• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultra-broadband absorber based on cascaded nanodisk arrays

    2022-04-12 03:44:16QiWang王琦RuiLi李瑞XuFengGao高旭峰ShiJieZhang張世杰RuiJinHong洪瑞金BangLianXu徐邦聯(lián)andDaWeiZhang張大偉
    Chinese Physics B 2022年4期
    關鍵詞:李瑞邦聯(lián)王琦

    Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(張世杰),Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦聯(lián)), and Da-Wei Zhang(張大偉)

    Engineering Research Centre of Optical Instrument and System,the Ministry of Education,Shanghai Key Laboratory of Modern Optical System,University of Shanghai for Science and Technology,Shanghai 200093,China

    Keywords: ultra-broadband absorption,cascaded nanodiskarrays,polarization-independent

    1. Introduction

    Nanotechnology develops rapidly.[1-5]Ultra-broadband absorbers exhibit great potential applications in the optoelectronic devices,such as photodetectors,infrared cloaking,solar cells,imaging.[6,7]Generally,most perfect absorptions are designed into metal-insulator-metal (MIM) structures.[8]However, the conventional three-layer MIM absorbers contribute to narrow bandwidths due to their resonant characteristics.To extend the absorption bandwidth, several different aspects have been studied widely, such as incorporating multi-sized resonators and multi-thickness metasurfaces.[9]Furthermore,strips,[10]squares,[11]disks,[12]and crosses[13]within a unit cell have also been investigated. Nevertheless,the bandwidths of these absorbers are limited by the possible number of resonators that can be integrated into the unit cell.

    Recently, the nanostructures designed by graded nonnoble metal/dielectric patterns with many stacks have been proposed to broaden the bandwidth. For example, Wanget al.[14]demonstrated an ultra-broadband,omnidirectional,and polarization-insensitive absorber based on cascaded nanorod arrays (CNAs), which achieved an average absorptivity of 98.2%with a relative absorption bandwidth(RAB)of 149.8%in a wavelength range of 0.38μm-2.65μm. Liuet al.[15]proposed an ultra-broadband perfect absorber (UBPA) by utilizing a multi-size rectangular structure,consisting of multi-layer silicon/iron(Si/Fe)units,which possesses an average absorptivity of over 96% in a range of 300 nm-3000 nm under the normal incidence. The materials are non-noble metals which reduce the cost. However, the number of layers is over 10,which brings a great challenge to the process of fabrication. In practical applications,it is desirable for an absorber to own not only an ultrabroad bandwidth,high absorption efficiency,and compact device size but also simplicity fabrication and low cost.

    Here, we propose an omnidirectional absorber consisting of cascaded nanodisk arrays by placing an insulatormetal-insulator-metal(IMIM)nanodisk on an insulator-metal film stack, which can exhibit ultra-broadband, good angleinsensitive properties and polarization-independent characteristics in the near-infrared region. Additionally,simulation results indicate that an average absorption of over 91.5% can be achieved at wavelengths ranging from 600 nm to 4000 nm.With the analyses of the electric and magnetic field distributions, we first illustrate that the physical basis for the ultrabroadband absorption is contributed to from the localized surface plasmons (LSPs), propagating surface plasmons (PSPs),and plasmonic resonant cavity(PRC)modes. Then,we calculate the impedance of the designed structure, compare it with that of the corresponding six-layer metal-insulator film stack,which is analyzed for understanding the absorption physical mechanism. To further investigate its absorption performance,the influences of different disk radii and metal materials on the absorption characteristics are also investigated for comparison. Moreover,the polarization-independent characteristic is manifested due to its symmetry structure. Finally, the broadband absorption features can be well maintained at the incident angle of up to 40°for both transverse magnetic(TM)polarization and transverse electric (TE) polarization. All these impressive absorption properties make our proposed structure suitable for wide applications such as in photovoltaic devices,remote sensing,and photodetectors.

    2. Structure and method

    The side view of the broadband absorber is displayed in Fig. 1(a). The absorber consists of an Al2O3-Ti-Al2O3nanodisk array(h1=120 nm,h2=30 nm,R2=100 nm)on the top,a bottom Ti nanodisk array(h2=30 nm,R1=100 nm),a thin Al2O3dielectric layer(h1=120 nm)in the middle,and an opaque Ti substrate(h3=220 nm)at the bottom. Figure 1(b)is the schematic diagram of the broadband absorber. The nanodisk array is symmetrical along thexandydirections. Therefore,Λ=210 nm is the period in thexandydirections. The bottom Ti substrate is thick enough to ensure that the transmission is nearly zero. Therefore,A=1-R-Tis used to calculate the absorption, whereRrefers to the reflection andTdenotes the transmission with the values of 0. Here, the non-noble metal (Ti) is selected as the metal material to enhance the absorption due to the material Ti incurs high Ohmic loss in the near-infrared(NIR)spectral regime. The dielectric constant of Ti and Al2O3are cited from Palik’s data.[16]

    Fig. 1. (a)-(b) Schematic diagrams of designed absorber, with parameters Λ =210 nm,h1=120 nm,h2=30 nm,R1=100 nm,and R2=90 nm.

    In the simulation, the finite difference time domain(FDTD)method is used to analyze the absorption performance of the absorber. The boundary conditions of the region along thexandyaxes are periodic, and the distance from the left to the right boundary is accurately equal to one period. The perfectly matched layer(PML)is used in thezdirection. The incident wave is of TM polarization(where the electric field is along thexaxis) at normal incidence. Moreover, the BFAST plane wave is employed for oblique incidence. The mesh size is 5 nm×5 nm×5 nm in thex,y,andzdirections,respectively.

    The sample structure is fabricated by the magnetron sputtering technique[17]and the electron beam lithography.[18]Firstly, Ti and Al2O3films can be fabricated by sputtering the related materials on the silica substrates in turn. Secondly, a layer of photoresist will be coated on the films and etched by the electron beam lithography to form periodic nanodisks. Thirdly, the Ti nanodisks can be fabricated by successively sputtering Ti on the photoresist strip array. The remained photoresist is removed by the lift-off method. Lastly,steps 2 through 4 above are repeated while sputtering Ti or Al2O3films as the corresponding layer,and it is noted thatR2is smaller thanR1, which means different periods during the lithography process. At this point,the sample is thus formed.

    3. Absorption performance analysis

    Based on the optimized geometric structure, figure 2 shows the absorption spectra of differently designed absorbers.They are the absorption spectra of the designed structure(black), designed similar structure (blue) withR1=R2=100 nm, and six-layer metal-insulator film stacks (purple),respectively. Obviously, for the designed structure, the absorptivity of the absorber, above 90% can be achieved in a wavelength range of 600 nm-4000 nm, which indicates an ultra-broad bandwidth of 3400 nm. The average absorptivity is calculated fromA=∫λ1λ2A(λ)dλ/(λ1-λ2),[19]whereλ1is 4000 nm andλ2is 600 nm. According to the formula,the average absorptivity in this wavelength range can reach 91.5%.Moreover, it has extremely high absorption (R >99%) in a range from 631.97 nm to 835.06 nm and from 988.99 nm to 1120.10 nm. Additionally, the relative absorption bandwidth(RAB)can describe the absorption performance,which is defined as RAB=2(λmax-λmin)/(λmax+λmin),whereλmaxandλminare the larger and smaller wavelengths in a wavelength region with absorptivity higher than 90%. Based on the above formula,the RAB value is obtained to be 147.8%.

    Fig. 2. Absorption performances of total structure (black), total structure with R1 =R2 =100 nm (blue), and six-layer metal-insulator film stacks(red).

    Then,for comparison,we analyze the absorption of a similar structure(blue)withR1=R2=100 nm. It is clear that the broadband absorption spectrum with absorption less than 90%ranges from 1339.06 nm to 2295.28 nm, which narrows the bandwidth(A >90%)within the analyzed range.However,the absorptivity of the six-layer metal-insulator film stacks (red)is larger than 90%in a wavelength range from 1639.31 nm to 2904.82 nm,whose corresponding bandwidth is 1265.51 nm,which is narrower than the designed structure bandwidth of 3400 nm. It can be seen from Fig. 2 that the bandwidth is narrowed due to the absorption valley at 969.96 nm. In Table 1, we find that the proposed structure achieves a broader bandwidth and better absorption performance with fewer layers than other absorbers based on cascaded nanodisk arrays.

    Table 1. Comparison among proposed structures with other relevant absorbers.

    To illustrate the physical mechanism of ultra-broadband absorber, the distributions of the electric and magnetic field at the positions of four absorption peaks (λ= 697.93 nm,λ=1059.54 nm,λ=2516.31 nm,andλ=3538.57 nm)are analyzed. Figures 3(a) and 3(b) show the electric and magnetic field distributions at 697.93 nm under TM polarization,respectively. The white lines represent the outline of the structure and show two periods. The results in Fig. 3 show that the enhancement of the electric field dominates the broadband absorption. In Fig. 3(a), the enhanced electric field concentrates mainly in the gap of the top Ti nanodisks, especially near the upper,lower,left,and right edges of the Ti nanodisks.The electric field distribution indicates the appearing of the plasmonic resonant cavity(PRC)mode[23,24]generated by the gap between adjacent Ti nanodisks, as well as the excitation and near-field coupling of the local surface plasmons (LSPs)of the metal Ti nanodisks.[25-27]In Fig. 3(b), the normalized magnetic field distribution shows that the excitation of PSP is evident in the top Al2O3nanodisks,[28,29]while the PSP simultaneously propagates into the middle Al2O3nanodisks.As shown in Figs. 3(b), 3(d), 3(f), and 3(h), it can be seen that the PSP gradually propagates into the middle Al2O3nanodisks and Ti substrate with the increase of resonance wavelength. Therefore,the incident light is coupled to the Al2O3-Ti-Al2O3nanodisk array via the excited plasmon resonant cavity (PRC) and LSPs, and then excites PSPs of the bottom Ti nanodisk and the Al2O3-Ti film layer. All in all, the PRC mode and LSPs are responsible for the high absorption, and the excited PSPs further enhance the light absorption.[25]

    In Figs.3(c),3(e),and 3(f),the difference from Fig.3(a)lies in the fact that the enhanced electric field is mainly located in the gap of the bottom Ti nanodisks, and especially near the upper,lower,left,and right edges of the Ti nanodisks.This phenomenon can be explained by the fact that the size of the top Ti nanodisk is smaller than that of the bottom Ti nanodisk. The nanodisks with different sizes will interact with the light at different wavelengths.[30]That is, at a longer wavelength,the absorption of the structure comes mainly from the bottom Ti nanodisk. Besides,when the resonance wavelength changes from 697.93 nm to 3538.57 nm,the electric field becomes stronger, indicating that the resonance of the hybrid is enhanced.

    Fig.3. Distributions of electric and magnetic field at four resonance absorption peaks in x-z plane when y=105 nm. The parameters are the same as those in Fig.1. Panels(a),(c),(e),and(g)for electric field distributions;(b),(d),(f),and(h)for the magnetic field distributions at λ =697.93 nm,λ =1059.54 nm,λ =2516.31 nm,and λ =3538.57 nm,respectively. White lines represent the outline of the structure and show two periods.

    We further analyze the broadband perfect absorption by using the impedance matching method,[31]which plays an extremely crucial role in perfect absorbers. Using effective medium theory to analyze impedance matching condition,the relationship between impedanceZandSparameter can be described by[32,33]

    whereS11,S21,S12,andS22areSparameters,S11andS21are the reflection coefficient and transmission coefficient of the entire structure,respectively,andn,k,anddare effective refractive index, wave vector, and total thickness of the structure,respectively,andd=h1+h2+h1+h2+h1+h3.

    Fig. 4. Curves of absorption and reflection versus wavelength for (a) designed structure and(b)six-layer metal-insulator film stacks.

    Figures 4(a)and 4(b)exhibit the impedance and reflection of the structure and corresponding six-layer metal-insulator film stacks,respectively. The parameters are the same as those in Fig. 2. Obviously, comparing with the six-layer metalinsulator film stacks, the real part ofZof our designed structure is close to 1,the imaginary part is close to 0,andRis close to 0 at the working wavelength. The structural impedance better matches with the free space impedance (Z0=1), thus reducing the structural reflection and resulting in a perfect broadband absorption.

    4. Results and discussion

    To evaluate the influence of structural parameters on the absorption performances, the curves of absorption spectraversus R2are indicated in Fig.5(a). The radiusR2of the upper Al2O3-Ti-Al2O3nanodisk array changes from 80 nm to 100 nm, and other parameters remain unchanged. WhenR2is only 80 nm, the LSPs have weak near-field couplings, and the absorption bandwidth (A >90%) is narrow. In addition,in the band wavelengths of 1320 nm-2084 nm and 3047 nm-3719 nm,the absorption gradually decreases withR2increasing.Especially,in the band wavelengths of 1320 nm-2084 nm,two absorption dips(A <90%)are observed asR2increases to 95 nm. WhenR2continues to increase to 100 nm,the absorption in this range is below 85%.It is because light coupled into the Al2O3-Ti-Al2O3nanodisk array by the PRC and LSPs can excite only the PSPs near the top Ti nanodisk. Partial energy is reflected into the top air by the Ti nanodisk, resulting in reduced absorption. Interestingly, the increasedR2leads the near-field coupling of LSPs to be enhanced,[34]which gives rise to the redshift of the resonance band and the increase of absorption in the long-wavelength region(i.e., the broadened absorption band). These excellent characteristics are essential for absorption devices in industrial applications.

    From Fig.5(b),we can see the curves of absorption spectra verseR1andR2,fixingR1-R2=10 nm.WhenR1increases from 80 nm to 100 nm,R2increases from 70 nm to 90 nm accordingly. It can be clearly observed that the bandwidth(A >90%)has a relatively large change,that is,the bandwidth and the average absorptivity continue to increase withR1andR2increasing.The above analysis shows that with the increase ofR1andR2,light coupled to the Al2O3-Ti-Al2O3nanodisk array by PRC and LSPs can excite the PSPs near the top and bottom Ti nanodisks, and the near-field coupling of LSPs is enhanced,thereby improving the absorption performance.[34]

    Furthermore, we investigate the absorption performance when the thickness of each layer changes. In Fig. 6(a), the thickness of the top Al2O3nanodisk array changes from 60 nm to 180 nm. The average absorption increases with the thickness increasing. Also, we can see from Fig. 6(b) that the absorption decreases in the shorter wavelength and from Fig.6(c)that the absorption increases in the longer wavelength for the increased thickness of the bottom Al2O3nanodisk array. Additionally,as the thickness of bottom Al2O3film increases,the bandwidth (A >90%) is broadened but the absorption is less than 90%when the thickness is equal to 180 nm.

    Fig.5. Curves of(a)absorption versus wavelength for different values of R2 and(b)absorption versus wavelength for different values of R1 and R2,while R1-R2=10 nm.

    Fig.6. Curves of absorption versus wavelength for(a)top-Al2O3 layer,(b)middle-Al2O3 layer,and(c)bottom-Al2O3 layer for different thickness values.

    Fig. 7. Curves of (a) absorption spectra versus wavelength of top-Ti layer and(b)middle-Ti layer for different thickness values.

    As shown in Fig.7(a),the thickness of the top Ti nanodisk array changes from 20 nm to 40 nm,the absorption bandwidth(A >90%) is relatively unchanged. However, in Fig. 7(b),it narrows with the thickness of middle Ti nanodisk array increasing, which is due to the weaker near-field coupling of LSPs. Moreover,because the thickness of the bottom Ti substrate is thick enough to ensure that the transmission is nearly zero,we do not discuss the influence of the thickness.

    Fig.8.Curves of absorption versus wavelength for different metal materials.

    The influence of metal material on the absorption performance of the absorber is also considered in Fig. 8. The Ti layer is replaced by Cr or W, and the dielectric constants of Cr and W are obtained from Palik’s data.[16]The results can imply that when using W, although a relatively narrow band is performed in a range of 600 nm-1968.65 nm(1368.65 nm in span,A >90%), it is comparable to those obtained in the metal-insulator multilayer film stacks.[35,36]The difference observed here is determined by the intrinsic dispersion characteristics of the metal. The lossy metal, Ti or Cr with an appropriate thickness satisfies the impedance matching conditions,to provide a plasmon cavity with a low quality factor in an ultra-wideband wavelength range.[37,38]

    Figure 9(a)shows the absorption spectra as a function of polarization angle, where 0°represents the TM polarization and 90°refers to the TE polarization. Obviously, when the polarization angle increases from 0°to 90°,the broadband absorption(above 90%)in a wide wavelength range of 600 nm-4000 nm almost remains unchanged. This indicates the polarization independence of the ultra-wideband absorber.

    Finally,we perform calculations to verify the angular dependence of TM and TE polarization,and the results are illustrated in Figs.9(b)and 9(c). The incident angle of light varies from 0°to 40°, the absorption bandwidth (A >90%) under TM polarization or TE polarization remains almost the same as the absorption bandwidth in the case of normal incidence.Overall, this absorber is observed to possess high absorption at an oblique incident angle.

    Fig.9. (a)Polarization angle versus wavelength,and curves of absorption versus wavelength for different incident angles under(b)TM polarization and(c)TE polarization.

    5. Conclusions

    We demonstrated an ultra-broadband and polarizationindependent absorber based on cascaded nanodisk arrays by using the FDTD method, which can reach up to 3400 nm(R >90%)in a wavelength range of 600 nm-4000 nm.Specifically,the absorption peak is 99.99%,and the average absorptivity is 91.5%with an RAB of 147.8%. The physical mechanism for the proposed absorber results from the synergistic effect of the LSPs,PRC modes,and PSPs. Moreover,based on the impedance theory,the impedance of the structure matches better with the impedance of the free space than that of the sixlayer metal-insulator film stacks in this analyzed wavelength range. Furthermore,the absorber exhibits a remarkable tolerance for incident angle and polarization angle of the incident light. This design may provide an alternative scheme towards ultra-broadband absorption and be applied to the area of photoelectric detection and optical imaging.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.61775140 and 62005165).

    猜你喜歡
    李瑞邦聯(lián)王琦
    Stability and Convergence of Non-standard Finite Difference Method for Space Fractional Partial Differential Equation
    Molecule opacity study on low-lying states of CS
    Stability of Linear θ-Method for Delay Partial Functional Differential Equations with Neumann Boundary Conditions
    Wimbledon Tennis
    Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling*
    Briefly Talking About Methods Of Infiltrating Mental Health Education In Ideological And Political Teaching
    試析邦聯(lián)國會獲取貿易管轄權及其失敗原因
    藝術百家:李瑞
    電影文學(2017年12期)2017-12-26 10:59:30
    美國“新內戰(zhàn)”
    今日文摘(2017年21期)2017-11-22 21:07:35
    美國“新內戰(zhàn)”
    看世界(2017年17期)2017-09-07 18:21:43
    少妇粗大呻吟视频| 91九色精品人成在线观看| 亚洲国产欧美在线一区| 99国产精品一区二区蜜桃av | 国产一区有黄有色的免费视频| 女人爽到高潮嗷嗷叫在线视频| 中国国产av一级| 色综合欧美亚洲国产小说| 国产麻豆69| 制服诱惑二区| 天天躁夜夜躁狠狠久久av| 国产男女超爽视频在线观看| 深夜精品福利| 天天影视国产精品| 国产欧美日韩一区二区三区在线| 久热爱精品视频在线9| 欧美人与性动交α欧美软件| 女人爽到高潮嗷嗷叫在线视频| 中文字幕av电影在线播放| 大片电影免费在线观看免费| 欧美日韩福利视频一区二区| 欧美精品人与动牲交sv欧美| 90打野战视频偷拍视频| 亚洲男人天堂网一区| 欧美黑人精品巨大| 18禁观看日本| 黄网站色视频无遮挡免费观看| 欧美日韩精品网址| 国产在视频线精品| 久久精品久久精品一区二区三区| 黑人猛操日本美女一级片| 欧美日韩亚洲国产一区二区在线观看 | 99精品久久久久人妻精品| 免费在线观看黄色视频的| 别揉我奶头~嗯~啊~动态视频 | 久久久久久久久久久久大奶| 亚洲国产精品一区二区三区在线| 免费女性裸体啪啪无遮挡网站| 90打野战视频偷拍视频| 久久ye,这里只有精品| 老司机午夜十八禁免费视频| 日本vs欧美在线观看视频| 国产成人av教育| 女警被强在线播放| 国产黄色免费在线视频| 黄频高清免费视频| 精品国产乱码久久久久久男人| 波野结衣二区三区在线| 五月开心婷婷网| 看免费成人av毛片| 性高湖久久久久久久久免费观看| 人人妻人人爽人人添夜夜欢视频| 另类亚洲欧美激情| 欧美精品高潮呻吟av久久| 乱人伦中国视频| 在线亚洲精品国产二区图片欧美| 性色av一级| 午夜两性在线视频| 一边摸一边做爽爽视频免费| 久久国产精品影院| 在线观看www视频免费| 亚洲av综合色区一区| 亚洲av综合色区一区| 丝袜在线中文字幕| 妹子高潮喷水视频| 亚洲熟女毛片儿| 在线亚洲精品国产二区图片欧美| 自线自在国产av| av在线老鸭窝| 巨乳人妻的诱惑在线观看| h视频一区二区三区| 熟女av电影| 免费在线观看完整版高清| 亚洲男人天堂网一区| 尾随美女入室| avwww免费| 国产欧美日韩一区二区三 | 午夜激情av网站| 欧美日韩av久久| 亚洲熟女毛片儿| 久久久久久久大尺度免费视频| 午夜精品国产一区二区电影| 人人妻,人人澡人人爽秒播 | 国产亚洲欧美在线一区二区| 国产一区二区三区综合在线观看| av有码第一页| 人体艺术视频欧美日本| 性色av乱码一区二区三区2| 久久人妻熟女aⅴ| 久久久亚洲精品成人影院| 久久性视频一级片| 欧美亚洲 丝袜 人妻 在线| 香蕉国产在线看| 亚洲av成人精品一二三区| 99久久精品国产亚洲精品| 狂野欧美激情性xxxx| 免费av中文字幕在线| 久久国产精品人妻蜜桃| 啦啦啦中文免费视频观看日本| 亚洲成人手机| 国产精品熟女久久久久浪| 久久久久国产精品人妻一区二区| 午夜视频精品福利| 伊人久久大香线蕉亚洲五| av在线app专区| videos熟女内射| 亚洲第一av免费看| 男女无遮挡免费网站观看| 美女中出高潮动态图| 国产精品久久久人人做人人爽| 两个人免费观看高清视频| 男女无遮挡免费网站观看| 国产又爽黄色视频| 午夜福利乱码中文字幕| 国产不卡av网站在线观看| 国产在线免费精品| 丝袜美腿诱惑在线| 日韩av不卡免费在线播放| 日本av免费视频播放| av片东京热男人的天堂| 欧美另类一区| 欧美日韩国产mv在线观看视频| www日本在线高清视频| 啦啦啦啦在线视频资源| 18禁观看日本| h视频一区二区三区| 久久天堂一区二区三区四区| 波野结衣二区三区在线| 母亲3免费完整高清在线观看| 日本午夜av视频| 亚洲免费av在线视频| 亚洲av电影在线观看一区二区三区| 黄色怎么调成土黄色| av不卡在线播放| 王馨瑶露胸无遮挡在线观看| 在现免费观看毛片| 婷婷成人精品国产| 少妇精品久久久久久久| 久久鲁丝午夜福利片| 午夜福利免费观看在线| 宅男免费午夜| 国产淫语在线视频| 欧美黄色片欧美黄色片| 大陆偷拍与自拍| 久久精品亚洲av国产电影网| 99热网站在线观看| 搡老乐熟女国产| 王馨瑶露胸无遮挡在线观看| 欧美精品亚洲一区二区| 久久久久久人人人人人| 2021少妇久久久久久久久久久| 精品国产国语对白av| 99热全是精品| 涩涩av久久男人的天堂| 亚洲男人天堂网一区| 免费观看人在逋| 后天国语完整版免费观看| 婷婷丁香在线五月| 丁香六月欧美| 亚洲欧美日韩另类电影网站| 黑人巨大精品欧美一区二区蜜桃| 午夜福利乱码中文字幕| 精品久久久久久久毛片微露脸 | 日韩 欧美 亚洲 中文字幕| 免费在线观看完整版高清| 肉色欧美久久久久久久蜜桃| 麻豆国产av国片精品| 熟女少妇亚洲综合色aaa.| av网站在线播放免费| 最新的欧美精品一区二区| 大话2 男鬼变身卡| 欧美日韩一级在线毛片| 又粗又硬又长又爽又黄的视频| 中国国产av一级| 又黄又粗又硬又大视频| 国产日韩欧美视频二区| 女人高潮潮喷娇喘18禁视频| 亚洲视频免费观看视频| 久久女婷五月综合色啪小说| 1024视频免费在线观看| 免费不卡黄色视频| 久久久久久久精品精品| 咕卡用的链子| 一边摸一边做爽爽视频免费| 人人妻,人人澡人人爽秒播 | 国产主播在线观看一区二区 | 99九九在线精品视频| 妹子高潮喷水视频| 国产av一区二区精品久久| 午夜福利在线免费观看网站| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美在线一区| 亚洲中文日韩欧美视频| 韩国高清视频一区二区三区| 巨乳人妻的诱惑在线观看| 色网站视频免费| 一区二区av电影网| 午夜日韩欧美国产| 精品亚洲成国产av| 人体艺术视频欧美日本| 午夜久久久在线观看| 亚洲成人免费电影在线观看 | 久久影院123| 国产亚洲一区二区精品| 老汉色av国产亚洲站长工具| 日韩av不卡免费在线播放| 国产成人av教育| 亚洲综合色网址| 啦啦啦在线免费观看视频4| 一级黄色大片毛片| 一区二区日韩欧美中文字幕| 国产成人精品在线电影| 男女边摸边吃奶| 桃花免费在线播放| 日日夜夜操网爽| 亚洲精品日本国产第一区| 亚洲国产成人一精品久久久| 国产午夜精品一二区理论片| 国产av精品麻豆| 久9热在线精品视频| 两个人看的免费小视频| a 毛片基地| 97在线人人人人妻| 中文字幕人妻丝袜一区二区| 母亲3免费完整高清在线观看| av片东京热男人的天堂| 免费在线观看日本一区| 一二三四在线观看免费中文在| 久久久精品免费免费高清| 天天操日日干夜夜撸| 日韩伦理黄色片| 国产人伦9x9x在线观看| 久久久久网色| 日本91视频免费播放| 五月开心婷婷网| 后天国语完整版免费观看| 中文字幕最新亚洲高清| 亚洲av综合色区一区| 精品视频人人做人人爽| 大话2 男鬼变身卡| 大香蕉久久成人网| 久久久精品94久久精品| 热99国产精品久久久久久7| 少妇粗大呻吟视频| 欧美日本中文国产一区发布| 超色免费av| 亚洲av电影在线观看一区二区三区| 一本大道久久a久久精品| 亚洲精品国产区一区二| 赤兔流量卡办理| 久久久久久久久久久久大奶| 精品久久蜜臀av无| 国产免费一区二区三区四区乱码| 欧美 日韩 精品 国产| 深夜精品福利| 欧美精品人与动牲交sv欧美| 国产亚洲欧美精品永久| 91九色精品人成在线观看| 男人舔女人的私密视频| 亚洲精品美女久久久久99蜜臀 | 亚洲自偷自拍图片 自拍| 黑人巨大精品欧美一区二区蜜桃| 欧美人与善性xxx| 久久性视频一级片| 一级毛片电影观看| 亚洲国产精品成人久久小说| 久久久国产欧美日韩av| 日韩熟女老妇一区二区性免费视频| 国产欧美日韩综合在线一区二区| 天堂8中文在线网| 国产亚洲一区二区精品| 亚洲男人天堂网一区| 1024视频免费在线观看| 美女扒开内裤让男人捅视频| 天天躁日日躁夜夜躁夜夜| 亚洲伊人色综图| 19禁男女啪啪无遮挡网站| 中文字幕人妻熟女乱码| 国产人伦9x9x在线观看| 一级a爱视频在线免费观看| 欧美在线黄色| 国产av精品麻豆| 国产极品粉嫩免费观看在线| 校园人妻丝袜中文字幕| 国产精品99久久99久久久不卡| 搡老岳熟女国产| 亚洲欧美一区二区三区黑人| 成年女人毛片免费观看观看9 | 高清av免费在线| www日本在线高清视频| 在线观看一区二区三区激情| 精品免费久久久久久久清纯 | 久久久精品94久久精品| 日韩 亚洲 欧美在线| 国产午夜精品一二区理论片| 1024视频免费在线观看| 日韩av免费高清视频| 亚洲自偷自拍图片 自拍| 亚洲欧美色中文字幕在线| 精品国产乱码久久久久久男人| 一本—道久久a久久精品蜜桃钙片| 热re99久久国产66热| 国产日韩欧美亚洲二区| 少妇裸体淫交视频免费看高清 | 丝袜人妻中文字幕| 久久久久精品国产欧美久久久 | 国产男女内射视频| 欧美日韩av久久| 久久久精品免费免费高清| 日本a在线网址| 亚洲国产中文字幕在线视频| av不卡在线播放| 美女中出高潮动态图| 国产免费福利视频在线观看| 人人妻人人澡人人看| 亚洲欧美日韩高清在线视频 | 国产精品偷伦视频观看了| 可以免费在线观看a视频的电影网站| 最近手机中文字幕大全| 精品亚洲成国产av| 免费观看av网站的网址| 国产精品亚洲av一区麻豆| 99久久99久久久精品蜜桃| 三上悠亚av全集在线观看| 视频区欧美日本亚洲| 一区二区av电影网| 美女福利国产在线| 一级黄片播放器| 亚洲精品国产av蜜桃| 亚洲熟女毛片儿| 亚洲国产最新在线播放| 国产成人欧美在线观看 | 欧美成人精品欧美一级黄| 美女午夜性视频免费| 亚洲一区二区三区欧美精品| 两个人看的免费小视频| 欧美日韩黄片免| 国产高清不卡午夜福利| 七月丁香在线播放| 免费日韩欧美在线观看| 久久亚洲精品不卡| 国产黄色免费在线视频| 中文字幕最新亚洲高清| 国产成人欧美| 欧美日韩综合久久久久久| 首页视频小说图片口味搜索 | 日韩,欧美,国产一区二区三区| 国产黄色免费在线视频| 国产高清videossex| 久久精品久久久久久久性| 国产精品.久久久| 91麻豆av在线| 亚洲成人免费电影在线观看 | av一本久久久久| 婷婷色av中文字幕| 久久精品人人爽人人爽视色| 久久久久国产一级毛片高清牌| 久热爱精品视频在线9| 黄片小视频在线播放| 日本wwww免费看| 老司机亚洲免费影院| 成人午夜精彩视频在线观看| 汤姆久久久久久久影院中文字幕| 国精品久久久久久国模美| 亚洲国产毛片av蜜桃av| 中国美女看黄片| 热re99久久国产66热| 国产精品香港三级国产av潘金莲 | 女性被躁到高潮视频| 在线观看免费视频网站a站| 91国产中文字幕| 好男人视频免费观看在线| 搡老岳熟女国产| 嫁个100分男人电影在线观看 | www.999成人在线观看| 国产欧美日韩综合在线一区二区| 亚洲欧美一区二区三区久久| 久久狼人影院| 亚洲五月婷婷丁香| 在线观看免费高清a一片| 日本欧美视频一区| 两性夫妻黄色片| 欧美日韩国产mv在线观看视频| 免费少妇av软件| 国产精品一国产av| 咕卡用的链子| 久久久精品免费免费高清| 日韩伦理黄色片| 欧美日韩av久久| 99re6热这里在线精品视频| 色婷婷av一区二区三区视频| 美女国产高潮福利片在线看| 深夜精品福利| 亚洲成国产人片在线观看| 性色av一级| 欧美xxⅹ黑人| 丰满迷人的少妇在线观看| 亚洲 国产 在线| 久久99精品国语久久久| 好男人视频免费观看在线| 免费看不卡的av| 女警被强在线播放| 一级黄色大片毛片| 色94色欧美一区二区| 国产精品欧美亚洲77777| 自线自在国产av| 日韩一本色道免费dvd| 精品少妇内射三级| 日韩视频在线欧美| 久久99精品国语久久久| 高清欧美精品videossex| 免费看不卡的av| 黄色片一级片一级黄色片| 亚洲精品日本国产第一区| 欧美日本中文国产一区发布| 777米奇影视久久| 久久久久久久大尺度免费视频| 99国产精品一区二区蜜桃av | 在线 av 中文字幕| 亚洲成av片中文字幕在线观看| 两人在一起打扑克的视频| 激情视频va一区二区三区| 国产伦人伦偷精品视频| 成人18禁高潮啪啪吃奶动态图| 精品亚洲成a人片在线观看| 在线观看免费日韩欧美大片| 日韩免费高清中文字幕av| 久久精品国产亚洲av涩爱| 精品欧美一区二区三区在线| 国产成人欧美| 老鸭窝网址在线观看| 亚洲中文日韩欧美视频| 国产又色又爽无遮挡免| 精品一区二区三区四区五区乱码 | 亚洲精品久久成人aⅴ小说| 日本一区二区免费在线视频| 午夜激情av网站| 国产免费现黄频在线看| 多毛熟女@视频| av线在线观看网站| a级毛片在线看网站| 9191精品国产免费久久| 久久毛片免费看一区二区三区| 七月丁香在线播放| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| 欧美大码av| 丝袜喷水一区| 精品熟女少妇八av免费久了| 亚洲国产精品成人久久小说| 看十八女毛片水多多多| 久久午夜综合久久蜜桃| av在线老鸭窝| 99热国产这里只有精品6| 一级黄色大片毛片| 免费女性裸体啪啪无遮挡网站| 久久综合国产亚洲精品| 免费黄频网站在线观看国产| 亚洲精品自拍成人| 欧美乱码精品一区二区三区| 午夜免费男女啪啪视频观看| 七月丁香在线播放| 激情视频va一区二区三区| 国产免费福利视频在线观看| 国产成人精品久久二区二区免费| 欧美久久黑人一区二区| 精品亚洲成国产av| 如日韩欧美国产精品一区二区三区| 欧美性长视频在线观看| 在线精品无人区一区二区三| 免费久久久久久久精品成人欧美视频| 亚洲av成人不卡在线观看播放网 | 欧美另类一区| 亚洲伊人色综图| 欧美日韩视频精品一区| 在线 av 中文字幕| 90打野战视频偷拍视频| 在线观看国产h片| 免费少妇av软件| 亚洲国产av新网站| 久久久精品区二区三区| 亚洲av日韩在线播放| 精品高清国产在线一区| 亚洲成av片中文字幕在线观看| svipshipincom国产片| 欧美av亚洲av综合av国产av| 精品国产乱码久久久久久小说| 一级a爱视频在线免费观看| 精品国产一区二区三区久久久樱花| 精品一区二区三区av网在线观看 | 亚洲精品自拍成人| av电影中文网址| 国产一区二区三区综合在线观看| 激情五月婷婷亚洲| 日韩 欧美 亚洲 中文字幕| 亚洲伊人久久精品综合| 国产一级毛片在线| 麻豆av在线久日| 2021少妇久久久久久久久久久| www.av在线官网国产| 国产精品一区二区在线不卡| 美女中出高潮动态图| 桃花免费在线播放| 国产爽快片一区二区三区| 亚洲美女黄色视频免费看| 亚洲五月色婷婷综合| 久久久久久久久久久久大奶| 99国产精品一区二区三区| 午夜福利在线免费观看网站| 中文字幕av电影在线播放| 99国产精品免费福利视频| 青春草亚洲视频在线观看| 精品人妻在线不人妻| 婷婷丁香在线五月| 国产亚洲精品第一综合不卡| 午夜老司机福利片| 午夜精品国产一区二区电影| 成年人黄色毛片网站| 久热爱精品视频在线9| 满18在线观看网站| 亚洲国产最新在线播放| 亚洲精品美女久久av网站| 国产一区二区 视频在线| 亚洲人成网站在线观看播放| 一级片'在线观看视频| 美女午夜性视频免费| 可以免费在线观看a视频的电影网站| 韩国精品一区二区三区| 欧美日韩福利视频一区二区| 亚洲国产欧美日韩在线播放| 国产精品一国产av| 美女视频免费永久观看网站| 超色免费av| 建设人人有责人人尽责人人享有的| 婷婷色麻豆天堂久久| 久久国产精品影院| 国产黄色免费在线视频| 亚洲精品成人av观看孕妇| 久久久亚洲精品成人影院| 不卡av一区二区三区| 亚洲九九香蕉| 一本久久精品| 免费女性裸体啪啪无遮挡网站| 又黄又粗又硬又大视频| 叶爱在线成人免费视频播放| 午夜福利影视在线免费观看| 天堂中文最新版在线下载| 老司机深夜福利视频在线观看 | 人体艺术视频欧美日本| 美女福利国产在线| 成人免费观看视频高清| 中文字幕高清在线视频| 国产精品.久久久| 精品高清国产在线一区| 久久精品人人爽人人爽视色| 在线观看免费高清a一片| 久久久国产精品麻豆| 精品卡一卡二卡四卡免费| 国产高清不卡午夜福利| 女性被躁到高潮视频| 国产成人影院久久av| 热re99久久精品国产66热6| 男人操女人黄网站| 乱人伦中国视频| 中文字幕色久视频| 两个人免费观看高清视频| 亚洲国产中文字幕在线视频| 国产主播在线观看一区二区 | 日韩电影二区| 男女边吃奶边做爰视频| 国产欧美日韩一区二区三 | 国产精品偷伦视频观看了| 另类精品久久| 日本色播在线视频| 999久久久国产精品视频| 久久精品久久久久久噜噜老黄| 18禁观看日本| 亚洲国产av影院在线观看| 悠悠久久av| 一区二区av电影网| 丁香六月天网| 中文精品一卡2卡3卡4更新| 日韩精品免费视频一区二区三区| 高清av免费在线| a级片在线免费高清观看视频| 亚洲国产精品一区三区| 日韩,欧美,国产一区二区三区| 日日夜夜操网爽| 久久女婷五月综合色啪小说| 天天躁日日躁夜夜躁夜夜| 男女之事视频高清在线观看 | 国产又爽黄色视频| 一级毛片电影观看| 国产在线免费精品| 欧美性长视频在线观看| 嫁个100分男人电影在线观看 | av福利片在线| 亚洲av在线观看美女高潮| 中文字幕色久视频| 人妻 亚洲 视频| 黑人欧美特级aaaaaa片| 大香蕉久久网| 国产在视频线精品| 美女大奶头黄色视频| 亚洲精品第二区| 久久九九热精品免费| 999久久久国产精品视频| 99久久精品国产亚洲精品| 国产精品久久久av美女十八| 久久久国产一区二区| 考比视频在线观看| 国产精品一区二区免费欧美 | 免费看不卡的av| 久久综合国产亚洲精品| 国产一区二区激情短视频 |