• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide?

    2021-06-26 03:04:42YueWang王玥DaweiHe何大偉andYongshengWang王永生
    Chinese Physics B 2021年6期
    關(guān)鍵詞:大偉

    Yue Wang(王玥), Dawei He(何大偉), and Yongsheng Wang(王永生)

    Key Laboratory of Luminescence and Optical Information,Ministry of Education,Institute of Optoelectronic Technology,Beijing Jiaotong University,Beijing 100044,China

    Keywords: microwave absorption, metal nanoparticles, metal-organic framework (MOF), reduced graphene oxide

    1. Introduction

    The development of modern society is inseparable from technology and electronic science.[1–3]With the popularity of electronic devices,electromagnetic radiation pollution has become an urgent issue.[4–6]In order to protect human beings and high-end devices from electromagnetic radiation, finding a microwave absorbing material with high performance has received significant attention. Therefore,it is necessary to research effective microwave absorbers with strong microwave absorption, low cost, light weight, thin thickness and broad absorption bandwidth.[7–11]

    The well-known carbon-based microwave absorbing agents such as graphene and carbon nanotubes are good light-weight dielectric absorbers.[12–19]Recently, GO as a traditional microwave absorber has been used as an ideal candidate due to its 2D structure, low density, abundant surface defects and high specific surface area.[20–23]However, the high conductivity and dielectric constant cannot meet the need for impedance matching, which causes the poor properties of attenuation and strong skin reflection of microwaves.[24,25]Therefore, numerous methods have been researched to rationally synthesize and change the structure of GO composites.[26–30]Several materials such as metals and ferrites can be applied to improve the structure and microwave absorption of GO.Previous studies have also shown that by the combination of GO with magnetic metallic nanoparticle materials, its relative permittivity and permeability can achieve the maximum absorption of microwave in a wide frequency range.[31]Liet al. combined the CeO2?xwith GO, which greatly improves its microwave absorption abilities and the minimumRLis?50.6 dB.[32]

    Metal-organic framework (MOF) materials are a kind of recently developed coordination compound composed of metal-coordinating clusters and aromatic organic linkers, which have proved to be an ideal precursor for inorganic materials.[33,34]Moreover, MOFs are considered to be an ideal metal/carbon precursor for fabricating metal/carbon composites by converting organic ligands and metal ions into carbon and metallic materials with a thermal annealing process.[35,36]In particular, MOFs containing magnetic metal ions are considered to be ideal precursors for preparing microwave absorbers.[37,38]Furthermore,the combination of MOF-derived hybrids such as ZIF with dielectric composites has been shown to be an available method for improving the microwave absorption properties of RGO.[39–41]For example, Wanget al.have shown that Co@C@RGO composite used Co-MOF as a precursor and produced excellent microwave absorption abilities with a minimum reflection loss (RL) of?67.5 dB and effective absorption bandwidth of 5.4 GHz.[42]Using ZIF-67 as a template, Wanget al.developed carbon/Co/Co3O4/CNTs/RGO composites and achieved an excellentRLperformance of?59.2 dB with an absorption bandwidth of 5.7 GHz.[43]Relevant studies on 3D graphene-based composites have shown that the combination of RGO with N-doped CNTs and alloy composites or MOFderived metallic nanoparticles provided abundant heterostructure interface,which caused more polarization loss.[44,45]The multi-layered RGO prevents the agglomeration of nanoparticles. At the same time, the metallic nanoparticles serving as the supporting point between the RGO layers also provide the re-stacking of RGO, which increases the reflection loss inside the material and enhances the microwave absorption capacity.[46,47]

    As a traditional carbon-based microwave absorber,RGO has a large conductive network and specific surface area, but its shortcomings such as easy accumulation limit its practical application. The application of MOF with Fe, Co, Ni,Zn and other metal elements as the center in the field of microwave absorption has been extensively studied. In particular, some MOFs have good 3D structure and the combination with RGO can optimize the microwave absorption performance. In this study, Zn-Co/C/RGO nanocomposites derived from Zn-Co-MOF were obtained through a facile method.The as-prepared composite material has the following advantages:

    1) the Zn-Co/C nanoparticles with hollow structure anchored on the RGO sheets, which assemble 2D RGO into 3D multiinterface structure and increase the reflection of microwaves inside the nanocomposites;2)significant interfacial and dipole polarization and 3D conductive network induced by the special structure; 3) different RGO concentrations were used to adjust the impedance matching of these materials in order to enhance the microwave absorption abilities at low thickness.The minimum reflection loss value of?47.15 dB at 11.2 GHz was acquired when the thickness was 2.0 mm and the bandwidth atRLequal to?10 dB can reach 3.5 GHz.

    2. Experimental details

    2.1. Materials

    Cobalt nitrate hexahydrate (Co(NO3)2·6H2O), zinc nitrate hexahydrate (Zn(NO3)2·6H2O), isophthalic acid(H2IPA), N,N-dimethylformamide (DMF) absolute ethanol and ascorbic acid were obtained commercially (Beijing Tong Guang Fine Chemicals Company).

    2.2. Synthesis of Zn-Co/C nanoparticles

    Zn-Co/C nanoparticles were prepared by the annealing of Zn-Co-based MOF precursors under Ar. The Zn-Cobased MOF precursors were prepared by a facile solvothermal method. Typically, 0.0464 g of Co(NO3)2·6H2O, 0.0472 g of Zn(NO3)2·6H2O and 0.0528 g of isophthalic acid(H2IPA)were dissolved in a mixture of N, N-dimethylformamide(25 ml) and anhydrous ethanol (25 ml) to form a clear solution by stirring for 4 h. The solution was transferred to a teflon-lined stainless-steel autoclave and kept at 160?C for 4 h. After cooling to room temperature, the obtained Zn-Cobased MOF was separated by centrifugation. The Zn-Co/C nanoparticles were generated through thermal treatment of Zn-Co-based MOF in Ar at a temperature of 600?C for 10 min.

    2.3. Synthesis of Zn-Co/C/RGO

    First, 30 ml solutions with different GO concentrations(0.6, 0.9, 1.2 and 1.5 mg/ml) were prepared by Hummers method.[48]After stirring for 1 h,0.12 g of Zn-Co/C nanoparticles was added and ultrasonicated for 1 h. Then, 0.3 g of ascorbic acid was added and ultrasonicated for another 1 h.The solution was heated at 90?C for 2 h. The samples were collected after centrifugation and dried for 12 h by lyophilization. The samples were termed ZC@G 1–4(0.6,0.9,1.2 and 1.5 mg/ml),respectively.

    2.4. Measurements

    Scanning electron(SEM;SU8010)and transmission electron microscopies(TEM;JEM-1400)were used to observe the morphologies of samples. Powder x-ray diffraction (XRD;Co-Kαradiation)and Fourier transform infrared spectroscopy(FTIR; Alpha) were used to characterize the elements and structure of the material. X-ray photoelectron spectrometry(XPS;Thermo Scientific)was used to study the photoelectron spectra.

    The sample was mixed with paraffin and pressed into a ring shape (mass ratio of 20%, thickness of 2 mm, inner diameter and outer diameter of 3.04 and 7 mm)to measure the electromagnetic parameters. An Agilent E5071C vector network analyzer was used to characterize the electromagnetic parameters of the composite materials in the frequency range of 2–18 GHz.RLwas calculated using the following formula:

    whereZinis the input impendence,εris the complex permittivity,μris the complex permeability,fis the microwave frequency,dis the layer thickness,andcis the microwave velocity in free space.

    3. Results and discussion

    The micro morphology and structure of ZC@G3 were observed by SEM and TEM (Fig. 1). As shown in Fig. 1(a),the Zn-Co/C nanoparticles present a hollow structure with a size distribution at 800–1000 nm and Zn-Co-based MOF in Fig.1(a)indicated its porous hollow structure. It can be seen from Fig.1(b)that Zn-Co/C nanoparticles grow uniformly on the surface of RGO. Fig. 1(d) also shows similar characteristics. The RGO sheets can effectively prevent the agglomeration of Zn-Co/C nanoparticles and enhance the microwave absorption properties by increasing the contact interface with the microwave.

    Fig.1. TEM and SEM of Zn-Co/C((a)and(c))and Zn-Co/C/RGO((b)and(d)).

    As shown in Fig. 2(a), the components of the composites are identified through FTIR spectroscopy. The characteristic peaks at 1690 cm?1and 1674 cm?1are due to the skeleton vibrations of the aromatic ring. The vibration peaks at 1279 cm?1, 1211 cm?1and 1583 cm?1can be attributed to the C=O stretching vibration and the peak at 765 cm?1was due to the out-of-plane bending vibration of C–H.Those peaks identified that the band of C=O stretching vibration shifts from 1510 cm?1to 1583 cm?1after the formation of Zn-Co/C,demonstrating the coordination of carboxylate groups of H2IPA to Co2+and Zn2+cations.[49]

    Crystal phase compositions of ZC@G1-4 were analyzed by XRD(Fig.2(b)). Diffraction peaks located at 2θ=10.8?,17.6?and 20.7?corresponded to (111), (220) and (311) reflection of C60, respectively.[50]These peak locations for C60 corresponded with the recorded XRD pattern (JCPDS No.44-0558),suggesting the benzene ring structure in the organic ligand formed a spherical shape after annealing. For RGO, a weak diffraction peak located at 25.6?corresponded to the(002)plane of amorphous carbon.[51]The characteristic diffraction peaks at 44.3?and 75.9?coincide with the (111)and(220)crystal planes of metallic cobalt with face-centered cubic structure.[52]A diffraction peak observed at 43.2?corresponded to the(101)crystal planes of metallic zinc(JCPDS No.87-0713).[53]

    Detailed elemental compositions of ZC@G1-4 were determined by XPS spectra (Fig. 3). In the XPS full-spectrum,four peaks appearing at 284.4, 533.1, 778.08 and 1023 eV(Fig. 3(a)) correspond to the bond energies of C, Co and Zn,respectively. In the C 1s spectrum (Fig. 3(b)), the peaks distributed at 284.4 eV, 285.88 eV, and 288.2 eV correspond to C–OH and C=O,respectively.[54]The peaks at 777.88 eV and 793.08 eV were attributed to the Co 2p3/2and Co 2p1/2,suggesting the existence of metallic Co and a small amount of Co2+-O,probably due to the formation of Co oxide during the annealing process(Fig.3(c)).[55,56]In the spectrum of Zn,the peaks at 1021.8 and 1044.98 eV were ascribed to Zn 2p3/2and Zn 2p1/2,respectively(Fig.3(d)).[57]Moreover,the weak peak intensity of Co 2p and Zn 2p suggested that most Zn-Co/C nanoparticles were covered with the RGO sheets.

    Fig.2. FTIR(a)and XRD(b)patterns of Zn-Co/C/RGO.

    The microwave absorption performance is related to the electromagnetic parameters and the microwave absorption mechanism can also be analyzed through the electromagnetic parameters. The electromagnetic parameters and loss angle of ZC@Gs are shown in Fig.4. The real part of the complex permittivity(ε')and complex permeability(μ')represents the energy storage capacity,and the imaginary part of the relative complex permittivity (ε'') and relative complex permeability(μ'')is related to the loss capacity.As the increase of polarization relaxation phenomenon,theε'of ZC@Gs decreased with the increasing frequency(Fig.4(a)). Compared with Zn-Co/C(Fig.S1),the introduction of RGO has significantly increased the values ofε'andε'', which was attributed to the excellent conductivity of RGO (Figs. 4(a) and 4(b)). Among the four samples,ZC@G4 has the highest concentration of RGO,thus exhibiting the greatest conductivity. Likewise,tanδε=ε'/ε''of ZC@G4 is greater than that of ZC@G1–3(Fig.4(c)). This indicates that ZC@G4, compared to other samples, exhibits higher storage and loss capability for electric energy. In contrast,theμ'andμ''values of the four samples were all in the lower range,withμ'ranging from 1.05–0.95(Fig.4(d)),whileμ''was almost zero (Fig. 4(e)). The relative permeability of the four samples has similar obvious resonance peaks in the 2–18 GHz frequency range, indicating that the magnetic loss comes from the natural resonance and exchange resonance provided by the Zn-Co/C magnetic nanoparticles. The value ofμ''was much smaller thanε''of the four samples,indicating that the electrical loss played a major role in microwave absorption, which was also shown by the loss angle. The dielectric loss angle was significantly higher than the magnetic loss angle(Figs.4(c)and 4(f)).

    Fig.3. XPS spectra of ZC@G1–4(a),C(b),Co(c)and Zn(d).

    Fig.4. Real parts(a)and imaginary parts(b)of permittivity,electric loss(c),real parts(d)and imaginary parts(e)of permeability and magnetic loss(f)for Zn-Co/C/RGO with different RGO content.

    We characterize the microwave absorption capacity by calculating theRLvalue(Fig.5). It can be seen that ZC@G1,which has the smallest RGO mass ratio, exhibited poor microwave absorption capacity with a minimumRLof?11.7 dB.With the increase of RGO mass ratio, ZC@G2 exhibited better microwave absorption capability; the minimumRLis?24.3 dB at 14.0 GHz with a thickness of 2.0 mm. With the further increase of RGO concentration, ZC@G3 showed the best microwave absorption performance;at a thickness of 2.0 mm, the minimumRLreached?47.15 dB at 11.2 GHz.Moreover, the minimumRLof ZC@G3 is below?20 dB at thicknesses from 0.5 to 5.5 mm. More than 90% of the microwaves can be absorbed whenRLis lower than?10 dB and a value ofRLlower than?20 dB indicates more than 99%absorption of the microwaves. The minimumRLof ZC@G1–4 is?10.67(17.36),?24.30(14.0),?47.15(11.2)and?13.51 dB(8.16 GHz)at a thickness of 2.0 mm,respectively.With the increase of RGO content, the frequency corresponding to the minimumRLshifts to a lower frequency,which indicated that the microwave absorption capacity of the absorber can be adjusted by controlling the RGO content. The absorption bandwidth is also an important aspect of the absorber. When the ZC@G1–4 thickness is 2.0 mm,the bandwidth corresponding to?10 dB is 0.96(17.04–18),4.08(12.24–16.32),3.52(9.6–13.12)and 1.44 GHz(7.44–8.88 GHz).

    Fig. 5. Frequency dependence of the microwave reflection loss (RL) curves and the modulus of the normalized characteristic impedance (|Zin/Z0|)curves of ZC@G1(a),ZC@G2(b),ZC@G3(c)and ZC@G4(d)in the frequency range of 2–18 GHz.

    Zn-Co/C nanoparticles provide magnetic loss for the material.When the microwave interacts with it,the magnetic flux and magnetic induction intensity inside the Zn-Co/C/RGO will change and the eddy current will be formed inside the material, which converts the microwave into heat and consumes it. The magnetic loss mechanism of the material can be analyzed by theC0curve,which can be calculated by the following formula:

    WhenC0approaches constant,this indicates that the magnetic loss of the material is mainly provided by the eddy current loss of the nanoparticles.As shown in Fig.S4,in the 5–18 GHz frequency range,C0almost approaches constant,which indicates that the eddy current loss provided by Zn-Co/C nanoparticles plays an important role in microwave absorption.

    The attenuation constant is usually used to evaluate the properties of microwave absorption, which can be calculated by the following formula:

    Theαincreased with the increase of RGO content,which indicated that the introduction of RGO enhanced the energy attenuation of composites due to the high conductivity of RGO(Fig. S3). ZC@G4 has the highest absorption constant, indicating that this sample has the strongest microwave absorption capacity. However, higher dielectric constant results in more microwave reflection. The impedance matching is another important parameter of the microwave absorption properties. The impedance matching is calculated by the ratio of the incident impedance (Zin) and free space (Z0). According to the impedance matching principle,when the ratio ofZintoZ0is equal to 1,no microwave will be reflected when interacting with the material surface. As shown in Figs.5(e)–5(h),the|Zin/Z0| of ZC@G1 is far from 1, but with RGO mass ratio increased,the|Zin/Z0|of ZC@G2–4 is closer to 1 and finally lower than 1.For ZC@G3,the minimum of|Zin/Z0|was close to 1 from 1.5 to 3.5 mm thickness and demonstrated better microwave absorption abilities than ZC@G1,2 and 4,which was also shown throughRL(Fig.5(c)).

    Figure 6 reveals the microwave absorption mechanism of Zn-Co/C/RGO nanocomposites. The large heterointerface formed by Zn-Co/C nanoparticles anchored on RGO sheets improves the microwave energy attenuation by enhancing the interfacial polarization effect. Moreover, defects and functional groups that formed on RGO induced the formation of dipoles, which convert electromagnetic energy into heat energy. Furthermore,the introduction of RGO provided good resistance loss,which led to higher conductivity compared to the composite without RGO.The excellent microwave absorption performance of Zn-Co/C/RGO also benefits from the hollow structure of Zn-Co/C. The polarization centers produced by Zn and Co metal nanoparticles are distributed on the surface of Zn-Co/C,which provides the dielectric loss.The hollow structure also has an inner surface; hence it has more polarization centers than the solid material.[19]And inside the Zn-Co/C,microwaves are reflected between the inner surfaces, which increases the interaction between microwaves and the material and consequently improves the microwave absorption capacity of Zn-Co/C/RGO.

    Fig.6. Attenuation constant of ZC@G1,ZC@G2,ZC@G3 and ZC@G.

    In conclusion, the excellent microwave absorption properties of Zn-Co/C/RGO nanocomposites were mainly attributed to the following aspects. First, the introduction of Zn-Co/C nanoparticles optimized 2D graphene into a composite with 3D structure. At the same time, the thin layer of RGO also prevented Zn-Co/C from agglomeration,thereby further increasing the contact surface. Second, when the incident microwave interacted with the material, the adjustable impedance matching enabled the microwave to enter the absorber effectively. Third, the hollow porous structure of Zn-Co/C nanoparticles had more polarization centers and provided a large amount of relaxation loss, while the RGO provided a conductive network as a carrier of electron transport,which enhanced the microwave loss ability.

    4. Conclusion

    In summary, Zn-Co/C/RGO nanocomposite material with excellent microwave absorption properties was obtained through a simple solvothermal method. Zn-Co/C nanoparticles with hollow porous structure are anchored on the surface of RGO sheets. Under different RGO composite concentrations, the microwave absorption properties of Zn-Co/C/RGO composites were analyzed. The existence of RGO increased the dielectric constant of the material, indicating that adjusting the content of RGO can control the impedance matching of the material. In addition, the conductive network provided by RGO increased the dielectric loss. Porous hollow Zn-Co/C nanoparticles and RGO sheets enhanced the interface and dipolar polarization. The Zn-Co/C/RGO composite material exhibited excellent microwave absorption capability at low thickness. At a thickness of 2.0 mm,the minimumRLcan reach?47.15 dB, with a bandwidth of 3.5 GHz. At a thickness of 1.5 mm,the minimumRLof?32.56 dB can also be obtained. Within the thickness range of 1.5–5.5 mm, the minimumRLis lower than?20 dB. Therefore, it is believed that this Zn-Co/C/RGO nanocomposite material with excellent microwave absorption capacity has good application prospect in the field of microwave absorption.

    猜你喜歡
    大偉
    張大偉作品
    Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
    Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform?
    為你守候
    歌海(2021年2期)2021-06-22 01:58:38
    一又四分之三
    神奇的邊界線:一不留神就出國(guó)
    智慧少年(2017年8期)2018-01-10 21:39:12
    Ultrafast interlayer photocarrier transfer in graphene–MoSe2 van der Waals heterostructure?
    第三十一個(gè)蛋
    貨比三家VS 嘗遍五味
    愛(ài)你(2015年8期)2015-11-15 03:31:13
    不會(huì)說(shuō)話
    故事會(huì)(2015年2期)2015-02-26 01:10:34
    a 毛片基地| 伦理电影大哥的女人| 性色av一级| a级毛片黄视频| 性少妇av在线| 精品国产露脸久久av麻豆| 亚洲国产精品999| 国产日韩欧美亚洲二区| 老司机深夜福利视频在线观看 | 美女国产高潮福利片在线看| 综合色丁香网| 国产亚洲欧美精品永久| 十八禁人妻一区二区| 亚洲av日韩精品久久久久久密 | 王馨瑶露胸无遮挡在线观看| 在线观看国产h片| 日韩av免费高清视频| av福利片在线| 亚洲国产欧美一区二区综合| 天堂中文最新版在线下载| www.av在线官网国产| 国产av一区二区精品久久| 一级爰片在线观看| 青春草国产在线视频| 国产片特级美女逼逼视频| 国语对白做爰xxxⅹ性视频网站| 两个人看的免费小视频| 亚洲欧洲精品一区二区精品久久久 | 日韩精品免费视频一区二区三区| 黑人欧美特级aaaaaa片| 少妇人妻 视频| 日韩av在线免费看完整版不卡| 香蕉丝袜av| 久久久国产精品麻豆| 国产精品国产av在线观看| 午夜免费观看性视频| videos熟女内射| 国产乱来视频区| 久久久久国产精品人妻一区二区| 亚洲婷婷狠狠爱综合网| 黑人欧美特级aaaaaa片| 久久综合国产亚洲精品| 国产视频首页在线观看| 一本色道久久久久久精品综合| 精品午夜福利在线看| 精品国产一区二区久久| 中文字幕另类日韩欧美亚洲嫩草| 国产成人精品福利久久| 99国产精品免费福利视频| 亚洲欧美色中文字幕在线| 伊人久久大香线蕉亚洲五| 婷婷成人精品国产| 日韩中文字幕欧美一区二区 | 最近最新中文字幕免费大全7| 亚洲熟女精品中文字幕| 一区在线观看完整版| 中文欧美无线码| 青草久久国产| 亚洲精品日韩在线中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人国产一区在线观看 | 日韩免费高清中文字幕av| 久久久久久久久久久久大奶| 久久99一区二区三区| 最近最新中文字幕大全免费视频 | 欧美变态另类bdsm刘玥| 久久毛片免费看一区二区三区| 国产精品国产av在线观看| 亚洲第一青青草原| 人妻 亚洲 视频| 国产精品久久久人人做人人爽| 一区福利在线观看| 日韩欧美一区视频在线观看| 日韩电影二区| 国产xxxxx性猛交| 日本欧美视频一区| 天天躁狠狠躁夜夜躁狠狠躁| av在线app专区| 丝瓜视频免费看黄片| 九九爱精品视频在线观看| 国产在线一区二区三区精| 老司机靠b影院| 亚洲精品国产av蜜桃| 日韩制服丝袜自拍偷拍| 成年av动漫网址| 伊人久久大香线蕉亚洲五| 国产精品一二三区在线看| 久久久久久人妻| 十八禁高潮呻吟视频| 日本91视频免费播放| 精品人妻一区二区三区麻豆| 精品亚洲成a人片在线观看| 国产无遮挡羞羞视频在线观看| 如何舔出高潮| 妹子高潮喷水视频| 成年av动漫网址| 天天躁夜夜躁狠狠躁躁| 九九爱精品视频在线观看| 久久久国产欧美日韩av| 91成人精品电影| 丝袜喷水一区| 日韩视频在线欧美| 精品国产一区二区三区四区第35| 国产不卡av网站在线观看| 人妻 亚洲 视频| 亚洲视频免费观看视频| av视频免费观看在线观看| 欧美97在线视频| 久久精品aⅴ一区二区三区四区| 亚洲第一青青草原| 女人久久www免费人成看片| 成年人免费黄色播放视频| 日韩熟女老妇一区二区性免费视频| 狠狠婷婷综合久久久久久88av| 午夜福利网站1000一区二区三区| 欧美精品人与动牲交sv欧美| 成年美女黄网站色视频大全免费| 最近最新中文字幕大全免费视频 | 亚洲情色 制服丝袜| av网站在线播放免费| 两个人看的免费小视频| 啦啦啦视频在线资源免费观看| 国语对白做爰xxxⅹ性视频网站| 中文乱码字字幕精品一区二区三区| 最近手机中文字幕大全| 成年人午夜在线观看视频| 亚洲自偷自拍图片 自拍| 午夜福利影视在线免费观看| www日本在线高清视频| 日本欧美国产在线视频| 九色亚洲精品在线播放| 韩国高清视频一区二区三区| 国产无遮挡羞羞视频在线观看| 亚洲国产成人一精品久久久| 久久久精品区二区三区| 亚洲成人一二三区av| 国产爽快片一区二区三区| 国产乱来视频区| 老汉色∧v一级毛片| 亚洲专区中文字幕在线 | 精品国产乱码久久久久久男人| 亚洲人成77777在线视频| 欧美激情高清一区二区三区 | 亚洲欧美一区二区三区久久| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品视频女| 中文字幕人妻丝袜制服| 99国产综合亚洲精品| 大话2 男鬼变身卡| 日韩av不卡免费在线播放| 亚洲国产av影院在线观看| 黑人猛操日本美女一级片| 久久青草综合色| 高清不卡的av网站| 精品卡一卡二卡四卡免费| 我要看黄色一级片免费的| 欧美 日韩 精品 国产| 国产日韩欧美在线精品| 亚洲精品一二三| 美女高潮到喷水免费观看| 一级毛片黄色毛片免费观看视频| 久久久久久久久久久免费av| 日韩一本色道免费dvd| 别揉我奶头~嗯~啊~动态视频 | 五月天丁香电影| 一区二区三区激情视频| 丝袜在线中文字幕| 熟妇人妻不卡中文字幕| 亚洲人成网站在线观看播放| 久久毛片免费看一区二区三区| 老汉色av国产亚洲站长工具| 黄频高清免费视频| 亚洲一区二区三区欧美精品| 国产黄频视频在线观看| 日本wwww免费看| 国产激情久久老熟女| 卡戴珊不雅视频在线播放| 热99国产精品久久久久久7| 女的被弄到高潮叫床怎么办| 极品少妇高潮喷水抽搐| 欧美在线黄色| 看免费成人av毛片| 男女下面插进去视频免费观看| 久久99精品国语久久久| 国产精品亚洲av一区麻豆 | 日本91视频免费播放| 国产精品国产av在线观看| 欧美最新免费一区二区三区| 欧美在线一区亚洲| 亚洲欧美成人综合另类久久久| 国产成人免费观看mmmm| 国产精品 欧美亚洲| 丝袜美足系列| 最近2019中文字幕mv第一页| 亚洲国产精品国产精品| 美女中出高潮动态图| 精品人妻熟女毛片av久久网站| 精品福利永久在线观看| 日韩伦理黄色片| 又粗又硬又长又爽又黄的视频| av卡一久久| 水蜜桃什么品种好| 亚洲av综合色区一区| 久久久久久人妻| 国产午夜精品一二区理论片| 国产在线免费精品| 成年美女黄网站色视频大全免费| 最黄视频免费看| 国产亚洲午夜精品一区二区久久| 国产成人免费无遮挡视频| 亚洲精品日本国产第一区| 熟妇人妻不卡中文字幕| 久久精品国产a三级三级三级| 一区福利在线观看| 99国产综合亚洲精品| 国产熟女午夜一区二区三区| 精品午夜福利在线看| 亚洲精品久久午夜乱码| 狂野欧美激情性bbbbbb| 久久久国产精品麻豆| 久久免费观看电影| 久久久久精品久久久久真实原创| 一边亲一边摸免费视频| 日本av手机在线免费观看| 水蜜桃什么品种好| 亚洲av在线观看美女高潮| 美女午夜性视频免费| 亚洲久久久国产精品| 电影成人av| 观看av在线不卡| 久久ye,这里只有精品| av在线播放精品| 国产精品一区二区精品视频观看| 精品亚洲成国产av| 亚洲在久久综合| 国产精品久久久久久人妻精品电影 | 欧美黄色片欧美黄色片| 亚洲成色77777| 欧美日韩成人在线一区二区| 日韩中文字幕视频在线看片| 色播在线永久视频| 亚洲精品国产av蜜桃| 午夜免费男女啪啪视频观看| 精品国产一区二区三区久久久樱花| 69精品国产乱码久久久| www.熟女人妻精品国产| 亚洲综合精品二区| 天堂俺去俺来也www色官网| 亚洲精品久久成人aⅴ小说| 在线天堂最新版资源| 少妇人妻 视频| 卡戴珊不雅视频在线播放| 国产无遮挡羞羞视频在线观看| 国产淫语在线视频| 成人亚洲欧美一区二区av| 欧美精品一区二区免费开放| 亚洲av福利一区| 婷婷色综合www| 新久久久久国产一级毛片| 久久国产精品大桥未久av| 如日韩欧美国产精品一区二区三区| 免费av中文字幕在线| 在现免费观看毛片| 自线自在国产av| 99re6热这里在线精品视频| 国产精品国产三级专区第一集| 2018国产大陆天天弄谢| 一区二区三区乱码不卡18| 女的被弄到高潮叫床怎么办| 国产精品国产av在线观看| 国产福利在线免费观看视频| 国产欧美日韩综合在线一区二区| 人人妻人人添人人爽欧美一区卜| 麻豆乱淫一区二区| 黄片小视频在线播放| 伊人亚洲综合成人网| 久久久久视频综合| av国产久精品久网站免费入址| 国产深夜福利视频在线观看| 中文字幕人妻丝袜一区二区 | 又黄又粗又硬又大视频| 久久人人97超碰香蕉20202| 啦啦啦 在线观看视频| av免费观看日本| 人人妻人人添人人爽欧美一区卜| 在线观看www视频免费| 深夜精品福利| 超色免费av| 男女国产视频网站| 亚洲精品日本国产第一区| 国产日韩欧美在线精品| 99国产综合亚洲精品| 亚洲国产欧美在线一区| 女性被躁到高潮视频| 亚洲欧美色中文字幕在线| 亚洲精品aⅴ在线观看| 亚洲av福利一区| 9热在线视频观看99| 亚洲第一av免费看| 国产女主播在线喷水免费视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 夜夜骑夜夜射夜夜干| 在线观看一区二区三区激情| 男女下面插进去视频免费观看| 亚洲综合色网址| 男人爽女人下面视频在线观看| 午夜免费观看性视频| 亚洲av中文av极速乱| 丰满迷人的少妇在线观看| 99热全是精品| 亚洲,欧美,日韩| 国产极品粉嫩免费观看在线| 精品少妇久久久久久888优播| 亚洲专区中文字幕在线 | 青春草亚洲视频在线观看| 欧美亚洲日本最大视频资源| 国产成人精品福利久久| 少妇人妻 视频| 不卡av一区二区三区| 精品人妻一区二区三区麻豆| 欧美激情高清一区二区三区 | 亚洲av在线观看美女高潮| 欧美激情高清一区二区三区 | 一个人免费看片子| 大陆偷拍与自拍| av片东京热男人的天堂| 午夜91福利影院| 午夜影院在线不卡| 国产成人精品久久久久久| 一级毛片电影观看| 欧美少妇被猛烈插入视频| 欧美日韩亚洲国产一区二区在线观看 | 丝袜美足系列| 男人舔女人的私密视频| 啦啦啦 在线观看视频| 欧美人与性动交α欧美精品济南到| 久久99热这里只频精品6学生| 黄色 视频免费看| 亚洲成人av在线免费| 操美女的视频在线观看| 97人妻天天添夜夜摸| 亚洲久久久国产精品| 亚洲欧美成人综合另类久久久| 欧美人与性动交α欧美软件| 日韩视频在线欧美| 久久天躁狠狠躁夜夜2o2o | 男女高潮啪啪啪动态图| 国产乱来视频区| 亚洲久久久国产精品| 日本wwww免费看| 国产精品久久久久成人av| 午夜福利一区二区在线看| 只有这里有精品99| 久久青草综合色| 国产乱人偷精品视频| 99国产综合亚洲精品| 精品一区二区免费观看| 秋霞在线观看毛片| 两个人免费观看高清视频| 一级,二级,三级黄色视频| 男女国产视频网站| 亚洲成人一二三区av| 成人免费观看视频高清| 18禁裸乳无遮挡动漫免费视频| av女优亚洲男人天堂| 午夜免费男女啪啪视频观看| 国产精品无大码| 午夜免费鲁丝| 九九爱精品视频在线观看| 满18在线观看网站| 又粗又硬又长又爽又黄的视频| 国产精品一二三区在线看| 欧美日韩一区二区视频在线观看视频在线| 2018国产大陆天天弄谢| 亚洲国产成人一精品久久久| 国产福利在线免费观看视频| 亚洲av电影在线观看一区二区三区| 男人舔女人的私密视频| 永久免费av网站大全| 最近中文字幕高清免费大全6| 日本91视频免费播放| 婷婷色麻豆天堂久久| 亚洲,一卡二卡三卡| 男人添女人高潮全过程视频| 制服诱惑二区| 欧美乱码精品一区二区三区| 国产精品国产av在线观看| 日韩不卡一区二区三区视频在线| 日韩免费高清中文字幕av| 蜜桃在线观看..| e午夜精品久久久久久久| 国产精品国产三级国产专区5o| 亚洲中文av在线| 免费久久久久久久精品成人欧美视频| 超碰97精品在线观看| 免费观看人在逋| 综合色丁香网| 日韩 欧美 亚洲 中文字幕| 欧美日韩视频精品一区| 免费在线观看视频国产中文字幕亚洲 | 永久免费av网站大全| 黄色怎么调成土黄色| 青春草视频在线免费观看| av福利片在线| 老司机影院成人| 女性生殖器流出的白浆| 亚洲精品乱久久久久久| 热re99久久精品国产66热6| 男女之事视频高清在线观看 | 免费不卡黄色视频| 777久久人妻少妇嫩草av网站| 国产在线免费精品| √禁漫天堂资源中文www| 免费黄网站久久成人精品| 电影成人av| 亚洲欧美一区二区三区久久| 宅男免费午夜| 成人国语在线视频| 蜜桃国产av成人99| 国产成人精品无人区| 天美传媒精品一区二区| 精品国产一区二区三区四区第35| 免费在线观看黄色视频的| 一二三四在线观看免费中文在| 色94色欧美一区二区| 黑人猛操日本美女一级片| 丁香六月天网| 中文欧美无线码| 免费日韩欧美在线观看| 黄色一级大片看看| 国产精品一区二区在线不卡| 91成人精品电影| 在线观看免费日韩欧美大片| 亚洲自偷自拍图片 自拍| 日韩,欧美,国产一区二区三区| 亚洲成国产人片在线观看| 午夜免费观看性视频| a级片在线免费高清观看视频| 操美女的视频在线观看| 黄网站色视频无遮挡免费观看| 永久免费av网站大全| 国产免费一区二区三区四区乱码| 国产一卡二卡三卡精品 | 欧美乱码精品一区二区三区| 欧美激情 高清一区二区三区| 亚洲av福利一区| 中文字幕制服av| av网站免费在线观看视频| 在线观看免费高清a一片| 国产成人午夜福利电影在线观看| 日日撸夜夜添| 亚洲精品中文字幕在线视频| 午夜福利网站1000一区二区三区| 9191精品国产免费久久| 亚洲在久久综合| 免费av中文字幕在线| 无遮挡黄片免费观看| 日本色播在线视频| 一级a爱视频在线免费观看| 美女脱内裤让男人舔精品视频| 91老司机精品| 精品视频人人做人人爽| 日本vs欧美在线观看视频| 999精品在线视频| 国产精品 国内视频| 2021少妇久久久久久久久久久| 国产欧美亚洲国产| svipshipincom国产片| av在线app专区| 精品国产乱码久久久久久小说| 国产精品一二三区在线看| 天天操日日干夜夜撸| 亚洲欧美一区二区三区久久| av有码第一页| 青青草视频在线视频观看| 精品一品国产午夜福利视频| 一级毛片 在线播放| 狠狠精品人妻久久久久久综合| 在线观看免费日韩欧美大片| 国产黄色视频一区二区在线观看| 一级毛片黄色毛片免费观看视频| 精品少妇内射三级| 在线天堂中文资源库| 国产视频首页在线观看| 欧美97在线视频| 女人精品久久久久毛片| www.自偷自拍.com| 亚洲熟女精品中文字幕| 亚洲欧美激情在线| 一级,二级,三级黄色视频| 在线 av 中文字幕| 99精国产麻豆久久婷婷| 大片电影免费在线观看免费| 国产爽快片一区二区三区| 日本午夜av视频| 久久久久精品性色| 叶爱在线成人免费视频播放| 亚洲,一卡二卡三卡| 亚洲第一青青草原| 中国国产av一级| 巨乳人妻的诱惑在线观看| 亚洲免费av在线视频| 乱人伦中国视频| 黄色视频不卡| 中国三级夫妇交换| 侵犯人妻中文字幕一二三四区| 少妇被粗大的猛进出69影院| 日韩人妻精品一区2区三区| 亚洲成国产人片在线观看| 我的亚洲天堂| 亚洲四区av| 国产亚洲精品第一综合不卡| 深夜精品福利| 国产精品无大码| 亚洲自偷自拍图片 自拍| 在线精品无人区一区二区三| 国产精品一区二区在线不卡| 午夜免费观看性视频| 午夜久久久在线观看| 少妇精品久久久久久久| 99久久精品国产亚洲精品| 亚洲av成人不卡在线观看播放网 | 啦啦啦啦在线视频资源| 婷婷色麻豆天堂久久| 国产黄色视频一区二区在线观看| 午夜福利网站1000一区二区三区| 老司机影院成人| 纵有疾风起免费观看全集完整版| 欧美 亚洲 国产 日韩一| av.在线天堂| 国产精品久久久久成人av| 亚洲欧美一区二区三区黑人| 亚洲精品国产av成人精品| 国产av码专区亚洲av| 99久久综合免费| 成人亚洲欧美一区二区av| 咕卡用的链子| 国产熟女欧美一区二区| 最近手机中文字幕大全| 欧美日韩综合久久久久久| 亚洲婷婷狠狠爱综合网| 午夜福利在线免费观看网站| 99九九在线精品视频| 一级毛片黄色毛片免费观看视频| 欧美人与性动交α欧美软件| 免费观看av网站的网址| 国产精品嫩草影院av在线观看| 在线看a的网站| 女性被躁到高潮视频| 亚洲国产精品一区二区三区在线| 免费在线观看视频国产中文字幕亚洲 | 国产精品亚洲av一区麻豆 | 国产成人欧美在线观看 | 少妇 在线观看| 大香蕉久久成人网| 丰满饥渴人妻一区二区三| 香蕉国产在线看| 国产欧美日韩一区二区三区在线| 日韩精品有码人妻一区| 精品亚洲乱码少妇综合久久| 亚洲av男天堂| 午夜影院在线不卡| 亚洲欧洲日产国产| 亚洲第一青青草原| 久久久久久久精品精品| 黄色一级大片看看| 在线观看免费高清a一片| 五月开心婷婷网| 美女福利国产在线| 美女脱内裤让男人舔精品视频| 中文字幕精品免费在线观看视频| 国产免费福利视频在线观看| a级毛片黄视频| 1024视频免费在线观看| 久久久精品区二区三区| 免费观看a级毛片全部| 亚洲图色成人| 十分钟在线观看高清视频www| 久久国产精品男人的天堂亚洲| √禁漫天堂资源中文www| 免费看不卡的av| 综合色丁香网| 精品人妻熟女毛片av久久网站| 亚洲 欧美一区二区三区| 亚洲中文av在线| 美国免费a级毛片| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 亚洲精品日韩在线中文字幕| 老汉色∧v一级毛片| 免费在线观看黄色视频的| 午夜福利视频在线观看免费| 又粗又硬又长又爽又黄的视频| 日韩欧美一区视频在线观看| 中文字幕最新亚洲高清| 中文字幕人妻丝袜一区二区 | 国产成人精品福利久久| 亚洲欧美一区二区三区久久| 国产成人精品久久二区二区91 | 久久天堂一区二区三区四区| 天堂8中文在线网| 日本黄色日本黄色录像| 在线观看免费高清a一片| 欧美激情高清一区二区三区 | 国产女主播在线喷水免费视频网站| 国产黄色视频一区二区在线观看| 久久性视频一级片| av线在线观看网站| 亚洲国产欧美在线一区| 国产午夜精品一二区理论片| 天美传媒精品一区二区| 久久久久久久久久久免费av| 欧美 亚洲 国产 日韩一| 电影成人av| 韩国高清视频一区二区三区|