• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical evolution of cross phase of edge fluctuations and transport bifurcation

    2021-04-22 05:34:12XueyunWANG王雪韻ZhenyuZHOU周振宇ZhuoyiLI李卓懿andBoLI李博
    Plasma Science and Technology 2021年4期
    關鍵詞:李博

    Xueyun WANG(王雪韻),Zhenyu ZHOU(周振宇),Zhuoyi LI(李卓懿) and Bo LI(李博)

    1 School of Physics,State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,People’s Republic of China

    2 School of Physics,Beihang University,Beijing 100191,People’s Republic of China

    Abstract The dynamical evolution of edge turbulence during a transport bifurcation is explored using a flux-driven nonlinear fluid model with a geometry relevant to the plasma edge region.The simulations show that the self-generated mean shear flows can dramatically modify the phase angle between turbulent fluctuations.The changes in phase differences and amplitudes of edge fluctuations give rise to the modifications of turbulent edge transport.The statistical properties of flux and fluctuations are also investigated before and after edge shear flow generation.

    Keywords:plasma turbulence,plasma edge transport,plasma simulation

    1.Introduction

    The study of turbulence and transport due to the curvaturedriven modes is of high interest because they are believed to play a central role in the edge region of magnetic confinement devices[1-4].The topic is of great importance to the fusion community because edge turbulence largely governs the overall confinement performance of tokamaks and similar machines.The edge region,comprising the transition zone from the inner,hot core plasma to the outer,cold scrape-off layer(SOL),exerts vital control over the plasma discharge through its role in the L-H(low-high confinement)transition[5],and the formation of the edge pedestal.Considerable efforts in experiments[6-12],theoretical modeling[13-16],and nonlinear simulations[17-25]have been devoted to the understanding of transport-reduction mechanism in L-H transitions.In particular,the nonlinear energy transfer during the transition process has been experimentally studied[6-9],and the limit cycle oscillations before a transition have been observed in the edge region of tokamak experiments[10-12].Radial profiles of fluctuations and velocities have also been measured in the edge transition region where the plasma is crossing the last closed flux surface(LCFS)[26-28].

    The generation of mean E×B shear flow in the edge region is believed to be responsible for quenching turbulent transport and further triggering the formation of plasma edge transport barriers[29].On one hand,the fluctuation levels can be suppressed by strong mean shear flows,which directly limit the amplitudes of turbulent fluxes.On the other hand,mean shear flow may modify the phase angle between the fluctuations,whose correlation drives a turbulent flux and determines the direction of radial flux.These effects of E×B shear flows on turbulence and its transport play an important role in turbulence suppression.The changes in turbulent transport through the modificaton of cross phase of fluctuations in frequency domain have been investigated in the experiments where the plasma flows are self-generated through the interaction with turbulence[30],and in the experiments where the shear flows are controlled externally by biasing voltage[31].The effects of strongly sheared flows on the cross phase between turbulent fluctuations in wavenumber space have been studied theoretically[32-34].The impact of phase dynamics on transport has also been explored in numerical simulations of the edge localized modes[35]and the biasing-induced transport reduction[36].However,the nonlinear simulation of phase dynamics during the transitions between low and high confinement modes has not been reported.The interaction between fluctuation phases and mean shear flow still requires more detailed investigation.

    In this work,we present self-consistent nonlinear simulations of fluctuation-induced transport bifurcation in plasma interchange turbulence.The simulations are carried out in a poloidally and radially localized domain at the outboard midplane of toroidal plasma devices.In particular,radial computational domain is across the LCFS to explore the interaction between the plasma edge and SOL.We consider the edge region of a plasma column full of bad curvature of magnetic field line,which is relevant to the edge bad-curvature region of toroidally confined plasmas.Parallel losses are introduced through sheath boundary conditions in the SOL region.This produces plasma pressure gradients at the LCFS that drive the pressure-driven interchange instability.The simulations evolve full profiles of the various quantities without separation of equilibrium and fluctuations.In the simulations,the mean E×B shear flows are self-generated just inside the LCFS through the fluctuation-induced nonlinear energy transfer[22].Previously,we have shown the existence of two transport regimes(L and H regimes)for plasma interchange turbulence[22,37,38].The L and H regimes refer to the state with weak and strong mean flows,respectively.Steeper gradients are formed at the plasma edge in the pressure and density profiles in H-regime[22].Here,we examine the role of the phase angles between fluctuations in the fluctuation-induced nonlinear transport bifurcation.We focus on the time evolution of the transport cross phase and self-generated shear flows,as well as their interaction on the turbulence suppression.The dynamics of cross phase and fluctuation levels are explored throughout the forward and back transitions.The statistical properties of turbulent flux and fluctuations in the two transport regimes are also compared to further explore the impact of mean shear flow generation.

    2.Model equations

    The simulation model is based on the drift-reduced Braginskii equations with ion pressure dynamics[39].For simplicity,we consider the pressure-driven electrostatic instability with parallel wavenumbers k‖?0.The geometry used in the simulations is a two-dimensional(2D)plane perpendicular to the equilibrium magnetic field.The 2D computational domain is radially localized at the plasma outer boundary on the low field side and poloidally localized at the midplane of a toroidally confined plasma.Since the variation of magnetic field is much slower,the changes in plasma profiles,the curvature and strength of the equilibrium magnetic fields are assumed to be constant across the computational domain.The equilibrium field is assumed to be dominated by the toroidal component,and the curvature radius of magnetic filed lines is given by the major radius from the torus axis.The simulated geometry does not describe the full equilibrium magnetic configuration such as the shape of cross sections.The fieldaligned coordinates are used in the simulations.The parallel coordinate z is in the direction of the equilibrium magnetic field.The transverse coordinates x,y correspond to local radial and poloidal variables.The time(t),perpendicular(x,y),and parallel(z)normalization scales are t0=a/cs,ρs=cs/Ωi,and Lcthe connection length of field lines,whereis the sound speed and Ωiis the ion gyrofrequency.The normalized nonlinear equations for the perpendicular dynamics of the total plasma density,pressure,and vorticity are[22]

    where the Laplacian has the formwhen applied at the outer midplane in field-aligned coordinates[17].The effects due to the curvature of magnetic field lines are included in the curvature terms of the model equations:where R is the curvature radius of field lines.The convective derivatives are written in the conservative form

    where vx=??φ/?y and vy=?φ/?x are the radial and poloidal components of normalized E×B velocityin units of cs.Equation(2)in our 2D model assumes the adiabatic closure,d(p/nγ)/dt=0 for the plasma pressure,where γ=5/3.We note that this adiabatic approximation and the assumption of electrostatic flute-like mode may not be valid for comparison with the L-H transition experimentally observed in tokamak plasmas.The ion pressure term in the generalized vorticity results from the diamagnetic velocity part in the ion polarization current[40,41].Thus,the gradients of plasma potential and pressure are coupled through equation(4).This coupling is vital to realize transport bifurcation in our nonlinear simulations.The input flux is introduced from source terms SE,Snthat are localized near the inner boundary.In the SOL region,sheath boundary conditions are applied in the parallel direction:parallel flowsand parallel currentswith[42,43].Thus,the sheath terms are added into model equations for the SOL region with σ=a/Lcthe normalized loss rate due to the sound-speed parallel flows to the ends of open field lines.Dirichlet boundary conditions are imposed at the inner and outer boundaries.Periodic boundary conditions are assumed in the poloidal y direction.The nonlinear fluid equations are solved by a finite-difference turbulence code.The numerical algorithm used in our code is described in section 3.The simulation parameters are a/ρs=100,a/R=0.3,σ=0.015,and Λ=3.Note that the perpendicular diffusion coefficients are taken to be the same for three field variables n,p and w,and specifically the values of the coefficients used in the nonlinear simulations μ=1 in units ofare small compared to Bohm diffusion ρscsby a factor of ρs/a ?1.

    3.Numerical algorithm

    We have developed an explicit time-dependent code for the solution of coupled,nonlinear equations(1)-(3)on uniform,rectangular grids in the(x,y)plane.All of our equations are of the form

    where F=vψ is the flux and v is the velocity.The dominant nonlinearities in the equations arise from the convective terms,which are written in the conservative form.The second-order,centered-difference expression is used for the divergence of flux.The diffusive terms are centrally different to second-order accuracy.The explicit time stepping scheme is a second-order trapezoidal leapfrog algorithm[44]

    where i labels the discrete time.Since the vorticity is evolved in equation(3),we obtain the potential at each time step by the matrix inversion of the Poisson equationwhere Φ=φ+p.Fourier transforming this equation in y gives

    This equation in the finite-difference form can be inverted using a standard tridiagonal solver.Then inverse Fourier transform in y gives Φ(x,y)and the potential is given by φ=Φ?p.

    4.Simulation results

    The curvature-driven interchange instability is triggered by sufficient pressure gradients at the LCFS.As the system evolves,interchange modes saturate in the nonlinear phase and the L-regime turbulent state is reached with quasi-stationary plasma profiles.Figure 1 shows the poloidal-averaged potential signals at two different radial locations just inside the LCFS.In the quasi-stationary nonlinear L-regime(t=70?110),the two signals oscillate in phase and only have slight difference in amplitude.This implies weak radial gradients of plasma potential and strong radial correlations of potential fluctuations at the plasma edge.

    Figure 1.Time evolution of poloidal-averaged potential at x=?15ρs(blue),and x=?5ρs(red).The LCFS is located at x=0.The vertical lines indicate the moments of increasing and decreasing heating power,respectively.

    From the L-regime nonlinear state,we increase input power above a certain threshold at t=110.As seen in figure 1,the two potential signals begin to separate and oscillate with higher frequencies,known as the limit cycle oscillation(t=110?140).The strong oscillations of the potential induce the radial electric fields and the associated poloidal flows localized just inside the LCFS.This reveals that the limit cycle oscillation,as a process of relaxation of heating,is strongly correlated to the generation of mean flow shear.After the mean shear flow is fully generated in the H-regime,the differences between the two potential signals approach maximum and the limit cycle oscillation ends.The significant gap between the two potential signals indicates a large radial potential well in the edge region.The simulations show that the radial gradients of electric potential and the resulting radial electric field strongly depend on the magnitude of local heating power,hence on the plasma local temperature.The temperature dependence for generation of edge inward electric field due to ion orbit losses has been studied in[45].

    During the state of H-regime,we decrease the input heating power below a certain threshold at t=170.In response to the change of the driven flux from the plasma core,a back transition is eventually triggered at t=180.The two potential signals at plasma edge oscillate faster again and the amplitudes get closer to each other as the mean shear flow gradually disappears in the edge region.After the system returns to L-regime(t?210),the large-scale fluctuations with strong radial correlations are developed again in the edge region.Comparing the fluctuation level of potential signals before and after the transition,it is obvious that the amplitude of fluctuations in H-regime is much smaller than that in the L-regime,which shows the turbulence suppression in H-regime.

    To explore the amplitude and phase evolution of fluctuations during a transition,we write the perturbations in terms of Fourier series,

    Figure 2.Time evolution of(a)phase angle θk,(b)sin θk,(c)|δpk|,(d)|δφk|,(e)radial flux 〈δ pδ vx 〉and(f)mean poloidal E×B flow vy in the edge region.The vertical lines indicate the moments of increasing and decreasing heating power.

    Figure 3.Probability density function(PDF)of radial flux in the edge region in(a)L-regime and(b)H-regime.Here σ is the standard deviation.

    where k ≡kyis the poloidal wavenumber.Then the Fourier components of the average radial flux can be written as

    is a combination of the amplitudes of potential and pressure fluctuations and the phase differences between them.The wavenumber we choose for Γkis the dominant poloidal wavenumber of fluctuations in the nonlinear turbulent state.

    As seen in figure 2(a),the relative phase angle is mainly oscillating between π/2 and π in the nonlinear L-regime(t=70?110).Correspondingly,sinθ kin figure 2(b)oscillates near the value of one,producing the maximum amount of flux in the outward radial direction.As shown in figures 2(c)and(d),the amplitudes of potential perturbations are large compared to pressure perturbations.The resulting outward turbulent flux in figure 2(e),which consists of all Fourier components of perturbations,fluctuates around a stationary and relatively high level while the mean shear flow vyin figure 2(f)remains small at the plasma edge.

    When the limit cycle oscillation(t?110?140)is triggered by the increase of input power,the phase angles as well as the amplitudes of pressure and potential perturbations exhibit stronger oscillations in response to the increased heating.This induces large-amplitude fluctuations in radially outward energy flux as the edge mean flows begin to grow during the limit cycle oscillation period.The transition occurs at t?140 when the radial flux gets decreased to a low level.As shown in figure 2,the amplitudes of pressure and potential fluctuations suddenly drop to a low level compared to those just before the transition.Meanwhile,the relative phase angle oscillates dramatically.As the growth of mean shear flow saturates in H-regime,the phase differences between potential and pressure fluctuations eventually change to π so thatsinθ koscillates near zero.As a result,the radial fluxes remain at a low level even though the fluctuation amplitudes start to increase again after the transition.

    The back transition(t?180?210)is characterized by the increase of fluctuation amplitudes and reduction of mean flows in response to a sudden decrease of input power.The final transition to the turbulent state of L-regime occurs when the edge mean flows completely collapse at t?210.Meanwhile,the phase angle between potential and pressure fluctuations reduces to a value near π/2 that is favorable for outward transport.After the back transition,the amplitude of pressure fluctuations drops because of the decreased heating.In contrast,the potential fluctuations maintain at the high level throughout the back transition.The turbulence phase and mean flow dynamics during the forward and back transitions in figure 2 reveal that the mean E×B flow has a direct impact on the phase angles of fluctuations which determine the direction as well as amplitude of turbulent transport.

    We further study statistical properties of average radial flux in the two transport regimes.The probability distribution of flux is calculated from the time series of Γkand the flux is normalized by the standard deviation of the time series.As shown in figure 3(a),the dominant k components of turbulent radial flux in L-regime has a non-Gaussian distribution with a long tail at the positive flux and has a large positive mean value,indicating intermittent,outward transport events.The strong radial flux is related to large-scale convective turbulent eddies in the edge region.In contrast,the distribution of radial flux is changed dramatically in H-regime.As seen in figure 3(b),the probability density function becomes approximately symmetric about the zero value.Thus,the inward and outward fluxes have a nearly equal probability.The deviation of the flux amplitude from the mean is significantly reduced,implying the turbulence suppression.

    Figure 4.Maximum value of cross-correlation function as a function of separation distances in(a)radial and(b)poloidal directions.

    Finally,we examine the correlations of spatial structures.The cross-correlation functions are calculated from the time series of density fluctuations at two different locations just inside the LCFS.The correlation lengths are obtained by measuring the decay of the peak correlation amplitude as a function of separation distance[42].The cross-correlation functions in the radial and poloidal directions are defined as

    Here,〈… 〉denotes an average over time.In L-regime,as seen in figures 4(a)and(b),the correlation lengths of fluctuations in the radial and poloidal directions have similar decay lengths λc?10ρs,which are approximately the size of the large,round eddies in the potential structures.In H-regime,radial correlation lengths of density fluctuations are significantly reduced,indicating the decorrelation of structures in the radial direction.The potential differences in the radial direction induce radial electric fields,which result in the generation of mean E×B flows at the location about 10ρsinside the LCFS,as shown in figure 1.When calculating the poloidal cross-correlation function,we choose the radial location where the flows exist.As shown in figure 4(b),the poloidal correlation length is significantly enhanced at the plasma edge.The enhancement of correlation in the poloidal direction implies the flow generation at the position.Note that the simulations are not compared with experiments due to the limitation of the model discussed earlier.

    5.Conclusion

    In summary,the dynamical evolution of cross phase and amplitudes of fluctuations during an edge transport bifurcation has been explored from self-consistent nonlinear fluxdriven simulations,focusing on the curvature-driven instability.We find that the generation of mean edge shear flow is strongly correlated with the modification of amplitudes and phase angles of edge turbulent fluctuations.During the transition to a suppressed transport regime,the changes of phase angles become significant as the fluctuation-induced mean shear flows grow at the plasma edge.The mean shear flows act on the amplitudes and phase angles of turbulence through the modification of coherent structures of fluctuations as demonstrated by the changes in the spatial correlations.Our 2D simplified model only describes the electrostatic interchange modes in a toroidal magnetic field with bad curvature.For comparison with the L-H transitions in tokamak plasmas,however,the ballooning modes should be considered for tokamak plasmas with magnetic shear[46,47].We also note that the particle source is fixed in the simulations.However,the change of particle sources would possibly affect the dynamical evolution of the relative phase angle and the mean flow shear,which is for future investigation.

    Acknowledgments

    We thank Chuankui Sun,Cong Meng,Pengfei Li,Zhijian Xie,Dianjing Liu,and Ao Zhou for help with simulations.We acknowledge extensive discussions with Tianchun Zhou,Guosheng Xu,Jiaqi Dong,and P.H.Diamond.This work was supported by the National Magnetic Confinement Fusion Energy Program of China(No.2018YFE0311300).

    猜你喜歡
    李博
    Simulation of ion cyclotron wave heating in the EXL-50U spherical tokamak based on dispersion relations
    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    LabVIEW下的模擬電路實驗教學創(chuàng)新對策
    Evolution of optical properties and molecular structure of PCBM films under proton irradiation
    LabVIEW下通信原理實驗教改探討
    Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    Manipulating transition of a two-component Bose–Einstein condensate with a weak δ-shaped laser?
    Fully integrated modeling of surface water and groundwater in coastal areas *
    空間相機次鏡在軌校正仿真分析
    欧美激情久久久久久爽电影| 久久久久久久久久黄片| 亚洲最大成人av| 日韩高清综合在线| 蜜桃亚洲精品一区二区三区| 亚洲无线观看免费| 少妇人妻一区二区三区视频| 18禁在线播放成人免费| 韩国av在线不卡| 国产av一区在线观看免费| 天天一区二区日本电影三级| 国产精品福利在线免费观看| 麻豆国产97在线/欧美| 日本一二三区视频观看| 男女那种视频在线观看| 国产午夜福利久久久久久| 成人国产麻豆网| 在线观看美女被高潮喷水网站| 日韩 亚洲 欧美在线| 天堂网av新在线| 女同久久另类99精品国产91| 日韩欧美三级三区| 日韩亚洲欧美综合| 成人美女网站在线观看视频| 99久久久亚洲精品蜜臀av| 黑人高潮一二区| 好男人视频免费观看在线| 欧美成人免费av一区二区三区| 小蜜桃在线观看免费完整版高清| 中文字幕av成人在线电影| 又粗又硬又长又爽又黄的视频 | 国产精品伦人一区二区| 亚洲最大成人中文| av天堂在线播放| 成年女人永久免费观看视频| 亚洲人与动物交配视频| 青春草视频在线免费观看| 日本-黄色视频高清免费观看| 亚洲av.av天堂| 六月丁香七月| 国产 一区 欧美 日韩| 婷婷精品国产亚洲av| 少妇被粗大猛烈的视频| 日日干狠狠操夜夜爽| 美女高潮的动态| 久久久久免费精品人妻一区二区| 国产亚洲5aaaaa淫片| 成人特级av手机在线观看| 久久这里只有精品中国| 搡老妇女老女人老熟妇| 欧洲精品卡2卡3卡4卡5卡区| 老熟妇乱子伦视频在线观看| 丰满人妻一区二区三区视频av| 99riav亚洲国产免费| 精品久久久久久久久久久久久| h日本视频在线播放| 午夜a级毛片| 一区二区三区四区激情视频 | 国产精品一及| 好男人在线观看高清免费视频| 国产 一区 欧美 日韩| 国产精品久久久久久久电影| 又粗又硬又长又爽又黄的视频 | 欧美日韩综合久久久久久| 日韩精品有码人妻一区| 亚洲五月天丁香| 内地一区二区视频在线| 精品熟女少妇av免费看| 亚洲18禁久久av| 在线观看午夜福利视频| 成人美女网站在线观看视频| 亚洲精品乱码久久久久久按摩| 国产一区二区激情短视频| 能在线免费观看的黄片| 国产成人一区二区在线| 精品久久久久久久久亚洲| 成人午夜高清在线视频| 女的被弄到高潮叫床怎么办| 成人亚洲欧美一区二区av| 久久久成人免费电影| 六月丁香七月| 午夜精品一区二区三区免费看| 麻豆久久精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 精品无人区乱码1区二区| 欧美高清成人免费视频www| 99国产极品粉嫩在线观看| 美女xxoo啪啪120秒动态图| 最近2019中文字幕mv第一页| av在线亚洲专区| 97人妻精品一区二区三区麻豆| 最近中文字幕高清免费大全6| 欧美极品一区二区三区四区| 中文亚洲av片在线观看爽| 久久中文看片网| 久久久色成人| 国产亚洲精品av在线| 国产午夜精品久久久久久一区二区三区| 深爱激情五月婷婷| 亚洲国产精品久久男人天堂| 亚洲成人久久性| 亚洲精品粉嫩美女一区| 婷婷色av中文字幕| 美女脱内裤让男人舔精品视频 | 99久久人妻综合| 插逼视频在线观看| 长腿黑丝高跟| 久久精品久久久久久久性| 久久鲁丝午夜福利片| 久久精品久久久久久噜噜老黄 | 尤物成人国产欧美一区二区三区| 高清午夜精品一区二区三区 | 国产伦在线观看视频一区| 欧美日韩精品成人综合77777| 男女视频在线观看网站免费| 免费观看精品视频网站| 亚洲欧美日韩无卡精品| 最后的刺客免费高清国语| 亚洲在线观看片| 国产爱豆传媒在线观看| 黄色视频,在线免费观看| 特大巨黑吊av在线直播| 日本成人三级电影网站| 少妇的逼好多水| a级毛色黄片| 亚洲在久久综合| 久久精品国产自在天天线| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站高清观看| 国内少妇人妻偷人精品xxx网站| 淫秽高清视频在线观看| 亚洲国产精品国产精品| 又粗又爽又猛毛片免费看| 成人漫画全彩无遮挡| 欧美成人精品欧美一级黄| .国产精品久久| 免费电影在线观看免费观看| 国产日本99.免费观看| 亚洲欧美日韩东京热| 九九久久精品国产亚洲av麻豆| 久久久久九九精品影院| 欧美日韩国产亚洲二区| 国产私拍福利视频在线观看| 一进一出抽搐动态| 欧美最新免费一区二区三区| 亚洲熟妇中文字幕五十中出| 在线免费观看不下载黄p国产| 国产午夜精品论理片| 男人舔女人下体高潮全视频| 日本一二三区视频观看| 国产午夜精品一二区理论片| 看非洲黑人一级黄片| 久久久久九九精品影院| 日韩欧美在线乱码| 色噜噜av男人的天堂激情| 18禁裸乳无遮挡免费网站照片| 免费观看精品视频网站| 人人妻人人澡欧美一区二区| 亚洲va在线va天堂va国产| 亚洲丝袜综合中文字幕| 男女做爰动态图高潮gif福利片| 精品欧美国产一区二区三| 国内精品久久久久精免费| 中文亚洲av片在线观看爽| 男女下面进入的视频免费午夜| 国产国拍精品亚洲av在线观看| 卡戴珊不雅视频在线播放| 好男人在线观看高清免费视频| 国产激情偷乱视频一区二区| 亚洲欧美成人综合另类久久久 | 国产成人a区在线观看| 欧美又色又爽又黄视频| 一本久久精品| 欧美+日韩+精品| 菩萨蛮人人尽说江南好唐韦庄 | 欧美极品一区二区三区四区| 欧美+亚洲+日韩+国产| 国产黄片视频在线免费观看| 国产成人精品一,二区 | 成年av动漫网址| 国产成人精品久久久久久| 最近视频中文字幕2019在线8| 老司机福利观看| 成人特级黄色片久久久久久久| 久久精品综合一区二区三区| 少妇熟女欧美另类| 国产伦理片在线播放av一区 | 久久久久九九精品影院| 免费看光身美女| 99久久中文字幕三级久久日本| 秋霞在线观看毛片| 免费观看在线日韩| 青青草视频在线视频观看| 亚洲国产精品国产精品| 少妇人妻一区二区三区视频| 乱系列少妇在线播放| 少妇熟女aⅴ在线视频| 美女黄网站色视频| 人妻久久中文字幕网| 麻豆久久精品国产亚洲av| 一夜夜www| 成人综合一区亚洲| 日韩制服骚丝袜av| 亚洲一区高清亚洲精品| 国内精品美女久久久久久| 99九九线精品视频在线观看视频| 精品久久久噜噜| 国产 一区精品| 一本一本综合久久| 免费av不卡在线播放| 国产一区二区亚洲精品在线观看| 亚洲不卡免费看| 在线观看av片永久免费下载| 午夜老司机福利剧场| 亚洲欧美成人精品一区二区| 长腿黑丝高跟| 校园春色视频在线观看| 日日啪夜夜撸| 国产老妇伦熟女老妇高清| 人妻制服诱惑在线中文字幕| 听说在线观看完整版免费高清| 久久精品国产亚洲av天美| 日韩一本色道免费dvd| 91久久精品国产一区二区成人| 精品久久久久久久久久免费视频| 日韩精品有码人妻一区| 干丝袜人妻中文字幕| 成人特级黄色片久久久久久久| 在线观看美女被高潮喷水网站| 国产日韩欧美在线精品| 亚洲欧美日韩无卡精品| 秋霞在线观看毛片| 国产精品综合久久久久久久免费| 日韩欧美精品免费久久| 久久久久国产网址| 99在线人妻在线中文字幕| 欧美3d第一页| 日本黄大片高清| 国产高清有码在线观看视频| 免费av观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲中文字幕一区二区三区有码在线看| 少妇裸体淫交视频免费看高清| 成人综合一区亚洲| 亚洲一级一片aⅴ在线观看| 蜜桃亚洲精品一区二区三区| 亚洲精品亚洲一区二区| 久久久久网色| 亚洲第一区二区三区不卡| 最近中文字幕高清免费大全6| 美女被艹到高潮喷水动态| 久久99热这里只有精品18| 中文字幕精品亚洲无线码一区| 欧美最新免费一区二区三区| 日日摸夜夜添夜夜爱| 成人午夜精彩视频在线观看| 天堂√8在线中文| 亚洲av电影不卡..在线观看| 久久99蜜桃精品久久| 国内精品宾馆在线| 日本成人三级电影网站| 男女视频在线观看网站免费| 午夜爱爱视频在线播放| 久久精品91蜜桃| 欧美一区二区亚洲| 亚洲国产精品久久男人天堂| 国内精品一区二区在线观看| 99热精品在线国产| 男人舔奶头视频| 久久久精品欧美日韩精品| 国产v大片淫在线免费观看| 精品熟女少妇av免费看| 欧美性感艳星| 久久精品国产鲁丝片午夜精品| 美女脱内裤让男人舔精品视频 | 久久综合国产亚洲精品| 亚洲人成网站在线播| 麻豆久久精品国产亚洲av| 岛国在线免费视频观看| 一本精品99久久精品77| 你懂的网址亚洲精品在线观看 | 搡老妇女老女人老熟妇| 亚洲精品乱码久久久v下载方式| 插逼视频在线观看| 有码 亚洲区| 女人被狂操c到高潮| 精品不卡国产一区二区三区| 最新中文字幕久久久久| 亚洲高清免费不卡视频| 亚洲国产精品国产精品| 精品一区二区三区人妻视频| 舔av片在线| 成人亚洲精品av一区二区| 九九在线视频观看精品| 国产视频首页在线观看| 国产乱人偷精品视频| 成人毛片60女人毛片免费| 国产一区二区三区在线臀色熟女| 久久精品久久久久久久性| 波野结衣二区三区在线| 国产成年人精品一区二区| 一进一出抽搐动态| 国产精品.久久久| 国产男人的电影天堂91| 麻豆国产av国片精品| 国产免费男女视频| 亚洲综合色惰| 99热6这里只有精品| 九草在线视频观看| 亚洲av免费在线观看| 国产中年淑女户外野战色| 日韩,欧美,国产一区二区三区 | 久久久精品欧美日韩精品| 国产在视频线在精品| 神马国产精品三级电影在线观看| 少妇裸体淫交视频免费看高清| 欧美3d第一页| 美女高潮的动态| 日韩欧美在线乱码| 男女下面进入的视频免费午夜| 日本一二三区视频观看| 麻豆成人av视频| av免费在线看不卡| 好男人在线观看高清免费视频| 欧美激情国产日韩精品一区| 美女国产视频在线观看| 亚洲国产精品成人久久小说 | 成人特级av手机在线观看| 亚洲成人久久爱视频| 内射极品少妇av片p| 成人国产麻豆网| 日韩 亚洲 欧美在线| 国产精品1区2区在线观看.| 国产精品综合久久久久久久免费| 日韩成人av中文字幕在线观看| 老师上课跳d突然被开到最大视频| 神马国产精品三级电影在线观看| 色播亚洲综合网| 午夜精品一区二区三区免费看| 日韩欧美精品v在线| 国产精华一区二区三区| 欧美高清成人免费视频www| 丰满的人妻完整版| 能在线免费观看的黄片| 看十八女毛片水多多多| 97在线视频观看| 又爽又黄a免费视频| 国产三级中文精品| 日韩欧美精品免费久久| 国产亚洲精品av在线| 91麻豆精品激情在线观看国产| 国产精品久久久久久精品电影小说 | 久久精品夜色国产| av天堂中文字幕网| 男女边吃奶边做爰视频| 亚洲天堂国产精品一区在线| 深夜a级毛片| 三级毛片av免费| 你懂的网址亚洲精品在线观看 | 一本久久精品| 伦精品一区二区三区| 亚洲国产欧美人成| 97超碰精品成人国产| 久久精品综合一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲欧洲日产国产| 97超碰精品成人国产| 噜噜噜噜噜久久久久久91| 麻豆一二三区av精品| 亚洲内射少妇av| 国产欧美日韩精品一区二区| 久久精品综合一区二区三区| 在线播放无遮挡| 中国国产av一级| 日韩欧美在线乱码| 综合色丁香网| 人妻制服诱惑在线中文字幕| 欧美zozozo另类| 天天一区二区日本电影三级| 天天躁日日操中文字幕| 在线a可以看的网站| 天天躁日日操中文字幕| 你懂的网址亚洲精品在线观看 | 天堂网av新在线| 国产男人的电影天堂91| 赤兔流量卡办理| 精品午夜福利在线看| 欧美xxxx性猛交bbbb| 男人的好看免费观看在线视频| 精品人妻一区二区三区麻豆| 22中文网久久字幕| 欧美成人一区二区免费高清观看| 日日摸夜夜添夜夜添av毛片| 久久久久久久久大av| 能在线免费观看的黄片| 夜夜看夜夜爽夜夜摸| 日韩高清综合在线| 久久鲁丝午夜福利片| 深爱激情五月婷婷| 国产探花在线观看一区二区| av免费在线看不卡| 99热这里只有精品一区| av国产免费在线观看| 欧美色欧美亚洲另类二区| 国产极品精品免费视频能看的| videossex国产| 黄色配什么色好看| 国产一区二区亚洲精品在线观看| 国产高清三级在线| 精华霜和精华液先用哪个| 亚洲国产色片| 久久精品国产亚洲av涩爱 | 嫩草影院新地址| 成人欧美大片| 久久99热这里只有精品18| 国产亚洲欧美98| 国内精品美女久久久久久| 男女视频在线观看网站免费| 麻豆成人av视频| 男女边吃奶边做爰视频| 观看免费一级毛片| 热99在线观看视频| 色视频www国产| 国产乱人视频| 国内精品宾馆在线| 波野结衣二区三区在线| 日本av手机在线免费观看| 免费一级毛片在线播放高清视频| 久久亚洲精品不卡| 美女高潮的动态| 久久热精品热| 男人和女人高潮做爰伦理| 白带黄色成豆腐渣| 在线观看美女被高潮喷水网站| 看片在线看免费视频| 久久精品国产自在天天线| 免费在线观看成人毛片| 狂野欧美激情性xxxx在线观看| 国产在线男女| 狠狠狠狠99中文字幕| 国产黄片美女视频| 久久国内精品自在自线图片| 男人舔奶头视频| 啦啦啦啦在线视频资源| 日韩欧美一区二区三区在线观看| 啦啦啦观看免费观看视频高清| 国产亚洲91精品色在线| 日韩欧美在线乱码| 国产精品女同一区二区软件| 三级经典国产精品| 99在线视频只有这里精品首页| 中文字幕av成人在线电影| 啦啦啦啦在线视频资源| 免费av毛片视频| 国产又黄又爽又无遮挡在线| 麻豆国产97在线/欧美| 日韩在线高清观看一区二区三区| 岛国在线免费视频观看| 成年女人看的毛片在线观看| 国产精品美女特级片免费视频播放器| 亚洲乱码一区二区免费版| 干丝袜人妻中文字幕| 久久99热这里只有精品18| 成人综合一区亚洲| 在线观看美女被高潮喷水网站| 欧美日韩国产亚洲二区| 舔av片在线| 亚洲第一电影网av| 国产一级毛片在线| 熟妇人妻久久中文字幕3abv| 日韩中字成人| 国产精品一区www在线观看| 国产欧美日韩精品一区二区| 亚洲综合色惰| 一卡2卡三卡四卡精品乱码亚洲| 欧美日本亚洲视频在线播放| 日韩 亚洲 欧美在线| 一进一出抽搐gif免费好疼| 一本久久中文字幕| 女同久久另类99精品国产91| 午夜福利在线观看吧| 欧美激情久久久久久爽电影| 亚洲七黄色美女视频| 国产午夜精品论理片| 精品久久久久久久久av| 午夜精品一区二区三区免费看| 五月伊人婷婷丁香| 一级av片app| 久久99精品国语久久久| 日本撒尿小便嘘嘘汇集6| 国产极品天堂在线| 99在线视频只有这里精品首页| 两个人的视频大全免费| 久久久国产成人免费| 免费观看在线日韩| 国产亚洲精品久久久com| 欧美在线一区亚洲| 国产成人freesex在线| 国产黄片视频在线免费观看| 免费av观看视频| 久久久精品欧美日韩精品| 国产精品国产高清国产av| 一本一本综合久久| 国内精品一区二区在线观看| 久久久色成人| 免费观看a级毛片全部| 亚洲av成人精品一区久久| 国产视频首页在线观看| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久精品电影小说 | 成人毛片60女人毛片免费| 韩国av在线不卡| avwww免费| 天堂网av新在线| 欧美日韩乱码在线| 小说图片视频综合网站| 韩国av在线不卡| www.色视频.com| 国产探花在线观看一区二区| 成人午夜高清在线视频| 99久久久亚洲精品蜜臀av| 如何舔出高潮| 亚洲国产欧美在线一区| 伊人久久精品亚洲午夜| 老司机影院成人| 亚洲自拍偷在线| 中文字幕人妻熟人妻熟丝袜美| 噜噜噜噜噜久久久久久91| 欧美最新免费一区二区三区| 秋霞在线观看毛片| 日日撸夜夜添| 亚洲性久久影院| 性色avwww在线观看| 只有这里有精品99| 十八禁国产超污无遮挡网站| 一个人免费在线观看电影| 国产极品精品免费视频能看的| 婷婷色av中文字幕| 美女国产视频在线观看| 国产精品野战在线观看| 丝袜美腿在线中文| 人体艺术视频欧美日本| 国产美女午夜福利| 国产蜜桃级精品一区二区三区| 久久久欧美国产精品| 一边摸一边抽搐一进一小说| 蜜臀久久99精品久久宅男| 国产 一区 欧美 日韩| or卡值多少钱| 亚洲国产精品合色在线| 一个人观看的视频www高清免费观看| 黄色配什么色好看| av在线播放精品| 成人高潮视频无遮挡免费网站| 男女视频在线观看网站免费| 国产伦在线观看视频一区| 毛片一级片免费看久久久久| 色综合色国产| 国产精华一区二区三区| 神马国产精品三级电影在线观看| 干丝袜人妻中文字幕| 2021天堂中文幕一二区在线观| 欧美xxxx性猛交bbbb| 99国产极品粉嫩在线观看| 性欧美人与动物交配| 热99在线观看视频| av在线老鸭窝| 变态另类丝袜制服| 国产亚洲精品av在线| 欧美zozozo另类| 你懂的网址亚洲精品在线观看 | 如何舔出高潮| 亚洲综合色惰| 国产精品电影一区二区三区| 青春草亚洲视频在线观看| 黄色一级大片看看| 午夜福利视频1000在线观看| 22中文网久久字幕| 欧美3d第一页| 国产精品久久久久久精品电影| 黄色欧美视频在线观看| 狂野欧美激情性xxxx在线观看| 国产精品乱码一区二三区的特点| 毛片一级片免费看久久久久| 成年女人看的毛片在线观看| 在线免费观看不下载黄p国产| 免费观看a级毛片全部| 天堂影院成人在线观看| 国产成人福利小说| 欧美激情国产日韩精品一区| 午夜福利在线观看吧| 边亲边吃奶的免费视频| 日本撒尿小便嘘嘘汇集6| 最新中文字幕久久久久| 成人美女网站在线观看视频| 中国国产av一级| 婷婷精品国产亚洲av| 麻豆成人午夜福利视频| 黄片无遮挡物在线观看| 校园春色视频在线观看| 亚洲av免费在线观看| 国产成人一区二区在线| 99久久无色码亚洲精品果冻| 欧美区成人在线视频| 人妻少妇偷人精品九色| 男女啪啪激烈高潮av片| 啦啦啦啦在线视频资源| 日韩欧美一区二区三区在线观看| 欧美最黄视频在线播放免费| 校园人妻丝袜中文字幕| 一级黄色大片毛片| 亚洲欧美清纯卡通| 亚洲激情五月婷婷啪啪| 中出人妻视频一区二区| 免费电影在线观看免费观看|