字幕日韩| 日本在线视频免费播放| 亚洲三区欧美一区| 亚洲av成人av| 亚洲成av人片免费观看| 欧美大码av| 一级a爱视频在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美午夜高清在线| 欧美黄色片欧美黄色片| 免费电影在线观看免费观看| a在线观看视频网站| 精品日产1卡2卡| 成人精品一区二区免费| 国产一区二区三区视频了| 亚洲熟妇中文字幕五十中出| 亚洲精品久久国产高清桃花| 欧美中文日本在线观看视频| 精品久久久久久久久久免费视频| 日日夜夜操网爽| 夜夜夜夜夜久久久久| 精品第一国产精品| 国产成+人综合+亚洲专区| 久久久久久九九精品二区国产 | 国产亚洲精品av在线| 女人高潮潮喷娇喘18禁视频| av中文乱码字幕在线| 亚洲精品久久成人aⅴ小说| 啪啪无遮挡十八禁网站| 精品久久久久久成人av| 精品高清国产在线一区| 国产一区在线观看成人免费| 少妇裸体淫交视频免费看高清 | 国产真人三级小视频在线观看| 99久久99久久久精品蜜桃| 日日爽夜夜爽网站| 国产一区二区三区视频了| 亚洲片人在线观看| 母亲3免费完整高清在线观看| 久久国产精品人妻蜜桃| 一区二区三区激情视频| 国产一区二区在线av高清观看| 成人国语在线视频| 日本熟妇午夜| 国产精品久久久久久精品电影 | 99re在线观看精品视频| 淫秽高清视频在线观看| 俺也久久电影网| 他把我摸到了高潮在线观看| 国产黄a三级三级三级人| 精品久久久久久久末码| 国产v大片淫在线免费观看| 欧美国产精品va在线观看不卡| 女人高潮潮喷娇喘18禁视频| 国产一区二区三区在线臀色熟女| 欧美人与性动交α欧美精品济南到| a在线观看视频网站| 久久精品成人免费网站| 最近最新中文字幕大全电影3 | 校园春色视频在线观看| 亚洲电影在线观看av| 免费av毛片视频| 给我免费播放毛片高清在线观看| 91在线观看av| 男女做爰动态图高潮gif福利片| 久久这里只有精品19| 欧美日韩瑟瑟在线播放| 在线天堂中文资源库| 中出人妻视频一区二区| 精品福利观看| 亚洲无线在线观看| 成人国语在线视频| 国产爱豆传媒在线观看 | 亚洲成人免费电影在线观看| 一区二区三区激情视频| 国产激情偷乱视频一区二区| 成人三级黄色视频| 禁无遮挡网站| 国产亚洲欧美98| 国产免费男女视频| 人人妻人人澡欧美一区二区| 香蕉丝袜av| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品青青久久久久久| 国产精品精品国产色婷婷| 欧美黄色淫秽网站| 亚洲国产高清在线一区二区三 | 亚洲成人国产一区在线观看| 久久久国产成人免费| 欧美不卡视频在线免费观看 | 夜夜看夜夜爽夜夜摸| 黄色女人牲交| 国内精品久久久久久久电影| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久久久精品电影 | 久久欧美精品欧美久久欧美| 欧美黑人精品巨大| 久久性视频一级片| 看黄色毛片网站| 男人舔女人的私密视频| 免费女性裸体啪啪无遮挡网站| www.精华液| 一级黄色大片毛片| 国产成年人精品一区二区| 亚洲免费av在线视频| 岛国在线观看网站| 亚洲精品在线观看二区| 欧美精品啪啪一区二区三区| 婷婷精品国产亚洲av在线| 19禁男女啪啪无遮挡网站| 久久精品国产99精品国产亚洲性色| 欧美乱色亚洲激情| 亚洲国产欧洲综合997久久, | 国产亚洲欧美精品永久| 日韩精品中文字幕看吧| 国产黄a三级三级三级人| 午夜福利欧美成人| 99在线人妻在线中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩瑟瑟在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 日日干狠狠操夜夜爽| 淫妇啪啪啪对白视频| 999久久久国产精品视频| 18禁观看日本| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区三| 精品一区二区三区四区五区乱码| 香蕉久久夜色| 欧美黄色片欧美黄色片| av福利片在线| 欧美乱码精品一区二区三区| 搡老岳熟女国产| 99久久国产精品久久久| 久久精品亚洲精品国产色婷小说| 免费在线观看日本一区| 亚洲 欧美一区二区三区| 男人舔女人下体高潮全视频| 精品熟女少妇八av免费久了| 国产精品99久久99久久久不卡| 啦啦啦 在线观看视频| 成人三级做爰电影| 天天一区二区日本电影三级| 欧美黑人精品巨大| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久免费精品人妻一区二区 | 欧美在线黄色| tocl精华| 国产一区二区三区视频了| cao死你这个sao货| 中文字幕精品免费在线观看视频| 嫩草影院精品99| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品sss在线观看| 国产精品美女特级片免费视频播放器 | 亚洲欧美日韩高清在线视频| 久久人人精品亚洲av| 国产国语露脸激情在线看| 亚洲五月色婷婷综合| 母亲3免费完整高清在线观看| 午夜精品在线福利| 91在线观看av| 97人妻精品一区二区三区麻豆 | 国产精品精品国产色婷婷| 中文字幕最新亚洲高清| 男人舔女人的私密视频| 亚洲成av人片免费观看| 国产亚洲精品一区二区www| 男女床上黄色一级片免费看| 99热这里只有精品一区 | 久久久久亚洲av毛片大全| 国产欧美日韩精品亚洲av| 精品熟女少妇八av免费久了| 黑人操中国人逼视频| 美女免费视频网站| 午夜福利在线观看吧| 欧洲精品卡2卡3卡4卡5卡区| 久久婷婷成人综合色麻豆| 亚洲国产欧洲综合997久久, | 亚洲成人免费电影在线观看| 男人舔奶头视频| 国产欧美日韩一区二区三| a在线观看视频网站| av电影中文网址| 一a级毛片在线观看| 在线观看日韩欧美| 性欧美人与动物交配| 757午夜福利合集在线观看| 91字幕亚洲| 久久久久久国产a免费观看| 又大又爽又粗| 国产99久久九九免费精品| 精华霜和精华液先用哪个| 满18在线观看网站| 午夜老司机福利片| 免费一级毛片在线播放高清视频| 亚洲国产看品久久| 十八禁人妻一区二区| 色老头精品视频在线观看| 色综合站精品国产| 成人18禁高潮啪啪吃奶动态图| www.自偷自拍.com| 亚洲国产精品成人综合色| 久久青草综合色| 97人妻精品一区二区三区麻豆 | 久久精品aⅴ一区二区三区四区| 在线观看免费日韩欧美大片| 欧美日本视频| 国产欧美日韩一区二区三| 亚洲av电影不卡..在线观看| 悠悠久久av| а√天堂www在线а√下载| 亚洲在线自拍视频| 韩国精品一区二区三区| 国产亚洲av嫩草精品影院| 日韩国内少妇激情av| 久久久久久久午夜电影| 观看免费一级毛片| 久久精品夜夜夜夜夜久久蜜豆 | 欧美激情 高清一区二区三区| 久久久久久亚洲精品国产蜜桃av| 国产亚洲av高清不卡| 亚洲精品色激情综合| 成熟少妇高潮喷水视频| 国内揄拍国产精品人妻在线 | 麻豆一二三区av精品| 午夜福利免费观看在线| 亚洲在线自拍视频| 1024香蕉在线观看| 在线观看免费午夜福利视频| 亚洲国产精品合色在线| 欧美zozozo另类| 久久久久免费精品人妻一区二区 | 国产精品自产拍在线观看55亚洲| 啦啦啦韩国在线观看视频| 一a级毛片在线观看| 国产v大片淫在线免费观看| 欧美成人午夜精品| 性色av乱码一区二区三区2| 欧美中文日本在线观看视频| 亚洲一区二区三区色噜噜| 久久九九热精品免费| 国产成人欧美| 亚洲av熟女| 老熟妇乱子伦视频在线观看| 成人免费观看视频高清| 精品高清国产在线一区| 亚洲第一青青草原| 级片在线观看| 亚洲国产毛片av蜜桃av| 男女之事视频高清在线观看| 熟妇人妻久久中文字幕3abv| 色综合站精品国产| 啦啦啦韩国在线观看视频| 色综合站精品国产| 国产精品永久免费网站| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区久久 | 人妻丰满熟妇av一区二区三区| 亚洲熟妇熟女久久| 国产1区2区3区精品| 91麻豆精品激情在线观看国产| 黑人欧美特级aaaaaa片| 天堂动漫精品| 一本精品99久久精品77| 深夜精品福利| 一卡2卡三卡四卡精品乱码亚洲| 99re在线观看精品视频| 非洲黑人性xxxx精品又粗又长| 999精品在线视频| 亚洲成人精品中文字幕电影| 欧美日韩瑟瑟在线播放| 美女高潮到喷水免费观看| 人人妻人人看人人澡| 久久中文看片网| 婷婷丁香在线五月| 国产又爽黄色视频| 在线看三级毛片| 国产在线观看jvid| 美女扒开内裤让男人捅视频| 欧美黑人精品巨大| 国产区一区二久久| 精品久久久久久,| 久久久国产成人精品二区| 天天躁夜夜躁狠狠躁躁| 丝袜人妻中文字幕| 777久久人妻少妇嫩草av网站| 午夜福利在线观看吧| 欧美不卡视频在线免费观看 | 欧美日本视频| 一二三四社区在线视频社区8| 少妇的丰满在线观看| 一区二区三区高清视频在线| 香蕉丝袜av| 国产又黄又爽又无遮挡在线| 啦啦啦免费观看视频1| 欧美日韩福利视频一区二区| 国产99白浆流出| 精品免费久久久久久久清纯| 色播在线永久视频| 精品国产美女av久久久久小说| 三级毛片av免费| 好男人在线观看高清免费视频 | 亚洲精品中文字幕在线视频| 午夜a级毛片| 精品熟女少妇八av免费久了| 国产精品综合久久久久久久免费| 母亲3免费完整高清在线观看| 日日爽夜夜爽网站| 日韩精品中文字幕看吧| 午夜亚洲福利在线播放| 国产区一区二久久| 亚洲专区中文字幕在线| 日本a在线网址| 免费在线观看亚洲国产| 久久 成人 亚洲| 国产av不卡久久| 色av中文字幕| 亚洲欧美日韩高清在线视频| 国产主播在线观看一区二区| 国产成人啪精品午夜网站| 精品乱码久久久久久99久播| 最近最新中文字幕大全电影3 | 老司机靠b影院|