• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrafast interlayer photocarrier transfer in graphene–MoSe2 van der Waals heterostructure?

    2017-08-30 08:26:26XinWuZhang張心悟DaWeiHe何大偉JiaQiHe何佳琪SiQiZhao趙思淇ShengCaiHao郝生財YongShengWang王永生andLiXinYi衣立新
    Chinese Physics B 2017年9期
    關(guān)鍵詞:大偉

    Xin-Wu Zhang(張心悟),Da-Wei He(何大偉),Jia-Qi He(何佳琪),Si-Qi Zhao(趙思淇),Sheng-Cai Hao(郝生財), Yong-Sheng Wang(王永生),and Li-Xin Yi(衣立新)

    Key Laboratory of Luminescence and Optical Information,Ministry of Education,Institute of Optoelectronic Technology,

    Beijing Jiaotong University,Beijing 100044,China

    Ultrafast interlayer photocarrier transfer in graphene–MoSe2van der Waals heterostructure?

    Xin-Wu Zhang(張心悟),Da-Wei He(何大偉),Jia-Qi He(何佳琪),Si-Qi Zhao(趙思淇),Sheng-Cai Hao(郝生財), Yong-Sheng Wang(王永生),and Li-Xin Yi(衣立新)?

    Key Laboratory of Luminescence and Optical Information,Ministry of Education,Institute of Optoelectronic Technology,

    Beijing Jiaotong University,Beijing 100044,China

    We report the fabrication and photocarrier dynamics in graphene–MoSe2heterostructures.The samples were fabricated by mechanical exfoliation and manual stacking techniques.Ultrafast laser measurements were performed on the heterostructure and MoSe2monolayer samples.By comparing the results,we conclude that photocarriers injected in MoSe2of the heterostructure transfer to graphene on an ultrafast time scale.The carriers in graphene alter the optical absorption coefficient of MoSe2.These results illustrate the potential applications of this material in optoelectronic devices.

    van der Waals heterostructure,transition metal dichalcogenides,molybdenum diselenide,transient absorption

    1.Introduction

    The discovery of graphene in 2004[1,2]has stimulated extensive studies on its novel property and potential applications. Graphene is formed by a single layer of carbon atoms bound together in a hexagonal lattice.Due to its unique structure, graphene has many superior properties,such as high Young’s modulus and fracture strength,[3]high thermal conductivity,[4]ultrafast dynamic optical properties,[5]and high charge carrier mobility.[1]These properties make graphene an attractive candidate for various applications,such as ultracapacitors,[6,7]solar cells,[8–11]photodetector,[12]and low-power-consumption electronics.[13,14]However,the lack of a bandgap limited its application in logic electronic devices.Furthermore,its relatively small optical absorbance is also a drawback for optoelectronic applications.Monolayer transition metal dichalcogenides(TMDs),on the other hand,have remarkably high absorbance in the visible range[15]and a sizable bandgap.[16,17]However,their charge carrier mobilities are relatively low. Hence,combining graphene and TMD can potentially produce bi-layer materials that can effectively absorb light and transfer charge carriers,which are two key elements for most optoelectronic applications.

    Indeed,very recently,significant progress has been made in studies of graphene–TMD heterostructures.So far,most studies have focused on combining graphene with MoS2. Initially,such heterostructures were fabricated by manually stacking graphene and MoS2monolayers together.[18]Mechanical properties of graphene–MoS2were studied both theoretically and experimentally.[19,20]The electronic structure of the formed heterostructure was calculated,measured,and controlled.[21–26]For electronic applications,tunneling transistors have been demonstrated with MoS2serving as the tunneling barrier.[18,27–33]

    Besides these investigations on graphene–MoS2,heterostructure formed by graphene and tungsten based TMD monolayers has also been studied.For graphene–WS2,spin–orbit interaction[34]and various applications have been attempted,such as tunneling transistors,[29,35]photovoltaics,[36]light-emitting diodes,[37]and photodetection.[38]Measurements of its band alignment,[39]photoluminescence properties,[40]and light-emitting devices[37]have been reported.

    In contrast to these extensive efforts on developing heterostructures formed by graphene and MoS2and WS2,MoSe2has been seldom used to form heterostructures with graphene. The only reports on graphene–MoSe2heterostructures are their molecular beam expitaxy[41]and observation of photoluminescence quenching.[42]MoSe2possesses several properties that make it an attractive member of TMDs.It has a direct optical bandgap of 1.55 eV,[43]which is near the optimal bandgap of single-junction photovoltaic devices and photocatalysis.[44–46]

    Here we report fabrication of graphene–MoSe2heterostructures and ultrafast laser measurements on photocarrier dynamics.We observed efficient carrier transfer from MoSe2to graphene,and strong effect of carriers in graphene on optical properties of MoSe2.These results indicate that graphene–MoSe2heterostructures are promising materials for optoelectronic applications.

    2.Experiment

    Graphene and MoSe2flakes were fabricated by mechanical exfoliation.Adhesive tapes were used to mechanically exfoliate flakes from bulk crystals onto polydimethylsiloxane (PDMS)substrates.The monolayers were identified by optical contrasts with an optical microscope.Then a MoSe2monolayer flake was transferred to a Si substrate with a 90 nm SiO2layer and annealed for 2 h at 200°C in an Ar(60 sccm) environment with a pressure of 3 Torr.Next,a graphene flake was transferred onto the MoSe2flake,followed by the same annealing procedure.The final optical microscope image of the sample is shown in Fig.1(a),where the graphene–MoSe2heterostructure is in the triangle yellow area.Figure 1(b)illustrates the predicted band alignment[47,48]of the heterostructure.We note that the band gap of MoSe2presented in Fig.1(b)is a theoretical value,which is different from that of the experiment and has no influence on the measurement.

    Fig.1.(color online)(a)Microscope images of the samples studied.(b)Band alignment of graphene and MoSe2 monolayers.(c)Experimental setup to measure differential reflectivity.

    In the transient absorption microscopy setup shown as Fig.1(c),a passively mode-locked Ti:sapphire oscillator was used to generate a 100 fs pulse with a central wavelength of 790 nm at 80 MHz.We used a beamsplitter to separate the pulse into two beams.One of the beams was coupled to a photonic crystal fiber to generate supercontinuum.A bandpassfilter with a passing wavelength of 620 nm and a bandwidth of 10 nm was employed to select a 620 nm pulse from the super continuum,which served as the pump.Combined with the other beam probe which was outputted directly from the oscillator,the two beams were finally focused onto the sample by a microscope objective lens.The reflected probe was collimated by the objective lens and measured by one detector of a balanced detector.A portion of the probe beam was taken as a reference beam,which is sent to the other detector of the balanced detector.A lock-in amplifier was used to measure the voltage output of the detector.A mechanical chopper was placed in the pump arm to modulate the intensity of the pump beam at about 2 kHz.Hence,the balanced detector now outputs a voltage that is proportional to a differential reflectivity of the probe,R/R0.It is defined as the relative change of the probe reflectivity caused by the pump,(R-R0)/R0,where R and R0are the reflectivity of the probe with the pump presence and without it,respectively.All the measurements were performed at room temperature with the sample exposed in air.

    3.Results and discussion

    We first studied a MoSe2monolayer sample.A pump pulse of 2.00 eV was used to inject photocarriers.A probe pulse of 1.57 eV,which is tuned near to the exciton resonance of MoSe2,was used to monitor these photocarriers.The top panel of Fig.2(a)shows the differential reflectivity signal as a function of the probe delay.In this measurement,the pump fluence is 4.9μJ/cm2.By using an absorption coeffi-cient of 2×105cm?1for MoSe2monolayer at the probe photon energy,[49]an injected carrier density of 2.1×1010cm?2was established.A peak differential reflectivity signal of 1.14×10?4was observed.Furthermore,the decay of the signal can be fitted by a bi-exponential function,with two time constants of 22 and 125 ps,respectively.The rest of Fig.2(a) shows the measured signal at different pump fluences.By fitting these data,we found that as the pump fluence decreased, the fast decay component characterized by 22 ps becomes less pronounced.Based on this feature,we can attribute the long time constant of 125 ps to the photocarrier lifetime in MoSe2. The fast decay channel at higher fluence can be attributed to the contribution of exciton–exciton annihilation.[50]

    Figure 2(b)summarizes the peak differential reflectivity signal as a function of the pump fluence.A linear relation is clearly observed,as confirmed by the linear fit(red line). Finally,with a fixed pump fluence of 1.23μJ/cm2,we repeated the measurement with different probe photon energies. Figure 2(c)shows the peak differential reflectivity signal as a function of the probe photon energy.The peak signal was observed at a probe photon energy of 1.57 eV,which is well consistent with the previously determined optical bandgap of MoSe2monolayers.This observation shows that the probe pulse senses the photocarriers via the change of the excitonic absorption peak induced by these carriers.

    Figure 3 shows the results of the same measurement performed with the graphene–MoSe2heterostructure.If there was no interlayer photocarrier transfer or no interlayer coupling, the results should have been similar to those shown in Fig.2. Due to the smaller absorption coefficient of graphene compared to MoSe2,the carriers injected in graphene can be neglected for simplicity,and the pump pulse can be assumed to inject the same carrier density in the MoSe2of the heterostructure as the MoSe2monolayer.However,we observed two dramatic differences between the two measurements.First, the signal magnitude is about a factor of 10 larger in the heterostructure sample under the same conditions.Second,the signal decays rapidly compared to the MoSe2monolayer.Exponential fits(blue curves)produced a decay time constant of 8.5 ps.Meanwhile,similar dependences on the pump fluence and probe photon energy are observed.

    We attribute these observed features to two physical mechanisms.First,the photocarriers excited in MoSe2rapidly transfer to graphene.Second,the carriers in graphene can induce a differential reflectivity signal of the probe tuned to the MoSe2resonance.

    Fig.2.(color online)Differential reflectivity measurement of monolayer MoSe2.(a)Differential reflectivity signal as a function of probe delay with pump fluences of(from top to bottom)4.9,4.29,3.06,2.45,1.84,1.23 and 0.61μJ/cm2,respectively.The red curves are exponential fits.(b)Peak differential reflectivity signal as a function of pump fluence.(c)Peak differential reflectivity signal as a function of the probe photon energy.

    Fig.3.(color online)Differential reflectivity measurement of graphene–MoSe2 heterostructure.(a)Differential reflectivity signal as a function of probe delay with pump fluences of(from top to bottom)4.9,4.29,3.06,2.45,1.84 and 1.23μJ/cm2,respectively.The blue curves are exponential fits.(b)Peak differential reflectivity signal as a function of pump fluence.(c)Peak differential reflectivity signal as a function of the probe photon energy.

    Fig.4.The electric field of the excitons in MoSe2 before and after forming the heterostruture.

    The strong dependence of the peak signal on probe photon energy indicates that the signal originates from a change of the absorption coefficient of MoSe2.However,this change cannot be induced by the photocarriers in MoSe2,since in the measurements on MoSe2monolayer(Fig.2),we have established the magnitude of the signal for such photocarrier densities used in the measurements.The signal is too large to be attributed to photocarriers in MoSe2.Furthermore,the decay of the signal is very fast.Since the lifetime of photocarriers in graphene was known to be on the same time scale,this further indicates that the signal monitors the carriers in graphene, instead of MoSe2.

    We assume that the mechanism for change of the absorption coefficient of MoSe2by carriers in graphene is via a screening effect of these carriers on the electric field of the excitons.It has been well established that the Coulomb interaction between electrons and holes in monolayer TMDs is significantly enhanced by the reduced dielectric screening. As shown in Fig.4,the majority of the field lines are in the vacuum surrounding the monolayer.This effect has resulted in extremely large exciton binding energies in these materials.When combined with a graphene layer,the carriers in graphene can screen the fields in that layer,and hence change the interaction between the electrons and holes in excitons.

    Therefore,our results provide quantitative information on the physics mechanism of screening of graphene on manybody interactions in MoSe2monolayers.In particular,it is possible to control the electron–hole interaction in MoSe2,as well as other 2D materials,by interfacing with graphene with a certain thickness.This opens up the opportunities of controlling electron–hole interactions in van der Waals materials.

    Based on this mechanism and the fast decay of the signal observed in Fig.3,as well as the lack of a long-lived signal,we conclude that photocarriers excited in MoSe2rapidly transfer to graphene.These carriers in graphene can alter the absorption of MoSe2.

    The observed effects have important implications on using these materials in optoelectronic devices.For example, the efficient transfer of photocarriers from MoSe2to graphene suggests that such bilayers can be used in photodetectors and solar cells.MoSe2has a large absorption coefficient at optimal wavelength for solar cells,while graphene possesses superior charge transport performance.The bilayer structure effectively combines these advantages.The demonstrated control of MoSe2absorption by carriers in graphene can be utilized in light modulation applications where gate controlled carriers in graphene can be used to modulate absorption of light by MoSe2.

    4.Conclusion

    We have fabricated a less investigated graphene–MoSe2heterostructure,and studied its photocarrier dynamics.We found that photocarriers injected in MoSe2transfer to graphene on an ultrafast time scale.We also found that a carrierin graphene can change the excitonic absorption ofMoSe2, which can be potentially used for electric control of optical absorption of MoSe2.Ourresults illustrate thatgraphene–MoSe2heterostructures can effectively combine the novel optical absorption property of MoSe2and charge the transport property of graphene,for potential applications in optoelectronic devices.

    [1]Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva I V and Firsov A A 2004 Science 306 666

    [2]Novoselov K S,Geim A K,Morozov S V,Jiang D,Katsnelson M I, Grigorieva I V,Dubonos S V and Firsov A A 2005 Nature 438 197

    [3]Lee C,Wei X,Kysar J W and Hone J 2008 Science 321 385

    [4]Balandin A A,Ghosh S,Bao W,Calizo I,Teweldebrhan D,Miao F and Lau C N 2008 Nano Lett.8 902

    [5]Jin Q,Dong HM,Han Kand Wang XF 2015 Acta Phys.Sin.64 237801 (in Chinese)

    [6]Stoller M D,Park S,Zhu Y,An J and Ruoff R S 2008 Nano Lett.8 3498

    [7]Pan D,Wang S,Zhao B,Wu M,Zhang H,Wang Y and Jiao Z 2009 Chem.Mater.21 3136

    [8]Becerril H A,Mao J,Liu Z,Stoltenberg R M,Bao Z and Chen Y 2008 ACS Nano 2 463

    [9]Chen H,Müller M B,Gilmore K J,Wallace G G and Li D 2008 Adv. Mater.20 3557

    [10]Wang X,Zhi L and Müllen K 2008 Nano Lett.8 323

    [11]Liu Z,Liu Q,Huang Y,Ma Y,Yin S,Zhang X,Sun W and Chen Y 2008 Adv.Mater.20 3924

    [12]Liang Z J,Liu H X,Niu Y X and Yin Y H 2016 Acta Phys.Sin.65 138501(in Chinese)

    [13]Geim A K and Novoselov K S 2007 Nat.Mater.6 183

    [14]Geim A K 2009 Science 324 1530

    [15]Liu H L,Shen C C,Su S H,Hsu C L,Li M Y and Li L J 2014 Appl. Phys.Lett.105 201905

    [16]He K,Kumar N,Zhao L,Wang Z,Mak K F,Zhao H and Shan J 2014 Phys.Rev.Lett.113 026803

    [17]Zeng F,Zhang W B and Tang B Y 2015 Chin.Phys.B 24 097103

    [18]Britnell L,Gorbachev R,Jalil R,Belle B,Schedin F,Mishchenko A, Georgiou T,Katsnelson M,Eaves L and Morozov S 2012 Science 335 947

    [19]Jiang J W and Park H S 2014 Appl.Phys.Lett.105 033108

    [20]Elder R M,Neupane M R and Chantawansri T L 2015 Appl.Phys.Lett. 107 073101

    [21]Ebnonnasir A,Narayanan B,Kodambaka S and Ciobanu C V 2014 Appl.Phys.Lett.105 031603

    [22]Coy Diaz H,Avila J,Chen C,Addou R,Asensio M C and Batzill M 2015 Nano Lett.15 1135

    [23]Jin W,Yeh P C,Zaki N,Chenet D,Arefe G,Hao Y,Sala A,Mentes T O,Dadap J I and Locatelli A 2015 Phys.Rev.B 92 201409

    [24]Pierucci D,Henck H,Avila J,Balan A,Naylor C H,Patriarche G, Dappe Y J,Silly M G,Sirotti F and Johnson A C 2016 Nano Lett. 16 4054

    [25]Ulstrup S,?abo A G,Miwa J A,Riley J M,Gr?nborg S S,Johannsen J C,Cacho C,Alexander O,Chapman R T and Springate E 2016 ACS Nano 10 6315

    [26]Wei Y,Ma XG,Zhu L,He H and Huang CY 2017 Acta Phys.Sin.66 087101(in Chinese)

    [27]Yu W J,Li Z,Zhou H,Chen Y,Wang Y,Huang Y and Duan X 2013 Nat.Mater.12 246

    [28]Moriya R,Yamaguchi T,Inoue Y,Morikawa S,Sata Y,Masubuchi S and Machida T 2014 Appl.Phys.Lett.105 083119

    [29]Yamaguchi T,Moriya R,Inoue Y,Morikawa S,Masubuchi S,Watanabe K,Taniguchi T and Machida T 2014 Appl.Phys.Lett.105 223109

    [30]Zhang W,Chuu C P,Huang J K,Chen C H,Tsai M L,Chang Y H, Liang C T,Chen Y Z,Chueh Y L and He J H 2014 Sci.Rep.4 3826

    [31]Moriya R,Yamaguchi T,Inoue Y,Sata Y,Morikawa S,Masubuchi S and Machida T 2015 Appl.Phys.Lett.106 223103

    [32]Sata Y,Moriya R,Morikawa S,Yabuki N,Masubuchi S and Machida T 2015 Appl.Phys.Lett.107 023109

    [33]Joiner C A,Campbell P M,Tarasov A A,Beatty B R,Perini C J,Tsai M Y,Ready W J and Vogel E M 2016 ACS Appl.Mater.Inter.8 8702

    [34]Wang Z,Ki D K,Chen H,Berger H,MacDonald A H and Morpurgo A F 2015 Nat.Commun.6 9339

    [35]Georgiou T,Jalil R,Belle B D,Britnell L,Gorbachev R V,Morozov S V,Kim YJ,Gholinia A,Haigh S J and Makarovsky O 2013 Nat. Nanotechnol.8 100

    [36]Shanmugam M,Jacobs-Gedrim R,Song E S and Yu B 2014 Nanoscale 6 12682

    [37]Withers F,Del Pozo-Zamudio O,Mishchenko A,Rooney A,Gholinia A,Watanabe K,Taniguchi T,Haigh S,Geim A and Tartakovskii A 2015 Nat.Mater.14 301

    [38]Tan H,Fan Y,Zhou Y,Chen Q,Xu W and Warner J H 2016 ACS Nano 10 7866

    [39]Kim K,Larentis S,Fallahazad B,Lee K,Xue J,Dillen D C,Corbet C M and Tutuc E 2015 ACS Nano 9 4527

    [40]Li Y,Qin J K,Xu C Y,Cao J,Sun Z Y,Ma L P,Hu PA,Ren W C and Zhen L 2016 Adv.Funct.Mater.26 4319

    [41]Vishwanath S,Liu X,Rouvimov S,Mende P C,Azcatl A,McDonnell S,Wallace R M,Feenstra R M,Furdyna J K and Jena D 2015 2D Mater. 2 024007

    [42]Shim G W,Yoo K,Seo S B,Shin J,Jung D Y,Kang I S,Ahn C W,Cho B J and Choi S Y 2014 ACS Nano 8 6655

    [43]Ji J T,Zhang A M,Xia T L,Gao P,Jie Y H,Zhang Q and Zhang Q M 2016 Chin.Phys.B 25 077802

    [44]Shin B,Zhu Y,Bojarczuk N A,Chey S J and Guha S 2012 Appl.Phys. Lett.101 053903

    [45]Shin B,Bojarczuk N A and Guha S 2013 Appl.Phys.Lett.102 091907

    [46]Shi Y,Hua C,Li B,Fang X,Yao C,Zhang Y,Hu Y S,Wang Z,Chen L and Zhao D 2013 Adv.Funct.Mater.23 1832

    [47]Guo Y and Robertson J 2016 Appl.Phys.Lett.108 233104

    [48]Yu YJ,Zhao Y,Ryu S,Brus L E,Kim K S and Kim P 2009 Nano Lett. 9 3430

    [49]Beal A R and Hughes H P 1979 J.Phys.C:Solid State Phys.12 881

    [50]Kumar N,Cui Q,Ceballos F,He D,Wang Y and Zhao H 2014 Phys. Rev.B 89 125427

    28 April 2017;revised manuscript

    11 June 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/097202

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.61275058,61527817,61335006,and 61378073),the National Science Foundation,China(Grant No.DMR-1505852),the National Basic Research Program of China(Grant Nos.2016YFA0202300 and 2016YFA0202302),and Beijing Science and Technology Committee,China(Grant No.Z151100003315006).

    ?Corresponding author.E-mail:lxyi@bjtu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    大偉
    張大偉作品
    Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
    Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform?
    Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide?
    為你守候
    歌海(2021年2期)2021-06-22 01:58:38
    一又四分之三
    短篇小說(2021年9期)2021-06-06 09:53:18
    神奇的邊界線:一不留神就出國
    智慧少年(2017年8期)2018-01-10 21:39:12
    第三十一個蛋
    貨比三家VS 嘗遍五味
    愛你(2015年8期)2015-11-15 03:31:13
    不會說話
    故事會(2015年2期)2015-02-26 01:10:34
    亚洲 欧美一区二区三区| 久久人人爽av亚洲精品天堂| 最新的欧美精品一区二区| 一级,二级,三级黄色视频| 精品一区二区三区四区五区乱码 | 我要看黄色一级片免费的| 欧美亚洲日本最大视频资源| 国产欧美日韩精品亚洲av| 亚洲av国产av综合av卡| 激情五月婷婷亚洲| 亚洲欧美精品综合一区二区三区| 国产精品麻豆人妻色哟哟久久| 看免费成人av毛片| 麻豆乱淫一区二区| 热99国产精品久久久久久7| 美女国产高潮福利片在线看| 婷婷色综合www| 少妇 在线观看| 婷婷色av中文字幕| 伊人久久大香线蕉亚洲五| 国产欧美日韩一区二区三区在线| 纯流量卡能插随身wifi吗| 精品人妻1区二区| 午夜免费观看性视频| 91麻豆精品激情在线观看国产 | 亚洲欧美日韩高清在线视频 | 美女主播在线视频| 别揉我奶头~嗯~啊~动态视频 | 国产1区2区3区精品| 91老司机精品| 国产在视频线精品| 韩国高清视频一区二区三区| 日本欧美视频一区| 中文字幕人妻丝袜一区二区| 啦啦啦 在线观看视频| 亚洲国产精品一区二区三区在线| 纵有疾风起免费观看全集完整版| 两性夫妻黄色片| av网站在线播放免费| 亚洲 欧美一区二区三区| 久久久久网色| 一级黄色大片毛片| 建设人人有责人人尽责人人享有的| 天堂俺去俺来也www色官网| 欧美变态另类bdsm刘玥| 欧美在线一区亚洲| 婷婷丁香在线五月| 亚洲自偷自拍图片 自拍| 国产野战对白在线观看| 久久国产精品大桥未久av| 亚洲伊人久久精品综合| 丝袜美足系列| 亚洲专区中文字幕在线| 91精品三级在线观看| 伊人亚洲综合成人网| 成人国产av品久久久| 亚洲欧洲日产国产| 丰满人妻熟妇乱又伦精品不卡| 久久午夜综合久久蜜桃| 91精品伊人久久大香线蕉| 99九九在线精品视频| 久久精品国产综合久久久| 秋霞在线观看毛片| 亚洲国产看品久久| 满18在线观看网站| 精品欧美一区二区三区在线| 热99国产精品久久久久久7| 国产真人三级小视频在线观看| 久久人妻熟女aⅴ| 成人国语在线视频| 日韩免费高清中文字幕av| 精品亚洲成国产av| 你懂的网址亚洲精品在线观看| 成人国产av品久久久| svipshipincom国产片| 欧美日韩精品网址| 午夜免费观看性视频| 1024视频免费在线观看| 国产高清videossex| 国产亚洲av高清不卡| 蜜桃在线观看..| 久久天躁狠狠躁夜夜2o2o | 90打野战视频偷拍视频| 少妇人妻 视频| 看免费av毛片| 日韩 亚洲 欧美在线| 成人黄色视频免费在线看| 人妻 亚洲 视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲第一av免费看| 涩涩av久久男人的天堂| 精品一区二区三卡| 久久天堂一区二区三区四区| 亚洲成色77777| 午夜老司机福利片| 欧美乱码精品一区二区三区| 国产野战对白在线观看| 久久精品国产亚洲av高清一级| 婷婷丁香在线五月| 97人妻天天添夜夜摸| 80岁老熟妇乱子伦牲交| 汤姆久久久久久久影院中文字幕| 国产高清国产精品国产三级| 久久精品久久久久久久性| 久久精品国产亚洲av涩爱| 别揉我奶头~嗯~啊~动态视频 | 秋霞在线观看毛片| 在线精品无人区一区二区三| 在线观看免费午夜福利视频| 亚洲国产最新在线播放| 日本91视频免费播放| 满18在线观看网站| 久久ye,这里只有精品| 侵犯人妻中文字幕一二三四区| 久久亚洲国产成人精品v| 两性夫妻黄色片| 国产1区2区3区精品| 涩涩av久久男人的天堂| 亚洲av日韩在线播放| 国产激情久久老熟女| 精品少妇一区二区三区视频日本电影| 一本久久精品| 亚洲精品在线美女| 免费看不卡的av| 51午夜福利影视在线观看| 制服诱惑二区| 午夜久久久在线观看| 色播在线永久视频| 国产亚洲一区二区精品| 国产又爽黄色视频| 国产亚洲欧美在线一区二区| 日韩大码丰满熟妇| 成人国产av品久久久| 国产精品一区二区在线观看99| 久久免费观看电影| e午夜精品久久久久久久| 久久热在线av| av不卡在线播放| 黄色 视频免费看| 久久精品aⅴ一区二区三区四区| 肉色欧美久久久久久久蜜桃| 大片电影免费在线观看免费| 亚洲专区国产一区二区| 在线精品无人区一区二区三| 精品久久久久久电影网| 国产片特级美女逼逼视频| 国产欧美日韩一区二区三 | 中文字幕色久视频| 亚洲欧美中文字幕日韩二区| 国产不卡av网站在线观看| 麻豆国产av国片精品| 精品卡一卡二卡四卡免费| 亚洲成人免费av在线播放| 亚洲中文av在线| 纵有疾风起免费观看全集完整版| 亚洲色图 男人天堂 中文字幕| 亚洲伊人久久精品综合| 一级毛片女人18水好多 | 自拍欧美九色日韩亚洲蝌蚪91| 一级黄色大片毛片| 在线天堂中文资源库| 女人精品久久久久毛片| a 毛片基地| 国产成人一区二区在线| 女警被强在线播放| 老司机影院成人| 欧美老熟妇乱子伦牲交| 日韩伦理黄色片| 婷婷色综合www| 亚洲成人国产一区在线观看 | 成年动漫av网址| 免费人妻精品一区二区三区视频| 午夜福利视频精品| 免费少妇av软件| 嫁个100分男人电影在线观看 | 国产女主播在线喷水免费视频网站| 9色porny在线观看| 亚洲精品一区蜜桃| 日韩av不卡免费在线播放| 黄片播放在线免费| 亚洲少妇的诱惑av| 日韩av在线免费看完整版不卡| 天堂8中文在线网| 极品少妇高潮喷水抽搐| a级毛片在线看网站| 青春草亚洲视频在线观看| 久久人人97超碰香蕉20202| 51午夜福利影视在线观看| 国产视频首页在线观看| 好男人电影高清在线观看| 国产成人精品久久二区二区91| 欧美日韩视频高清一区二区三区二| 午夜免费成人在线视频| 男的添女的下面高潮视频| 午夜免费鲁丝| 日本91视频免费播放| 免费人妻精品一区二区三区视频| 久久国产亚洲av麻豆专区| 日韩 欧美 亚洲 中文字幕| 在线观看免费日韩欧美大片| 99久久99久久久精品蜜桃| 人妻 亚洲 视频| bbb黄色大片| 亚洲国产精品成人久久小说| 国产欧美日韩一区二区三 | 久久久精品94久久精品| 亚洲国产成人一精品久久久| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩高清在线视频 | 天天躁夜夜躁狠狠躁躁| 亚洲欧美精品自产自拍| 少妇人妻 视频| 中文字幕精品免费在线观看视频| 国产日韩欧美在线精品| 少妇裸体淫交视频免费看高清 | 好男人视频免费观看在线| 午夜福利一区二区在线看| 美女大奶头黄色视频| 久久久国产一区二区| 欧美 亚洲 国产 日韩一| 欧美成人精品欧美一级黄| 尾随美女入室| 亚洲精品自拍成人| 中文字幕最新亚洲高清| 亚洲欧美精品综合一区二区三区| 欧美+亚洲+日韩+国产| 一本一本久久a久久精品综合妖精| 伊人亚洲综合成人网| 亚洲国产精品一区三区| 女人高潮潮喷娇喘18禁视频| 久久性视频一级片| 欧美性长视频在线观看| 99re6热这里在线精品视频| 婷婷丁香在线五月| 亚洲专区中文字幕在线| 免费看十八禁软件| 99九九在线精品视频| 人妻一区二区av| 一本—道久久a久久精品蜜桃钙片| 亚洲中文字幕日韩| 免费女性裸体啪啪无遮挡网站| 日本av手机在线免费观看| 国产日韩欧美在线精品| 99精品久久久久人妻精品| 97人妻天天添夜夜摸| 免费高清在线观看日韩| 制服人妻中文乱码| 国产精品麻豆人妻色哟哟久久| 亚洲天堂av无毛| 国产精品久久久久久精品电影小说| 久久av网站| 免费看十八禁软件| 欧美日韩视频高清一区二区三区二| 国产无遮挡羞羞视频在线观看| 黄色视频不卡| 少妇人妻 视频| 99久久综合免费| 久久久国产欧美日韩av| 成年美女黄网站色视频大全免费| 中文字幕色久视频| 日韩 亚洲 欧美在线| 午夜福利,免费看| 成年人黄色毛片网站| 在线观看免费高清a一片| 老司机靠b影院| videosex国产| 欧美黄色淫秽网站| av不卡在线播放| av视频免费观看在线观看| 只有这里有精品99| 久久青草综合色| 国产深夜福利视频在线观看| 免费女性裸体啪啪无遮挡网站| 国产激情久久老熟女| 下体分泌物呈黄色| 免费看不卡的av| 亚洲欧美成人综合另类久久久| av电影中文网址| 欧美日本中文国产一区发布| 欧美另类一区| 午夜福利视频在线观看免费| 一区在线观看完整版| 一级黄色大片毛片| 亚洲国产精品一区二区三区在线| 午夜日韩欧美国产| 精品少妇黑人巨大在线播放| 久久久精品94久久精品| 久久久国产欧美日韩av| 日本av免费视频播放| 亚洲av片天天在线观看| 亚洲国产精品国产精品| 性高湖久久久久久久久免费观看| 国产极品粉嫩免费观看在线| 欧美精品亚洲一区二区| 叶爱在线成人免费视频播放| 亚洲精品av麻豆狂野| 欧美变态另类bdsm刘玥| 91麻豆av在线| 亚洲少妇的诱惑av| 国产欧美日韩综合在线一区二区| 秋霞在线观看毛片| 国产精品久久久久久人妻精品电影 | 最近中文字幕2019免费版| 国产99久久九九免费精品| 赤兔流量卡办理| 少妇的丰满在线观看| 国产在线一区二区三区精| 国产一区二区三区av在线| 欧美精品亚洲一区二区| 日本a在线网址| 亚洲成人手机| 捣出白浆h1v1| 欧美大码av| 日韩欧美一区视频在线观看| 中文字幕色久视频| 女人高潮潮喷娇喘18禁视频| 女警被强在线播放| 国产成人欧美| 十八禁人妻一区二区| 九色亚洲精品在线播放| 欧美xxⅹ黑人| 99九九在线精品视频| 国产精品.久久久| 久久99热这里只频精品6学生| 午夜免费男女啪啪视频观看| 日韩一卡2卡3卡4卡2021年| 97人妻天天添夜夜摸| 欧美+亚洲+日韩+国产| 亚洲午夜精品一区,二区,三区| 在线观看免费视频网站a站| 日本色播在线视频| 超碰成人久久| 亚洲,欧美,日韩| 亚洲免费av在线视频| 欧美性长视频在线观看| 亚洲,欧美,日韩| 日本一区二区免费在线视频| 高清欧美精品videossex| 久久鲁丝午夜福利片| 两个人看的免费小视频| 国产精品国产av在线观看| 国产亚洲欧美精品永久| 亚洲国产毛片av蜜桃av| 成人国产av品久久久| 男女高潮啪啪啪动态图| avwww免费| 久久久国产一区二区| 日本欧美视频一区| 成人国产av品久久久| 水蜜桃什么品种好| 天堂中文最新版在线下载| 丰满少妇做爰视频| 午夜福利免费观看在线| 午夜福利视频精品| 亚洲av日韩精品久久久久久密 | 国产不卡av网站在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久亚洲精品不卡| 熟女少妇亚洲综合色aaa.| 亚洲第一av免费看| 中文精品一卡2卡3卡4更新| 免费少妇av软件| 亚洲国产欧美在线一区| 精品少妇一区二区三区视频日本电影| 国产在线视频一区二区| 色综合欧美亚洲国产小说| 每晚都被弄得嗷嗷叫到高潮| 黄频高清免费视频| 搡老乐熟女国产| 国产爽快片一区二区三区| 久久国产精品大桥未久av| 成人影院久久| 在线观看人妻少妇| 最新在线观看一区二区三区 | 久久九九热精品免费| 黄网站色视频无遮挡免费观看| 嫁个100分男人电影在线观看 | 操美女的视频在线观看| 国产亚洲av片在线观看秒播厂| 免费不卡黄色视频| 精品人妻一区二区三区麻豆| 亚洲av男天堂| 国产成人系列免费观看| 大码成人一级视频| 国产xxxxx性猛交| 一边亲一边摸免费视频| avwww免费| svipshipincom国产片| 一区二区日韩欧美中文字幕| 激情五月婷婷亚洲| 亚洲,欧美精品.| 精品一区二区三区av网在线观看 | 国产爽快片一区二区三区| 亚洲欧美成人综合另类久久久| 99久久人妻综合| 精品久久久久久电影网| 国产野战对白在线观看| xxx大片免费视频| 精品一区二区三卡| svipshipincom国产片| 亚洲视频免费观看视频| 黄片播放在线免费| 19禁男女啪啪无遮挡网站| 真人做人爱边吃奶动态| 看十八女毛片水多多多| 大片免费播放器 马上看| 99国产综合亚洲精品| 国语对白做爰xxxⅹ性视频网站| 亚洲精品成人av观看孕妇| 亚洲精品一二三| 色婷婷av一区二区三区视频| 国产无遮挡羞羞视频在线观看| 人体艺术视频欧美日本| 黄色怎么调成土黄色| 久久久欧美国产精品| 国产亚洲欧美精品永久| tube8黄色片| 日本vs欧美在线观看视频| 国产精品国产三级国产专区5o| 大话2 男鬼变身卡| 日日摸夜夜添夜夜爱| 18禁国产床啪视频网站| 久久久久国产一级毛片高清牌| 欧美+亚洲+日韩+国产| 国产黄色免费在线视频| 中文字幕精品免费在线观看视频| 亚洲精品美女久久av网站| 激情五月婷婷亚洲| 精品人妻一区二区三区麻豆| 成年人黄色毛片网站| 国产精品国产三级国产专区5o| 日韩一本色道免费dvd| 无限看片的www在线观看| 大香蕉久久网| 一级毛片电影观看| 欧美av亚洲av综合av国产av| 日本一区二区免费在线视频| 日韩一区二区三区影片| 亚洲一码二码三码区别大吗| 91九色精品人成在线观看| 国产一区二区三区综合在线观看| 久久午夜综合久久蜜桃| 国产av一区二区精品久久| 久久热在线av| 成人免费观看视频高清| 精品久久久精品久久久| 亚洲黑人精品在线| 性色av一级| 国产成人av教育| 欧美精品高潮呻吟av久久| 最新在线观看一区二区三区 | 国产成人一区二区在线| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 免费人妻精品一区二区三区视频| 一边摸一边抽搐一进一出视频| 天天躁夜夜躁狠狠久久av| 啦啦啦啦在线视频资源| 亚洲少妇的诱惑av| 别揉我奶头~嗯~啊~动态视频 | 美女脱内裤让男人舔精品视频| 日本欧美国产在线视频| 嫁个100分男人电影在线观看 | 一边亲一边摸免费视频| 亚洲久久久国产精品| 王馨瑶露胸无遮挡在线观看| 男女之事视频高清在线观看 | 99国产精品一区二区蜜桃av | 亚洲国产av新网站| 成年动漫av网址| 多毛熟女@视频| 亚洲精品美女久久久久99蜜臀 | 视频在线观看一区二区三区| www日本在线高清视频| 一级毛片黄色毛片免费观看视频| 少妇猛男粗大的猛烈进出视频| 人人妻人人爽人人添夜夜欢视频| 日韩av免费高清视频| 亚洲伊人色综图| 男女之事视频高清在线观看 | 国产精品久久久久久精品电影小说| 久久国产精品大桥未久av| av国产精品久久久久影院| 99国产精品免费福利视频| 午夜免费鲁丝| 精品国产一区二区三区久久久樱花| 五月天丁香电影| 又大又爽又粗| 老熟女久久久| 欧美另类一区| 看十八女毛片水多多多| 亚洲国产精品成人久久小说| 69精品国产乱码久久久| 国产又爽黄色视频| 天堂8中文在线网| 最近中文字幕2019免费版| 国产精品一区二区精品视频观看| av福利片在线| 国产淫语在线视频| av国产精品久久久久影院| 久久人妻熟女aⅴ| 亚洲熟女毛片儿| 一区二区av电影网| 日韩视频在线欧美| 久久青草综合色| 男女之事视频高清在线观看 | 国产成人精品久久二区二区91| 久久精品久久久久久久性| 亚洲av男天堂| 久久亚洲国产成人精品v| 9191精品国产免费久久| 亚洲国产欧美一区二区综合| 国产欧美日韩一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看 | 亚洲激情五月婷婷啪啪| 三上悠亚av全集在线观看| 777米奇影视久久| 中文字幕人妻丝袜一区二区| 亚洲成人手机| 精品少妇黑人巨大在线播放| 日本vs欧美在线观看视频| 丝袜在线中文字幕| 亚洲人成77777在线视频| 成人影院久久| 尾随美女入室| 欧美日韩视频高清一区二区三区二| 免费看不卡的av| 久久午夜综合久久蜜桃| 亚洲精品美女久久久久99蜜臀 | 日本黄色日本黄色录像| 亚洲欧洲精品一区二区精品久久久| 搡老岳熟女国产| 成年女人毛片免费观看观看9 | 新久久久久国产一级毛片| 亚洲伊人久久精品综合| 国产亚洲av片在线观看秒播厂| 操美女的视频在线观看| 欧美av亚洲av综合av国产av| 高清av免费在线| 国产欧美日韩一区二区三 | 国产成人免费观看mmmm| 97在线人人人人妻| 大话2 男鬼变身卡| 亚洲熟女精品中文字幕| 久久久久久免费高清国产稀缺| 婷婷色麻豆天堂久久| 韩国高清视频一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 丝袜脚勾引网站| 国产精品久久久久久人妻精品电影 | a级片在线免费高清观看视频| 一本色道久久久久久精品综合| 欧美精品高潮呻吟av久久| 亚洲精品国产一区二区精华液| 国产主播在线观看一区二区 | 国产精品久久久av美女十八| 久久久精品94久久精品| 成人亚洲精品一区在线观看| 国产亚洲av高清不卡| 一级毛片 在线播放| 久久亚洲国产成人精品v| 午夜影院在线不卡| 高清av免费在线| 亚洲人成网站在线观看播放| 精品第一国产精品| 国产精品二区激情视频| 亚洲,一卡二卡三卡| 久久女婷五月综合色啪小说| av不卡在线播放| 婷婷色麻豆天堂久久| 少妇粗大呻吟视频| 免费不卡黄色视频| 日韩精品免费视频一区二区三区| 亚洲国产精品一区三区| 女人久久www免费人成看片| 欧美乱码精品一区二区三区| 大型av网站在线播放| 日韩中文字幕欧美一区二区 | www.自偷自拍.com| 亚洲成国产人片在线观看| 欧美黑人精品巨大| 亚洲精品久久午夜乱码| 亚洲成色77777| 男人爽女人下面视频在线观看| 最新的欧美精品一区二区| 天天躁夜夜躁狠狠躁躁| 一本—道久久a久久精品蜜桃钙片| 欧美97在线视频| 亚洲精品国产色婷婷电影| 黄色一级大片看看| 一级毛片我不卡| 99国产精品一区二区蜜桃av | 性高湖久久久久久久久免费观看| av不卡在线播放| 亚洲人成电影观看| 丝瓜视频免费看黄片| 一级片'在线观看视频| 亚洲成人国产一区在线观看 | 丝袜美腿诱惑在线| 亚洲欧美一区二区三区国产| 亚洲熟女精品中文字幕| 久久久国产欧美日韩av| 国产高清videossex| 色网站视频免费| 老司机靠b影院| av一本久久久久| 51午夜福利影视在线观看| 伊人久久大香线蕉亚洲五| 两个人看的免费小视频| 天天操日日干夜夜撸| 国产在线一区二区三区精| 国产一区二区 视频在线| 欧美精品一区二区大全| 97在线人人人人妻| 丁香六月欧美|