• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Angle robust transmitted plasmonic colors with different surroundings utilizing localized surface plasmon resonance

    2023-09-05 08:47:14XufengGao高旭峰QiWang王琦ShijieZhang張世杰RuijinHong洪瑞金andDaweiZhang張大偉
    Chinese Physics B 2023年7期
    關(guān)鍵詞:王琦瑞金大偉

    Xufeng Gao(高旭峰), Qi Wang(王琦), Shijie Zhang(張世杰), Ruijin Hong(洪瑞金), and Dawei Zhang(張大偉)

    Shanghai Key Laboratory of Modern Optic Systems,Engineering Research Center of Optical Instrument and System,Ministry of Education and Shanghai Key Laboratory of Modern Optical Systems,School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China

    Keywords: plasmonic color filter,color sensing,high angular tolerance

    1.Introduction

    In our world, bright and vivid colors are observed in plants and animals, such as lotus petals, fish scales, and butterfly wings.These tiny structures of petals,scales,and wings can determine how the transmission, reflection, and absorption of incident light occur,and then different structural color can be produced by manipulating the spectrum.[1,2]For thousands of years, these beautiful colors in nature have attracted much attention and the study of artificial colors have never stopped.[3–5]In recent years,artificial nanostructures,made up of a subwavelength structure, have been developed as a new way to produce bright structural colors.[6–8]The resonance effects excited by the interplays between light and nanostructures can be manipulated to separate the incident white light in either transmitted or reflected systems, resulting in bright structural colors.[9–16]Based on this mechanism, various nanostructures with gold(Au),[9]aluminum(Al),[10]silver(Ag),[11,12]silicon (Si),[13,14]silicon nitride (Si3N4),[15]and titanium dioxide(TiO2)[16]have been investigated to produce structural colors.Generally,nanostructures possess several aspects of design freedom, such as geometric parameters,[17,18]structural materials,[19]the properties of incident light,[20]the surrounding environments,[14,16,21,22]etc.; in combination with the above-mentioned mechanism, the optical properties of color filters with fixed geometric parameters can be further altered and thus are widely used in anti-counterfeiting technologies, dynamic displays, and security tags.[23]Among the various external stimuli,the color responses to changes in the surrounding environment are fascinating because colors can be conveniently switched without adjusting the structural geometric parameters, materials, and the properties of incident light.For instance, Sunet al.achieved dynamic structural colors covering the whole visible spectrum with the aid of microfluidic reconfigurable TiO2nanostructures.[16]The narrowband reflectance spectrum and the corresponding color of a TiO2nanostructure array can be accurately manipulated by changing the refractive index of the injection solution.In another work, a color sensor, based on a metal–dielectric–metal configuration with polydimethylsiloxane as the dielectric layer, achieved tunable structural colors by changing the refractive index of the immersed solvent.[21]Although previous reports have been able to provide sufficient color variations,it is difficult for the color variations without high angular toleration to be applied in sensors and dynamic displays.

    Here,we present an angle-insensitive plasmonic filter that can produce different color responses to different surrounding environments.The proposed plasmonic color filters, based on the periodically distributed nanodisk (PDND) array, not only produce bright structural colors by adjusting the nanodisk diameter, but also achieve continuous color palettes by changing the surrounding environment.Simultaneously, due to the weakly coupled localized surface plasmon resonances(LSPRs)excited in the metallic nanodisks,the proposed plasmonic color filters have good incident angle-insensitive properties and excellent polarization angle-insensitive properties.Moreover, based on the analysis of the effect of gap size on the transmittance valley wavelength,an angle-insensitive plasmonic color filter based on the randomly distributed nanodisk(RDND) array is also investigated to produce different color responses to different surrounding environments, which provides another effective and robust way to produce vivid color.

    2.Structure and design

    As shown in Fig.1(a), the proposed plasmonic color filter is composed of a monolayer ultrathin metallic PDND array structure on a silica (SiO2) glass substrate.Notably, the PDND array can manipulate electromagnetic fields with the aid of LSPRs.[11]The diameter, period, and thickness of the nanodisk are denoted byd,p,andt.The gap size(g)between adjacent nanodisks isg=p?dand the duty ratio of this structure is defined asf=d/p.It is noteworthy that the thickness and duty ratio are fixed at 40 nm and 0.5, which can be corroborated by the information in part 1 of supplement 1.In this structure,Ag is chosen as the material of the PDND array and the optical coefficient of Ag is shown in Fig.S3(a).The optical constant of the SiO2substrate is also illustrated in Fig.S3(b).

    Moreover,the transmittance spectra and the electric field distributions of the PDND arrays in different surrounding environments are obtained by using the finite-difference-timedomain solutions commercial software.The Bloch boundary conditions are selected to analyze and calculate the periodic section of the structure on thex-axis andy-axis, and the perfect matched layer(PML)boundary conditions are selected on thez-axis.Considering the symmetry of the nanodisk structure,the polarization angle in this work is 45?,which is shown in Fig.S4.Obviously,the optical properties of the PDND array should be completely independent of the polarization angle, which can be verified by the transmittance spectra of the PDND array at different polarization angles shown in Fig.S4.

    Fig.1.(a)Schematic geometry of one unit of the ultrathin PDND array.(b)Transmittance spectra of the PDND array with dimensions of d=100 nm,p=200 nm,and t=40 nm versus the surrounding refractive index.The white dashed line represents the transmittance peaks versus the surrounding refractive index and the black triangles represent the transmittance peaks in air,water,DMSO,and CS2.(c)Chromaticity coordinates corresponding to the transmittance spectra of panel(b).The white solid lines show magenta to blue color filtering and the arrows indicate the direction.The black stars represent the chromaticity coordinates corresponding to the transmittance spectra in air,water,DMSO,and CS2.

    3.Results and analysis

    The spectra and color responses of the proposed PDND array to changes in the surrounding environment are shown in Figs.1(b) and 1(c).The PDND array has dimensions ofd=100 nm,p=200 nm, andt=40 nm.Figure 1(b) depicts the transmittance spectra of the PDND array in different surrounding environments under normal incidence.As the surrounding refractive index(nsur)increases,the transmittance valley shifts from short wavelength to long wavelength.Moreover,as shown in Fig.1(c),a continuous palette from magenta to blue colors can be produced by changing the surrounding environment with the help of the CIE standard illuminant D65 and the transmittance spectra shown in Fig.1(b).In this work,we chose air, water, dimethyl sulfoxide(DMSO),and carbon disulfide(CS2)as four different surrounding environments to exhaustively study the excellent color responses of the PDND array to changes in the surrounding environment.As the surrounding environment changes from air to water,DMSO,and CS2,the refractive index of the surroundings varies from 1.00 to 1.333, 1.4795, and 1.6276.Correspondingly, the transmittance valley at 515 nm shifts to 572 nm,599 nm,and 623 nm.Meanwhile,the effect of the surroundings on the optical properties and the color characteristics are shown in Fig.2.The effect of the surroundings on optical properties(e.g.,the shift of the resonance wavelength, the transmittance at the resonance wavelength,and the bandwidth of the transmittance valley) of the proposed PDND array is shown in Fig.2(a).As the refractive index of the surrounding environment increases from 1 to 1.6275, the resonance wavelength appears to redshift,the transmittance at the resonance wavelength gradually decreases,and the bandwidth of the transmittance valley gradually becomes wider.

    Notably,according to the formula of tristimulus values,

    whereS(λ) is the spectral energy distribution of D65,T(λ)is the spectrum of the proposed array;(λ),(λ), and(λ)are the CIE 1931 spectral tristimulus values; andkis a normalized coefficient.Apparently, there are direct mapping relations between the transmittance spectrum and the tristimulus values.Therefore,to explain the effect of the surroundings on the color characteristics(e.g.,hue,saturation,and lightness)of colors produced by the proposed PDND array by utilizing the change of the transmittance spectrum in different surroundings,the saturation is considered in the CIE 1931 chromaticity diagram (the solid color on the CIE-space outline has 100%saturation, but the white point in the center has 0% saturation).The lightness and hue are calculated in theLch(lightness,chroma,and hue)module as follows:

    whereL,c, andhare the calculated lightness, chroma, and hue in theLchmodule;uandvare the chromatic coordinates in theLchmodule;X,Y,andZare the tristimulus values of the color generated;Xn,Yn,andZnare the tristimulus values of the source D65.Furthermore, for the hue in theLchmodel, ifuandvare positive values, the hue is in the range of [0,π/2];ifvis a positive value butuis a negative value, the hue is in the range of [π/2,π]; ifuandvare negative values, the hue is in the range of [π,3π/2]; ifuis a positive value butvis a negative value,the hue is in the range of[3π/2,2π].

    As shown in Fig.2(b), the effect of the surroundings on the color characteristics (e.g., hue, saturation, and lightness)of colors produced by the proposed PDND array is also studied.As the surrounding refractive index increases from 1 to 1.6275, the color hue appears significantly changed, which is due to the redshift of the resonance wavelength.The color saturation gradually improves with the refractive index of the surrounding environment increasing from 1 to 1.6275, which is attributed to the decrease of the transmittance at the resonance wavelength and the increase of the bandwidth of the transmittance valley.Furthermore, the color lightness gradually decreases.According to the calculated formula of lightness,the lightness only depends on the stimulus valueYand the stimulus valueYonly depends on the transmittance spectrumT(λ).In brief,the lightness only depends on the transmittance spectrumT(λ),which means that the lightness will be higher when more energies in the visible spectrum are transmitted.With the redshift in the resonance wavelength and the transmittance valley in the different surroundings,the sideband of the transmittance spectrum gradually decreases and the total transmittance in the visible range also gradually decreases, which is the reason why the lightness of color slightly decreases as the surrounding environment changes.

    Fig.2.(a) The effect of surroundings on optical properties (e.g., the shift of the resonance wavelength, the transmittance at the resonance wavelength,and the bandwidth of the transmittance valley)of the proposed PDND array.(b)The effect of the surroundings on the characteristics(e.g.,hue,saturation,and lightness)of colors produced by the proposed PDND array.

    With the diameter of the Ag nanodisk increasing from 60 nm to 160 nm in steps of 20 nm,the transmittance spectra of 6 nanostructures at normal incidence are shown in Fig.3(a).Obviously, the wavelength at the transmittance valley shifts from 467 nm to 639 nm.Meanwhile,the chromaticity coordinates corresponding to the transmittance spectra of the PDND arrays with different nanodisk diameters are plotted with a white line in the CIE 1931 chromaticity diagram and the white arrows indicate the direction in which the diameter of the nanodisk increases from 60 nm to 160 nm.The black stars plotted in Fig.3(b) represent the colors corresponding to the transmittance spectra shown in Fig.3(a).Furthermore, the color responses of 11 nanostructures to different surrounding environments are recorded in Fig.3(c).Apparently,the continuous color palettes achieved by changing the surrounding environment are quite robust.

    Fig.3.(a) Transmittance spectra of 6 nanostructures with different nanodisk diameters at normal incidence.Notably, the nanodisk thickness is t =40 nm and the duty ratio is f =0.5.(b) Chromaticity coordinates corresponding to the transmittance spectra of the PDND arrays with different nanodisk diameters.(c) Color palettes produced by 11 nanostructures in air, water, DMSO, and CS2.The diameter increases from 60 nm to 160 nm in steps of 10 nm.

    As shown in Figs.4(a)–4(c),the transmittance spectra of 3 nanostructures with diameters of 60 nm,100 nm,and 140 nm in air,water, DMSO,and CS2at different incident angles are studied.Apparently, the transmittance valley wavelengths of the PDND arrays with diameters of 60 nm and 100 nm keep almost invariable with the incident angle increasing from 0?to 45?.To explicitly show the slight changes of the transmittance valleys of the PDND arrays with the diameters of 60 nm and 100 nm in different surroundings at different incident angles, with the incident angle varying from 0?to 45?,the effects of the incident angle on the optical properties(e.g.,the shift of the resonance wavelength,the transmittance at the resonance wavelength,and the bandwidth of the transmittance valley)and the color characteristics(hue,saturation,and lightness)of the PDND array with a diameter of 100 nm in different surroundings are selected as examples to study, as shown in Figs.S6–S9.The transmittance valley wavelengths of the PDND array with a diameter of 140 nm shift slightly with the incident angle increasing from 0?to 30?; however, the transmittance valley wavelengths of the PDND array with a diameter of 140 nm demonstrate obvious shifts when the incident angle exceeds 30?.It is worth noting that the relative resonance wavelength shifts can be more intuitively represented in Fig.S5 with the aid of the polar plots of the resonant wavelength as a function of incident angle.Furthermore, a new transmittance valley at relatively short wavelengths is excited when the incident light illuminates the PDND array with a diameter of 140 nm at an incident angle of 30?,which is due to the redshift in the transmittance spectra caused by the increase in the nanodisk diameter.[24]As the surrounding environment changes from air to water, DMSO, and CS2, the new excited valley shifts to a longer wavelength, and the new valley also becomes more apparent.

    The electric field distributions of the PDND array with a diameter of 100 nm at the transmittance valley wavelengths in different surrounding environments are shown in Fig.4(d).On the one hand,the LSPRs can be excited within the PDND array and the coupling between the nanodisks is weak.The weak coupling between the nanodisks indicates that the filtering properties of the proposed structure are determined by the resonance effect of a single nanodisk.Therefore,the resonance frequency of the LSPRs excited within the PDND array is determined by the dimension and surrounding environment of a single nanodisk.[26]On the other hand, compared with the electric field distributions at normal incidence in different surrounding environments,the corresponding electric field distributions at the incident angle of 45?only show slight distortions.These results well confirm the fact that the resonance frequency of the LSPR is independent of the incident wave vector(i.e., the incidence angle).Therefore, the weakly coupled LSPRs excited in the PDND arrays account for the angleinsensitive filtering properties of the PDND arrays.

    Fig.4.(a)–(c)Transmittance spectra of three nanostructures with different nanodisk diameters in air,water,DMSO,and CS2 with the incident angle increasing from 0?to 45?.(d)Electric field distributions of the PDND array with a diameter of 100 nm at an incident angle of 0?and 45?in different surrounding environments.

    Furthermore, according to the illuminant D65 and the transmittance spectra in Figs.4(a)–4(c), the calculated chromaticity coordinates are plotted in the CIE 1931 chromaticity diagrams illustrated in Fig.5.Obviously,the colors produced by the PDND arrays with diameters of 60 nm and 100 nm in different surroundings do not change slightly as the incident angle varies from 0?to 45?.Also,the colors produced by the PDND array with a diameter of 140 nm in different surroundings do not change significantly as the incident angle varies from 0?to 30?.However, the colors at large incident angles show relatively obvious changes for the PDND array with a diameter of 140 nm due to the new transmittance valleys excited at large incident angles.

    Meanwhile, the color difference between two colors can be calculated by the CIE DE2000 formula.[25]For the PDND arrays with different diameters, the calculated values are shown in Fig.6.Apparently, the calculated color difference gradually increases as the incident angle increases.Whether for the PDND arrays with diameters of 60 nm, 100 nm, or 140 nm, the color difference between the color responses to change in the surrounding environment at different incident angles remains at a relatively low level that cannot be easily detected by human eyes when the incident angle is below 30?.

    Fig.5.Chromaticity coordinates corresponding to the transmitted colors produced by 3 nanostructures with diameters of 60 nm,100 nm,and 140 nm in different surroundings at increasing incident angles of 0?,15?,30?,and 45?.(a)In air;(b)in water;(c)in DMSO;(d)in CS2.

    It is not difficult to observe from Fig.7(a)that the PDND arrays with dimensions ofd=100 nm andt=40 nm have close transmittance valley wavelengths(@515 nm,@518 nm,@526 nm)in air at different gap sizes(100 nm, 250 nm, and 400 nm), which means that the gap sizes between the nanodisks have almost no effect on the transmittance valley wavelength but have an effect on the intensity of the transmittance valley.Apparently,the phenomenon that the gap sizes between the nanodisks have almost no effect on the transmittance valley wavelength is attributed to the weakly coupled LSPRs excited in the PDND arrays, which can be observed from Fig.7(b).The effect of the gap size on the transmittance valley wavelength in water, DMSO, or CS2is similar to the case in air,which can be verified in Fig.S10.These results confirm that the transmittance valley wavelength can be determined by the nanodisk diameter in different surrounding environments.

    Fig.6.Color difference of 3 nanostructures with diameters of 60 nm,100 nm,and 140 nm calculated by CIE DE2000 formula in different surroundings at different incidence angles compared with the normal incidence.(a)In air;(b)in water;(c)in DMSO;(d)in CS2.

    Fig.7.(a) Transmittance curves of the PDND arrays with dimensions of d = 100 nm and t = 40 nm at different gaps g= 100 nm, 250 nm,and 400 nm.It should be noted that the surrounding environment is air.(b) Electric field distributions of the PDND arrays with gap sizes g=100 nm and 400 nm at resonance wavelengths.

    Based on the analysis of the effect of gap size on the transmittance valley wavelength, an RDND array structure is designed to realize the color filtering.Here, a minimum gapg=100 nm between nanodisks,a fixed filling ratiofr=π/16,and an area containing 25 nanodisks are adopted to design the RDND array with dimensions ofd=100 nm andt=40 nm,which is shown in Fig.9(a).The reasons for the selection of the above design rule can be seen in Fig.8.The gap size between nanodisks,the filling ratio,and the size of the designed area are three necessary elements for the design of an RDND array structure.Therefore,the design rule of the RDND array with dimensions ofd=100 nm andt=40 nm is divided into three parts for explanatory purposes.First of all, for the ease of mathematical realization of random distribution,the filling ratio of the RDND array is equivalent to that of the PDND array.The filling ratio calculated from Fig.8(a)is

    Such a fixed filling ratio also allows us to compare the differences between the PDND and RDND arrays in optical properties.Secondly, with the aid of the relationship between the extinction results of the double nanodisk structure and the gap size between nanodisks, the minimum gap size for decoupling for this double nanodisk structure can be obtained.[27]As shown in Fig.8(b),the extinction results of the double nanodisk structure with dimensions ofd=100 nm andt=40 nm are calculated with the gap size changing fromg= 20 nm tog=200 nm.The extinction peak wavelength remains almost constant when the gap size is no less than 100 nm,which means that the weakly coupled LSPRs excited in the double nanodisk structure make the transmittance valley wavelength depend on the nanodisk diameter only when the gap size is no less than 100 nm.(Due to the fact that the critical value can be clearly found in the extinction results of the double nanodisk structure with the gap size changing fromg=20 nm tog=200 nm, it is not necessary to calculate the extinction results of the double nanodisk structure with the gap size changing fromg=20 nm tog=400 nm.)Therefore,the selection of the minimum gap size of 100 nm between nanodisks is necessary for the realization of a stable and reproducible color filter based on the RDND array.Thirdly, due to the RDND array without periodicity, the PML chosen on thex-axis andy-axis is necessary.If the size of the designed area is not restricted,the design and calculation will be too complex to continue.As can be observed from Fig.8(d), the color becomes more and more vivid as the array number increases.It is noteworthy that the color produced by the 5×5 array is close to that of the period array.Hence,such a design area containing 25 nanodisks is a suitable choice.According to the above design rules, the RDND array with 25 nanodisks generated by the MATLAB tool is shown in Fig.8(c).

    Fig.8.(a) Top view of the PDND array.(b) Extinction results of the PDND array with dimensions of d =100 nm and t =40 nm as a function of gap size.(c) RDND array with 25 nanodisks generated by the MATLAB tool.(c)Diagram of the RDND array with 25 nanodisks generated by the MATLAB tool.(d)Calculated transmittance spectra of the PDND arrays with different periodicity.The arrays have dimensions of p=200 nm,d=100 nm,and t =40 nm.The corresponding colors are also calculated.

    According to the above design rule, the designed PDND and RDND arrays with 25 nanodisks are shown in Fig.9(a).As can be observed from Fig.9(b), the transmittance spectra of the RDND array with 25 nanodisks at normal incidence in different surrounding environments have a good agreement with those of the PDND array with 25 nanodisks at normal incidence in different surrounding environments, which further confirms that the transmittance valley wavelength can be determined by the nanodisk diameter in different surrounding environments.The chromaticity coordinates corresponding to the transmittance spectra shown in Fig.9(b)are plotted in the CIE 1931 chromaticity diagram illustrated in Fig.9(c).Meanwhile, as shown in Fig.9(d), the transmittance valley wavelengths of the RDND array with 25 nanodisks in different incident angles remain almost invariable as the incident angle increases from 0?to 45?.Similar to the physical reason of the angle-insensitive filtering properties of the PDND arrays,the weakly coupled LSPRs excited within the RDND array are also responsible for the angle-insensitive filtering properties of the RDND array,which is shown in Fig.S12.To sum up,the RDND array can also be an effective and robust way to produce vivid color with the aid of an appropriate design rule.

    Fig.9.(a) Schematic geometries of the PDND and RDND arrays.(b) Transmittance spectra of the PDND and RDND arrays in air, water,DMSO,and CS2.The array contains 25 nanodisks.(c)Chromaticity coordinates corresponding to the transmittance spectra of the RDND array in different surrounding environments.The white solid lines showing magenta to blue color filtering and the arrows indicate the direction.The black stars represent the chromaticity coordinates corresponding to the transmittance spectra of panel(b).(d)Map of the transmittance spectra of the RDND array in different surrounding environments versus the incident angle.

    4.Conclusion

    In this paper,through a thorough study of the response of plasma to different surrounding environments and the insensitive properties of the incident angle in different surrounding environments, an angle-insensitive plasmonic filter that can produce different color responses to different environments is constructed.The plasmonic color filters not only achieve continuous palettes by changing the surrounding environment,but also produce bright structural colors by altering the nanodisk diameter.Simultaneously,the proposed color filters have good incident angle-insensitive properties and excellent polarization angle-insensitive properties.The color responses of the proposed filters to an arbitrary surrounding environment remain almost invariable as the incidence angle increases from 0?to 30?.It is the weakly uncoupled LSPRs excited between the nanodisks that bring out the physical reason of the angle insensitive filtering properties of the plasmonic color filters in different surrounding environments.Moreover, based on the analysis of the effect of gap size on the transmittance valley wavelength, an angle-insensitive plasmonic color filter based on the RDND array is also investigated to produce different color responses to different surrounding environments,which provides another effective and robust way to produce vivid color.Therefore,the proposed plasmonic color filters have robust and promising applicability in anti-counterfeiting, imaging technologies,and so forth.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China (Grant No.2022YFB2804602)and Shanghai Pujiang Program(Grant No.21PJD048).

    猜你喜歡
    王琦瑞金大偉
    Stability and Convergence of Non-standard Finite Difference Method for Space Fractional Partial Differential Equation
    親親瑞金
    心聲歌刊(2022年4期)2022-12-16 07:11:00
    張大偉作品
    Stability of Linear θ-Method for Delay Partial Functional Differential Equations with Neumann Boundary Conditions
    Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide?
    騰飛吧,瑞金
    親親瑞金
    Pf- D mrt4, a potential factor in sexual development in the pearl oyster Pinctada f ucata*
    神奇的邊界線:一不留神就出國(guó)
    智慧少年(2017年8期)2018-01-10 21:39:12
    《皇帝的新裝》后傳
    99精品在免费线老司机午夜| 日韩一区二区视频免费看| 一级毛片电影观看 | 亚洲自拍偷在线| 久久久久国产网址| 亚洲在线观看片| 久久精品夜色国产| 一级二级三级毛片免费看| АⅤ资源中文在线天堂| 亚洲欧洲国产日韩| 全区人妻精品视频| 老熟妇乱子伦视频在线观看| 国产精品永久免费网站| 亚洲人与动物交配视频| 嫩草影院新地址| 国内揄拍国产精品人妻在线| 免费观看在线日韩| 亚洲在线观看片| 一级黄片播放器| 亚洲欧美日韩高清专用| 五月玫瑰六月丁香| 亚洲欧美日韩无卡精品| 九九在线视频观看精品| 中文资源天堂在线| 国产精品麻豆人妻色哟哟久久 | 久久精品久久久久久久性| 麻豆国产av国片精品| 99久久无色码亚洲精品果冻| 亚洲无线在线观看| 日日撸夜夜添| 少妇丰满av| 97人妻精品一区二区三区麻豆| 欧美+亚洲+日韩+国产| 国产爱豆传媒在线观看| 人妻夜夜爽99麻豆av| 亚洲av二区三区四区| 网址你懂的国产日韩在线| 成人高潮视频无遮挡免费网站| 一级毛片aaaaaa免费看小| 国产高清三级在线| 高清在线视频一区二区三区 | 有码 亚洲区| 国产精品,欧美在线| 看非洲黑人一级黄片| 91午夜精品亚洲一区二区三区| 亚洲av中文av极速乱| 在线观看av片永久免费下载| 小说图片视频综合网站| 国产黄片美女视频| 美女被艹到高潮喷水动态| 精品久久久噜噜| 真实男女啪啪啪动态图| 国产成人freesex在线| 2022亚洲国产成人精品| 哪里可以看免费的av片| 亚洲欧美日韩卡通动漫| 麻豆精品久久久久久蜜桃| 欧美在线一区亚洲| kizo精华| 直男gayav资源| 国产91av在线免费观看| 成人鲁丝片一二三区免费| 美女内射精品一级片tv| 亚洲最大成人av| 久久久久久国产a免费观看| 日韩欧美精品v在线| 免费观看在线日韩| 欧美激情久久久久久爽电影| 搞女人的毛片| 特级一级黄色大片| h日本视频在线播放| 亚洲欧美日韩东京热| 国产精品乱码一区二三区的特点| 国产伦一二天堂av在线观看| 日日摸夜夜添夜夜添av毛片| 成人午夜精彩视频在线观看| 久久久久久久亚洲中文字幕| 免费人成在线观看视频色| 日本一本二区三区精品| 国产乱人偷精品视频| 国产乱人偷精品视频| 精品久久久久久成人av| 亚洲欧美精品综合久久99| 免费黄网站久久成人精品| 中文字幕人妻熟人妻熟丝袜美| 欧美成人精品欧美一级黄| 极品教师在线视频| 一本久久中文字幕| 高清毛片免费观看视频网站| 一本久久中文字幕| 男人的好看免费观看在线视频| 欧美激情在线99| 久久韩国三级中文字幕| 一区二区三区免费毛片| 一边摸一边抽搐一进一小说| 欧美zozozo另类| 日日干狠狠操夜夜爽| 亚洲av熟女| 偷拍熟女少妇极品色| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久久久久丰满| 日本撒尿小便嘘嘘汇集6| 99在线视频只有这里精品首页| 国产精品嫩草影院av在线观看| av在线播放精品| 免费看美女性在线毛片视频| 日韩强制内射视频| 97在线视频观看| 久久精品综合一区二区三区| 国产精品三级大全| 欧美性猛交黑人性爽| 色综合站精品国产| 偷拍熟女少妇极品色| 我要看日韩黄色一级片| 哪里可以看免费的av片| 国产一区二区亚洲精品在线观看| 国产精品一区二区三区四区久久| 黑人高潮一二区| 哪里可以看免费的av片| 国产精品爽爽va在线观看网站| 午夜亚洲福利在线播放| 日本免费a在线| 国产精品爽爽va在线观看网站| 国产黄片视频在线免费观看| 少妇猛男粗大的猛烈进出视频 | 18禁在线播放成人免费| 丝袜美腿在线中文| 午夜老司机福利剧场| 国产淫片久久久久久久久| 人妻久久中文字幕网| 如何舔出高潮| 国产精品久久电影中文字幕| 99久国产av精品| 久久草成人影院| 国产精品久久电影中文字幕| 高清毛片免费看| 夜夜夜夜夜久久久久| 熟女人妻精品中文字幕| 亚洲欧美中文字幕日韩二区| 三级毛片av免费| 99久国产av精品| 中文在线观看免费www的网站| 国产av麻豆久久久久久久| 亚洲在线自拍视频| 中文字幕av在线有码专区| 伊人久久精品亚洲午夜| 亚洲精华国产精华液的使用体验 | 久久人人爽人人爽人人片va| 久久精品影院6| 最近中文字幕高清免费大全6| 午夜亚洲福利在线播放| 男女视频在线观看网站免费| 91在线精品国自产拍蜜月| 欧美性猛交╳xxx乱大交人| 亚洲五月天丁香| 国产精华一区二区三区| 国产成人aa在线观看| 国产精品一二三区在线看| 老师上课跳d突然被开到最大视频| 国产在线精品亚洲第一网站| 国产日韩欧美在线精品| 午夜免费男女啪啪视频观看| 免费av观看视频| 少妇高潮的动态图| 亚洲欧美精品自产自拍| 身体一侧抽搐| 日韩中字成人| 国内揄拍国产精品人妻在线| 变态另类丝袜制服| 乱人视频在线观看| 18禁在线播放成人免费| 一夜夜www| 免费人成视频x8x8入口观看| 日韩高清综合在线| 最近2019中文字幕mv第一页| 免费在线观看成人毛片| 日本黄色片子视频| 亚洲第一电影网av| 真实男女啪啪啪动态图| 久久6这里有精品| 校园人妻丝袜中文字幕| 欧美zozozo另类| 人妻少妇偷人精品九色| 中文字幕制服av| 波多野结衣巨乳人妻| 一个人看视频在线观看www免费| av福利片在线观看| 亚洲欧美日韩无卡精品| 99热网站在线观看| 国产成人福利小说| 精品免费久久久久久久清纯| 高清毛片免费观看视频网站| 一进一出抽搐动态| 亚洲不卡免费看| 久久久欧美国产精品| 岛国毛片在线播放| 成人毛片60女人毛片免费| 中文字幕av成人在线电影| 色噜噜av男人的天堂激情| 国产黄a三级三级三级人| 免费观看人在逋| 热99re8久久精品国产| 成年av动漫网址| 赤兔流量卡办理| 日本-黄色视频高清免费观看| 久久99蜜桃精品久久| 爱豆传媒免费全集在线观看| 嫩草影院精品99| 最近手机中文字幕大全| 干丝袜人妻中文字幕| 亚洲av中文字字幕乱码综合| 欧美激情久久久久久爽电影| 一进一出抽搐gif免费好疼| 久久人人精品亚洲av| 亚洲av男天堂| 搡老妇女老女人老熟妇| 日韩欧美精品免费久久| 午夜爱爱视频在线播放| 国产v大片淫在线免费观看| 国产伦精品一区二区三区四那| 精品少妇黑人巨大在线播放 | 看黄色毛片网站| 一级黄色大片毛片| 国产精品综合久久久久久久免费| 久久精品久久久久久噜噜老黄 | 国产三级在线视频| 99久久精品热视频| 国产一区亚洲一区在线观看| 99九九线精品视频在线观看视频| 亚洲欧美清纯卡通| 深爱激情五月婷婷| 99久久无色码亚洲精品果冻| 99热全是精品| a级毛色黄片| 亚洲国产精品成人久久小说 | 久久人妻av系列| 中文资源天堂在线| 全区人妻精品视频| 国产一区二区三区av在线 | 国产乱人偷精品视频| 久久久欧美国产精品| 女同久久另类99精品国产91| 久久国产乱子免费精品| 九色成人免费人妻av| 一级毛片我不卡| 国产视频内射| 成人美女网站在线观看视频| 亚洲欧美日韩东京热| 成人毛片60女人毛片免费| 国产精品av视频在线免费观看| 国产一区二区三区在线臀色熟女| 毛片女人毛片| 日本在线视频免费播放| 麻豆一二三区av精品| 精品熟女少妇av免费看| 亚洲国产精品sss在线观看| 精品午夜福利在线看| 一夜夜www| 欧美xxxx性猛交bbbb| 天堂影院成人在线观看| 欧美激情国产日韩精品一区| 国产老妇女一区| 欧美日韩在线观看h| 成年女人永久免费观看视频| 欧美性感艳星| 午夜精品在线福利| 亚洲av电影不卡..在线观看| 国产精品电影一区二区三区| 小说图片视频综合网站| 18禁黄网站禁片免费观看直播| 久久精品影院6| 日韩av在线大香蕉| 亚洲最大成人手机在线| 久久精品国产99精品国产亚洲性色| 久久久久久久亚洲中文字幕| 岛国毛片在线播放| 日韩人妻高清精品专区| 五月玫瑰六月丁香| 午夜精品在线福利| 国产精品久久电影中文字幕| 91狼人影院| 12—13女人毛片做爰片一| 亚洲精品色激情综合| 国产精品久久久久久av不卡| 可以在线观看的亚洲视频| 日韩欧美国产在线观看| 国产精品.久久久| 亚洲自拍偷在线| 久久久精品94久久精品| 亚洲自拍偷在线| 少妇的逼好多水| 最后的刺客免费高清国语| 国产91av在线免费观看| 中文字幕av在线有码专区| av.在线天堂| 日韩三级伦理在线观看| 嫩草影院新地址| 麻豆精品久久久久久蜜桃| 成人一区二区视频在线观看| 中文亚洲av片在线观看爽| 搡女人真爽免费视频火全软件| 超碰av人人做人人爽久久| 亚洲欧美中文字幕日韩二区| 国产色婷婷99| 熟女电影av网| 久久中文看片网| 欧美成人a在线观看| 日本三级黄在线观看| 国产探花极品一区二区| 天天躁夜夜躁狠狠久久av| 日韩欧美三级三区| 青青草视频在线视频观看| 亚洲欧美中文字幕日韩二区| 国产色爽女视频免费观看| 日本成人三级电影网站| 18禁黄网站禁片免费观看直播| 黑人高潮一二区| 国产成人影院久久av| 免费看日本二区| 99久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 国产私拍福利视频在线观看| 哪里可以看免费的av片| 一本久久中文字幕| 女人被狂操c到高潮| 看黄色毛片网站| 国产精品一区二区性色av| 日韩欧美三级三区| 免费观看的影片在线观看| 国产又黄又爽又无遮挡在线| 白带黄色成豆腐渣| 日韩欧美精品v在线| 国国产精品蜜臀av免费| 麻豆成人午夜福利视频| 色尼玛亚洲综合影院| 小说图片视频综合网站| 97超视频在线观看视频| 插阴视频在线观看视频| av黄色大香蕉| av天堂中文字幕网| 国产蜜桃级精品一区二区三区| 天美传媒精品一区二区| 国产69精品久久久久777片| 国产探花极品一区二区| 精华霜和精华液先用哪个| 成人午夜高清在线视频| 高清在线视频一区二区三区 | 国产人妻一区二区三区在| 亚洲av成人精品一区久久| 亚洲成人久久性| 国产男人的电影天堂91| av女优亚洲男人天堂| 日本在线视频免费播放| 看免费成人av毛片| 精华霜和精华液先用哪个| 欧美一区二区亚洲| 色视频www国产| 人妻制服诱惑在线中文字幕| 2021天堂中文幕一二区在线观| 色播亚洲综合网| 免费看av在线观看网站| 色综合色国产| 国产伦精品一区二区三区视频9| 在线免费十八禁| 可以在线观看毛片的网站| 精品人妻偷拍中文字幕| 亚洲精品粉嫩美女一区| 成人午夜高清在线视频| 校园春色视频在线观看| 黄色日韩在线| 国产成人91sexporn| 能在线免费看毛片的网站| 亚洲在线自拍视频| 身体一侧抽搐| 97在线视频观看| 晚上一个人看的免费电影| 婷婷精品国产亚洲av| 久久精品国产清高在天天线| 最后的刺客免费高清国语| 看黄色毛片网站| 只有这里有精品99| 日韩成人av中文字幕在线观看| 亚洲av不卡在线观看| 天天一区二区日本电影三级| 午夜a级毛片| 久久久久久久午夜电影| 秋霞在线观看毛片| 特级一级黄色大片| 搡女人真爽免费视频火全软件| 亚洲va在线va天堂va国产| 成人午夜精彩视频在线观看| 神马国产精品三级电影在线观看| av在线天堂中文字幕| 国产av一区在线观看免费| 成人特级黄色片久久久久久久| 国产成人精品婷婷| 日本黄色片子视频| 精品不卡国产一区二区三区| 亚洲一级一片aⅴ在线观看| 99久国产av精品国产电影| 国产欧美日韩精品一区二区| 国产三级在线视频| 日本爱情动作片www.在线观看| 欧美高清性xxxxhd video| 国产午夜福利久久久久久| 亚洲精品粉嫩美女一区| 国产一级毛片在线| 亚洲成人av在线免费| 亚洲av成人av| 一本一本综合久久| 国产精品99久久久久久久久| 久久久久久伊人网av| 久99久视频精品免费| 久久精品国产亚洲av涩爱 | 国产精品久久视频播放| 国产色婷婷99| 自拍偷自拍亚洲精品老妇| 国产黄色小视频在线观看| 乱码一卡2卡4卡精品| 日韩精品青青久久久久久| 久久久久久久久久成人| 搡女人真爽免费视频火全软件| 国产亚洲精品久久久com| 日韩欧美在线乱码| 亚洲av男天堂| 欧美高清性xxxxhd video| 91aial.com中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| 三级国产精品欧美在线观看| 久久午夜福利片| 亚洲,欧美,日韩| 狂野欧美激情性xxxx在线观看| 联通29元200g的流量卡| 3wmmmm亚洲av在线观看| 国产69精品久久久久777片| 91午夜精品亚洲一区二区三区| 久久久久网色| 大香蕉久久网| 人人妻人人澡欧美一区二区| 国产精品久久久久久av不卡| 午夜精品一区二区三区免费看| av国产免费在线观看| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜添av毛片| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩高清专用| 日韩成人伦理影院| 国产高清激情床上av| 日本欧美国产在线视频| kizo精华| 国产精品一及| 美女 人体艺术 gogo| 国产精品国产高清国产av| 国产精品免费一区二区三区在线| 久久久久性生活片| 亚洲av二区三区四区| 国产国拍精品亚洲av在线观看| 99热全是精品| 永久网站在线| 一夜夜www| 天堂网av新在线| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美中文字幕日韩二区| 国产精品一区二区三区四区免费观看| 久久久精品94久久精品| 人妻系列 视频| 深夜精品福利| 色视频www国产| 亚洲国产高清在线一区二区三| 日本免费a在线| 国产探花在线观看一区二区| 色综合亚洲欧美另类图片| 午夜激情欧美在线| 国产探花极品一区二区| 少妇的逼好多水| 成人综合一区亚洲| 亚洲美女视频黄频| 国产亚洲欧美98| 国产精品久久久久久久电影| 青青草视频在线视频观看| 亚洲丝袜综合中文字幕| 国产蜜桃级精品一区二区三区| 久久精品久久久久久久性| 亚洲成人久久性| 日韩av在线大香蕉| 国产成人午夜福利电影在线观看| 久久99热这里只有精品18| 秋霞在线观看毛片| 三级国产精品欧美在线观看| 成人无遮挡网站| 久久亚洲国产成人精品v| 国产国拍精品亚洲av在线观看| 中文字幕免费在线视频6| 男女啪啪激烈高潮av片| 亚洲欧美日韩高清专用| 人人妻人人澡人人爽人人夜夜 | 日韩中字成人| 在线免费观看不下载黄p国产| 高清午夜精品一区二区三区 | 中文字幕av在线有码专区| 美女国产视频在线观看| 成熟少妇高潮喷水视频| 村上凉子中文字幕在线| 熟女人妻精品中文字幕| 99视频精品全部免费 在线| 亚洲av第一区精品v没综合| 一级毛片aaaaaa免费看小| av免费在线看不卡| 亚洲美女搞黄在线观看| 2021天堂中文幕一二区在线观| 亚洲成人久久爱视频| 欧美日韩综合久久久久久| 综合色丁香网| 日韩在线高清观看一区二区三区| 国产精品日韩av在线免费观看| 观看免费一级毛片| 国产精品一及| 国产美女午夜福利| 12—13女人毛片做爰片一| 成人无遮挡网站| 亚洲在久久综合| 久久久久久久午夜电影| 日韩大尺度精品在线看网址| 精品一区二区免费观看| 成年免费大片在线观看| 欧美又色又爽又黄视频| 久久久国产成人免费| 国产精品一区二区性色av| 亚洲精品国产av成人精品| 欧美不卡视频在线免费观看| 我要看日韩黄色一级片| 欧美高清成人免费视频www| 国产国拍精品亚洲av在线观看| 老女人水多毛片| 搡女人真爽免费视频火全软件| 国产单亲对白刺激| 亚洲av中文av极速乱| 三级毛片av免费| 国内少妇人妻偷人精品xxx网站| 午夜免费激情av| 夫妻性生交免费视频一级片| 天天躁日日操中文字幕| 国产精品国产高清国产av| av视频在线观看入口| 国产成人一区二区在线| 狂野欧美激情性xxxx在线观看| 国产又黄又爽又无遮挡在线| 草草在线视频免费看| 国产v大片淫在线免费观看| 最好的美女福利视频网| 男人狂女人下面高潮的视频| 男人舔女人下体高潮全视频| 国产亚洲精品av在线| 舔av片在线| 搞女人的毛片| 夜夜爽天天搞| 伊人久久精品亚洲午夜| 亚洲欧美日韩卡通动漫| 伦精品一区二区三区| 深爱激情五月婷婷| 小蜜桃在线观看免费完整版高清| 黄色视频,在线免费观看| 亚洲性久久影院| 六月丁香七月| 欧美日韩综合久久久久久| 美女cb高潮喷水在线观看| 精品不卡国产一区二区三区| 好男人视频免费观看在线| av天堂中文字幕网| 六月丁香七月| av天堂中文字幕网| 夜夜爽天天搞| 夫妻性生交免费视频一级片| 日韩欧美精品免费久久| 亚洲人成网站在线播放欧美日韩| 日韩高清综合在线| 国产一级毛片七仙女欲春2| 国产精品久久视频播放| 国产白丝娇喘喷水9色精品| 久久韩国三级中文字幕| 免费无遮挡裸体视频| 亚洲欧美日韩卡通动漫| 少妇高潮的动态图| 亚洲精品影视一区二区三区av| 在线a可以看的网站| 99久久精品国产国产毛片| 精品熟女少妇av免费看| 日本一二三区视频观看| 免费观看在线日韩| 久久九九热精品免费| 两个人的视频大全免费| 可以在线观看的亚洲视频| 国产乱人视频| 少妇人妻精品综合一区二区 | 亚洲国产欧美在线一区| 精品国内亚洲2022精品成人| 国产精品日韩av在线免费观看| 久久久欧美国产精品| 听说在线观看完整版免费高清| 伊人久久精品亚洲午夜| 一个人观看的视频www高清免费观看| av天堂中文字幕网| 99久久精品国产国产毛片| 两个人的视频大全免费| 美女 人体艺术 gogo| 国产精品福利在线免费观看| 人妻久久中文字幕网| 国产伦精品一区二区三区视频9| 成熟少妇高潮喷水视频| 亚洲欧美成人综合另类久久久 | 色尼玛亚洲综合影院| av免费在线看不卡| 成人综合一区亚洲| 嫩草影院精品99| 欧美日韩国产亚洲二区|