• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance

    2022-08-01 05:59:32PeiShen沈培YingWang王穎andFeiCao曹菲
    Chinese Physics B 2022年7期
    關(guān)鍵詞:王穎

    Pei Shen(沈培), Ying Wang(王穎), and Fei Cao(曹菲)

    1The Key Laboratory of RF Circuits and Systems,Ministry of Education,Hangzhou Dianzi University,Hangzhou 310018,China

    2The School of Mechanical and Electronic Engineering,Pingxiang University,Pingxiang 337055,China

    Keywords: 4H-silicon carbide (4H-SiC) trench gate MOSFET, breakdown voltage (VBR), specific onresistance(Ron,sp),switching energy loss,super-junction

    1. Introduction

    Wide-band gap third-generation semiconductor material silicon carbide offers excellent switching properties, temperature stability and low electromagnetic interference (EMI),making it ideal for next-generation power conversion applications such as switching power supplies, electric vehicles,and industrial power.[1–4]In recent years, SiC power MOSFETs with theVBRof 600–1700 V level dominated have been commercialized,but higherVBRof the SiC MOSFETs are less studied. Especially, the SiC trench gate MOSFET generally has lowRon,spdue to the small cell-pitch using the trench gate configuration.[5–7]However, SiC trench gate MOSFET has a fatal disadvantage. As the drain–source voltage increases,the electric field at the bottom corner of the gate trench increases,affecting the gate oxide stability.[8,9]To overcome this issue,some good methods and novel structures are proposed to overcome the electric field concentration at the bottom corner of the gate trench.[10–12]The most commonly used way to shield highly the electric field at the bottom corner of the gate trench is to increase the p+shield region under the gate trench,[13–15]yet with a marked increase inRon,sp. With charge-balanced npillar and p-pillar,the super-junction(SJ)MOSFET has more superior electrical characteristics compared with conventional SiC trench MOSFET.[16–20]Vudumulaet al.[16]studied the static and dynamic characteristics of the CoolSiC trench MOSFET structure by introducing the concept of super-junction,and the structure provides a good trade-off between gate oxide reliability andRon,sp. Oroujiet al.[17]proposed to replace the p+shield region with an n-type pillar and a p-type pillar at the bottom of the gate trench. The new device structure improves theVBRand reduces theRon,sp,and has good switching characteristics. Denget al.[18]studied a novel structure embedded in a floating p-column in the drift region,which ensures that theVBRis not reduced, allowing for a compromise between theRon,sp, and the short-circuit characteristics. Kim[19]proposed a novel SJ structure with a hetero-junction diode for improved reverse recovery characteristics and switching energy loss. Heet al.[20]investigated a new SJ structure by using grounded p+buried layers and connected p columns to encapsulate deep trench gate oxide to reduce the saturation current.

    Moreover, the practical feasibility of fabricating superjunction structures has been discussed by using the trenchfilling epitaxial growth method in some papers. Jiet al.[21,22]studied and made possible uniform epitaxial filling in the 4HSiC trench between 7 μm and 50 μm deep. There have also been significant advances in understanding the mechanisms of epitaxial growth of trench filling.[23–25]In addition, Ryojiet al.[26]have established a key manufacturing process of superjunction structure with thickness over 20 μm and high aspect ratio, and the theoretical limit of 6.5-kV class 4H-SiC superjunction MOSFET is broken through by the trench filling epitaxial growth method. Consequently,it is feasible to study the trench-filled epitaxial growth method of SiC super-junction devices with high breakdown voltage.

    In this article, an improved structure of 4H-SiC trench gate MOSFET with a side-wall p-pillar and a wrapping npillar at the right of the p-pillar is studied to reduce the gate oxide electric field and switching energy loss. The Silvaco TCAD simulation results demonstrate that the SNPPT-MOS exhibits good static and dynamic performance. The SNNPTMOS structure is a significant optimization of the full-SJ-MOS structure. In addition,in the second section,some preliminary manufacturing techniques are discussed, and their feasibility is proved from the processing point of view.

    2. Description of the device structure and fabrication procedure

    Figure 1 shows the schematic cross-section of the SNPPTMOS and full-SJ-MOS.[27]The main device-related parameters of the two structures are shown in Figs.1(a)and 1(b). The SNPPT-MOS structure mainly includes a p+-SiC buried region,CSL region,a p-pillar,and a wrap n-pillar. The gate oxide thickness of both sidewalls and the bottom is about 50 nm.The height of the CSL region was 1.7 μm (LCSL=1.7 μm).The height of the p-pillar was 24 μm(Lp-pillar=24 μm). The wrapped n-pillar junction depth (Lwn) was set to be 1 μm to decrease the impact toVBRand gate-drain charge. The distance between the wrap n-pillar and the gate was set at 0.5 μm(Wng= 0.5 μm). The thickness of the gate oxide was set at 50 nm. The n-drift region dopant concentration (Nd) was set to be 3×1015cm-3. Moreover, in the super-junction (SJ)MOSFET structure, the charge balance between the n-pillar and p-pillar must be precisely controlled. Thus, the products of the width and doping concentration of the n-pillar region of the two structures must equal to the product of the width and doping concentration of the p-pillar region the according to[16,17,28,29]

    whereWpandWnare the widths of the p-pillar and n-pillar,NpandNnare doping concentrations of the p-pillar and n-pillar,respectively. The detailed parameters of the simulation used for the two structures are listed in Table 1.

    Fig. 1. The schematic cross-section of the (a) SNPPT-MOS and (b)full-SJ-MOS.

    Table 1. Device parameters in simulations.

    A feasible manufacturing process of the SNPPT-MOS is shown in Fig. 2. An n-drift was grown on a 4H-SiC n+substrate, as shown in Fig. 2(a). Fabrication of the superjunction structure began with a deep stripe-trench formation in an n-drift by using inductively coupled plasma etching in an SF6/O2gas ambient, as shown in Fig. 2(b). The p-pillar region was fabricated with the trench-filling epitaxial (TFE)growth method,[26]as shown in Fig.2(c). After TFE growth,the wafer surface was flattened by thinning the TFE grown wafer to the initial epitaxial wafer thickness by using grinding and polishing,as shown in Fig.2(d). And then,CSL grew on the flat surface of the wafer. After CSL was formed, a mask plate of a certain size(distance between the two p-pillar)was manufactured to mask CSL, and p+-SiC buried region were generated on both sides of the mask plate through ion implantation. The resulting structure is shown in Fig. 2(e). Then remove the mask based on the structure in Fig.2(e),and grow another layer of p-type 4H-SiC to form the p-body region. After the p-body region was formed, n+-SiC source region was formed by ion implantation. Then, masks of the same size were used to mask certain n+-SiC source region,and p+-SiC source region was generated on both sides of the mask by ion implantation. The final structure is shown in Fig.2(f). Finally,the p+-shielding, the oxide layer, the gate structure, and the electrode were implemented in a similar way to the conventional SiC trench MOSFET,as shown in Figs.2(g)and 2(h).

    Fig.2. The key fabrication procedure of the SNPPT-MOS.

    Moreover, it is a very important step to align p+-SiC buried region and p+-SiC source region with p-pillar in the process of SNPPT-MOS structure.Firstly,for Fig.1(d),ensure that the polishing process thinned the epitaxial wafer to the initial thickness of the epitaxial wafer, so that the wafer surface becomes sufficiently flat. Secondly, the size of the mask in Fig.1(e)can be determined, that is, the distance between the p-pillar on both sides. In addition, in SiC devices, due to the low diffusion coefficient of dopant,[30]p+-SiC buried region is formed by ion implantation,and the doping amount of ion implantation impurity can be precisely controlled. For Fig.1(f),the p+-SiC source region is firstly formed by ion implantation on both sides of the n+-SiC source region. The mask used is the same size as that used in Fig.1(e). And the p+-SiC source region on both sides of the n+-SiC source region is also formed by ion implantation,which can accurately control the amount of impurity doping. Therefore,the accurate alignment of align p+-SiC buried region and p+-SiC source with p-pillar is ensured to a certain extent.

    At the same time, in order to better illustrate the feasibility of SNPPT-MOS structure. TheVBR,Ron,sp, and FoM(V2BRRon,sp)of p+-SiC buried region width and p+-SiC source region width from-10% to +10% deviation are simulated and discussed, as shown in Table 2. As can be seen from Table 2, theVBRandRon,spof the device are almost constant when the error of the alignment widths of the p+-SiC source region and p+-SiC buried region with p-pillar ranges from 0 to-10%. When p+-SiC source region and p+-SiC buried region are aligned with the width of p-pillar from 0 to+10%,theVBRof the device increases slightly and then decreases slightly,theRon,spchanges accordingly,and the FoM(V2BRRon,sp)is calculated to be almost the same.

    Table 2.The VBR,Ron,sp and FoM(V2BR/Ron,sp)of p+-SiC buried region width and p+-SiC source region width from-10%to+10%.

    3. Numerical simulation and result analysis

    In this section,the static characteristics and the dynamic characteristics of the SNPPT-MOS were simulated by using the 2-D Silvaco ATLAS tool and compared the performance of the full-SJ-MOS with the performance of the SNPPT-MOS.In this simulation, some physical models were used. The physical models are divided into four parts. The first part is the mobility model, where the simulation uses the concentration and temperature-related mobility model(ANALYTIC)and the parallel electric field correlation model(FLDMOB).The second part is the composite model, where the simulation uses the Shockley–Read–Hall complex model(SRH)and the Auger complex model(AUGER).The third part is the carrier generation model, where the IMPACT SELB model is used in the simulation. The fourth part is the carrier statistical model.The incomplete ionization model (INCOMPLETE) is used in the simulation.[31–33]

    3.1. On-state characteristic

    The on-state output characteristic curves of the SNPPTMOS and full-SJ-MOS atVgs=20 V,Vgs=16 V,Vgs=12 V,andVgs=8 V are shown in Fig.3. TheRon,spof the SNPPTMOS was 9.90 mΩ·cm2, and theRon,spof the full-SJ-MOS was 11.5 mΩ·cm2,atVgs=16 V andVds=1 V.The wrap npillar and CSL region in the optimized structure provide two diffusion paths for current diffusion and compress the depletion region. The thin light doping of the CSL region causes the electrons to diffuse horizontally earlier.

    Fig. 3. The on-state output characteristic curves for the SNPPT-MOS and full-SJ-MOS.

    In addition, the wrap n-pillar allows the current to flow vertically. We know that the more narrow the depletion region, the wider the current path of the electron, resulting in the lowestRon,sp. Compared with full-SJ-MOS, theRon,spof SNPPT-MOS decreased by 16.2%. TheRon,spof the SNPPTMOS is slightly lower than that of full-SJ-MOS because the SNPPT-MOS structure has a higher doping concentration in wrap n-pillar. In the SNPPT-MOS structure,the wrap n-pillar under the CSL the electron concentration in the channel region,while the depletion region decreases,increasing the current path in the SNPPT-MOS structure, as shown in Fig. 4.The equation of theRon,spcan be described as

    whereWdis the maximum depletion width and theμnis the electron’s mobility.

    Fig.4. Distribution of the electron concentration for (a) SNPPT-MOS and(b)full-SJ-MOS.

    3.2. Off-state characteristics

    Figure 5 shows the off-state breakdown characteristic curves for the SNPPT-MOS and full-SJ-MOS. The corresponding electric field in the gate oxide distributions is shown in Fig.6.

    Fig.5. OFF-state breakdown characteristic curves of the SNPPT-MOS and full-SJ-MOS.

    Fig. 6. OFF-state corresponds to electric field curves of (a) SNPPTMOS and(b)full-SJ-MOS.

    We can see that the peak electric field in the gate oxide (Epeak-goe) in the full-SJ-MOS structure has reached 3.12 MV/cm with a drain bias voltage of 4226 V. In the SNPPT-MOS structure, the value of theEpeak-goeis about 2.80 MV/cm with a drain bias of 4713 V. The SNPPT-MOS exhibits lowerEpeak-goethan the full-SJ-MOS,this is because of the mutual depletion effect of the p-pillar and the wrap npillar in the n-drift,and the electric field around the bottom of the gate trench could be screened effectively. As for the full-SJ-MOS structure,it could also alleviate the high electric field around the bottom of the gate trench to a certain extent due to the p-pillar embedded n-drift region, while the high doping concentration of the n-drain region and thus theEpeak-goe(3.12 MV/cm)is slightly higher than the SNPPT-MOS,resulting in aVBRwitha drain bias of 4226 V. The vertical electric field distributions of the SNPPT-MOS and the full-SJ-MOS from 0 to 30 μm are shown in Fig. 7. The maximum gate oxide electric field is about 2.5 μm vertically. From 2.5 μm onward,the vertical electric field curve of SNPPT-MOS is almost as flat as that of the full-SJ-MOS.Because of the mutual depletion effect of the p-pillar and the wrap n-pillar in the ndrain region,the field distributions for the SNPPT-MOS at the p-pillar and the wrap n-pillar interface are uniforms.

    Fig.7. The vertical distribution of the electric field from 0 to 30 μm.

    3.3. Reverse transfer capacitance and gate charge characteristics

    The smaller reverse transfer capacitance is of great importance for reducing the switching loss and preventing the false turn-on. It helps improve the switching characteristics.The reverse transfer capacitance(Crss=Cgd)properties of the SNPPT-MOS and full-SJ-MOS are shown in Fig.8.Compared with theCrssof the full-SJ-MOS,the SNPPT-MOS exhibits a lowerCgdthan the full-SJ-MOS,owing to the effective electric field shielding of the p-pillar and wrap n-pillar. And they have a smaller p–n junction area than the conventional full superjunction structure.

    The specific gate charge (Qg,sp) characteristic curves of the SNPPT-MOS and the full-SJ-MOS are evaluated as well,as shown in Fig. 9. TheQg,spis extracted by using the mixmode simulation. The simulation circuit schematic diagram is inserted in the bottom right corner of Fig. 9. The extractedQgd,spof the SNPPT-MOS is 101 nC/cm2.The SNPPTMOS exhibits a lower miller charge compared with that of the 154 nC/cm2for the full-SJ-MOS due to the p-pillar and wrapped n-pillar having smaller p–n junction area and effective electric field shielding ability. The FoM (Ron,sp×Qgd,sp)is a widely used parameter to measure the device performance in high-frequency switching applications.[34–36]According to the calculation, the FoM (Ron,sp×Qgd,sp) of the full-SJ-MOS structure is 1771 mΩ·nC.The SNPPT-MOS structure obtained superiorRon,sp×Qgd,spwith a value of 999.9 mΩ·nC, which decreases by 77.1%compared with the full-SJ-MOS structure.

    Fig.8. The Crss property curves of the SNPPT-MOS and full-SJ-MOS.

    Fig.9. The Qg,sp characteristic curves of the SNPPT-MOS and full-SJMOS.

    3.4. Dynamic characteristics

    To better study the switching characteristics of the SNPPT-MOS, the double-pulse test (DUT) circuit is used to investigate the switching performance of the two structures,as shown in Fig. 10. The basic parameters of the DUT circuit are listed in Table 3. Figure 11 shows the switching waveforms of the SNPPT-MOS and full-SJ-MOS. As can be seen from Fig.11,the full-SJ-MOS needs a longer period to arrive at highVdsand highIdscompared with the SNPPT-MOS.TOFFis defined as the turn-off delay time and turn-off fall time.TONis defined as the turn-on delay time and turn-on fall time.

    Fig.10. The double-pulse test circuit.

    Table 3. The basic parameters of the DUT circuit.

    Fig.11. Switching waveforms of(a)SNPPT-MOS and(b)full-SJ-MOS.

    Figure 12 shows the switching energy loss for the SNPPTMOS and the full-SJ-MOS. The calculated energy loss values of turn-on (Eon) and turn-off (Eoff) for SNPPT-MOS are 32.5 mJ/cm2and 31.7 mJ/cm2. The calculated values ofEonandEofffor full-SJ-MOS are 40.3 mJ/cm2and 36.5 mJ/cm2.It can be discerned that in the SNPPT-MOS structure,the energy loss duringEonis reduced as a respective decrease of 24.%compared with the full-SJ-MOS, and theEoffis a respective decrease of 15.1%compared with the full-SJ-MOS.The equation of theEonandEoffcan be described as

    whereT1(10%ofVgs(on)),T2(2%ofVdd),T3(90%ofVgs(on))andT4(2%ofIds).

    Fig.12. Switching energy loss of the SNPPT-MOS and full-SJ-MOS.

    3.5. Parameters optimization

    To get the optimized device structure,the added wrap npillar dopant concentration(Nn),p-pillar dopant concentration(Np),and the height of the p-pillar(H)have a great influence on the device performance. In the SJ MOSFET structure, to obtain highVBR,it is necessary to control accurately the charge balance between n-pillar and p-pillar regions. So the products of the width and concentration of the n-pillar region of the SNPPT-MOS must equal the product of the width and concentration of the p-pillar region. Figure 13 shows theVBRandRon,spof this SNPPT-MOS structure in the case ofNpfrom 1×1016cm-3to 3×1016cm-3,Nnfrom 3×1016cm-3to 9×1016cm-3, andHfrom 10 μm to 24 μm. And the FoM(V2BR/Ron,sp) corresponding to differentHis given in detail.Figure 14 shows FoM(V2BR/Ron,sp)as a function of the differentNn,Np,andH. The maximum FoM that appears at theNn,Np, andHare 6×1016cm-3, 2×1016cm-3, and 24 μm, respectively. We also investigated the most suitableWng. TheWngfrom 0.1 μm to 0.7 μm, as shown in Fig. 15, we can see that the smaller theWngwas, the smaller theRon,spof the SNPPT-MOS was. However, theVBRalso decreased. As can be seen from Fig. 15, we can find that the most suitableWngwas 0.5 μm.

    Fig.13. The VBR and Ron,sp as function Np and Nn for different heights of the p-pillar.

    Fig.14. FoM(V2BR/Ron,sp)as a function of the different Nn,Np,and H.

    Fig. 15. The VBR and Ron,sp for the different distances between the npillar and the gate(Wng).

    Table 4 gives theVBR,Ron,sp,and FoM whenWngis set at 0.5 μm. The higher theNn,and the smaller theVBRandRon,spof the SNPPT-MOS.The FoM value increases firstly and then decreases. The main reason is that whenNnis low,the depletion region in the n-pillar is wider, which makes the current path narrow. As theNnvalue increases, the electron path becomes wider. As the doping concentration of n-pillar is higher than that of drift,the increase ofNnsignificantly improves the reduction ofRon,sp. WhenNnis low, the reduction ofRon,sphas more effect on FoM than that ofVBR. However,whenNnis high,the effect of the decrease ofRon,spon FoM is less than that of the decrease ofVBR.

    Table 4. The VBR,Ron,sp,and FoM at Wng=0.5 μm.

    Table 5 gives theVBR,Ron,sp, and FoM whenNnis 6×1016cm-3. As can be seen from Table 5, we can find that the wider theWng, the larger theRon,spand theVBR. The FoM value increases firstly and then decreases. The main reason is that when theWngis smaller, the larger the area of the electron flow through the n-pillar. The area of electrons flow through in the n-pillar is larger than the depletion region. With the increase ofWng, the area of electrons flowing through the n-pillar increases. It is because of the high doping concentration of the n-pillar that the area of electrons flows through the n-pillar increases, which promotes the decrease ofRon,sp.WhenWngis small,the effect ofRon,spon FoM is greater than that ofVBR.With the increase ofWng,the contribution ofRon,spto FoM decreased. In the largerWngcondition,the increase ofRon,sphad less effect on FoM than that ofVBR. Therefore,we choose these two parameters as the basement of our simulations and the following discussion. The electrical property of the full-SJ-MOS and the SNPPT-MOS are listed in Table 6.

    Table 5. The VBR,Ron,sp,and FoM at Nn=6×1016 cm-3.

    Table 6. Electrical property of the SNPPT-MOS and the full-SJ-MOS.

    4. Conclusion and perspectives

    An optimized structure of the 4H-SiC trench MOSFET is studied in this article. The improved structure exhibits good electrical characteristics due to the incorporating side-wall ppillar region and a wrapping n-pillar region in the drift region.The SNPPT-MOS structure has significantly protected the gate oxide and relieves the electric field around the p+ shielding region. With charge-balanced n-pillar and p-pillar under the p-body,the improved structure help reducing theRon,sp,which leads to the tradeoff of theVBRandRon,sp. In addition, the improved structure exhibit superior switching property during both the turn-on and the turn-off transients.

    Acknowledgements

    This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61774052 and 61904045), the National Natural Science Foundation of Jiangxi Province of China (Grant No. 20202BABL201021),and the Education Department of Jiangxi Province of China for Youth Foundation(Grant No.GJJ191154).

    猜你喜歡
    王穎
    發(fā)現(xiàn)反復(fù)結(jié)構(gòu),輕松學(xué)寫故事
    Novel layout design of 4H-SiC merged PiN Schottky diodes leading to improved surge robustness
    郝睿揚(yáng)、王潤(rùn)雪、王穎、田雨作品
    大觀(2022年9期)2022-12-06 12:37:40
    地表水監(jiān)測(cè)中存在的問題及策略
    Improved 4H-SiC UMOSFET with super-junction shield region*
    追本溯源刨根問底
    《水天一色》《踢球的女孩》《傍晚》
    文化交流(2019年12期)2019-01-09 07:06:30
    Solitary Vortex Evolution in Two-Dimensional Harmonically Trapped Bose-Einstein Condensates?
    Research and development trend of intelligent clothing
    東方教育(2018年3期)2018-03-30 09:19:36
    王穎作品
    新久久久久国产一级毛片| 亚洲精品久久久久久婷婷小说| 国产一区二区三区av在线| 黑人高潮一二区| 综合色丁香网| 丰满饥渴人妻一区二区三| 夜夜爽夜夜爽视频| 狠狠婷婷综合久久久久久88av| 26uuu在线亚洲综合色| 两个人看的免费小视频| 少妇 在线观看| 国产色爽女视频免费观看| 久久鲁丝午夜福利片| 日产精品乱码卡一卡2卡三| 日韩av免费高清视频| 一级毛片我不卡| 欧美成人午夜免费资源| 国产av码专区亚洲av| 国产欧美日韩综合在线一区二区| av卡一久久| 国产一级毛片在线| 亚洲精品美女久久av网站| 1024视频免费在线观看| 亚洲av电影在线观看一区二区三区| 一本久久精品| 国产色婷婷99| 22中文网久久字幕| 久久ye,这里只有精品| av女优亚洲男人天堂| tube8黄色片| 精品国产一区二区三区久久久樱花| 精品国产乱码久久久久久小说| 综合色丁香网| 国产无遮挡羞羞视频在线观看| 亚洲精华国产精华液的使用体验| 国产黄频视频在线观看| 精品少妇久久久久久888优播| 51国产日韩欧美| 成人综合一区亚洲| 亚洲av中文av极速乱| 色哟哟·www| 国产精品嫩草影院av在线观看| 男女午夜视频在线观看 | 91精品国产国语对白视频| 亚洲成人一二三区av| a级片在线免费高清观看视频| 国产永久视频网站| 夫妻午夜视频| 久久久精品区二区三区| 国产一区二区三区综合在线观看 | 日韩制服丝袜自拍偷拍| 99精国产麻豆久久婷婷| 久久久久久伊人网av| 午夜福利视频精品| 久久精品国产亚洲av天美| 国产在线免费精品| 亚洲美女视频黄频| 高清欧美精品videossex| 一个人免费看片子| 日本-黄色视频高清免费观看| 一级毛片 在线播放| 亚洲婷婷狠狠爱综合网| 精品国产一区二区三区四区第35| 亚洲一区二区三区欧美精品| 久久影院123| 久久人人爽人人片av| 赤兔流量卡办理| 日韩一本色道免费dvd| 久久久精品94久久精品| 亚洲av综合色区一区| 99re6热这里在线精品视频| 成年美女黄网站色视频大全免费| 色哟哟·www| 一二三四在线观看免费中文在 | 少妇人妻久久综合中文| 丰满少妇做爰视频| 精品一品国产午夜福利视频| 亚洲一区二区三区欧美精品| 日日摸夜夜添夜夜爱| 超碰97精品在线观看| 99国产精品免费福利视频| av在线观看视频网站免费| 夫妻午夜视频| 麻豆精品久久久久久蜜桃| 亚洲国产精品999| 日本与韩国留学比较| 久久热在线av| 成年av动漫网址| 久久女婷五月综合色啪小说| 亚洲精品乱久久久久久| 51国产日韩欧美| 国产精品不卡视频一区二区| 亚洲天堂av无毛| 久久97久久精品| 精品99又大又爽又粗少妇毛片| 伦理电影大哥的女人| 男人操女人黄网站| 国产片内射在线| 国产成人av激情在线播放| 亚洲av免费高清在线观看| 超碰97精品在线观看| 欧美激情 高清一区二区三区| 成人毛片60女人毛片免费| 欧美日韩成人在线一区二区| 欧美精品国产亚洲| 亚洲情色 制服丝袜| 久久ye,这里只有精品| 欧美精品av麻豆av| 精品第一国产精品| 最近手机中文字幕大全| 久久久久久人人人人人| 国产日韩欧美亚洲二区| 亚洲伊人色综图| 乱码一卡2卡4卡精品| 久久久精品免费免费高清| 99精国产麻豆久久婷婷| 亚洲天堂av无毛| 一本—道久久a久久精品蜜桃钙片| 永久网站在线| 色网站视频免费| 日本wwww免费看| 午夜福利视频精品| 激情视频va一区二区三区| 免费看不卡的av| 天天躁夜夜躁狠狠久久av| 久久久久久伊人网av| av在线播放精品| 国产精品一二三区在线看| 久久久欧美国产精品| 日韩av在线免费看完整版不卡| 九色成人免费人妻av| 婷婷色综合www| 免费黄频网站在线观看国产| 久久久久久久久久人人人人人人| 久久精品久久久久久噜噜老黄| 久久人人爽av亚洲精品天堂| 国产精品一区www在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品不卡视频一区二区| 久久久久久久久久人人人人人人| av福利片在线| 高清不卡的av网站| 亚洲av综合色区一区| 日韩一区二区视频免费看| 亚洲人成77777在线视频| 一区二区三区精品91| 国产一区亚洲一区在线观看| 久久ye,这里只有精品| 午夜福利视频精品| 最近的中文字幕免费完整| 涩涩av久久男人的天堂| 久久亚洲国产成人精品v| 亚洲欧美精品自产自拍| 成人手机av| 中国三级夫妇交换| 观看美女的网站| 老司机影院成人| 男人舔女人的私密视频| 日韩成人伦理影院| 边亲边吃奶的免费视频| 少妇人妻久久综合中文| 午夜激情av网站| 亚洲久久久国产精品| 免费播放大片免费观看视频在线观看| 9热在线视频观看99| 深夜精品福利| 黑人高潮一二区| 麻豆乱淫一区二区| 精品国产露脸久久av麻豆| 国国产精品蜜臀av免费| 日日啪夜夜爽| 欧美精品一区二区免费开放| 大香蕉97超碰在线| 人人妻人人爽人人添夜夜欢视频| 大码成人一级视频| 如何舔出高潮| 纵有疾风起免费观看全集完整版| av国产精品久久久久影院| 午夜福利视频在线观看免费| 两性夫妻黄色片 | 国产爽快片一区二区三区| 亚洲第一区二区三区不卡| 久久久精品94久久精品| 91成人精品电影| 日韩人妻精品一区2区三区| xxxhd国产人妻xxx| 亚洲国产看品久久| 人人妻人人澡人人看| a级毛片黄视频| 人人妻人人爽人人添夜夜欢视频| 99久久中文字幕三级久久日本| 人妻少妇偷人精品九色| 免费高清在线观看日韩| av天堂久久9| 亚洲国产精品国产精品| 丝袜人妻中文字幕| 大香蕉97超碰在线| videosex国产| 亚洲国产精品一区三区| 国产淫语在线视频| 欧美日韩精品成人综合77777| 人妻人人澡人人爽人人| 日本黄色日本黄色录像| 欧美国产精品一级二级三级| 中文字幕亚洲精品专区| 91午夜精品亚洲一区二区三区| 国产av国产精品国产| 日韩视频在线欧美| 亚洲色图 男人天堂 中文字幕 | 免费大片黄手机在线观看| av又黄又爽大尺度在线免费看| 成人二区视频| 男女啪啪激烈高潮av片| 亚洲综合精品二区| 色5月婷婷丁香| 日韩大片免费观看网站| 性色av一级| 国产熟女欧美一区二区| 亚洲色图综合在线观看| 秋霞伦理黄片| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 久久精品人人爽人人爽视色| 国产综合精华液| 亚洲国产毛片av蜜桃av| 日本wwww免费看| 在线免费观看不下载黄p国产| 女性生殖器流出的白浆| 成人18禁高潮啪啪吃奶动态图| 精品亚洲乱码少妇综合久久| 哪个播放器可以免费观看大片| 国产亚洲精品久久久com| 亚洲性久久影院| 在线观看三级黄色| 涩涩av久久男人的天堂| 蜜桃在线观看..| 一本色道久久久久久精品综合| 久久人人爽人人片av| 精品国产露脸久久av麻豆| 在线观看美女被高潮喷水网站| tube8黄色片| av免费观看日本| 女性被躁到高潮视频| 久久久久国产网址| 亚洲av电影在线观看一区二区三区| 国产亚洲av片在线观看秒播厂| 国产精品偷伦视频观看了| 午夜福利影视在线免费观看| 女人久久www免费人成看片| 欧美另类一区| 国产亚洲精品第一综合不卡 | 国产日韩欧美亚洲二区| 国产国语露脸激情在线看| 欧美精品亚洲一区二区| 永久网站在线| 亚洲精品国产av成人精品| 久久久久精品人妻al黑| 欧美精品av麻豆av| 日韩欧美一区视频在线观看| 久久久久久伊人网av| 亚洲精品中文字幕在线视频| 2022亚洲国产成人精品| 熟女人妻精品中文字幕| 国产免费福利视频在线观看| 亚洲综合精品二区| 老司机影院毛片| 美女xxoo啪啪120秒动态图| 久久久国产欧美日韩av| 亚洲欧美成人综合另类久久久| 亚洲欧美一区二区三区国产| 久久99一区二区三区| 大片免费播放器 马上看| 久久av网站| 中文精品一卡2卡3卡4更新| 晚上一个人看的免费电影| 亚洲精品乱码久久久久久按摩| 高清欧美精品videossex| 国产成人精品福利久久| 久久99热这里只频精品6学生| 成人午夜精彩视频在线观看| 777米奇影视久久| 久久久久久久国产电影| 中文字幕人妻熟女乱码| 国产一级毛片在线| 国产一区二区三区av在线| 九色亚洲精品在线播放| 午夜福利网站1000一区二区三区| 最近手机中文字幕大全| 人体艺术视频欧美日本| 嫩草影院入口| 人人妻人人澡人人爽人人夜夜| 久久人人爽av亚洲精品天堂| 久久亚洲国产成人精品v| 少妇的逼好多水| 老女人水多毛片| 99香蕉大伊视频| 在线免费观看不下载黄p国产| 亚洲欧美一区二区三区黑人 | 黑人巨大精品欧美一区二区蜜桃 | 精品亚洲乱码少妇综合久久| 亚洲av成人精品一二三区| 天堂俺去俺来也www色官网| 午夜福利在线观看免费完整高清在| 少妇猛男粗大的猛烈进出视频| 尾随美女入室| 欧美性感艳星| 亚洲精品久久成人aⅴ小说| 亚洲精品乱久久久久久| 一个人免费看片子| 亚洲精品乱久久久久久| 亚洲国产毛片av蜜桃av| 各种免费的搞黄视频| 久久精品国产亚洲av天美| 国产熟女午夜一区二区三区| 日韩一区二区三区影片| 国产精品国产三级专区第一集| 下体分泌物呈黄色| 免费观看在线日韩| 99久久综合免费| 久久久久国产网址| 免费观看无遮挡的男女| 伦理电影大哥的女人| 日本av手机在线免费观看| 亚洲av综合色区一区| 人成视频在线观看免费观看| 国产精品嫩草影院av在线观看| 最近中文字幕2019免费版| 国产日韩一区二区三区精品不卡| 久久亚洲国产成人精品v| 多毛熟女@视频| 日韩电影二区| 午夜久久久在线观看| 久久久久久久亚洲中文字幕| 亚洲国产欧美在线一区| 在线观看一区二区三区激情| 日韩中文字幕视频在线看片| 亚洲国产毛片av蜜桃av| 色吧在线观看| 乱人伦中国视频| 最新中文字幕久久久久| 久久精品国产a三级三级三级| 看非洲黑人一级黄片| 久热久热在线精品观看| 免费在线观看黄色视频的| 国产精品久久久久久久久免| av福利片在线| 韩国精品一区二区三区 | av在线老鸭窝| 国产男人的电影天堂91| 国产xxxxx性猛交| 极品人妻少妇av视频| 纯流量卡能插随身wifi吗| 亚洲美女黄色视频免费看| 一级黄片播放器| 国产精品 国内视频| 2021少妇久久久久久久久久久| 女人久久www免费人成看片| 国精品久久久久久国模美| 国产在线视频一区二区| 亚洲精品久久午夜乱码| av有码第一页| 精品国产国语对白av| 国产白丝娇喘喷水9色精品| 啦啦啦视频在线资源免费观看| 国产欧美亚洲国产| 丝袜美足系列| 99国产综合亚洲精品| 丝袜美足系列| 日本免费在线观看一区| 精品一区二区三区视频在线| 久久免费观看电影| 青春草国产在线视频| 在线观看免费日韩欧美大片| 性色av一级| 亚洲美女黄色视频免费看| 国产无遮挡羞羞视频在线观看| 亚洲精品乱码久久久久久按摩| 精品卡一卡二卡四卡免费| 日韩欧美一区视频在线观看| 色婷婷av一区二区三区视频| 丝袜喷水一区| 啦啦啦在线观看免费高清www| 国产精品麻豆人妻色哟哟久久| 国产欧美另类精品又又久久亚洲欧美| 久久精品熟女亚洲av麻豆精品| 大片电影免费在线观看免费| 热99久久久久精品小说推荐| 国产成人av激情在线播放| 精品少妇黑人巨大在线播放| 亚洲精品av麻豆狂野| 女性生殖器流出的白浆| av电影中文网址| av.在线天堂| 免费日韩欧美在线观看| 欧美xxⅹ黑人| 日韩 亚洲 欧美在线| 这个男人来自地球电影免费观看 | 亚洲精品国产av成人精品| av.在线天堂| 色婷婷久久久亚洲欧美| 美女大奶头黄色视频| 九色亚洲精品在线播放| 中文欧美无线码| 如何舔出高潮| 亚洲av男天堂| 美女中出高潮动态图| 精品久久国产蜜桃| 宅男免费午夜| 日本爱情动作片www.在线观看| 欧美日韩亚洲高清精品| 亚洲欧洲国产日韩| tube8黄色片| 久久久国产一区二区| 久久久精品免费免费高清| 久久ye,这里只有精品| 深夜精品福利| 亚洲成人手机| 一级毛片黄色毛片免费观看视频| 9热在线视频观看99| 亚洲av国产av综合av卡| 国产成人欧美| 国产成人91sexporn| 极品少妇高潮喷水抽搐| 久久久久视频综合| 80岁老熟妇乱子伦牲交| 久久久久久久精品精品| 免费av不卡在线播放| 我要看黄色一级片免费的| 交换朋友夫妻互换小说| 国产69精品久久久久777片| 两性夫妻黄色片 | 欧美日韩成人在线一区二区| 在线亚洲精品国产二区图片欧美| 日本vs欧美在线观看视频| videos熟女内射| 一边亲一边摸免费视频| 亚洲性久久影院| 国产成人免费无遮挡视频| 人人妻人人澡人人爽人人夜夜| 又黄又粗又硬又大视频| 伊人亚洲综合成人网| 少妇熟女欧美另类| 99热国产这里只有精品6| 高清在线视频一区二区三区| 免费久久久久久久精品成人欧美视频 | 在线精品无人区一区二区三| 久久综合国产亚洲精品| 免费看不卡的av| 黑人猛操日本美女一级片| 999精品在线视频| 国产精品久久久久久精品古装| 边亲边吃奶的免费视频| 欧美国产精品va在线观看不卡| 成年人免费黄色播放视频| av免费在线看不卡| 成年av动漫网址| 一级,二级,三级黄色视频| 精品久久久精品久久久| 免费大片黄手机在线观看| av天堂久久9| 亚洲,欧美,日韩| 99久久综合免费| 大话2 男鬼变身卡| 激情视频va一区二区三区| 最新中文字幕久久久久| 日韩视频在线欧美| 在线观看美女被高潮喷水网站| 色94色欧美一区二区| 国产精品嫩草影院av在线观看| freevideosex欧美| 精品99又大又爽又粗少妇毛片| 十分钟在线观看高清视频www| 男女免费视频国产| 亚洲精品成人av观看孕妇| 国产精品一国产av| 老熟女久久久| 亚洲欧洲日产国产| 国产探花极品一区二区| 午夜91福利影院| 久久99一区二区三区| 天堂俺去俺来也www色官网| 日韩不卡一区二区三区视频在线| 亚洲三级黄色毛片| 视频中文字幕在线观看| 亚洲成人av在线免费| 久久国内精品自在自线图片| 亚洲av国产av综合av卡| 国产欧美日韩一区二区三区在线| 国产亚洲午夜精品一区二区久久| 国产精品国产三级专区第一集| 最近最新中文字幕免费大全7| 97人妻天天添夜夜摸| 久久久久国产网址| 中文字幕最新亚洲高清| 欧美老熟妇乱子伦牲交| 两个人看的免费小视频| 日韩电影二区| 亚洲精品色激情综合| 新久久久久国产一级毛片| 国产黄色免费在线视频| 18禁在线无遮挡免费观看视频| 夫妻性生交免费视频一级片| 欧美日韩国产mv在线观看视频| 国产在线视频一区二区| 精品第一国产精品| 不卡视频在线观看欧美| 亚洲 欧美一区二区三区| 女性生殖器流出的白浆| 看免费av毛片| 99re6热这里在线精品视频| 黑人欧美特级aaaaaa片| 两个人免费观看高清视频| 啦啦啦在线观看免费高清www| 国产xxxxx性猛交| 久久久久视频综合| 国产精品久久久av美女十八| www.色视频.com| 在线免费观看不下载黄p国产| 久久久久久久久久久久大奶| 色婷婷久久久亚洲欧美| 成人亚洲欧美一区二区av| 高清欧美精品videossex| 在线天堂最新版资源| 美国免费a级毛片| 中文字幕人妻丝袜制服| 大香蕉97超碰在线| 边亲边吃奶的免费视频| 日韩一区二区三区影片| 中文字幕人妻熟女乱码| 亚洲国产欧美日韩在线播放| 日本av免费视频播放| 韩国av在线不卡| 国产乱来视频区| 亚洲国产看品久久| 亚洲成人一二三区av| 国产精品久久久av美女十八| 亚洲欧美一区二区三区黑人 | kizo精华| 日韩制服骚丝袜av| 美女国产高潮福利片在线看| 欧美激情 高清一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品古装| 国产精品久久久久久久电影| 亚洲 欧美一区二区三区| 午夜免费男女啪啪视频观看| 少妇人妻久久综合中文| 蜜桃国产av成人99| 1024视频免费在线观看| 大话2 男鬼变身卡| 久久97久久精品| 午夜免费男女啪啪视频观看| 亚洲综合色网址| 久久久精品区二区三区| 亚洲av欧美aⅴ国产| 亚洲精品国产av成人精品| 欧美+日韩+精品| 午夜久久久在线观看| 国产一区有黄有色的免费视频| 日韩精品有码人妻一区| 最近2019中文字幕mv第一页| 中文字幕人妻丝袜制服| 一二三四中文在线观看免费高清| 亚洲丝袜综合中文字幕| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 香蕉丝袜av| 嫩草影院入口| 日韩,欧美,国产一区二区三区| 中国国产av一级| 国产av一区二区精品久久| xxx大片免费视频| av在线app专区| 亚洲欧美成人综合另类久久久| 国产69精品久久久久777片| 国产免费一级a男人的天堂| 亚洲国产最新在线播放| 岛国毛片在线播放| 久久人人爽av亚洲精品天堂| 日韩一区二区视频免费看| 大码成人一级视频| 十八禁高潮呻吟视频| 国产极品粉嫩免费观看在线| 青春草国产在线视频| 亚洲av中文av极速乱| 亚洲人与动物交配视频| 中文天堂在线官网| 在现免费观看毛片| 日本黄大片高清| 亚洲精品国产av成人精品| 亚洲第一区二区三区不卡| 人妻人人澡人人爽人人| 最近中文字幕2019免费版| 国产1区2区3区精品| 国产探花极品一区二区| 久久ye,这里只有精品| 欧美变态另类bdsm刘玥| 少妇的逼好多水| 亚洲三级黄色毛片| 啦啦啦在线观看免费高清www| 伊人久久国产一区二区| 欧美bdsm另类| 内地一区二区视频在线| 99香蕉大伊视频| 久久久久久久大尺度免费视频| 最黄视频免费看| 中文字幕制服av| 日本色播在线视频| 久久人人97超碰香蕉20202| 又大又黄又爽视频免费| 午夜精品国产一区二区电影| 91aial.com中文字幕在线观看| 婷婷成人精品国产| 午夜av观看不卡| 国产精品久久久久久精品古装|