• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical evolution of cross phase of edge fluctuations and transport bifurcation

    2021-04-22 05:34:12XueyunWANG王雪韻ZhenyuZHOU周振宇ZhuoyiLI李卓懿andBoLI李博
    Plasma Science and Technology 2021年4期
    關鍵詞:李博

    Xueyun WANG(王雪韻),Zhenyu ZHOU(周振宇),Zhuoyi LI(李卓懿) and Bo LI(李博)

    1 School of Physics,State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,People’s Republic of China

    2 School of Physics,Beihang University,Beijing 100191,People’s Republic of China

    Abstract The dynamical evolution of edge turbulence during a transport bifurcation is explored using a flux-driven nonlinear fluid model with a geometry relevant to the plasma edge region.The simulations show that the self-generated mean shear flows can dramatically modify the phase angle between turbulent fluctuations.The changes in phase differences and amplitudes of edge fluctuations give rise to the modifications of turbulent edge transport.The statistical properties of flux and fluctuations are also investigated before and after edge shear flow generation.

    Keywords:plasma turbulence,plasma edge transport,plasma simulation

    1.Introduction

    The study of turbulence and transport due to the curvaturedriven modes is of high interest because they are believed to play a central role in the edge region of magnetic confinement devices[1-4].The topic is of great importance to the fusion community because edge turbulence largely governs the overall confinement performance of tokamaks and similar machines.The edge region,comprising the transition zone from the inner,hot core plasma to the outer,cold scrape-off layer(SOL),exerts vital control over the plasma discharge through its role in the L-H(low-high confinement)transition[5],and the formation of the edge pedestal.Considerable efforts in experiments[6-12],theoretical modeling[13-16],and nonlinear simulations[17-25]have been devoted to the understanding of transport-reduction mechanism in L-H transitions.In particular,the nonlinear energy transfer during the transition process has been experimentally studied[6-9],and the limit cycle oscillations before a transition have been observed in the edge region of tokamak experiments[10-12].Radial profiles of fluctuations and velocities have also been measured in the edge transition region where the plasma is crossing the last closed flux surface(LCFS)[26-28].

    The generation of mean E×B shear flow in the edge region is believed to be responsible for quenching turbulent transport and further triggering the formation of plasma edge transport barriers[29].On one hand,the fluctuation levels can be suppressed by strong mean shear flows,which directly limit the amplitudes of turbulent fluxes.On the other hand,mean shear flow may modify the phase angle between the fluctuations,whose correlation drives a turbulent flux and determines the direction of radial flux.These effects of E×B shear flows on turbulence and its transport play an important role in turbulence suppression.The changes in turbulent transport through the modificaton of cross phase of fluctuations in frequency domain have been investigated in the experiments where the plasma flows are self-generated through the interaction with turbulence[30],and in the experiments where the shear flows are controlled externally by biasing voltage[31].The effects of strongly sheared flows on the cross phase between turbulent fluctuations in wavenumber space have been studied theoretically[32-34].The impact of phase dynamics on transport has also been explored in numerical simulations of the edge localized modes[35]and the biasing-induced transport reduction[36].However,the nonlinear simulation of phase dynamics during the transitions between low and high confinement modes has not been reported.The interaction between fluctuation phases and mean shear flow still requires more detailed investigation.

    In this work,we present self-consistent nonlinear simulations of fluctuation-induced transport bifurcation in plasma interchange turbulence.The simulations are carried out in a poloidally and radially localized domain at the outboard midplane of toroidal plasma devices.In particular,radial computational domain is across the LCFS to explore the interaction between the plasma edge and SOL.We consider the edge region of a plasma column full of bad curvature of magnetic field line,which is relevant to the edge bad-curvature region of toroidally confined plasmas.Parallel losses are introduced through sheath boundary conditions in the SOL region.This produces plasma pressure gradients at the LCFS that drive the pressure-driven interchange instability.The simulations evolve full profiles of the various quantities without separation of equilibrium and fluctuations.In the simulations,the mean E×B shear flows are self-generated just inside the LCFS through the fluctuation-induced nonlinear energy transfer[22].Previously,we have shown the existence of two transport regimes(L and H regimes)for plasma interchange turbulence[22,37,38].The L and H regimes refer to the state with weak and strong mean flows,respectively.Steeper gradients are formed at the plasma edge in the pressure and density profiles in H-regime[22].Here,we examine the role of the phase angles between fluctuations in the fluctuation-induced nonlinear transport bifurcation.We focus on the time evolution of the transport cross phase and self-generated shear flows,as well as their interaction on the turbulence suppression.The dynamics of cross phase and fluctuation levels are explored throughout the forward and back transitions.The statistical properties of turbulent flux and fluctuations in the two transport regimes are also compared to further explore the impact of mean shear flow generation.

    2.Model equations

    The simulation model is based on the drift-reduced Braginskii equations with ion pressure dynamics[39].For simplicity,we consider the pressure-driven electrostatic instability with parallel wavenumbers k‖?0.The geometry used in the simulations is a two-dimensional(2D)plane perpendicular to the equilibrium magnetic field.The 2D computational domain is radially localized at the plasma outer boundary on the low field side and poloidally localized at the midplane of a toroidally confined plasma.Since the variation of magnetic field is much slower,the changes in plasma profiles,the curvature and strength of the equilibrium magnetic fields are assumed to be constant across the computational domain.The equilibrium field is assumed to be dominated by the toroidal component,and the curvature radius of magnetic filed lines is given by the major radius from the torus axis.The simulated geometry does not describe the full equilibrium magnetic configuration such as the shape of cross sections.The fieldaligned coordinates are used in the simulations.The parallel coordinate z is in the direction of the equilibrium magnetic field.The transverse coordinates x,y correspond to local radial and poloidal variables.The time(t),perpendicular(x,y),and parallel(z)normalization scales are t0=a/cs,ρs=cs/Ωi,and Lcthe connection length of field lines,whereis the sound speed and Ωiis the ion gyrofrequency.The normalized nonlinear equations for the perpendicular dynamics of the total plasma density,pressure,and vorticity are[22]

    where the Laplacian has the formwhen applied at the outer midplane in field-aligned coordinates[17].The effects due to the curvature of magnetic field lines are included in the curvature terms of the model equations:where R is the curvature radius of field lines.The convective derivatives are written in the conservative form

    where vx=??φ/?y and vy=?φ/?x are the radial and poloidal components of normalized E×B velocityin units of cs.Equation(2)in our 2D model assumes the adiabatic closure,d(p/nγ)/dt=0 for the plasma pressure,where γ=5/3.We note that this adiabatic approximation and the assumption of electrostatic flute-like mode may not be valid for comparison with the L-H transition experimentally observed in tokamak plasmas.The ion pressure term in the generalized vorticity results from the diamagnetic velocity part in the ion polarization current[40,41].Thus,the gradients of plasma potential and pressure are coupled through equation(4).This coupling is vital to realize transport bifurcation in our nonlinear simulations.The input flux is introduced from source terms SE,Snthat are localized near the inner boundary.In the SOL region,sheath boundary conditions are applied in the parallel direction:parallel flowsand parallel currentswith[42,43].Thus,the sheath terms are added into model equations for the SOL region with σ=a/Lcthe normalized loss rate due to the sound-speed parallel flows to the ends of open field lines.Dirichlet boundary conditions are imposed at the inner and outer boundaries.Periodic boundary conditions are assumed in the poloidal y direction.The nonlinear fluid equations are solved by a finite-difference turbulence code.The numerical algorithm used in our code is described in section 3.The simulation parameters are a/ρs=100,a/R=0.3,σ=0.015,and Λ=3.Note that the perpendicular diffusion coefficients are taken to be the same for three field variables n,p and w,and specifically the values of the coefficients used in the nonlinear simulations μ=1 in units ofare small compared to Bohm diffusion ρscsby a factor of ρs/a ?1.

    3.Numerical algorithm

    We have developed an explicit time-dependent code for the solution of coupled,nonlinear equations(1)-(3)on uniform,rectangular grids in the(x,y)plane.All of our equations are of the form

    where F=vψ is the flux and v is the velocity.The dominant nonlinearities in the equations arise from the convective terms,which are written in the conservative form.The second-order,centered-difference expression is used for the divergence of flux.The diffusive terms are centrally different to second-order accuracy.The explicit time stepping scheme is a second-order trapezoidal leapfrog algorithm[44]

    where i labels the discrete time.Since the vorticity is evolved in equation(3),we obtain the potential at each time step by the matrix inversion of the Poisson equationwhere Φ=φ+p.Fourier transforming this equation in y gives

    This equation in the finite-difference form can be inverted using a standard tridiagonal solver.Then inverse Fourier transform in y gives Φ(x,y)and the potential is given by φ=Φ?p.

    4.Simulation results

    The curvature-driven interchange instability is triggered by sufficient pressure gradients at the LCFS.As the system evolves,interchange modes saturate in the nonlinear phase and the L-regime turbulent state is reached with quasi-stationary plasma profiles.Figure 1 shows the poloidal-averaged potential signals at two different radial locations just inside the LCFS.In the quasi-stationary nonlinear L-regime(t=70?110),the two signals oscillate in phase and only have slight difference in amplitude.This implies weak radial gradients of plasma potential and strong radial correlations of potential fluctuations at the plasma edge.

    Figure 1.Time evolution of poloidal-averaged potential at x=?15ρs(blue),and x=?5ρs(red).The LCFS is located at x=0.The vertical lines indicate the moments of increasing and decreasing heating power,respectively.

    From the L-regime nonlinear state,we increase input power above a certain threshold at t=110.As seen in figure 1,the two potential signals begin to separate and oscillate with higher frequencies,known as the limit cycle oscillation(t=110?140).The strong oscillations of the potential induce the radial electric fields and the associated poloidal flows localized just inside the LCFS.This reveals that the limit cycle oscillation,as a process of relaxation of heating,is strongly correlated to the generation of mean flow shear.After the mean shear flow is fully generated in the H-regime,the differences between the two potential signals approach maximum and the limit cycle oscillation ends.The significant gap between the two potential signals indicates a large radial potential well in the edge region.The simulations show that the radial gradients of electric potential and the resulting radial electric field strongly depend on the magnitude of local heating power,hence on the plasma local temperature.The temperature dependence for generation of edge inward electric field due to ion orbit losses has been studied in[45].

    During the state of H-regime,we decrease the input heating power below a certain threshold at t=170.In response to the change of the driven flux from the plasma core,a back transition is eventually triggered at t=180.The two potential signals at plasma edge oscillate faster again and the amplitudes get closer to each other as the mean shear flow gradually disappears in the edge region.After the system returns to L-regime(t?210),the large-scale fluctuations with strong radial correlations are developed again in the edge region.Comparing the fluctuation level of potential signals before and after the transition,it is obvious that the amplitude of fluctuations in H-regime is much smaller than that in the L-regime,which shows the turbulence suppression in H-regime.

    To explore the amplitude and phase evolution of fluctuations during a transition,we write the perturbations in terms of Fourier series,

    Figure 2.Time evolution of(a)phase angle θk,(b)sin θk,(c)|δpk|,(d)|δφk|,(e)radial flux 〈δ pδ vx 〉and(f)mean poloidal E×B flow vy in the edge region.The vertical lines indicate the moments of increasing and decreasing heating power.

    Figure 3.Probability density function(PDF)of radial flux in the edge region in(a)L-regime and(b)H-regime.Here σ is the standard deviation.

    where k ≡kyis the poloidal wavenumber.Then the Fourier components of the average radial flux can be written as

    is a combination of the amplitudes of potential and pressure fluctuations and the phase differences between them.The wavenumber we choose for Γkis the dominant poloidal wavenumber of fluctuations in the nonlinear turbulent state.

    As seen in figure 2(a),the relative phase angle is mainly oscillating between π/2 and π in the nonlinear L-regime(t=70?110).Correspondingly,sinθ kin figure 2(b)oscillates near the value of one,producing the maximum amount of flux in the outward radial direction.As shown in figures 2(c)and(d),the amplitudes of potential perturbations are large compared to pressure perturbations.The resulting outward turbulent flux in figure 2(e),which consists of all Fourier components of perturbations,fluctuates around a stationary and relatively high level while the mean shear flow vyin figure 2(f)remains small at the plasma edge.

    When the limit cycle oscillation(t?110?140)is triggered by the increase of input power,the phase angles as well as the amplitudes of pressure and potential perturbations exhibit stronger oscillations in response to the increased heating.This induces large-amplitude fluctuations in radially outward energy flux as the edge mean flows begin to grow during the limit cycle oscillation period.The transition occurs at t?140 when the radial flux gets decreased to a low level.As shown in figure 2,the amplitudes of pressure and potential fluctuations suddenly drop to a low level compared to those just before the transition.Meanwhile,the relative phase angle oscillates dramatically.As the growth of mean shear flow saturates in H-regime,the phase differences between potential and pressure fluctuations eventually change to π so thatsinθ koscillates near zero.As a result,the radial fluxes remain at a low level even though the fluctuation amplitudes start to increase again after the transition.

    The back transition(t?180?210)is characterized by the increase of fluctuation amplitudes and reduction of mean flows in response to a sudden decrease of input power.The final transition to the turbulent state of L-regime occurs when the edge mean flows completely collapse at t?210.Meanwhile,the phase angle between potential and pressure fluctuations reduces to a value near π/2 that is favorable for outward transport.After the back transition,the amplitude of pressure fluctuations drops because of the decreased heating.In contrast,the potential fluctuations maintain at the high level throughout the back transition.The turbulence phase and mean flow dynamics during the forward and back transitions in figure 2 reveal that the mean E×B flow has a direct impact on the phase angles of fluctuations which determine the direction as well as amplitude of turbulent transport.

    We further study statistical properties of average radial flux in the two transport regimes.The probability distribution of flux is calculated from the time series of Γkand the flux is normalized by the standard deviation of the time series.As shown in figure 3(a),the dominant k components of turbulent radial flux in L-regime has a non-Gaussian distribution with a long tail at the positive flux and has a large positive mean value,indicating intermittent,outward transport events.The strong radial flux is related to large-scale convective turbulent eddies in the edge region.In contrast,the distribution of radial flux is changed dramatically in H-regime.As seen in figure 3(b),the probability density function becomes approximately symmetric about the zero value.Thus,the inward and outward fluxes have a nearly equal probability.The deviation of the flux amplitude from the mean is significantly reduced,implying the turbulence suppression.

    Figure 4.Maximum value of cross-correlation function as a function of separation distances in(a)radial and(b)poloidal directions.

    Finally,we examine the correlations of spatial structures.The cross-correlation functions are calculated from the time series of density fluctuations at two different locations just inside the LCFS.The correlation lengths are obtained by measuring the decay of the peak correlation amplitude as a function of separation distance[42].The cross-correlation functions in the radial and poloidal directions are defined as

    Here,〈… 〉denotes an average over time.In L-regime,as seen in figures 4(a)and(b),the correlation lengths of fluctuations in the radial and poloidal directions have similar decay lengths λc?10ρs,which are approximately the size of the large,round eddies in the potential structures.In H-regime,radial correlation lengths of density fluctuations are significantly reduced,indicating the decorrelation of structures in the radial direction.The potential differences in the radial direction induce radial electric fields,which result in the generation of mean E×B flows at the location about 10ρsinside the LCFS,as shown in figure 1.When calculating the poloidal cross-correlation function,we choose the radial location where the flows exist.As shown in figure 4(b),the poloidal correlation length is significantly enhanced at the plasma edge.The enhancement of correlation in the poloidal direction implies the flow generation at the position.Note that the simulations are not compared with experiments due to the limitation of the model discussed earlier.

    5.Conclusion

    In summary,the dynamical evolution of cross phase and amplitudes of fluctuations during an edge transport bifurcation has been explored from self-consistent nonlinear fluxdriven simulations,focusing on the curvature-driven instability.We find that the generation of mean edge shear flow is strongly correlated with the modification of amplitudes and phase angles of edge turbulent fluctuations.During the transition to a suppressed transport regime,the changes of phase angles become significant as the fluctuation-induced mean shear flows grow at the plasma edge.The mean shear flows act on the amplitudes and phase angles of turbulence through the modification of coherent structures of fluctuations as demonstrated by the changes in the spatial correlations.Our 2D simplified model only describes the electrostatic interchange modes in a toroidal magnetic field with bad curvature.For comparison with the L-H transitions in tokamak plasmas,however,the ballooning modes should be considered for tokamak plasmas with magnetic shear[46,47].We also note that the particle source is fixed in the simulations.However,the change of particle sources would possibly affect the dynamical evolution of the relative phase angle and the mean flow shear,which is for future investigation.

    Acknowledgments

    We thank Chuankui Sun,Cong Meng,Pengfei Li,Zhijian Xie,Dianjing Liu,and Ao Zhou for help with simulations.We acknowledge extensive discussions with Tianchun Zhou,Guosheng Xu,Jiaqi Dong,and P.H.Diamond.This work was supported by the National Magnetic Confinement Fusion Energy Program of China(No.2018YFE0311300).

    猜你喜歡
    李博
    Simulation of ion cyclotron wave heating in the EXL-50U spherical tokamak based on dispersion relations
    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    LabVIEW下的模擬電路實驗教學創(chuàng)新對策
    Evolution of optical properties and molecular structure of PCBM films under proton irradiation
    LabVIEW下通信原理實驗教改探討
    Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    Manipulating transition of a two-component Bose–Einstein condensate with a weak δ-shaped laser?
    Fully integrated modeling of surface water and groundwater in coastal areas *
    空間相機次鏡在軌校正仿真分析
    欧美高清性xxxxhd video| 亚洲av日韩在线播放| 成年av动漫网址| 久久午夜福利片| 少妇的逼好多水| 亚洲av成人精品一二三区| 最近中文字幕2019免费版| 直男gayav资源| 99国产精品一区二区蜜桃av| 亚洲精品影视一区二区三区av| 少妇裸体淫交视频免费看高清| 欧美性猛交黑人性爽| 麻豆国产97在线/欧美| 国产亚洲午夜精品一区二区久久 | 精品人妻偷拍中文字幕| 午夜精品一区二区三区免费看| 日本三级黄在线观看| 女的被弄到高潮叫床怎么办| 一夜夜www| 九九久久精品国产亚洲av麻豆| 天堂中文最新版在线下载 | 全区人妻精品视频| 国内精品一区二区在线观看| 超碰97精品在线观看| 丝袜美腿在线中文| 亚洲av福利一区| 亚洲自拍偷在线| 天堂中文最新版在线下载 | 在线观看av片永久免费下载| 可以在线观看毛片的网站| 六月丁香七月| 日韩制服骚丝袜av| 日本五十路高清| 久久热精品热| 两性午夜刺激爽爽歪歪视频在线观看| av在线老鸭窝| 国产一级毛片在线| 日本一二三区视频观看| 日本av手机在线免费观看| 综合色av麻豆| 欧美日韩精品成人综合77777| 精品不卡国产一区二区三区| 久久精品国产亚洲网站| 视频中文字幕在线观看| 又粗又硬又长又爽又黄的视频| 久久久久久伊人网av| 26uuu在线亚洲综合色| 欧美三级亚洲精品| 麻豆一二三区av精品| 久久草成人影院| 久久久色成人| 99久久无色码亚洲精品果冻| 欧美3d第一页| 免费av毛片视频| 中文天堂在线官网| 色网站视频免费| 欧美+日韩+精品| 在线播放无遮挡| 午夜免费男女啪啪视频观看| 天堂av国产一区二区熟女人妻| 啦啦啦观看免费观看视频高清| 人妻系列 视频| 中文字幕精品亚洲无线码一区| 精品欧美国产一区二区三| 麻豆国产97在线/欧美| 少妇的逼好多水| 男女国产视频网站| 日本与韩国留学比较| 国产午夜福利久久久久久| 色综合色国产| 国产又色又爽无遮挡免| 九草在线视频观看| 午夜精品一区二区三区免费看| 内地一区二区视频在线| 久久午夜福利片| 18禁在线播放成人免费| 精品久久国产蜜桃| 亚洲怡红院男人天堂| 国产精品国产三级专区第一集| 91久久精品电影网| 伦理电影大哥的女人| 老司机影院毛片| 午夜精品一区二区三区免费看| 免费黄色在线免费观看| 97热精品久久久久久| 听说在线观看完整版免费高清| 高清av免费在线| 变态另类丝袜制服| 亚洲内射少妇av| 国内少妇人妻偷人精品xxx网站| 麻豆一二三区av精品| 久久精品国产鲁丝片午夜精品| 国产精品伦人一区二区| 建设人人有责人人尽责人人享有的 | 国产不卡一卡二| 日本五十路高清| 国产精品无大码| 色网站视频免费| 一个人看的www免费观看视频| 看黄色毛片网站| 日韩成人伦理影院| 国产综合懂色| 如何舔出高潮| 国产精品久久久久久精品电影小说 | 永久免费av网站大全| 国产高清不卡午夜福利| 一个人看的www免费观看视频| av在线蜜桃| 亚洲第一区二区三区不卡| 国产高潮美女av| 国产高清不卡午夜福利| 欧美高清成人免费视频www| 亚洲精品456在线播放app| 亚洲国产精品成人久久小说| 亚洲人与动物交配视频| 亚洲最大成人手机在线| 18禁在线无遮挡免费观看视频| 最近手机中文字幕大全| 午夜老司机福利剧场| 在线观看美女被高潮喷水网站| 欧美一区二区国产精品久久精品| 色吧在线观看| 国产精品av视频在线免费观看| 精华霜和精华液先用哪个| 国产精品国产三级专区第一集| 只有这里有精品99| 又粗又爽又猛毛片免费看| 成人高潮视频无遮挡免费网站| 赤兔流量卡办理| 日韩成人伦理影院| 成人午夜精彩视频在线观看| 久久久久久久久中文| 国内少妇人妻偷人精品xxx网站| 国产一级毛片七仙女欲春2| 亚洲精品aⅴ在线观看| 成人高潮视频无遮挡免费网站| 成人高潮视频无遮挡免费网站| 黄色一级大片看看| 国产探花极品一区二区| .国产精品久久| 三级经典国产精品| 欧美成人午夜免费资源| 蜜桃久久精品国产亚洲av| 麻豆精品久久久久久蜜桃| 日韩三级伦理在线观看| 村上凉子中文字幕在线| 在线观看66精品国产| 老司机影院毛片| av.在线天堂| 午夜福利网站1000一区二区三区| 欧美精品一区二区大全| 国产成人精品久久久久久| 一级黄色大片毛片| .国产精品久久| 欧美最新免费一区二区三区| 国产毛片a区久久久久| av在线亚洲专区| 亚洲,欧美,日韩| 亚洲,欧美,日韩| 久久鲁丝午夜福利片| 18+在线观看网站| 中文字幕制服av| 亚洲国产精品久久男人天堂| 国产又黄又爽又无遮挡在线| av专区在线播放| 亚洲一区高清亚洲精品| 青春草国产在线视频| 最近的中文字幕免费完整| 99在线视频只有这里精品首页| 麻豆精品久久久久久蜜桃| 69人妻影院| 男插女下体视频免费在线播放| 最近手机中文字幕大全| 亚洲欧美日韩卡通动漫| 日本与韩国留学比较| 亚洲精品乱码久久久久久按摩| 日韩人妻高清精品专区| 国产伦精品一区二区三区视频9| 午夜a级毛片| 亚洲伊人久久精品综合 | 亚洲欧洲日产国产| 91在线精品国自产拍蜜月| 69av精品久久久久久| 丝袜美腿在线中文| 2021少妇久久久久久久久久久| 国产亚洲精品久久久com| 99在线视频只有这里精品首页| 亚洲成人久久爱视频| 亚洲欧美精品综合久久99| 国产精品麻豆人妻色哟哟久久 | 老师上课跳d突然被开到最大视频| 精品久久久久久成人av| 成人综合一区亚洲| 免费一级毛片在线播放高清视频| 国产激情偷乱视频一区二区| 欧美激情久久久久久爽电影| 久久精品91蜜桃| 3wmmmm亚洲av在线观看| 成人特级av手机在线观看| 爱豆传媒免费全集在线观看| 床上黄色一级片| 午夜福利在线观看吧| 精品一区二区免费观看| 亚洲国产欧美在线一区| 国产视频首页在线观看| 精品久久国产蜜桃| 插阴视频在线观看视频| 国产精品久久久久久久久免| 免费黄色在线免费观看| 欧美成人午夜免费资源| 免费看日本二区| 欧美另类亚洲清纯唯美| 久久人妻av系列| 精品久久久久久久人妻蜜臀av| 网址你懂的国产日韩在线| 国产精品久久久久久久电影| 国产三级在线视频| 久久99热这里只有精品18| 综合色av麻豆| 国产亚洲精品久久久com| 晚上一个人看的免费电影| 最后的刺客免费高清国语| 欧美xxxx黑人xx丫x性爽| 三级国产精品片| 一个人免费在线观看电影| 狠狠狠狠99中文字幕| 精品一区二区三区视频在线| 嘟嘟电影网在线观看| 亚洲国产成人一精品久久久| 久热久热在线精品观看| 国产大屁股一区二区在线视频| 国产精品电影一区二区三区| 国产精品.久久久| h日本视频在线播放| 国产精品综合久久久久久久免费| 精品一区二区免费观看| 搡老妇女老女人老熟妇| 国产麻豆成人av免费视频| 美女xxoo啪啪120秒动态图| 一区二区三区四区激情视频| 亚洲欧美中文字幕日韩二区| av线在线观看网站| 欧美人与善性xxx| 岛国毛片在线播放| 在线观看一区二区三区| 国产精品人妻久久久影院| 噜噜噜噜噜久久久久久91| 综合色丁香网| 一本久久精品| 91精品国产九色| 日韩成人伦理影院| 22中文网久久字幕| 一边亲一边摸免费视频| 插阴视频在线观看视频| 久久精品国产亚洲网站| 九九爱精品视频在线观看| 熟妇人妻久久中文字幕3abv| 大话2 男鬼变身卡| 免费看a级黄色片| 亚洲av.av天堂| 一个人免费在线观看电影| 亚洲四区av| 精品久久久久久成人av| 国产又色又爽无遮挡免| 熟女电影av网| 日本色播在线视频| av在线天堂中文字幕| 久久久久九九精品影院| 亚洲最大成人手机在线| 极品教师在线视频| 国产精品野战在线观看| 国产白丝娇喘喷水9色精品| 国产亚洲5aaaaa淫片| 久久人人爽人人爽人人片va| 69av精品久久久久久| 久久久久性生活片| 免费人成在线观看视频色| 欧美三级亚洲精品| 久久亚洲精品不卡| 久久6这里有精品| 少妇熟女欧美另类| 精品无人区乱码1区二区| 中文在线观看免费www的网站| 亚洲av二区三区四区| 自拍偷自拍亚洲精品老妇| 97超视频在线观看视频| 卡戴珊不雅视频在线播放| a级毛色黄片| 天堂av国产一区二区熟女人妻| 人妻夜夜爽99麻豆av| 国产精品一区二区三区四区久久| 91精品伊人久久大香线蕉| 国产在视频线精品| 国产视频内射| www.av在线官网国产| 亚洲精品久久久久久婷婷小说 | 九色成人免费人妻av| 最近中文字幕高清免费大全6| av女优亚洲男人天堂| 欧美高清性xxxxhd video| 日本熟妇午夜| 国产亚洲5aaaaa淫片| or卡值多少钱| 中文字幕精品亚洲无线码一区| 看片在线看免费视频| 欧美激情久久久久久爽电影| 久久精品人妻少妇| 观看美女的网站| 欧美色视频一区免费| 国产精品麻豆人妻色哟哟久久 | 成年免费大片在线观看| 联通29元200g的流量卡| 人妻夜夜爽99麻豆av| 天堂√8在线中文| 91在线精品国自产拍蜜月| 国产精品美女特级片免费视频播放器| 乱码一卡2卡4卡精品| 看十八女毛片水多多多| 美女大奶头视频| 噜噜噜噜噜久久久久久91| 色播亚洲综合网| 亚洲一区高清亚洲精品| 亚洲在久久综合| 欧美一区二区精品小视频在线| 亚洲av男天堂| 免费观看的影片在线观看| 国产淫语在线视频| 久久久久国产网址| 夜夜看夜夜爽夜夜摸| 我的女老师完整版在线观看| 99久久无色码亚洲精品果冻| 三级国产精品片| 少妇熟女aⅴ在线视频| 亚洲av.av天堂| 国产在视频线精品| 欧美另类亚洲清纯唯美| 精品国产露脸久久av麻豆 | 赤兔流量卡办理| 成人毛片60女人毛片免费| 97超视频在线观看视频| 69av精品久久久久久| 老师上课跳d突然被开到最大视频| 精品熟女少妇av免费看| 色哟哟·www| 免费av不卡在线播放| 1000部很黄的大片| 亚洲国产欧洲综合997久久,| 能在线免费看毛片的网站| 九九爱精品视频在线观看| 国产爱豆传媒在线观看| 亚洲精品国产成人久久av| 亚洲国产精品成人久久小说| 日本一本二区三区精品| 纵有疾风起免费观看全集完整版 | 日韩人妻高清精品专区| 18禁在线播放成人免费| 99久国产av精品国产电影| 国产在线一区二区三区精 | 中文天堂在线官网| 综合色av麻豆| 中文字幕人妻熟人妻熟丝袜美| 亚洲无线观看免费| 国产三级在线视频| 国产黄片视频在线免费观看| 久久久久久久亚洲中文字幕| 国产午夜福利久久久久久| av.在线天堂| 精品久久久久久久久av| 嫩草影院入口| 99热这里只有是精品在线观看| 特大巨黑吊av在线直播| 国产探花极品一区二区| 国产精品综合久久久久久久免费| 欧美日韩精品成人综合77777| 国产黄色小视频在线观看| 亚洲一区高清亚洲精品| 亚洲欧美日韩东京热| 亚洲av福利一区| 一级av片app| 赤兔流量卡办理| 日本五十路高清| 深爱激情五月婷婷| 青春草国产在线视频| 老司机影院毛片| 国产亚洲午夜精品一区二区久久 | 国产精品一区二区在线观看99 | 三级经典国产精品| 国产成人免费观看mmmm| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久人妻蜜臀av| 亚洲真实伦在线观看| 天美传媒精品一区二区| 亚洲人成网站在线播| 精品国产一区二区三区久久久樱花 | 国产精品久久视频播放| 中文字幕久久专区| 国产女主播在线喷水免费视频网站 | www.av在线官网国产| 搡女人真爽免费视频火全软件| 午夜精品在线福利| 精品久久久久久久人妻蜜臀av| 亚洲国产精品sss在线观看| 国产成人a∨麻豆精品| 亚洲在线观看片| 日本与韩国留学比较| 少妇猛男粗大的猛烈进出视频 | 久久婷婷人人爽人人干人人爱| 69av精品久久久久久| 亚洲精品乱码久久久v下载方式| 天堂中文最新版在线下载 | 麻豆av噜噜一区二区三区| 亚洲成色77777| 国产真实伦视频高清在线观看| 97热精品久久久久久| 亚洲av中文字字幕乱码综合| 少妇被粗大猛烈的视频| 久久国内精品自在自线图片| 国产精品人妻久久久久久| 久久久成人免费电影| 在线免费十八禁| 午夜免费男女啪啪视频观看| 亚洲精品亚洲一区二区| 亚洲国产精品成人综合色| 观看免费一级毛片| 日韩精品青青久久久久久| videossex国产| 99久久精品一区二区三区| 国产 一区精品| 亚洲精品影视一区二区三区av| 亚洲av成人精品一区久久| 国产亚洲5aaaaa淫片| 一边摸一边抽搐一进一小说| 波多野结衣巨乳人妻| 亚洲欧美成人综合另类久久久 | 国产极品精品免费视频能看的| 一夜夜www| 亚洲丝袜综合中文字幕| 色噜噜av男人的天堂激情| 狂野欧美白嫩少妇大欣赏| 亚洲av二区三区四区| 亚洲av福利一区| 亚洲一区高清亚洲精品| 免费av不卡在线播放| 91久久精品国产一区二区三区| 大又大粗又爽又黄少妇毛片口| 婷婷色综合大香蕉| 国内精品宾馆在线| 18+在线观看网站| 亚洲欧美成人综合另类久久久 | 欧美日韩综合久久久久久| 99久久无色码亚洲精品果冻| 精品少妇黑人巨大在线播放 | 黄色欧美视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品不卡国产一区二区三区| av在线播放精品| 国产淫语在线视频| 男人舔女人下体高潮全视频| 午夜激情福利司机影院| 日本免费在线观看一区| 欧美激情在线99| kizo精华| 五月玫瑰六月丁香| 99热这里只有精品一区| 午夜福利在线观看免费完整高清在| 丰满乱子伦码专区| 国产亚洲av嫩草精品影院| 久99久视频精品免费| 国产午夜福利久久久久久| 亚洲五月天丁香| 中文资源天堂在线| 亚洲18禁久久av| 婷婷色av中文字幕| 日韩一本色道免费dvd| 亚洲欧美清纯卡通| av福利片在线观看| 午夜亚洲福利在线播放| 一级毛片aaaaaa免费看小| 国产午夜精品久久久久久一区二区三区| 欧美性感艳星| 午夜视频国产福利| 黑人高潮一二区| 欧美xxxx性猛交bbbb| 欧美最新免费一区二区三区| 在线免费观看的www视频| 亚洲人与动物交配视频| 人妻制服诱惑在线中文字幕| 有码 亚洲区| 国产av一区在线观看免费| 精品人妻视频免费看| 99热全是精品| 国产女主播在线喷水免费视频网站 | 婷婷色麻豆天堂久久 | 欧美区成人在线视频| 国产一区二区亚洲精品在线观看| 精品久久久久久成人av| 国产av在哪里看| 久久久国产成人免费| 亚洲经典国产精华液单| 亚洲av免费在线观看| 亚洲国产精品久久男人天堂| 国内少妇人妻偷人精品xxx网站| 18禁在线无遮挡免费观看视频| 欧美日本视频| 亚洲av.av天堂| 国产v大片淫在线免费观看| 在线观看av片永久免费下载| 97热精品久久久久久| 波野结衣二区三区在线| 国产精品三级大全| 久久精品国产亚洲av天美| 日本与韩国留学比较| 国产美女午夜福利| 国产成人精品久久久久久| 精品久久久久久久末码| 亚洲国产日韩欧美精品在线观看| 国产成人免费观看mmmm| 嘟嘟电影网在线观看| 亚洲欧美精品专区久久| 美女高潮的动态| 国产真实伦视频高清在线观看| 在线免费十八禁| 精品国产露脸久久av麻豆 | 日产精品乱码卡一卡2卡三| 2021少妇久久久久久久久久久| 成年版毛片免费区| av又黄又爽大尺度在线免费看 | 少妇熟女aⅴ在线视频| 久久人人爽人人爽人人片va| 高清在线视频一区二区三区 | 久久综合国产亚洲精品| 久久久久久久亚洲中文字幕| 日韩欧美精品v在线| 国产麻豆成人av免费视频| 国产老妇女一区| 国产黄色小视频在线观看| 97超碰精品成人国产| 一边亲一边摸免费视频| 中文在线观看免费www的网站| 精品国产三级普通话版| 午夜精品国产一区二区电影 | 日日摸夜夜添夜夜爱| 欧美日本视频| 男女国产视频网站| 99热这里只有是精品50| 七月丁香在线播放| 日本一本二区三区精品| 亚洲国产精品专区欧美| 亚洲人成网站高清观看| 婷婷六月久久综合丁香| 久久久久久久国产电影| 国产三级在线视频| 中文字幕精品亚洲无线码一区| 久久久亚洲精品成人影院| 国产片特级美女逼逼视频| ponron亚洲| 日韩 亚洲 欧美在线| 国产乱人视频| 狂野欧美白嫩少妇大欣赏| 亚洲精品乱码久久久久久按摩| 热99re8久久精品国产| 午夜日本视频在线| 麻豆精品久久久久久蜜桃| 日韩av不卡免费在线播放| 精品一区二区三区视频在线| 美女脱内裤让男人舔精品视频| 亚洲五月天丁香| 亚洲成人av在线免费| 一本一本综合久久| 国产乱人视频| 桃色一区二区三区在线观看| 日韩精品有码人妻一区| 日本一本二区三区精品| 国产精品三级大全| 两性午夜刺激爽爽歪歪视频在线观看| 好男人视频免费观看在线| 国产免费一级a男人的天堂| 51国产日韩欧美| 日韩欧美精品v在线| 高清毛片免费看| 国产男人的电影天堂91| 成人午夜精彩视频在线观看| 中文字幕熟女人妻在线| 国产成人一区二区在线| 一级毛片久久久久久久久女| 精品少妇黑人巨大在线播放 | 波多野结衣巨乳人妻| 校园人妻丝袜中文字幕| 三级经典国产精品| 免费观看的影片在线观看| 国产极品精品免费视频能看的| 国产精品嫩草影院av在线观看| 大话2 男鬼变身卡| 久99久视频精品免费| 黄片无遮挡物在线观看| 高清毛片免费看| 国产亚洲5aaaaa淫片| 久久精品久久精品一区二区三区| 伊人久久精品亚洲午夜| 91久久精品国产一区二区成人| h日本视频在线播放| 毛片一级片免费看久久久久| 99视频精品全部免费 在线| 男插女下体视频免费在线播放| 国产免费福利视频在线观看| 久久久久网色| 午夜福利在线在线| 免费看av在线观看网站| 亚洲国产精品sss在线观看| 亚洲av不卡在线观看| 精品久久久久久久久亚洲| 九九爱精品视频在线观看| 在线免费十八禁| 又粗又爽又猛毛片免费看| 美女高潮的动态|