• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance

    2022-08-01 05:59:32PeiShen沈培YingWang王穎andFeiCao曹菲
    Chinese Physics B 2022年7期
    關(guān)鍵詞:王穎

    Pei Shen(沈培), Ying Wang(王穎), and Fei Cao(曹菲)

    1The Key Laboratory of RF Circuits and Systems,Ministry of Education,Hangzhou Dianzi University,Hangzhou 310018,China

    2The School of Mechanical and Electronic Engineering,Pingxiang University,Pingxiang 337055,China

    Keywords: 4H-silicon carbide (4H-SiC) trench gate MOSFET, breakdown voltage (VBR), specific onresistance(Ron,sp),switching energy loss,super-junction

    1. Introduction

    Wide-band gap third-generation semiconductor material silicon carbide offers excellent switching properties, temperature stability and low electromagnetic interference (EMI),making it ideal for next-generation power conversion applications such as switching power supplies, electric vehicles,and industrial power.[1–4]In recent years, SiC power MOSFETs with theVBRof 600–1700 V level dominated have been commercialized,but higherVBRof the SiC MOSFETs are less studied. Especially, the SiC trench gate MOSFET generally has lowRon,spdue to the small cell-pitch using the trench gate configuration.[5–7]However, SiC trench gate MOSFET has a fatal disadvantage. As the drain–source voltage increases,the electric field at the bottom corner of the gate trench increases,affecting the gate oxide stability.[8,9]To overcome this issue,some good methods and novel structures are proposed to overcome the electric field concentration at the bottom corner of the gate trench.[10–12]The most commonly used way to shield highly the electric field at the bottom corner of the gate trench is to increase the p+shield region under the gate trench,[13–15]yet with a marked increase inRon,sp. With charge-balanced npillar and p-pillar,the super-junction(SJ)MOSFET has more superior electrical characteristics compared with conventional SiC trench MOSFET.[16–20]Vudumulaet al.[16]studied the static and dynamic characteristics of the CoolSiC trench MOSFET structure by introducing the concept of super-junction,and the structure provides a good trade-off between gate oxide reliability andRon,sp. Oroujiet al.[17]proposed to replace the p+shield region with an n-type pillar and a p-type pillar at the bottom of the gate trench. The new device structure improves theVBRand reduces theRon,sp,and has good switching characteristics. Denget al.[18]studied a novel structure embedded in a floating p-column in the drift region,which ensures that theVBRis not reduced, allowing for a compromise between theRon,sp, and the short-circuit characteristics. Kim[19]proposed a novel SJ structure with a hetero-junction diode for improved reverse recovery characteristics and switching energy loss. Heet al.[20]investigated a new SJ structure by using grounded p+buried layers and connected p columns to encapsulate deep trench gate oxide to reduce the saturation current.

    Moreover, the practical feasibility of fabricating superjunction structures has been discussed by using the trenchfilling epitaxial growth method in some papers. Jiet al.[21,22]studied and made possible uniform epitaxial filling in the 4HSiC trench between 7 μm and 50 μm deep. There have also been significant advances in understanding the mechanisms of epitaxial growth of trench filling.[23–25]In addition, Ryojiet al.[26]have established a key manufacturing process of superjunction structure with thickness over 20 μm and high aspect ratio, and the theoretical limit of 6.5-kV class 4H-SiC superjunction MOSFET is broken through by the trench filling epitaxial growth method. Consequently,it is feasible to study the trench-filled epitaxial growth method of SiC super-junction devices with high breakdown voltage.

    In this article, an improved structure of 4H-SiC trench gate MOSFET with a side-wall p-pillar and a wrapping npillar at the right of the p-pillar is studied to reduce the gate oxide electric field and switching energy loss. The Silvaco TCAD simulation results demonstrate that the SNPPT-MOS exhibits good static and dynamic performance. The SNNPTMOS structure is a significant optimization of the full-SJ-MOS structure. In addition,in the second section,some preliminary manufacturing techniques are discussed, and their feasibility is proved from the processing point of view.

    2. Description of the device structure and fabrication procedure

    Figure 1 shows the schematic cross-section of the SNPPTMOS and full-SJ-MOS.[27]The main device-related parameters of the two structures are shown in Figs.1(a)and 1(b). The SNPPT-MOS structure mainly includes a p+-SiC buried region,CSL region,a p-pillar,and a wrap n-pillar. The gate oxide thickness of both sidewalls and the bottom is about 50 nm.The height of the CSL region was 1.7 μm (LCSL=1.7 μm).The height of the p-pillar was 24 μm(Lp-pillar=24 μm). The wrapped n-pillar junction depth (Lwn) was set to be 1 μm to decrease the impact toVBRand gate-drain charge. The distance between the wrap n-pillar and the gate was set at 0.5 μm(Wng= 0.5 μm). The thickness of the gate oxide was set at 50 nm. The n-drift region dopant concentration (Nd) was set to be 3×1015cm-3. Moreover, in the super-junction (SJ)MOSFET structure, the charge balance between the n-pillar and p-pillar must be precisely controlled. Thus, the products of the width and doping concentration of the n-pillar region of the two structures must equal to the product of the width and doping concentration of the p-pillar region the according to[16,17,28,29]

    whereWpandWnare the widths of the p-pillar and n-pillar,NpandNnare doping concentrations of the p-pillar and n-pillar,respectively. The detailed parameters of the simulation used for the two structures are listed in Table 1.

    Fig. 1. The schematic cross-section of the (a) SNPPT-MOS and (b)full-SJ-MOS.

    Table 1. Device parameters in simulations.

    A feasible manufacturing process of the SNPPT-MOS is shown in Fig. 2. An n-drift was grown on a 4H-SiC n+substrate, as shown in Fig. 2(a). Fabrication of the superjunction structure began with a deep stripe-trench formation in an n-drift by using inductively coupled plasma etching in an SF6/O2gas ambient, as shown in Fig. 2(b). The p-pillar region was fabricated with the trench-filling epitaxial (TFE)growth method,[26]as shown in Fig.2(c). After TFE growth,the wafer surface was flattened by thinning the TFE grown wafer to the initial epitaxial wafer thickness by using grinding and polishing,as shown in Fig.2(d). And then,CSL grew on the flat surface of the wafer. After CSL was formed, a mask plate of a certain size(distance between the two p-pillar)was manufactured to mask CSL, and p+-SiC buried region were generated on both sides of the mask plate through ion implantation. The resulting structure is shown in Fig. 2(e). Then remove the mask based on the structure in Fig.2(e),and grow another layer of p-type 4H-SiC to form the p-body region. After the p-body region was formed, n+-SiC source region was formed by ion implantation. Then, masks of the same size were used to mask certain n+-SiC source region,and p+-SiC source region was generated on both sides of the mask by ion implantation. The final structure is shown in Fig.2(f). Finally,the p+-shielding, the oxide layer, the gate structure, and the electrode were implemented in a similar way to the conventional SiC trench MOSFET,as shown in Figs.2(g)and 2(h).

    Fig.2. The key fabrication procedure of the SNPPT-MOS.

    Moreover, it is a very important step to align p+-SiC buried region and p+-SiC source region with p-pillar in the process of SNPPT-MOS structure.Firstly,for Fig.1(d),ensure that the polishing process thinned the epitaxial wafer to the initial thickness of the epitaxial wafer, so that the wafer surface becomes sufficiently flat. Secondly, the size of the mask in Fig.1(e)can be determined, that is, the distance between the p-pillar on both sides. In addition, in SiC devices, due to the low diffusion coefficient of dopant,[30]p+-SiC buried region is formed by ion implantation,and the doping amount of ion implantation impurity can be precisely controlled. For Fig.1(f),the p+-SiC source region is firstly formed by ion implantation on both sides of the n+-SiC source region. The mask used is the same size as that used in Fig.1(e). And the p+-SiC source region on both sides of the n+-SiC source region is also formed by ion implantation,which can accurately control the amount of impurity doping. Therefore,the accurate alignment of align p+-SiC buried region and p+-SiC source with p-pillar is ensured to a certain extent.

    At the same time, in order to better illustrate the feasibility of SNPPT-MOS structure. TheVBR,Ron,sp, and FoM(V2BRRon,sp)of p+-SiC buried region width and p+-SiC source region width from-10% to +10% deviation are simulated and discussed, as shown in Table 2. As can be seen from Table 2, theVBRandRon,spof the device are almost constant when the error of the alignment widths of the p+-SiC source region and p+-SiC buried region with p-pillar ranges from 0 to-10%. When p+-SiC source region and p+-SiC buried region are aligned with the width of p-pillar from 0 to+10%,theVBRof the device increases slightly and then decreases slightly,theRon,spchanges accordingly,and the FoM(V2BRRon,sp)is calculated to be almost the same.

    Table 2.The VBR,Ron,sp and FoM(V2BR/Ron,sp)of p+-SiC buried region width and p+-SiC source region width from-10%to+10%.

    3. Numerical simulation and result analysis

    In this section,the static characteristics and the dynamic characteristics of the SNPPT-MOS were simulated by using the 2-D Silvaco ATLAS tool and compared the performance of the full-SJ-MOS with the performance of the SNPPT-MOS.In this simulation, some physical models were used. The physical models are divided into four parts. The first part is the mobility model, where the simulation uses the concentration and temperature-related mobility model(ANALYTIC)and the parallel electric field correlation model(FLDMOB).The second part is the composite model, where the simulation uses the Shockley–Read–Hall complex model(SRH)and the Auger complex model(AUGER).The third part is the carrier generation model, where the IMPACT SELB model is used in the simulation. The fourth part is the carrier statistical model.The incomplete ionization model (INCOMPLETE) is used in the simulation.[31–33]

    3.1. On-state characteristic

    The on-state output characteristic curves of the SNPPTMOS and full-SJ-MOS atVgs=20 V,Vgs=16 V,Vgs=12 V,andVgs=8 V are shown in Fig.3. TheRon,spof the SNPPTMOS was 9.90 mΩ·cm2, and theRon,spof the full-SJ-MOS was 11.5 mΩ·cm2,atVgs=16 V andVds=1 V.The wrap npillar and CSL region in the optimized structure provide two diffusion paths for current diffusion and compress the depletion region. The thin light doping of the CSL region causes the electrons to diffuse horizontally earlier.

    Fig. 3. The on-state output characteristic curves for the SNPPT-MOS and full-SJ-MOS.

    In addition, the wrap n-pillar allows the current to flow vertically. We know that the more narrow the depletion region, the wider the current path of the electron, resulting in the lowestRon,sp. Compared with full-SJ-MOS, theRon,spof SNPPT-MOS decreased by 16.2%. TheRon,spof the SNPPTMOS is slightly lower than that of full-SJ-MOS because the SNPPT-MOS structure has a higher doping concentration in wrap n-pillar. In the SNPPT-MOS structure,the wrap n-pillar under the CSL the electron concentration in the channel region,while the depletion region decreases,increasing the current path in the SNPPT-MOS structure, as shown in Fig. 4.The equation of theRon,spcan be described as

    whereWdis the maximum depletion width and theμnis the electron’s mobility.

    Fig.4. Distribution of the electron concentration for (a) SNPPT-MOS and(b)full-SJ-MOS.

    3.2. Off-state characteristics

    Figure 5 shows the off-state breakdown characteristic curves for the SNPPT-MOS and full-SJ-MOS. The corresponding electric field in the gate oxide distributions is shown in Fig.6.

    Fig.5. OFF-state breakdown characteristic curves of the SNPPT-MOS and full-SJ-MOS.

    Fig. 6. OFF-state corresponds to electric field curves of (a) SNPPTMOS and(b)full-SJ-MOS.

    We can see that the peak electric field in the gate oxide (Epeak-goe) in the full-SJ-MOS structure has reached 3.12 MV/cm with a drain bias voltage of 4226 V. In the SNPPT-MOS structure, the value of theEpeak-goeis about 2.80 MV/cm with a drain bias of 4713 V. The SNPPT-MOS exhibits lowerEpeak-goethan the full-SJ-MOS,this is because of the mutual depletion effect of the p-pillar and the wrap npillar in the n-drift,and the electric field around the bottom of the gate trench could be screened effectively. As for the full-SJ-MOS structure,it could also alleviate the high electric field around the bottom of the gate trench to a certain extent due to the p-pillar embedded n-drift region, while the high doping concentration of the n-drain region and thus theEpeak-goe(3.12 MV/cm)is slightly higher than the SNPPT-MOS,resulting in aVBRwitha drain bias of 4226 V. The vertical electric field distributions of the SNPPT-MOS and the full-SJ-MOS from 0 to 30 μm are shown in Fig. 7. The maximum gate oxide electric field is about 2.5 μm vertically. From 2.5 μm onward,the vertical electric field curve of SNPPT-MOS is almost as flat as that of the full-SJ-MOS.Because of the mutual depletion effect of the p-pillar and the wrap n-pillar in the ndrain region,the field distributions for the SNPPT-MOS at the p-pillar and the wrap n-pillar interface are uniforms.

    Fig.7. The vertical distribution of the electric field from 0 to 30 μm.

    3.3. Reverse transfer capacitance and gate charge characteristics

    The smaller reverse transfer capacitance is of great importance for reducing the switching loss and preventing the false turn-on. It helps improve the switching characteristics.The reverse transfer capacitance(Crss=Cgd)properties of the SNPPT-MOS and full-SJ-MOS are shown in Fig.8.Compared with theCrssof the full-SJ-MOS,the SNPPT-MOS exhibits a lowerCgdthan the full-SJ-MOS,owing to the effective electric field shielding of the p-pillar and wrap n-pillar. And they have a smaller p–n junction area than the conventional full superjunction structure.

    The specific gate charge (Qg,sp) characteristic curves of the SNPPT-MOS and the full-SJ-MOS are evaluated as well,as shown in Fig. 9. TheQg,spis extracted by using the mixmode simulation. The simulation circuit schematic diagram is inserted in the bottom right corner of Fig. 9. The extractedQgd,spof the SNPPT-MOS is 101 nC/cm2.The SNPPTMOS exhibits a lower miller charge compared with that of the 154 nC/cm2for the full-SJ-MOS due to the p-pillar and wrapped n-pillar having smaller p–n junction area and effective electric field shielding ability. The FoM (Ron,sp×Qgd,sp)is a widely used parameter to measure the device performance in high-frequency switching applications.[34–36]According to the calculation, the FoM (Ron,sp×Qgd,sp) of the full-SJ-MOS structure is 1771 mΩ·nC.The SNPPT-MOS structure obtained superiorRon,sp×Qgd,spwith a value of 999.9 mΩ·nC, which decreases by 77.1%compared with the full-SJ-MOS structure.

    Fig.8. The Crss property curves of the SNPPT-MOS and full-SJ-MOS.

    Fig.9. The Qg,sp characteristic curves of the SNPPT-MOS and full-SJMOS.

    3.4. Dynamic characteristics

    To better study the switching characteristics of the SNPPT-MOS, the double-pulse test (DUT) circuit is used to investigate the switching performance of the two structures,as shown in Fig. 10. The basic parameters of the DUT circuit are listed in Table 3. Figure 11 shows the switching waveforms of the SNPPT-MOS and full-SJ-MOS. As can be seen from Fig.11,the full-SJ-MOS needs a longer period to arrive at highVdsand highIdscompared with the SNPPT-MOS.TOFFis defined as the turn-off delay time and turn-off fall time.TONis defined as the turn-on delay time and turn-on fall time.

    Fig.10. The double-pulse test circuit.

    Table 3. The basic parameters of the DUT circuit.

    Fig.11. Switching waveforms of(a)SNPPT-MOS and(b)full-SJ-MOS.

    Figure 12 shows the switching energy loss for the SNPPTMOS and the full-SJ-MOS. The calculated energy loss values of turn-on (Eon) and turn-off (Eoff) for SNPPT-MOS are 32.5 mJ/cm2and 31.7 mJ/cm2. The calculated values ofEonandEofffor full-SJ-MOS are 40.3 mJ/cm2and 36.5 mJ/cm2.It can be discerned that in the SNPPT-MOS structure,the energy loss duringEonis reduced as a respective decrease of 24.%compared with the full-SJ-MOS, and theEoffis a respective decrease of 15.1%compared with the full-SJ-MOS.The equation of theEonandEoffcan be described as

    whereT1(10%ofVgs(on)),T2(2%ofVdd),T3(90%ofVgs(on))andT4(2%ofIds).

    Fig.12. Switching energy loss of the SNPPT-MOS and full-SJ-MOS.

    3.5. Parameters optimization

    To get the optimized device structure,the added wrap npillar dopant concentration(Nn),p-pillar dopant concentration(Np),and the height of the p-pillar(H)have a great influence on the device performance. In the SJ MOSFET structure, to obtain highVBR,it is necessary to control accurately the charge balance between n-pillar and p-pillar regions. So the products of the width and concentration of the n-pillar region of the SNPPT-MOS must equal the product of the width and concentration of the p-pillar region. Figure 13 shows theVBRandRon,spof this SNPPT-MOS structure in the case ofNpfrom 1×1016cm-3to 3×1016cm-3,Nnfrom 3×1016cm-3to 9×1016cm-3, andHfrom 10 μm to 24 μm. And the FoM(V2BR/Ron,sp) corresponding to differentHis given in detail.Figure 14 shows FoM(V2BR/Ron,sp)as a function of the differentNn,Np,andH. The maximum FoM that appears at theNn,Np, andHare 6×1016cm-3, 2×1016cm-3, and 24 μm, respectively. We also investigated the most suitableWng. TheWngfrom 0.1 μm to 0.7 μm, as shown in Fig. 15, we can see that the smaller theWngwas, the smaller theRon,spof the SNPPT-MOS was. However, theVBRalso decreased. As can be seen from Fig. 15, we can find that the most suitableWngwas 0.5 μm.

    Fig.13. The VBR and Ron,sp as function Np and Nn for different heights of the p-pillar.

    Fig.14. FoM(V2BR/Ron,sp)as a function of the different Nn,Np,and H.

    Fig. 15. The VBR and Ron,sp for the different distances between the npillar and the gate(Wng).

    Table 4 gives theVBR,Ron,sp,and FoM whenWngis set at 0.5 μm. The higher theNn,and the smaller theVBRandRon,spof the SNPPT-MOS.The FoM value increases firstly and then decreases. The main reason is that whenNnis low,the depletion region in the n-pillar is wider, which makes the current path narrow. As theNnvalue increases, the electron path becomes wider. As the doping concentration of n-pillar is higher than that of drift,the increase ofNnsignificantly improves the reduction ofRon,sp. WhenNnis low, the reduction ofRon,sphas more effect on FoM than that ofVBR. However,whenNnis high,the effect of the decrease ofRon,spon FoM is less than that of the decrease ofVBR.

    Table 4. The VBR,Ron,sp,and FoM at Wng=0.5 μm.

    Table 5 gives theVBR,Ron,sp, and FoM whenNnis 6×1016cm-3. As can be seen from Table 5, we can find that the wider theWng, the larger theRon,spand theVBR. The FoM value increases firstly and then decreases. The main reason is that when theWngis smaller, the larger the area of the electron flow through the n-pillar. The area of electrons flow through in the n-pillar is larger than the depletion region. With the increase ofWng, the area of electrons flowing through the n-pillar increases. It is because of the high doping concentration of the n-pillar that the area of electrons flows through the n-pillar increases, which promotes the decrease ofRon,sp.WhenWngis small,the effect ofRon,spon FoM is greater than that ofVBR.With the increase ofWng,the contribution ofRon,spto FoM decreased. In the largerWngcondition,the increase ofRon,sphad less effect on FoM than that ofVBR. Therefore,we choose these two parameters as the basement of our simulations and the following discussion. The electrical property of the full-SJ-MOS and the SNPPT-MOS are listed in Table 6.

    Table 5. The VBR,Ron,sp,and FoM at Nn=6×1016 cm-3.

    Table 6. Electrical property of the SNPPT-MOS and the full-SJ-MOS.

    4. Conclusion and perspectives

    An optimized structure of the 4H-SiC trench MOSFET is studied in this article. The improved structure exhibits good electrical characteristics due to the incorporating side-wall ppillar region and a wrapping n-pillar region in the drift region.The SNPPT-MOS structure has significantly protected the gate oxide and relieves the electric field around the p+ shielding region. With charge-balanced n-pillar and p-pillar under the p-body,the improved structure help reducing theRon,sp,which leads to the tradeoff of theVBRandRon,sp. In addition, the improved structure exhibit superior switching property during both the turn-on and the turn-off transients.

    Acknowledgements

    This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61774052 and 61904045), the National Natural Science Foundation of Jiangxi Province of China (Grant No. 20202BABL201021),and the Education Department of Jiangxi Province of China for Youth Foundation(Grant No.GJJ191154).

    猜你喜歡
    王穎
    發(fā)現(xiàn)反復(fù)結(jié)構(gòu),輕松學(xué)寫故事
    Novel layout design of 4H-SiC merged PiN Schottky diodes leading to improved surge robustness
    郝睿揚(yáng)、王潤(rùn)雪、王穎、田雨作品
    大觀(2022年9期)2022-12-06 12:37:40
    地表水監(jiān)測(cè)中存在的問題及策略
    Improved 4H-SiC UMOSFET with super-junction shield region*
    追本溯源刨根問底
    《水天一色》《踢球的女孩》《傍晚》
    文化交流(2019年12期)2019-01-09 07:06:30
    Solitary Vortex Evolution in Two-Dimensional Harmonically Trapped Bose-Einstein Condensates?
    Research and development trend of intelligent clothing
    東方教育(2018年3期)2018-03-30 09:19:36
    王穎作品
    岛国毛片在线播放| 人人妻,人人澡人人爽秒播| 亚洲欧美一区二区三区久久| 亚洲综合色网址| 亚洲一区二区三区欧美精品| 中文字幕人妻丝袜制服| 亚洲片人在线观看| 国产亚洲一区二区精品| 午夜免费鲁丝| 免费在线观看亚洲国产| 满18在线观看网站| 国产xxxxx性猛交| 久久久久久人人人人人| 亚洲国产精品合色在线| 国产成人一区二区三区免费视频网站| 日韩视频一区二区在线观看| 国产又色又爽无遮挡免费看| 757午夜福利合集在线观看| 成熟少妇高潮喷水视频| 在线观看午夜福利视频| 欧美日本中文国产一区发布| 国产在线一区二区三区精| 女性被躁到高潮视频| 亚洲情色 制服丝袜| 无人区码免费观看不卡| 叶爱在线成人免费视频播放| 午夜福利视频在线观看免费| 亚洲精品在线美女| 99久久99久久久精品蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 精品福利永久在线观看| 亚洲国产精品sss在线观看 | 99久久人妻综合| xxxhd国产人妻xxx| aaaaa片日本免费| 丝袜美腿诱惑在线| 国产蜜桃级精品一区二区三区 | 国产蜜桃级精品一区二区三区 | 欧美日本中文国产一区发布| 美女视频免费永久观看网站| 欧美精品av麻豆av| 亚洲成国产人片在线观看| 一区二区三区精品91| 性色av乱码一区二区三区2| 99re6热这里在线精品视频| 精品视频人人做人人爽| 亚洲av成人不卡在线观看播放网| 激情在线观看视频在线高清 | 精品国产乱码久久久久久男人| 日本a在线网址| 久久久水蜜桃国产精品网| 天天影视国产精品| 自线自在国产av| 久久久久久人人人人人| 亚洲色图av天堂| 美国免费a级毛片| 一级毛片精品| 国产激情久久老熟女| 欧美日韩视频精品一区| 久久精品成人免费网站| 久久人妻熟女aⅴ| 欧美日本中文国产一区发布| 80岁老熟妇乱子伦牲交| 国产野战对白在线观看| 女同久久另类99精品国产91| 无限看片的www在线观看| 一区二区三区国产精品乱码| 亚洲精品国产一区二区精华液| 日韩欧美在线二视频 | 啦啦啦在线免费观看视频4| 香蕉国产在线看| 亚洲性夜色夜夜综合| 日韩制服丝袜自拍偷拍| www日本在线高清视频| 日日摸夜夜添夜夜添小说| 久久影院123| 狂野欧美激情性xxxx| 女警被强在线播放| 后天国语完整版免费观看| 中文字幕人妻丝袜一区二区| 99精品欧美一区二区三区四区| 久久国产乱子伦精品免费另类| 久久久精品区二区三区| 热99国产精品久久久久久7| 久久久久久久久免费视频了| 国产国语露脸激情在线看| 久久亚洲真实| 欧美激情极品国产一区二区三区| 午夜福利欧美成人| 每晚都被弄得嗷嗷叫到高潮| 757午夜福利合集在线观看| xxxhd国产人妻xxx| 欧美另类亚洲清纯唯美| 日本vs欧美在线观看视频| 日韩大码丰满熟妇| 国产成人精品久久二区二区91| 91成年电影在线观看| 人妻一区二区av| 美女午夜性视频免费| 午夜免费成人在线视频| 妹子高潮喷水视频| 97人妻天天添夜夜摸| 啦啦啦视频在线资源免费观看| 国产在线精品亚洲第一网站| 最新在线观看一区二区三区| e午夜精品久久久久久久| 最新的欧美精品一区二区| 亚洲黑人精品在线| 亚洲精品成人av观看孕妇| 99国产精品一区二区蜜桃av | 国产精品成人在线| 80岁老熟妇乱子伦牲交| 人人妻,人人澡人人爽秒播| 欧美日韩黄片免| 久久香蕉精品热| 在线观看免费视频日本深夜| 色婷婷久久久亚洲欧美| xxxhd国产人妻xxx| 91麻豆av在线| 一边摸一边抽搐一进一小说 | 日本撒尿小便嘘嘘汇集6| 久久精品91无色码中文字幕| 国产精品自产拍在线观看55亚洲 | 在线看a的网站| 成人亚洲精品一区在线观看| 欧美老熟妇乱子伦牲交| 亚洲少妇的诱惑av| 久久香蕉精品热| 搡老熟女国产l中国老女人| 精品第一国产精品| 国产精品欧美亚洲77777| bbb黄色大片| 制服诱惑二区| 欧美亚洲 丝袜 人妻 在线| 欧美激情高清一区二区三区| 亚洲精品美女久久av网站| 久久精品人人爽人人爽视色| 99在线人妻在线中文字幕 | 精品一区二区三区四区五区乱码| 国产色视频综合| 免费人成视频x8x8入口观看| 黑丝袜美女国产一区| 99热只有精品国产| 少妇被粗大的猛进出69影院| 久久久国产欧美日韩av| 日韩制服丝袜自拍偷拍| 国产精品1区2区在线观看. | 免费日韩欧美在线观看| 亚洲自偷自拍图片 自拍| 亚洲情色 制服丝袜| 亚洲色图综合在线观看| a级毛片黄视频| 国产精品1区2区在线观看. | 下体分泌物呈黄色| 亚洲av片天天在线观看| 日日摸夜夜添夜夜添小说| 美女福利国产在线| 天天躁日日躁夜夜躁夜夜| 50天的宝宝边吃奶边哭怎么回事| 两个人看的免费小视频| xxx96com| а√天堂www在线а√下载 | 欧美一级毛片孕妇| 老司机午夜福利在线观看视频| 午夜成年电影在线免费观看| 精品国产乱子伦一区二区三区| 高潮久久久久久久久久久不卡| 高潮久久久久久久久久久不卡| 99精品在免费线老司机午夜| 国内久久婷婷六月综合欲色啪| 国产男女内射视频| 性少妇av在线| 91麻豆av在线| 精品午夜福利视频在线观看一区| 久久精品国产99精品国产亚洲性色 | 激情在线观看视频在线高清 | 一二三四社区在线视频社区8| 精品乱码久久久久久99久播| av视频免费观看在线观看| 国产精品香港三级国产av潘金莲| 欧美精品高潮呻吟av久久| videos熟女内射| 精品人妻1区二区| 午夜免费成人在线视频| 天天躁夜夜躁狠狠躁躁| 一进一出抽搐gif免费好疼 | 热99国产精品久久久久久7| 欧美乱码精品一区二区三区| netflix在线观看网站| 午夜福利影视在线免费观看| 国产成+人综合+亚洲专区| 下体分泌物呈黄色| 少妇猛男粗大的猛烈进出视频| 在线免费观看的www视频| 动漫黄色视频在线观看| 18禁观看日本| 国产一区有黄有色的免费视频| 午夜福利视频在线观看免费| 国产一区在线观看成人免费| 91麻豆精品激情在线观看国产 | 自线自在国产av| 12—13女人毛片做爰片一| 男女午夜视频在线观看| 搡老岳熟女国产| 深夜精品福利| 国产精品.久久久| 午夜福利免费观看在线| 午夜福利在线免费观看网站| 亚洲av第一区精品v没综合| 中国美女看黄片| 一进一出抽搐动态| 18禁黄网站禁片午夜丰满| 熟女少妇亚洲综合色aaa.| 精品第一国产精品| 看片在线看免费视频| 又黄又爽又免费观看的视频| 午夜两性在线视频| 日韩制服丝袜自拍偷拍| 亚洲欧美色中文字幕在线| 黄色女人牲交| 亚洲精品粉嫩美女一区| 免费女性裸体啪啪无遮挡网站| 欧美亚洲 丝袜 人妻 在线| 亚洲人成电影免费在线| av片东京热男人的天堂| 日本撒尿小便嘘嘘汇集6| 久久影院123| 欧美人与性动交α欧美软件| 国产亚洲一区二区精品| 女人高潮潮喷娇喘18禁视频| 亚洲视频免费观看视频| 国产精品一区二区在线观看99| 精品福利永久在线观看| 如日韩欧美国产精品一区二区三区| 成年人黄色毛片网站| 国产97色在线日韩免费| 午夜免费鲁丝| 色老头精品视频在线观看| 国产一区二区三区视频了| 精品亚洲成国产av| 国产91精品成人一区二区三区| 午夜福利免费观看在线| a在线观看视频网站| 成人国语在线视频| 日韩免费高清中文字幕av| 自线自在国产av| 黄色女人牲交| 丝袜美腿诱惑在线| 91国产中文字幕| 色综合欧美亚洲国产小说| 脱女人内裤的视频| 18禁裸乳无遮挡免费网站照片 | 国产97色在线日韩免费| 亚洲av日韩在线播放| 午夜精品在线福利| 99久久精品国产亚洲精品| 中文字幕最新亚洲高清| 久久国产亚洲av麻豆专区| 亚洲欧美日韩另类电影网站| 亚洲国产精品sss在线观看 | 美国免费a级毛片| 久久婷婷成人综合色麻豆| 成年动漫av网址| 女人久久www免费人成看片| av超薄肉色丝袜交足视频| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区av网在线观看| 久久久久国产精品人妻aⅴ院 | 亚洲aⅴ乱码一区二区在线播放 | 最新在线观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 人人澡人人妻人| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文字幕日韩| 亚洲第一av免费看| 99精国产麻豆久久婷婷| 久久精品成人免费网站| 久久久国产成人精品二区 | 人妻久久中文字幕网| 国精品久久久久久国模美| 亚洲五月色婷婷综合| 亚洲欧美色中文字幕在线| 黄片小视频在线播放| а√天堂www在线а√下载 | 久久久久久免费高清国产稀缺| 精品国产一区二区三区四区第35| 少妇被粗大的猛进出69影院| 欧美激情高清一区二区三区| 嫁个100分男人电影在线观看| 成人国语在线视频| 99精品在免费线老司机午夜| 国产乱人伦免费视频| 男人舔女人的私密视频| 亚洲第一青青草原| 黄频高清免费视频| 精品熟女少妇八av免费久了| 搡老乐熟女国产| 亚洲欧美精品综合一区二区三区| 91成人精品电影| 国产一区二区三区综合在线观看| 啪啪无遮挡十八禁网站| 一区二区三区精品91| 国产成人一区二区三区免费视频网站| 美女扒开内裤让男人捅视频| 亚洲成人手机| 亚洲中文字幕日韩| 国产精品香港三级国产av潘金莲| 90打野战视频偷拍视频| 男人操女人黄网站| 操美女的视频在线观看| 久久影院123| 老熟妇乱子伦视频在线观看| 999久久久国产精品视频| 亚洲精品一二三| 黄频高清免费视频| 成人黄色视频免费在线看| 成人影院久久| 女性被躁到高潮视频| www.自偷自拍.com| 天堂√8在线中文| 99riav亚洲国产免费| 色综合欧美亚洲国产小说| 国产成人免费无遮挡视频| 变态另类成人亚洲欧美熟女 | 啪啪无遮挡十八禁网站| 国产欧美日韩综合在线一区二区| 丰满迷人的少妇在线观看| 91在线观看av| 看黄色毛片网站| 波多野结衣一区麻豆| 国产xxxxx性猛交| 黄色毛片三级朝国网站| 欧美日韩一级在线毛片| 黄片大片在线免费观看| 日韩有码中文字幕| 国产高清videossex| 久久久久国产精品人妻aⅴ院 | 啪啪无遮挡十八禁网站| 精品熟女少妇八av免费久了| 久久影院123| 自线自在国产av| а√天堂www在线а√下载 | 国产视频一区二区在线看| 波多野结衣av一区二区av| 日韩三级视频一区二区三区| 免费观看a级毛片全部| av天堂久久9| 一二三四在线观看免费中文在| 涩涩av久久男人的天堂| 成人亚洲精品一区在线观看| 欧美日韩一级在线毛片| 国产精品一区二区免费欧美| 国产精品国产高清国产av | 国产又色又爽无遮挡免费看| 亚洲成av片中文字幕在线观看| 51午夜福利影视在线观看| 久久精品国产99精品国产亚洲性色 | 久久性视频一级片| 亚洲成国产人片在线观看| 色播在线永久视频| av中文乱码字幕在线| 久久久久久久午夜电影 | 女人久久www免费人成看片| 国产精华一区二区三区| 我的亚洲天堂| 12—13女人毛片做爰片一| 午夜福利免费观看在线| 国产精品美女特级片免费视频播放器 | 亚洲av电影在线进入| 精品一区二区三区四区五区乱码| 一区二区三区国产精品乱码| 欧美日韩亚洲高清精品| 99在线人妻在线中文字幕 | 成年版毛片免费区| 一进一出抽搐gif免费好疼 | 美女视频免费永久观看网站| 国产不卡av网站在线观看| cao死你这个sao货| 久久久国产成人精品二区 | 久久国产精品人妻蜜桃| 久热爱精品视频在线9| 久久久精品免费免费高清| 色精品久久人妻99蜜桃| √禁漫天堂资源中文www| 成年版毛片免费区| 少妇被粗大的猛进出69影院| 亚洲人成电影观看| av一本久久久久| 一边摸一边做爽爽视频免费| 精品国产美女av久久久久小说| 国产精品久久视频播放| 国产日韩一区二区三区精品不卡| 建设人人有责人人尽责人人享有的| 深夜精品福利| 操出白浆在线播放| 国产99久久九九免费精品| 亚洲精品中文字幕在线视频| 欧美激情极品国产一区二区三区| 18禁黄网站禁片午夜丰满| 一区二区三区国产精品乱码| 日韩成人在线观看一区二区三区| 男女下面插进去视频免费观看| 狂野欧美激情性xxxx| 下体分泌物呈黄色| 亚洲精品久久成人aⅴ小说| 国产精品成人在线| 精品一区二区三区av网在线观看| 纯流量卡能插随身wifi吗| 极品教师在线免费播放| 国产单亲对白刺激| 美女国产高潮福利片在线看| 日韩欧美一区二区三区在线观看 | 亚洲成国产人片在线观看| 亚洲一区中文字幕在线| 黄片小视频在线播放| 一进一出抽搐动态| 在线十欧美十亚洲十日本专区| 最新在线观看一区二区三区| 国精品久久久久久国模美| 午夜精品国产一区二区电影| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人精品久久二区二区91| 国产精品欧美亚洲77777| 一边摸一边做爽爽视频免费| 亚洲av熟女| 18禁裸乳无遮挡动漫免费视频| 激情在线观看视频在线高清 | 欧美中文综合在线视频| 黄网站色视频无遮挡免费观看| 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色 | 国产乱人伦免费视频| 国产精品二区激情视频| 无人区码免费观看不卡| 亚洲国产精品合色在线| 高清视频免费观看一区二区| 日本撒尿小便嘘嘘汇集6| 亚洲一区中文字幕在线| 天堂动漫精品| 在线播放国产精品三级| www.自偷自拍.com| 51午夜福利影视在线观看| 久久人妻av系列| 午夜免费成人在线视频| 亚洲五月天丁香| 丁香六月欧美| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区精品| netflix在线观看网站| 丰满的人妻完整版| 日本wwww免费看| 国产免费男女视频| 欧美黑人欧美精品刺激| 亚洲一区高清亚洲精品| 欧美精品亚洲一区二区| 国产欧美亚洲国产| 精品欧美一区二区三区在线| 最新的欧美精品一区二区| 99国产精品一区二区三区| 亚洲av日韩精品久久久久久密| 中出人妻视频一区二区| 日韩免费av在线播放| 满18在线观看网站| 精品少妇久久久久久888优播| 亚洲第一av免费看| 久久午夜亚洲精品久久| 中文字幕精品免费在线观看视频| 18禁国产床啪视频网站| 美女 人体艺术 gogo| 亚洲色图av天堂| 老汉色av国产亚洲站长工具| 国产成人欧美在线观看 | 精品久久久久久久毛片微露脸| 亚洲avbb在线观看| 久久久久久人人人人人| 久久99一区二区三区| 99精品在免费线老司机午夜| 午夜福利视频在线观看免费| 欧美亚洲 丝袜 人妻 在线| 天天躁日日躁夜夜躁夜夜| 一进一出好大好爽视频| 日本wwww免费看| 午夜激情av网站| 91成年电影在线观看| 午夜成年电影在线免费观看| 三上悠亚av全集在线观看| 啪啪无遮挡十八禁网站| 看片在线看免费视频| 欧美黑人精品巨大| 日韩有码中文字幕| 午夜激情av网站| videosex国产| 国产男女内射视频| 午夜免费成人在线视频| 久久精品成人免费网站| 99久久99久久久精品蜜桃| 亚洲男人天堂网一区| 久久草成人影院| 三上悠亚av全集在线观看| 亚洲一区二区三区欧美精品| 丝袜美足系列| 18禁国产床啪视频网站| 国产精品秋霞免费鲁丝片| 老司机在亚洲福利影院| 欧美日韩中文字幕国产精品一区二区三区 | 首页视频小说图片口味搜索| 超碰97精品在线观看| 日韩人妻精品一区2区三区| 99久久99久久久精品蜜桃| 18禁国产床啪视频网站| 免费不卡黄色视频| 欧美 日韩 精品 国产| 久久精品成人免费网站| 一本大道久久a久久精品| 欧美黄色片欧美黄色片| 国产成人免费观看mmmm| 国产视频一区二区在线看| 精品久久久久久久毛片微露脸| xxxhd国产人妻xxx| 一进一出好大好爽视频| 十分钟在线观看高清视频www| 999久久久精品免费观看国产| 国产成人精品久久二区二区91| 一区二区三区国产精品乱码| 99国产精品免费福利视频| 久久草成人影院| 三上悠亚av全集在线观看| av超薄肉色丝袜交足视频| 99久久99久久久精品蜜桃| 精品乱码久久久久久99久播| 校园春色视频在线观看| ponron亚洲| 十八禁人妻一区二区| 国产成+人综合+亚洲专区| 亚洲精品美女久久av网站| 欧美成人免费av一区二区三区 | 国产欧美日韩一区二区三| 久久这里只有精品19| 飞空精品影院首页| 欧美日韩成人在线一区二区| 亚洲国产精品合色在线| 成人亚洲精品一区在线观看| 久久人妻av系列| 一a级毛片在线观看| av片东京热男人的天堂| 身体一侧抽搐| 交换朋友夫妻互换小说| 高清欧美精品videossex| 欧美日韩亚洲综合一区二区三区_| 中文字幕高清在线视频| 99re6热这里在线精品视频| 正在播放国产对白刺激| 国产免费av片在线观看野外av| 高清av免费在线| 久久狼人影院| 成年女人毛片免费观看观看9 | 欧美黄色片欧美黄色片| av网站在线播放免费| 亚洲国产精品sss在线观看 | 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 午夜免费观看网址| 国产精品欧美亚洲77777| av在线播放免费不卡| 国产成人av教育| 午夜精品国产一区二区电影| 精品熟女少妇八av免费久了| 欧美亚洲日本最大视频资源| 久久久久国内视频| 变态另类成人亚洲欧美熟女 | 色老头精品视频在线观看| 亚洲精品中文字幕一二三四区| 美国免费a级毛片| 国产精品av久久久久免费| 女人爽到高潮嗷嗷叫在线视频| 老司机影院毛片| 啦啦啦在线免费观看视频4| 一二三四社区在线视频社区8| 成人18禁在线播放| 午夜福利一区二区在线看| 久久久国产一区二区| 日韩成人在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 三级毛片av免费| 国产精品综合久久久久久久免费 | 最新在线观看一区二区三区| 男人舔女人的私密视频| 别揉我奶头~嗯~啊~动态视频| 不卡一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品成人av观看孕妇| 黄片大片在线免费观看| 女同久久另类99精品国产91| 18禁裸乳无遮挡免费网站照片 | 丁香六月欧美| 精品久久久久久久毛片微露脸| 欧美一级毛片孕妇| 新久久久久国产一级毛片| 午夜老司机福利片| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 美女视频免费永久观看网站| 中文字幕人妻熟女乱码| 久久久久久人人人人人| 一进一出抽搐动态| 久久人人97超碰香蕉20202| 操美女的视频在线观看| 村上凉子中文字幕在线| 久久久久视频综合| 一区二区日韩欧美中文字幕| 国产高清videossex| 99国产精品一区二区蜜桃av | 久久精品人人爽人人爽视色| 一区二区三区国产精品乱码|