• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrafast interlayer photocarrier transfer in graphene–MoSe2 van der Waals heterostructure?

    2017-08-30 08:26:26XinWuZhang張心悟DaWeiHe何大偉JiaQiHe何佳琪SiQiZhao趙思淇ShengCaiHao郝生財YongShengWang王永生andLiXinYi衣立新
    Chinese Physics B 2017年9期
    關(guān)鍵詞:大偉

    Xin-Wu Zhang(張心悟),Da-Wei He(何大偉),Jia-Qi He(何佳琪),Si-Qi Zhao(趙思淇),Sheng-Cai Hao(郝生財), Yong-Sheng Wang(王永生),and Li-Xin Yi(衣立新)

    Key Laboratory of Luminescence and Optical Information,Ministry of Education,Institute of Optoelectronic Technology,

    Beijing Jiaotong University,Beijing 100044,China

    Ultrafast interlayer photocarrier transfer in graphene–MoSe2van der Waals heterostructure?

    Xin-Wu Zhang(張心悟),Da-Wei He(何大偉),Jia-Qi He(何佳琪),Si-Qi Zhao(趙思淇),Sheng-Cai Hao(郝生財), Yong-Sheng Wang(王永生),and Li-Xin Yi(衣立新)?

    Key Laboratory of Luminescence and Optical Information,Ministry of Education,Institute of Optoelectronic Technology,

    Beijing Jiaotong University,Beijing 100044,China

    We report the fabrication and photocarrier dynamics in graphene–MoSe2heterostructures.The samples were fabricated by mechanical exfoliation and manual stacking techniques.Ultrafast laser measurements were performed on the heterostructure and MoSe2monolayer samples.By comparing the results,we conclude that photocarriers injected in MoSe2of the heterostructure transfer to graphene on an ultrafast time scale.The carriers in graphene alter the optical absorption coefficient of MoSe2.These results illustrate the potential applications of this material in optoelectronic devices.

    van der Waals heterostructure,transition metal dichalcogenides,molybdenum diselenide,transient absorption

    1.Introduction

    The discovery of graphene in 2004[1,2]has stimulated extensive studies on its novel property and potential applications. Graphene is formed by a single layer of carbon atoms bound together in a hexagonal lattice.Due to its unique structure, graphene has many superior properties,such as high Young’s modulus and fracture strength,[3]high thermal conductivity,[4]ultrafast dynamic optical properties,[5]and high charge carrier mobility.[1]These properties make graphene an attractive candidate for various applications,such as ultracapacitors,[6,7]solar cells,[8–11]photodetector,[12]and low-power-consumption electronics.[13,14]However,the lack of a bandgap limited its application in logic electronic devices.Furthermore,its relatively small optical absorbance is also a drawback for optoelectronic applications.Monolayer transition metal dichalcogenides(TMDs),on the other hand,have remarkably high absorbance in the visible range[15]and a sizable bandgap.[16,17]However,their charge carrier mobilities are relatively low. Hence,combining graphene and TMD can potentially produce bi-layer materials that can effectively absorb light and transfer charge carriers,which are two key elements for most optoelectronic applications.

    Indeed,very recently,significant progress has been made in studies of graphene–TMD heterostructures.So far,most studies have focused on combining graphene with MoS2. Initially,such heterostructures were fabricated by manually stacking graphene and MoS2monolayers together.[18]Mechanical properties of graphene–MoS2were studied both theoretically and experimentally.[19,20]The electronic structure of the formed heterostructure was calculated,measured,and controlled.[21–26]For electronic applications,tunneling transistors have been demonstrated with MoS2serving as the tunneling barrier.[18,27–33]

    Besides these investigations on graphene–MoS2,heterostructure formed by graphene and tungsten based TMD monolayers has also been studied.For graphene–WS2,spin–orbit interaction[34]and various applications have been attempted,such as tunneling transistors,[29,35]photovoltaics,[36]light-emitting diodes,[37]and photodetection.[38]Measurements of its band alignment,[39]photoluminescence properties,[40]and light-emitting devices[37]have been reported.

    In contrast to these extensive efforts on developing heterostructures formed by graphene and MoS2and WS2,MoSe2has been seldom used to form heterostructures with graphene. The only reports on graphene–MoSe2heterostructures are their molecular beam expitaxy[41]and observation of photoluminescence quenching.[42]MoSe2possesses several properties that make it an attractive member of TMDs.It has a direct optical bandgap of 1.55 eV,[43]which is near the optimal bandgap of single-junction photovoltaic devices and photocatalysis.[44–46]

    Here we report fabrication of graphene–MoSe2heterostructures and ultrafast laser measurements on photocarrier dynamics.We observed efficient carrier transfer from MoSe2to graphene,and strong effect of carriers in graphene on optical properties of MoSe2.These results indicate that graphene–MoSe2heterostructures are promising materials for optoelectronic applications.

    2.Experiment

    Graphene and MoSe2flakes were fabricated by mechanical exfoliation.Adhesive tapes were used to mechanically exfoliate flakes from bulk crystals onto polydimethylsiloxane (PDMS)substrates.The monolayers were identified by optical contrasts with an optical microscope.Then a MoSe2monolayer flake was transferred to a Si substrate with a 90 nm SiO2layer and annealed for 2 h at 200°C in an Ar(60 sccm) environment with a pressure of 3 Torr.Next,a graphene flake was transferred onto the MoSe2flake,followed by the same annealing procedure.The final optical microscope image of the sample is shown in Fig.1(a),where the graphene–MoSe2heterostructure is in the triangle yellow area.Figure 1(b)illustrates the predicted band alignment[47,48]of the heterostructure.We note that the band gap of MoSe2presented in Fig.1(b)is a theoretical value,which is different from that of the experiment and has no influence on the measurement.

    Fig.1.(color online)(a)Microscope images of the samples studied.(b)Band alignment of graphene and MoSe2 monolayers.(c)Experimental setup to measure differential reflectivity.

    In the transient absorption microscopy setup shown as Fig.1(c),a passively mode-locked Ti:sapphire oscillator was used to generate a 100 fs pulse with a central wavelength of 790 nm at 80 MHz.We used a beamsplitter to separate the pulse into two beams.One of the beams was coupled to a photonic crystal fiber to generate supercontinuum.A bandpassfilter with a passing wavelength of 620 nm and a bandwidth of 10 nm was employed to select a 620 nm pulse from the super continuum,which served as the pump.Combined with the other beam probe which was outputted directly from the oscillator,the two beams were finally focused onto the sample by a microscope objective lens.The reflected probe was collimated by the objective lens and measured by one detector of a balanced detector.A portion of the probe beam was taken as a reference beam,which is sent to the other detector of the balanced detector.A lock-in amplifier was used to measure the voltage output of the detector.A mechanical chopper was placed in the pump arm to modulate the intensity of the pump beam at about 2 kHz.Hence,the balanced detector now outputs a voltage that is proportional to a differential reflectivity of the probe,R/R0.It is defined as the relative change of the probe reflectivity caused by the pump,(R-R0)/R0,where R and R0are the reflectivity of the probe with the pump presence and without it,respectively.All the measurements were performed at room temperature with the sample exposed in air.

    3.Results and discussion

    We first studied a MoSe2monolayer sample.A pump pulse of 2.00 eV was used to inject photocarriers.A probe pulse of 1.57 eV,which is tuned near to the exciton resonance of MoSe2,was used to monitor these photocarriers.The top panel of Fig.2(a)shows the differential reflectivity signal as a function of the probe delay.In this measurement,the pump fluence is 4.9μJ/cm2.By using an absorption coeffi-cient of 2×105cm?1for MoSe2monolayer at the probe photon energy,[49]an injected carrier density of 2.1×1010cm?2was established.A peak differential reflectivity signal of 1.14×10?4was observed.Furthermore,the decay of the signal can be fitted by a bi-exponential function,with two time constants of 22 and 125 ps,respectively.The rest of Fig.2(a) shows the measured signal at different pump fluences.By fitting these data,we found that as the pump fluence decreased, the fast decay component characterized by 22 ps becomes less pronounced.Based on this feature,we can attribute the long time constant of 125 ps to the photocarrier lifetime in MoSe2. The fast decay channel at higher fluence can be attributed to the contribution of exciton–exciton annihilation.[50]

    Figure 2(b)summarizes the peak differential reflectivity signal as a function of the pump fluence.A linear relation is clearly observed,as confirmed by the linear fit(red line). Finally,with a fixed pump fluence of 1.23μJ/cm2,we repeated the measurement with different probe photon energies. Figure 2(c)shows the peak differential reflectivity signal as a function of the probe photon energy.The peak signal was observed at a probe photon energy of 1.57 eV,which is well consistent with the previously determined optical bandgap of MoSe2monolayers.This observation shows that the probe pulse senses the photocarriers via the change of the excitonic absorption peak induced by these carriers.

    Figure 3 shows the results of the same measurement performed with the graphene–MoSe2heterostructure.If there was no interlayer photocarrier transfer or no interlayer coupling, the results should have been similar to those shown in Fig.2. Due to the smaller absorption coefficient of graphene compared to MoSe2,the carriers injected in graphene can be neglected for simplicity,and the pump pulse can be assumed to inject the same carrier density in the MoSe2of the heterostructure as the MoSe2monolayer.However,we observed two dramatic differences between the two measurements.First, the signal magnitude is about a factor of 10 larger in the heterostructure sample under the same conditions.Second,the signal decays rapidly compared to the MoSe2monolayer.Exponential fits(blue curves)produced a decay time constant of 8.5 ps.Meanwhile,similar dependences on the pump fluence and probe photon energy are observed.

    We attribute these observed features to two physical mechanisms.First,the photocarriers excited in MoSe2rapidly transfer to graphene.Second,the carriers in graphene can induce a differential reflectivity signal of the probe tuned to the MoSe2resonance.

    Fig.2.(color online)Differential reflectivity measurement of monolayer MoSe2.(a)Differential reflectivity signal as a function of probe delay with pump fluences of(from top to bottom)4.9,4.29,3.06,2.45,1.84,1.23 and 0.61μJ/cm2,respectively.The red curves are exponential fits.(b)Peak differential reflectivity signal as a function of pump fluence.(c)Peak differential reflectivity signal as a function of the probe photon energy.

    Fig.3.(color online)Differential reflectivity measurement of graphene–MoSe2 heterostructure.(a)Differential reflectivity signal as a function of probe delay with pump fluences of(from top to bottom)4.9,4.29,3.06,2.45,1.84 and 1.23μJ/cm2,respectively.The blue curves are exponential fits.(b)Peak differential reflectivity signal as a function of pump fluence.(c)Peak differential reflectivity signal as a function of the probe photon energy.

    Fig.4.The electric field of the excitons in MoSe2 before and after forming the heterostruture.

    The strong dependence of the peak signal on probe photon energy indicates that the signal originates from a change of the absorption coefficient of MoSe2.However,this change cannot be induced by the photocarriers in MoSe2,since in the measurements on MoSe2monolayer(Fig.2),we have established the magnitude of the signal for such photocarrier densities used in the measurements.The signal is too large to be attributed to photocarriers in MoSe2.Furthermore,the decay of the signal is very fast.Since the lifetime of photocarriers in graphene was known to be on the same time scale,this further indicates that the signal monitors the carriers in graphene, instead of MoSe2.

    We assume that the mechanism for change of the absorption coefficient of MoSe2by carriers in graphene is via a screening effect of these carriers on the electric field of the excitons.It has been well established that the Coulomb interaction between electrons and holes in monolayer TMDs is significantly enhanced by the reduced dielectric screening. As shown in Fig.4,the majority of the field lines are in the vacuum surrounding the monolayer.This effect has resulted in extremely large exciton binding energies in these materials.When combined with a graphene layer,the carriers in graphene can screen the fields in that layer,and hence change the interaction between the electrons and holes in excitons.

    Therefore,our results provide quantitative information on the physics mechanism of screening of graphene on manybody interactions in MoSe2monolayers.In particular,it is possible to control the electron–hole interaction in MoSe2,as well as other 2D materials,by interfacing with graphene with a certain thickness.This opens up the opportunities of controlling electron–hole interactions in van der Waals materials.

    Based on this mechanism and the fast decay of the signal observed in Fig.3,as well as the lack of a long-lived signal,we conclude that photocarriers excited in MoSe2rapidly transfer to graphene.These carriers in graphene can alter the absorption of MoSe2.

    The observed effects have important implications on using these materials in optoelectronic devices.For example, the efficient transfer of photocarriers from MoSe2to graphene suggests that such bilayers can be used in photodetectors and solar cells.MoSe2has a large absorption coefficient at optimal wavelength for solar cells,while graphene possesses superior charge transport performance.The bilayer structure effectively combines these advantages.The demonstrated control of MoSe2absorption by carriers in graphene can be utilized in light modulation applications where gate controlled carriers in graphene can be used to modulate absorption of light by MoSe2.

    4.Conclusion

    We have fabricated a less investigated graphene–MoSe2heterostructure,and studied its photocarrier dynamics.We found that photocarriers injected in MoSe2transfer to graphene on an ultrafast time scale.We also found that a carrierin graphene can change the excitonic absorption ofMoSe2, which can be potentially used for electric control of optical absorption of MoSe2.Ourresults illustrate thatgraphene–MoSe2heterostructures can effectively combine the novel optical absorption property of MoSe2and charge the transport property of graphene,for potential applications in optoelectronic devices.

    [1]Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva I V and Firsov A A 2004 Science 306 666

    [2]Novoselov K S,Geim A K,Morozov S V,Jiang D,Katsnelson M I, Grigorieva I V,Dubonos S V and Firsov A A 2005 Nature 438 197

    [3]Lee C,Wei X,Kysar J W and Hone J 2008 Science 321 385

    [4]Balandin A A,Ghosh S,Bao W,Calizo I,Teweldebrhan D,Miao F and Lau C N 2008 Nano Lett.8 902

    [5]Jin Q,Dong HM,Han Kand Wang XF 2015 Acta Phys.Sin.64 237801 (in Chinese)

    [6]Stoller M D,Park S,Zhu Y,An J and Ruoff R S 2008 Nano Lett.8 3498

    [7]Pan D,Wang S,Zhao B,Wu M,Zhang H,Wang Y and Jiao Z 2009 Chem.Mater.21 3136

    [8]Becerril H A,Mao J,Liu Z,Stoltenberg R M,Bao Z and Chen Y 2008 ACS Nano 2 463

    [9]Chen H,Müller M B,Gilmore K J,Wallace G G and Li D 2008 Adv. Mater.20 3557

    [10]Wang X,Zhi L and Müllen K 2008 Nano Lett.8 323

    [11]Liu Z,Liu Q,Huang Y,Ma Y,Yin S,Zhang X,Sun W and Chen Y 2008 Adv.Mater.20 3924

    [12]Liang Z J,Liu H X,Niu Y X and Yin Y H 2016 Acta Phys.Sin.65 138501(in Chinese)

    [13]Geim A K and Novoselov K S 2007 Nat.Mater.6 183

    [14]Geim A K 2009 Science 324 1530

    [15]Liu H L,Shen C C,Su S H,Hsu C L,Li M Y and Li L J 2014 Appl. Phys.Lett.105 201905

    [16]He K,Kumar N,Zhao L,Wang Z,Mak K F,Zhao H and Shan J 2014 Phys.Rev.Lett.113 026803

    [17]Zeng F,Zhang W B and Tang B Y 2015 Chin.Phys.B 24 097103

    [18]Britnell L,Gorbachev R,Jalil R,Belle B,Schedin F,Mishchenko A, Georgiou T,Katsnelson M,Eaves L and Morozov S 2012 Science 335 947

    [19]Jiang J W and Park H S 2014 Appl.Phys.Lett.105 033108

    [20]Elder R M,Neupane M R and Chantawansri T L 2015 Appl.Phys.Lett. 107 073101

    [21]Ebnonnasir A,Narayanan B,Kodambaka S and Ciobanu C V 2014 Appl.Phys.Lett.105 031603

    [22]Coy Diaz H,Avila J,Chen C,Addou R,Asensio M C and Batzill M 2015 Nano Lett.15 1135

    [23]Jin W,Yeh P C,Zaki N,Chenet D,Arefe G,Hao Y,Sala A,Mentes T O,Dadap J I and Locatelli A 2015 Phys.Rev.B 92 201409

    [24]Pierucci D,Henck H,Avila J,Balan A,Naylor C H,Patriarche G, Dappe Y J,Silly M G,Sirotti F and Johnson A C 2016 Nano Lett. 16 4054

    [25]Ulstrup S,?abo A G,Miwa J A,Riley J M,Gr?nborg S S,Johannsen J C,Cacho C,Alexander O,Chapman R T and Springate E 2016 ACS Nano 10 6315

    [26]Wei Y,Ma XG,Zhu L,He H and Huang CY 2017 Acta Phys.Sin.66 087101(in Chinese)

    [27]Yu W J,Li Z,Zhou H,Chen Y,Wang Y,Huang Y and Duan X 2013 Nat.Mater.12 246

    [28]Moriya R,Yamaguchi T,Inoue Y,Morikawa S,Sata Y,Masubuchi S and Machida T 2014 Appl.Phys.Lett.105 083119

    [29]Yamaguchi T,Moriya R,Inoue Y,Morikawa S,Masubuchi S,Watanabe K,Taniguchi T and Machida T 2014 Appl.Phys.Lett.105 223109

    [30]Zhang W,Chuu C P,Huang J K,Chen C H,Tsai M L,Chang Y H, Liang C T,Chen Y Z,Chueh Y L and He J H 2014 Sci.Rep.4 3826

    [31]Moriya R,Yamaguchi T,Inoue Y,Sata Y,Morikawa S,Masubuchi S and Machida T 2015 Appl.Phys.Lett.106 223103

    [32]Sata Y,Moriya R,Morikawa S,Yabuki N,Masubuchi S and Machida T 2015 Appl.Phys.Lett.107 023109

    [33]Joiner C A,Campbell P M,Tarasov A A,Beatty B R,Perini C J,Tsai M Y,Ready W J and Vogel E M 2016 ACS Appl.Mater.Inter.8 8702

    [34]Wang Z,Ki D K,Chen H,Berger H,MacDonald A H and Morpurgo A F 2015 Nat.Commun.6 9339

    [35]Georgiou T,Jalil R,Belle B D,Britnell L,Gorbachev R V,Morozov S V,Kim YJ,Gholinia A,Haigh S J and Makarovsky O 2013 Nat. Nanotechnol.8 100

    [36]Shanmugam M,Jacobs-Gedrim R,Song E S and Yu B 2014 Nanoscale 6 12682

    [37]Withers F,Del Pozo-Zamudio O,Mishchenko A,Rooney A,Gholinia A,Watanabe K,Taniguchi T,Haigh S,Geim A and Tartakovskii A 2015 Nat.Mater.14 301

    [38]Tan H,Fan Y,Zhou Y,Chen Q,Xu W and Warner J H 2016 ACS Nano 10 7866

    [39]Kim K,Larentis S,Fallahazad B,Lee K,Xue J,Dillen D C,Corbet C M and Tutuc E 2015 ACS Nano 9 4527

    [40]Li Y,Qin J K,Xu C Y,Cao J,Sun Z Y,Ma L P,Hu PA,Ren W C and Zhen L 2016 Adv.Funct.Mater.26 4319

    [41]Vishwanath S,Liu X,Rouvimov S,Mende P C,Azcatl A,McDonnell S,Wallace R M,Feenstra R M,Furdyna J K and Jena D 2015 2D Mater. 2 024007

    [42]Shim G W,Yoo K,Seo S B,Shin J,Jung D Y,Kang I S,Ahn C W,Cho B J and Choi S Y 2014 ACS Nano 8 6655

    [43]Ji J T,Zhang A M,Xia T L,Gao P,Jie Y H,Zhang Q and Zhang Q M 2016 Chin.Phys.B 25 077802

    [44]Shin B,Zhu Y,Bojarczuk N A,Chey S J and Guha S 2012 Appl.Phys. Lett.101 053903

    [45]Shin B,Bojarczuk N A and Guha S 2013 Appl.Phys.Lett.102 091907

    [46]Shi Y,Hua C,Li B,Fang X,Yao C,Zhang Y,Hu Y S,Wang Z,Chen L and Zhao D 2013 Adv.Funct.Mater.23 1832

    [47]Guo Y and Robertson J 2016 Appl.Phys.Lett.108 233104

    [48]Yu YJ,Zhao Y,Ryu S,Brus L E,Kim K S and Kim P 2009 Nano Lett. 9 3430

    [49]Beal A R and Hughes H P 1979 J.Phys.C:Solid State Phys.12 881

    [50]Kumar N,Cui Q,Ceballos F,He D,Wang Y and Zhao H 2014 Phys. Rev.B 89 125427

    28 April 2017;revised manuscript

    11 June 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/097202

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.61275058,61527817,61335006,and 61378073),the National Science Foundation,China(Grant No.DMR-1505852),the National Basic Research Program of China(Grant Nos.2016YFA0202300 and 2016YFA0202302),and Beijing Science and Technology Committee,China(Grant No.Z151100003315006).

    ?Corresponding author.E-mail:lxyi@bjtu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    大偉
    張大偉作品
    Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
    Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform?
    Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide?
    為你守候
    歌海(2021年2期)2021-06-22 01:58:38
    一又四分之三
    短篇小說(2021年9期)2021-06-06 09:53:18
    神奇的邊界線:一不留神就出國
    智慧少年(2017年8期)2018-01-10 21:39:12
    第三十一個蛋
    貨比三家VS 嘗遍五味
    愛你(2015年8期)2015-11-15 03:31:13
    不會說話
    故事會(2015年2期)2015-02-26 01:10:34
    国产国语露脸激情在线看| 欧美av亚洲av综合av国产av | 国产精品熟女久久久久浪| 高清av免费在线| 国产精品无大码| 美女高潮到喷水免费观看| 涩涩av久久男人的天堂| 国产精品熟女久久久久浪| 国产成人啪精品午夜网站| 婷婷色麻豆天堂久久| 一区二区日韩欧美中文字幕| 久久人人爽人人片av| 日本爱情动作片www.在线观看| 亚洲av男天堂| 在线天堂中文资源库| 18禁动态无遮挡网站| 一级片免费观看大全| 国产一级毛片在线| 丰满少妇做爰视频| 男女国产视频网站| 青草久久国产| 不卡视频在线观看欧美| 亚洲精品国产av蜜桃| 咕卡用的链子| svipshipincom国产片| 国产精品一国产av| 在线天堂最新版资源| 日日啪夜夜爽| 毛片一级片免费看久久久久| 又大又黄又爽视频免费| 黑丝袜美女国产一区| 国产日韩欧美在线精品| 一边摸一边做爽爽视频免费| 9191精品国产免费久久| 亚洲欧洲日产国产| 亚洲色图 男人天堂 中文字幕| 国产亚洲最大av| 日韩伦理黄色片| 天天影视国产精品| 99久国产av精品国产电影| 国产成人91sexporn| 一级片免费观看大全| 99re6热这里在线精品视频| 国产亚洲一区二区精品| 9热在线视频观看99| 在线观看免费高清a一片| 亚洲欧洲日产国产| 免费不卡黄色视频| 免费高清在线观看视频在线观看| 女人久久www免费人成看片| 日韩欧美一区视频在线观看| 在线亚洲精品国产二区图片欧美| av电影中文网址| 欧美久久黑人一区二区| 亚洲成国产人片在线观看| 一区在线观看完整版| 久久精品国产亚洲av高清一级| 国产欧美亚洲国产| 久久久国产欧美日韩av| 一区二区三区激情视频| 亚洲精品国产av成人精品| 色视频在线一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费男女啪啪视频观看| 大片免费播放器 马上看| 国产成人啪精品午夜网站| 精品第一国产精品| 色婷婷av一区二区三区视频| 国产精品国产三级专区第一集| 国产伦人伦偷精品视频| 不卡视频在线观看欧美| 赤兔流量卡办理| 黑人巨大精品欧美一区二区蜜桃| a 毛片基地| 午夜福利视频精品| 国产亚洲最大av| 精品午夜福利在线看| 日本色播在线视频| av网站免费在线观看视频| 国产男女超爽视频在线观看| 美女中出高潮动态图| 亚洲精品国产av蜜桃| 老司机在亚洲福利影院| 99九九在线精品视频| 日本av手机在线免费观看| 国产精品欧美亚洲77777| 亚洲国产av影院在线观看| 男女边摸边吃奶| 亚洲成人av在线免费| 在线精品无人区一区二区三| 一个人免费看片子| 亚洲美女搞黄在线观看| av不卡在线播放| 91精品伊人久久大香线蕉| 我的亚洲天堂| 久久久久国产一级毛片高清牌| 制服诱惑二区| 久久久亚洲精品成人影院| 国产日韩欧美亚洲二区| √禁漫天堂资源中文www| 日本wwww免费看| 天天躁夜夜躁狠狠久久av| 精品酒店卫生间| 国产午夜精品一二区理论片| 高清在线视频一区二区三区| 欧美日韩亚洲高清精品| 欧美精品亚洲一区二区| 久久 成人 亚洲| 人人妻人人添人人爽欧美一区卜| √禁漫天堂资源中文www| av网站在线播放免费| 日日撸夜夜添| 成人国产麻豆网| 亚洲人成电影观看| 国产成人精品无人区| 叶爱在线成人免费视频播放| 亚洲久久久国产精品| 久久精品aⅴ一区二区三区四区| 午夜精品国产一区二区电影| 亚洲国产精品成人久久小说| 婷婷色综合www| 久久久久久免费高清国产稀缺| 中文乱码字字幕精品一区二区三区| 亚洲色图综合在线观看| 男女国产视频网站| 最近最新中文字幕免费大全7| 日本色播在线视频| 老司机影院毛片| 国产色婷婷99| 18禁动态无遮挡网站| 日韩 亚洲 欧美在线| 欧美国产精品va在线观看不卡| av卡一久久| 精品少妇内射三级| 我的亚洲天堂| 欧美国产精品一级二级三级| 日韩av免费高清视频| 国产极品粉嫩免费观看在线| 香蕉国产在线看| 亚洲精品aⅴ在线观看| 欧美日韩亚洲综合一区二区三区_| 女性生殖器流出的白浆| 日韩,欧美,国产一区二区三区| 1024香蕉在线观看| 亚洲精品一二三| 亚洲第一青青草原| 18禁国产床啪视频网站| 国产av一区二区精品久久| 久久婷婷青草| 精品人妻在线不人妻| avwww免费| 另类亚洲欧美激情| 久热这里只有精品99| 久久精品aⅴ一区二区三区四区| 国产免费又黄又爽又色| 日韩欧美一区视频在线观看| 久久久欧美国产精品| av.在线天堂| 国产精品国产三级专区第一集| 1024视频免费在线观看| 国产精品成人在线| 欧美日韩一级在线毛片| av免费观看日本| 少妇人妻 视频| 精品久久久久久电影网| 久久这里只有精品19| 成人国产av品久久久| 美女中出高潮动态图| 精品一品国产午夜福利视频| 日本欧美视频一区| 午夜福利一区二区在线看| 国产一卡二卡三卡精品 | 亚洲av电影在线进入| 久久女婷五月综合色啪小说| 黄色一级大片看看| 亚洲av日韩精品久久久久久密 | 日韩欧美精品免费久久| 国产在视频线精品| 女性被躁到高潮视频| 色婷婷久久久亚洲欧美| av女优亚洲男人天堂| 欧美日韩av久久| 亚洲三区欧美一区| 老司机靠b影院| 狠狠精品人妻久久久久久综合| 婷婷成人精品国产| 美女视频免费永久观看网站| 女人被躁到高潮嗷嗷叫费观| 飞空精品影院首页| 99久久人妻综合| 国产乱人偷精品视频| 新久久久久国产一级毛片| 一级爰片在线观看| 亚洲精品久久成人aⅴ小说| 亚洲,欧美精品.| 91精品三级在线观看| 亚洲三区欧美一区| 国产亚洲一区二区精品| 亚洲国产欧美网| 亚洲一卡2卡3卡4卡5卡精品中文| 波野结衣二区三区在线| avwww免费| 一个人免费看片子| 国产野战对白在线观看| 美女视频免费永久观看网站| 免费黄网站久久成人精品| 人人妻,人人澡人人爽秒播 | 激情五月婷婷亚洲| 制服诱惑二区| 欧美日韩视频精品一区| 精品国产乱码久久久久久小说| 国产欧美日韩综合在线一区二区| 亚洲av中文av极速乱| 亚洲精品日韩在线中文字幕| 午夜av观看不卡| 别揉我奶头~嗯~啊~动态视频 | 精品卡一卡二卡四卡免费| 亚洲国产欧美网| 日韩免费高清中文字幕av| 夜夜骑夜夜射夜夜干| 热99国产精品久久久久久7| 超碰成人久久| 国产片特级美女逼逼视频| 欧美日韩精品网址| 中文字幕亚洲精品专区| 国产日韩欧美在线精品| 亚洲人成网站在线观看播放| 亚洲中文av在线| 免费观看人在逋| 国产极品天堂在线| 99香蕉大伊视频| 国产精品亚洲av一区麻豆 | 晚上一个人看的免费电影| 最近的中文字幕免费完整| 丝袜美足系列| 午夜日韩欧美国产| av女优亚洲男人天堂| 一区二区三区激情视频| 亚洲av成人不卡在线观看播放网 | xxx大片免费视频| 久久午夜综合久久蜜桃| 久久 成人 亚洲| 高清欧美精品videossex| 欧美成人午夜精品| videos熟女内射| 精品人妻在线不人妻| 国产一区二区激情短视频 | 国产日韩一区二区三区精品不卡| 搡老乐熟女国产| 午夜日韩欧美国产| 一级黄片播放器| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲av片在线观看秒播厂| 午夜福利一区二区在线看| 看免费成人av毛片| 一级毛片黄色毛片免费观看视频| 国产黄色免费在线视频| 日韩一卡2卡3卡4卡2021年| 黑人猛操日本美女一级片| 亚洲国产欧美网| 少妇人妻精品综合一区二区| 久久久久久人妻| 精品人妻在线不人妻| 大香蕉久久网| 天天躁夜夜躁狠狠久久av| 人人妻人人澡人人看| 汤姆久久久久久久影院中文字幕| 亚洲美女黄色视频免费看| 中国三级夫妇交换| av片东京热男人的天堂| 精品一区二区三区四区五区乱码 | 国产日韩欧美视频二区| 午夜精品国产一区二区电影| 日本91视频免费播放| 亚洲精品一二三| 一级毛片黄色毛片免费观看视频| av在线观看视频网站免费| 日本vs欧美在线观看视频| 国产亚洲午夜精品一区二区久久| 啦啦啦视频在线资源免费观看| 一级毛片我不卡| 欧美成人午夜精品| 亚洲少妇的诱惑av| 黄片小视频在线播放| 国产精品av久久久久免费| 天天操日日干夜夜撸| 亚洲熟女精品中文字幕| 亚洲综合色网址| 卡戴珊不雅视频在线播放| 欧美精品亚洲一区二区| 亚洲美女搞黄在线观看| 亚洲人成网站在线观看播放| 欧美日韩综合久久久久久| 最新的欧美精品一区二区| 操美女的视频在线观看| 国产视频首页在线观看| 亚洲欧美清纯卡通| 99热全是精品| 一级爰片在线观看| 国产欧美亚洲国产| 亚洲av国产av综合av卡| 七月丁香在线播放| 99香蕉大伊视频| 免费观看a级毛片全部| 爱豆传媒免费全集在线观看| 9色porny在线观看| 国产精品熟女久久久久浪| 女的被弄到高潮叫床怎么办| 久久天堂一区二区三区四区| 美女脱内裤让男人舔精品视频| 亚洲av中文av极速乱| 色吧在线观看| 校园人妻丝袜中文字幕| 国产 精品1| 十八禁高潮呻吟视频| 亚洲精品美女久久久久99蜜臀 | 亚洲久久久国产精品| av网站免费在线观看视频| e午夜精品久久久久久久| 国产人伦9x9x在线观看| 亚洲综合精品二区| 免费黄网站久久成人精品| 亚洲精华国产精华液的使用体验| 精品国产露脸久久av麻豆| 免费观看a级毛片全部| 免费av中文字幕在线| 热99国产精品久久久久久7| 妹子高潮喷水视频| 精品视频人人做人人爽| 女性生殖器流出的白浆| 久久国产精品大桥未久av| 成人毛片60女人毛片免费| 久久久久精品久久久久真实原创| www.精华液| 又粗又硬又长又爽又黄的视频| 在线观看免费高清a一片| 久久99热这里只频精品6学生| 国产免费视频播放在线视频| 日韩中文字幕欧美一区二区 | 亚洲欧美精品综合一区二区三区| 美女午夜性视频免费| 亚洲精品美女久久av网站| 国产精品 国内视频| 99热网站在线观看| 卡戴珊不雅视频在线播放| 免费日韩欧美在线观看| 久久精品国产a三级三级三级| 国产成人精品久久久久久| 18禁裸乳无遮挡动漫免费视频| 91精品国产国语对白视频| 色婷婷久久久亚洲欧美| 女人被躁到高潮嗷嗷叫费观| 亚洲成人国产一区在线观看 | 日本欧美视频一区| 美女高潮到喷水免费观看| 国产黄频视频在线观看| av网站在线播放免费| 亚洲婷婷狠狠爱综合网| 飞空精品影院首页| 国产成人一区二区在线| 电影成人av| av又黄又爽大尺度在线免费看| 久久精品国产综合久久久| 天天躁夜夜躁狠狠躁躁| 1024香蕉在线观看| 中文天堂在线官网| 日韩中文字幕视频在线看片| 最近手机中文字幕大全| 午夜精品国产一区二区电影| 欧美黄色片欧美黄色片| 亚洲欧美一区二区三区黑人| 亚洲av福利一区| 午夜91福利影院| 欧美av亚洲av综合av国产av | 日本av手机在线免费观看| 韩国高清视频一区二区三区| 国产午夜精品一二区理论片| 久久久亚洲精品成人影院| 2018国产大陆天天弄谢| av不卡在线播放| 久久狼人影院| 国产成人精品无人区| 日韩中文字幕视频在线看片| 天天躁日日躁夜夜躁夜夜| 免费黄网站久久成人精品| 国产成人精品福利久久| 久久久久精品久久久久真实原创| 高清不卡的av网站| 99热全是精品| 亚洲精品一二三| 麻豆av在线久日| 国产精品三级大全| 秋霞在线观看毛片| 午夜免费男女啪啪视频观看| 电影成人av| 激情五月婷婷亚洲| 久久久精品区二区三区| 尾随美女入室| 国产精品无大码| av国产精品久久久久影院| 国产成人欧美| 90打野战视频偷拍视频| 别揉我奶头~嗯~啊~动态视频 | 精品人妻一区二区三区麻豆| 看十八女毛片水多多多| 十分钟在线观看高清视频www| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 十八禁人妻一区二区| 观看美女的网站| 999精品在线视频| 高清视频免费观看一区二区| 久久精品久久久久久噜噜老黄| 国产1区2区3区精品| 中文字幕亚洲精品专区| 国产精品.久久久| 久久久久国产一级毛片高清牌| 9热在线视频观看99| 一进一出抽搐gif免费好疼| 久久国产精品男人的天堂亚洲| 欧美一区二区精品小视频在线| 黑人巨大精品欧美一区二区蜜桃| 男女下面进入的视频免费午夜 | 免费在线观看黄色视频的| 亚洲一区高清亚洲精品| 亚洲欧美日韩高清在线视频| 不卡av一区二区三区| 欧美亚洲日本最大视频资源| 亚洲欧美日韩无卡精品| 欧美激情极品国产一区二区三区| 淫秽高清视频在线观看| 亚洲五月天丁香| 亚洲欧美激情综合另类| 亚洲精品av麻豆狂野| 黄色成人免费大全| 日韩欧美国产一区二区入口| 成在线人永久免费视频| 亚洲欧美精品综合久久99| 国语自产精品视频在线第100页| 亚洲成人国产一区在线观看| 国产极品粉嫩免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 在线视频色国产色| 国产色视频综合| 欧美乱码精品一区二区三区| 国产成人系列免费观看| 精品免费久久久久久久清纯| 最近最新免费中文字幕在线| 桃红色精品国产亚洲av| 变态另类丝袜制服| 午夜免费成人在线视频| 成人av一区二区三区在线看| 人人妻,人人澡人人爽秒播| 国产精品自产拍在线观看55亚洲| 中文字幕另类日韩欧美亚洲嫩草| 麻豆av在线久日| 国产精品电影一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲色图 男人天堂 中文字幕| 午夜日韩欧美国产| 久久亚洲精品不卡| 国产亚洲av嫩草精品影院| 成人永久免费在线观看视频| 国产精品久久久久久精品电影 | av视频在线观看入口| 最新美女视频免费是黄的| 纯流量卡能插随身wifi吗| 一级片免费观看大全| 国产1区2区3区精品| 久久国产精品男人的天堂亚洲| tocl精华| 国产免费男女视频| 国产一区二区三区在线臀色熟女| 国产成人av激情在线播放| 久久精品aⅴ一区二区三区四区| 日本vs欧美在线观看视频| 亚洲欧美激情在线| 亚洲aⅴ乱码一区二区在线播放 | 国产主播在线观看一区二区| 国产精华一区二区三区| 香蕉久久夜色| 亚洲,欧美精品.| e午夜精品久久久久久久| 亚洲专区国产一区二区| 美女高潮到喷水免费观看| 亚洲av电影不卡..在线观看| 亚洲中文字幕日韩| 制服丝袜大香蕉在线| 黄片播放在线免费| 精品久久久久久,| 日韩高清综合在线| 又黄又粗又硬又大视频| 99精品欧美一区二区三区四区| 99久久精品国产亚洲精品| 精品国产亚洲在线| 欧美日韩乱码在线| 国产精品一区二区免费欧美| 一级a爱片免费观看的视频| 国产精华一区二区三区| 无限看片的www在线观看| 国产一卡二卡三卡精品| 国产国语露脸激情在线看| 一级a爱视频在线免费观看| 国产精品九九99| 亚洲精品国产一区二区精华液| 天天躁夜夜躁狠狠躁躁| 久久久久国内视频| 99国产精品一区二区三区| 变态另类丝袜制服| 免费久久久久久久精品成人欧美视频| 午夜福利高清视频| 男人的好看免费观看在线视频 | 视频区欧美日本亚洲| 亚洲精品国产色婷婷电影| 久久国产乱子伦精品免费另类| 91国产中文字幕| 曰老女人黄片| 久久久久久国产a免费观看| 亚洲国产精品久久男人天堂| 波多野结衣av一区二区av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品1区2区在线观看.| 国产精品av久久久久免费| 高潮久久久久久久久久久不卡| 国产主播在线观看一区二区| 亚洲成a人片在线一区二区| 一二三四在线观看免费中文在| 日韩欧美免费精品| netflix在线观看网站| 美女高潮喷水抽搐中文字幕| 久久精品国产99精品国产亚洲性色 | 国产精品电影一区二区三区| 午夜免费观看网址| 亚洲avbb在线观看| 亚洲第一av免费看| 国产国语露脸激情在线看| 亚洲国产高清在线一区二区三 | 午夜免费成人在线视频| 这个男人来自地球电影免费观看| 免费在线观看视频国产中文字幕亚洲| 日本精品一区二区三区蜜桃| 熟女少妇亚洲综合色aaa.| 黄网站色视频无遮挡免费观看| 女性生殖器流出的白浆| 国内精品久久久久久久电影| 亚洲欧美日韩另类电影网站| 18禁美女被吸乳视频| 高潮久久久久久久久久久不卡| 男女下面进入的视频免费午夜 | 美女国产高潮福利片在线看| 久久精品国产亚洲av香蕉五月| 国产av又大| 中文亚洲av片在线观看爽| 亚洲欧美一区二区三区黑人| 一区二区三区国产精品乱码| 国产91精品成人一区二区三区| 亚洲国产中文字幕在线视频| 欧美av亚洲av综合av国产av| 亚洲人成伊人成综合网2020| 亚洲五月色婷婷综合| 老鸭窝网址在线观看| 免费在线观看视频国产中文字幕亚洲| 90打野战视频偷拍视频| 免费观看精品视频网站| 亚洲男人天堂网一区| 国产单亲对白刺激| 国产成人欧美| 午夜免费激情av| 精品少妇一区二区三区视频日本电影| 国产亚洲精品久久久久5区| 中文字幕高清在线视频| 日韩三级视频一区二区三区| 精品第一国产精品| 亚洲第一青青草原| 久久人妻av系列| 1024香蕉在线观看| 成人18禁在线播放| 久久狼人影院| 精品久久蜜臀av无| 亚洲美女黄片视频| 久久这里只有精品19| 亚洲 欧美 日韩 在线 免费| 色精品久久人妻99蜜桃| 欧美绝顶高潮抽搐喷水| 日韩视频一区二区在线观看| 窝窝影院91人妻| 亚洲男人天堂网一区| 日韩欧美国产在线观看| 日本 av在线| 国产激情久久老熟女| 97人妻精品一区二区三区麻豆 | 十八禁网站免费在线| 国产人伦9x9x在线观看| 久久狼人影院| 中文字幕色久视频| 亚洲伊人色综图| 日本一区二区免费在线视频| 亚洲一区二区三区色噜噜| 老鸭窝网址在线观看| 日韩精品中文字幕看吧| av视频在线观看入口| 午夜福利影视在线免费观看| 天天添夜夜摸| 国产亚洲精品综合一区在线观看 | 欧美另类亚洲清纯唯美| av中文乱码字幕在线| 操美女的视频在线观看| 午夜免费成人在线视频| 成人手机av| 欧美亚洲日本最大视频资源| 给我免费播放毛片高清在线观看| 国产精品亚洲一级av第二区| 人成视频在线观看免费观看| 在线十欧美十亚洲十日本专区| а√天堂www在线а√下载|