• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical evolution of cross phase of edge fluctuations and transport bifurcation

    2021-04-22 05:34:12XueyunWANG王雪韻ZhenyuZHOU周振宇ZhuoyiLI李卓懿andBoLI李博
    Plasma Science and Technology 2021年4期
    關鍵詞:李博

    Xueyun WANG(王雪韻),Zhenyu ZHOU(周振宇),Zhuoyi LI(李卓懿) and Bo LI(李博)

    1 School of Physics,State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,People’s Republic of China

    2 School of Physics,Beihang University,Beijing 100191,People’s Republic of China

    Abstract The dynamical evolution of edge turbulence during a transport bifurcation is explored using a flux-driven nonlinear fluid model with a geometry relevant to the plasma edge region.The simulations show that the self-generated mean shear flows can dramatically modify the phase angle between turbulent fluctuations.The changes in phase differences and amplitudes of edge fluctuations give rise to the modifications of turbulent edge transport.The statistical properties of flux and fluctuations are also investigated before and after edge shear flow generation.

    Keywords:plasma turbulence,plasma edge transport,plasma simulation

    1.Introduction

    The study of turbulence and transport due to the curvaturedriven modes is of high interest because they are believed to play a central role in the edge region of magnetic confinement devices[1-4].The topic is of great importance to the fusion community because edge turbulence largely governs the overall confinement performance of tokamaks and similar machines.The edge region,comprising the transition zone from the inner,hot core plasma to the outer,cold scrape-off layer(SOL),exerts vital control over the plasma discharge through its role in the L-H(low-high confinement)transition[5],and the formation of the edge pedestal.Considerable efforts in experiments[6-12],theoretical modeling[13-16],and nonlinear simulations[17-25]have been devoted to the understanding of transport-reduction mechanism in L-H transitions.In particular,the nonlinear energy transfer during the transition process has been experimentally studied[6-9],and the limit cycle oscillations before a transition have been observed in the edge region of tokamak experiments[10-12].Radial profiles of fluctuations and velocities have also been measured in the edge transition region where the plasma is crossing the last closed flux surface(LCFS)[26-28].

    The generation of mean E×B shear flow in the edge region is believed to be responsible for quenching turbulent transport and further triggering the formation of plasma edge transport barriers[29].On one hand,the fluctuation levels can be suppressed by strong mean shear flows,which directly limit the amplitudes of turbulent fluxes.On the other hand,mean shear flow may modify the phase angle between the fluctuations,whose correlation drives a turbulent flux and determines the direction of radial flux.These effects of E×B shear flows on turbulence and its transport play an important role in turbulence suppression.The changes in turbulent transport through the modificaton of cross phase of fluctuations in frequency domain have been investigated in the experiments where the plasma flows are self-generated through the interaction with turbulence[30],and in the experiments where the shear flows are controlled externally by biasing voltage[31].The effects of strongly sheared flows on the cross phase between turbulent fluctuations in wavenumber space have been studied theoretically[32-34].The impact of phase dynamics on transport has also been explored in numerical simulations of the edge localized modes[35]and the biasing-induced transport reduction[36].However,the nonlinear simulation of phase dynamics during the transitions between low and high confinement modes has not been reported.The interaction between fluctuation phases and mean shear flow still requires more detailed investigation.

    In this work,we present self-consistent nonlinear simulations of fluctuation-induced transport bifurcation in plasma interchange turbulence.The simulations are carried out in a poloidally and radially localized domain at the outboard midplane of toroidal plasma devices.In particular,radial computational domain is across the LCFS to explore the interaction between the plasma edge and SOL.We consider the edge region of a plasma column full of bad curvature of magnetic field line,which is relevant to the edge bad-curvature region of toroidally confined plasmas.Parallel losses are introduced through sheath boundary conditions in the SOL region.This produces plasma pressure gradients at the LCFS that drive the pressure-driven interchange instability.The simulations evolve full profiles of the various quantities without separation of equilibrium and fluctuations.In the simulations,the mean E×B shear flows are self-generated just inside the LCFS through the fluctuation-induced nonlinear energy transfer[22].Previously,we have shown the existence of two transport regimes(L and H regimes)for plasma interchange turbulence[22,37,38].The L and H regimes refer to the state with weak and strong mean flows,respectively.Steeper gradients are formed at the plasma edge in the pressure and density profiles in H-regime[22].Here,we examine the role of the phase angles between fluctuations in the fluctuation-induced nonlinear transport bifurcation.We focus on the time evolution of the transport cross phase and self-generated shear flows,as well as their interaction on the turbulence suppression.The dynamics of cross phase and fluctuation levels are explored throughout the forward and back transitions.The statistical properties of turbulent flux and fluctuations in the two transport regimes are also compared to further explore the impact of mean shear flow generation.

    2.Model equations

    The simulation model is based on the drift-reduced Braginskii equations with ion pressure dynamics[39].For simplicity,we consider the pressure-driven electrostatic instability with parallel wavenumbers k‖?0.The geometry used in the simulations is a two-dimensional(2D)plane perpendicular to the equilibrium magnetic field.The 2D computational domain is radially localized at the plasma outer boundary on the low field side and poloidally localized at the midplane of a toroidally confined plasma.Since the variation of magnetic field is much slower,the changes in plasma profiles,the curvature and strength of the equilibrium magnetic fields are assumed to be constant across the computational domain.The equilibrium field is assumed to be dominated by the toroidal component,and the curvature radius of magnetic filed lines is given by the major radius from the torus axis.The simulated geometry does not describe the full equilibrium magnetic configuration such as the shape of cross sections.The fieldaligned coordinates are used in the simulations.The parallel coordinate z is in the direction of the equilibrium magnetic field.The transverse coordinates x,y correspond to local radial and poloidal variables.The time(t),perpendicular(x,y),and parallel(z)normalization scales are t0=a/cs,ρs=cs/Ωi,and Lcthe connection length of field lines,whereis the sound speed and Ωiis the ion gyrofrequency.The normalized nonlinear equations for the perpendicular dynamics of the total plasma density,pressure,and vorticity are[22]

    where the Laplacian has the formwhen applied at the outer midplane in field-aligned coordinates[17].The effects due to the curvature of magnetic field lines are included in the curvature terms of the model equations:where R is the curvature radius of field lines.The convective derivatives are written in the conservative form

    where vx=??φ/?y and vy=?φ/?x are the radial and poloidal components of normalized E×B velocityin units of cs.Equation(2)in our 2D model assumes the adiabatic closure,d(p/nγ)/dt=0 for the plasma pressure,where γ=5/3.We note that this adiabatic approximation and the assumption of electrostatic flute-like mode may not be valid for comparison with the L-H transition experimentally observed in tokamak plasmas.The ion pressure term in the generalized vorticity results from the diamagnetic velocity part in the ion polarization current[40,41].Thus,the gradients of plasma potential and pressure are coupled through equation(4).This coupling is vital to realize transport bifurcation in our nonlinear simulations.The input flux is introduced from source terms SE,Snthat are localized near the inner boundary.In the SOL region,sheath boundary conditions are applied in the parallel direction:parallel flowsand parallel currentswith[42,43].Thus,the sheath terms are added into model equations for the SOL region with σ=a/Lcthe normalized loss rate due to the sound-speed parallel flows to the ends of open field lines.Dirichlet boundary conditions are imposed at the inner and outer boundaries.Periodic boundary conditions are assumed in the poloidal y direction.The nonlinear fluid equations are solved by a finite-difference turbulence code.The numerical algorithm used in our code is described in section 3.The simulation parameters are a/ρs=100,a/R=0.3,σ=0.015,and Λ=3.Note that the perpendicular diffusion coefficients are taken to be the same for three field variables n,p and w,and specifically the values of the coefficients used in the nonlinear simulations μ=1 in units ofare small compared to Bohm diffusion ρscsby a factor of ρs/a ?1.

    3.Numerical algorithm

    We have developed an explicit time-dependent code for the solution of coupled,nonlinear equations(1)-(3)on uniform,rectangular grids in the(x,y)plane.All of our equations are of the form

    where F=vψ is the flux and v is the velocity.The dominant nonlinearities in the equations arise from the convective terms,which are written in the conservative form.The second-order,centered-difference expression is used for the divergence of flux.The diffusive terms are centrally different to second-order accuracy.The explicit time stepping scheme is a second-order trapezoidal leapfrog algorithm[44]

    where i labels the discrete time.Since the vorticity is evolved in equation(3),we obtain the potential at each time step by the matrix inversion of the Poisson equationwhere Φ=φ+p.Fourier transforming this equation in y gives

    This equation in the finite-difference form can be inverted using a standard tridiagonal solver.Then inverse Fourier transform in y gives Φ(x,y)and the potential is given by φ=Φ?p.

    4.Simulation results

    The curvature-driven interchange instability is triggered by sufficient pressure gradients at the LCFS.As the system evolves,interchange modes saturate in the nonlinear phase and the L-regime turbulent state is reached with quasi-stationary plasma profiles.Figure 1 shows the poloidal-averaged potential signals at two different radial locations just inside the LCFS.In the quasi-stationary nonlinear L-regime(t=70?110),the two signals oscillate in phase and only have slight difference in amplitude.This implies weak radial gradients of plasma potential and strong radial correlations of potential fluctuations at the plasma edge.

    Figure 1.Time evolution of poloidal-averaged potential at x=?15ρs(blue),and x=?5ρs(red).The LCFS is located at x=0.The vertical lines indicate the moments of increasing and decreasing heating power,respectively.

    From the L-regime nonlinear state,we increase input power above a certain threshold at t=110.As seen in figure 1,the two potential signals begin to separate and oscillate with higher frequencies,known as the limit cycle oscillation(t=110?140).The strong oscillations of the potential induce the radial electric fields and the associated poloidal flows localized just inside the LCFS.This reveals that the limit cycle oscillation,as a process of relaxation of heating,is strongly correlated to the generation of mean flow shear.After the mean shear flow is fully generated in the H-regime,the differences between the two potential signals approach maximum and the limit cycle oscillation ends.The significant gap between the two potential signals indicates a large radial potential well in the edge region.The simulations show that the radial gradients of electric potential and the resulting radial electric field strongly depend on the magnitude of local heating power,hence on the plasma local temperature.The temperature dependence for generation of edge inward electric field due to ion orbit losses has been studied in[45].

    During the state of H-regime,we decrease the input heating power below a certain threshold at t=170.In response to the change of the driven flux from the plasma core,a back transition is eventually triggered at t=180.The two potential signals at plasma edge oscillate faster again and the amplitudes get closer to each other as the mean shear flow gradually disappears in the edge region.After the system returns to L-regime(t?210),the large-scale fluctuations with strong radial correlations are developed again in the edge region.Comparing the fluctuation level of potential signals before and after the transition,it is obvious that the amplitude of fluctuations in H-regime is much smaller than that in the L-regime,which shows the turbulence suppression in H-regime.

    To explore the amplitude and phase evolution of fluctuations during a transition,we write the perturbations in terms of Fourier series,

    Figure 2.Time evolution of(a)phase angle θk,(b)sin θk,(c)|δpk|,(d)|δφk|,(e)radial flux 〈δ pδ vx 〉and(f)mean poloidal E×B flow vy in the edge region.The vertical lines indicate the moments of increasing and decreasing heating power.

    Figure 3.Probability density function(PDF)of radial flux in the edge region in(a)L-regime and(b)H-regime.Here σ is the standard deviation.

    where k ≡kyis the poloidal wavenumber.Then the Fourier components of the average radial flux can be written as

    is a combination of the amplitudes of potential and pressure fluctuations and the phase differences between them.The wavenumber we choose for Γkis the dominant poloidal wavenumber of fluctuations in the nonlinear turbulent state.

    As seen in figure 2(a),the relative phase angle is mainly oscillating between π/2 and π in the nonlinear L-regime(t=70?110).Correspondingly,sinθ kin figure 2(b)oscillates near the value of one,producing the maximum amount of flux in the outward radial direction.As shown in figures 2(c)and(d),the amplitudes of potential perturbations are large compared to pressure perturbations.The resulting outward turbulent flux in figure 2(e),which consists of all Fourier components of perturbations,fluctuates around a stationary and relatively high level while the mean shear flow vyin figure 2(f)remains small at the plasma edge.

    When the limit cycle oscillation(t?110?140)is triggered by the increase of input power,the phase angles as well as the amplitudes of pressure and potential perturbations exhibit stronger oscillations in response to the increased heating.This induces large-amplitude fluctuations in radially outward energy flux as the edge mean flows begin to grow during the limit cycle oscillation period.The transition occurs at t?140 when the radial flux gets decreased to a low level.As shown in figure 2,the amplitudes of pressure and potential fluctuations suddenly drop to a low level compared to those just before the transition.Meanwhile,the relative phase angle oscillates dramatically.As the growth of mean shear flow saturates in H-regime,the phase differences between potential and pressure fluctuations eventually change to π so thatsinθ koscillates near zero.As a result,the radial fluxes remain at a low level even though the fluctuation amplitudes start to increase again after the transition.

    The back transition(t?180?210)is characterized by the increase of fluctuation amplitudes and reduction of mean flows in response to a sudden decrease of input power.The final transition to the turbulent state of L-regime occurs when the edge mean flows completely collapse at t?210.Meanwhile,the phase angle between potential and pressure fluctuations reduces to a value near π/2 that is favorable for outward transport.After the back transition,the amplitude of pressure fluctuations drops because of the decreased heating.In contrast,the potential fluctuations maintain at the high level throughout the back transition.The turbulence phase and mean flow dynamics during the forward and back transitions in figure 2 reveal that the mean E×B flow has a direct impact on the phase angles of fluctuations which determine the direction as well as amplitude of turbulent transport.

    We further study statistical properties of average radial flux in the two transport regimes.The probability distribution of flux is calculated from the time series of Γkand the flux is normalized by the standard deviation of the time series.As shown in figure 3(a),the dominant k components of turbulent radial flux in L-regime has a non-Gaussian distribution with a long tail at the positive flux and has a large positive mean value,indicating intermittent,outward transport events.The strong radial flux is related to large-scale convective turbulent eddies in the edge region.In contrast,the distribution of radial flux is changed dramatically in H-regime.As seen in figure 3(b),the probability density function becomes approximately symmetric about the zero value.Thus,the inward and outward fluxes have a nearly equal probability.The deviation of the flux amplitude from the mean is significantly reduced,implying the turbulence suppression.

    Figure 4.Maximum value of cross-correlation function as a function of separation distances in(a)radial and(b)poloidal directions.

    Finally,we examine the correlations of spatial structures.The cross-correlation functions are calculated from the time series of density fluctuations at two different locations just inside the LCFS.The correlation lengths are obtained by measuring the decay of the peak correlation amplitude as a function of separation distance[42].The cross-correlation functions in the radial and poloidal directions are defined as

    Here,〈… 〉denotes an average over time.In L-regime,as seen in figures 4(a)and(b),the correlation lengths of fluctuations in the radial and poloidal directions have similar decay lengths λc?10ρs,which are approximately the size of the large,round eddies in the potential structures.In H-regime,radial correlation lengths of density fluctuations are significantly reduced,indicating the decorrelation of structures in the radial direction.The potential differences in the radial direction induce radial electric fields,which result in the generation of mean E×B flows at the location about 10ρsinside the LCFS,as shown in figure 1.When calculating the poloidal cross-correlation function,we choose the radial location where the flows exist.As shown in figure 4(b),the poloidal correlation length is significantly enhanced at the plasma edge.The enhancement of correlation in the poloidal direction implies the flow generation at the position.Note that the simulations are not compared with experiments due to the limitation of the model discussed earlier.

    5.Conclusion

    In summary,the dynamical evolution of cross phase and amplitudes of fluctuations during an edge transport bifurcation has been explored from self-consistent nonlinear fluxdriven simulations,focusing on the curvature-driven instability.We find that the generation of mean edge shear flow is strongly correlated with the modification of amplitudes and phase angles of edge turbulent fluctuations.During the transition to a suppressed transport regime,the changes of phase angles become significant as the fluctuation-induced mean shear flows grow at the plasma edge.The mean shear flows act on the amplitudes and phase angles of turbulence through the modification of coherent structures of fluctuations as demonstrated by the changes in the spatial correlations.Our 2D simplified model only describes the electrostatic interchange modes in a toroidal magnetic field with bad curvature.For comparison with the L-H transitions in tokamak plasmas,however,the ballooning modes should be considered for tokamak plasmas with magnetic shear[46,47].We also note that the particle source is fixed in the simulations.However,the change of particle sources would possibly affect the dynamical evolution of the relative phase angle and the mean flow shear,which is for future investigation.

    Acknowledgments

    We thank Chuankui Sun,Cong Meng,Pengfei Li,Zhijian Xie,Dianjing Liu,and Ao Zhou for help with simulations.We acknowledge extensive discussions with Tianchun Zhou,Guosheng Xu,Jiaqi Dong,and P.H.Diamond.This work was supported by the National Magnetic Confinement Fusion Energy Program of China(No.2018YFE0311300).

    猜你喜歡
    李博
    Simulation of ion cyclotron wave heating in the EXL-50U spherical tokamak based on dispersion relations
    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    LabVIEW下的模擬電路實驗教學創(chuàng)新對策
    Evolution of optical properties and molecular structure of PCBM films under proton irradiation
    LabVIEW下通信原理實驗教改探討
    Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    Manipulating transition of a two-component Bose–Einstein condensate with a weak δ-shaped laser?
    Fully integrated modeling of surface water and groundwater in coastal areas *
    空間相機次鏡在軌校正仿真分析
    黄色毛片三级朝国网站| 最新的欧美精品一区二区| 午夜福利欧美成人| 亚洲色图av天堂| 婷婷丁香在线五月| 交换朋友夫妻互换小说| 国产xxxxx性猛交| 欧美激情久久久久久爽电影 | 91精品三级在线观看| 国产欧美日韩一区二区三区在线| 久久99热这里只频精品6学生| 在线观看免费午夜福利视频| 亚洲精品国产精品久久久不卡| 亚洲 国产 在线| 中文字幕高清在线视频| 黄色片一级片一级黄色片| av有码第一页| 欧美av亚洲av综合av国产av| 在线 av 中文字幕| 丰满人妻熟妇乱又伦精品不卡| 三级毛片av免费| 国产av精品麻豆| 国产精品久久久av美女十八| 欧美日韩精品网址| 最新美女视频免费是黄的| tocl精华| 国产精品一区二区在线观看99| 久久久国产欧美日韩av| 岛国在线观看网站| 国产片内射在线| 丝袜人妻中文字幕| 99在线人妻在线中文字幕 | 亚洲专区国产一区二区| 国产一区二区 视频在线| 中文字幕色久视频| 超色免费av| 黄色视频不卡| 在线观看人妻少妇| 黄色视频在线播放观看不卡| 丰满迷人的少妇在线观看| 精品熟女少妇八av免费久了| 国产一区二区三区在线臀色熟女 | 日韩有码中文字幕| 免费观看人在逋| 国产av一区二区精品久久| 妹子高潮喷水视频| 亚洲色图综合在线观看| 99久久精品国产亚洲精品| cao死你这个sao货| 人妻一区二区av| www.自偷自拍.com| 国产老妇伦熟女老妇高清| 久久久久久久久免费视频了| 国产一区二区在线观看av| 国产福利在线免费观看视频| 高清视频免费观看一区二区| 免费看a级黄色片| 97人妻天天添夜夜摸| 淫妇啪啪啪对白视频| 99久久精品国产亚洲精品| 男女边摸边吃奶| 欧美激情极品国产一区二区三区| 欧美在线黄色| 成人特级黄色片久久久久久久 | 妹子高潮喷水视频| 一本久久精品| 中文字幕最新亚洲高清| 黄色片一级片一级黄色片| 久久亚洲真实| 国产一区二区激情短视频| 免费少妇av软件| 精品一区二区三区视频在线观看免费 | 久久久久久久久久久久大奶| 十八禁网站免费在线| 亚洲欧美色中文字幕在线| 亚洲成人免费电影在线观看| 丰满少妇做爰视频| av一本久久久久| 视频区图区小说| 亚洲国产精品一区二区三区在线| 黄片小视频在线播放| 国产精品麻豆人妻色哟哟久久| 午夜两性在线视频| 黑人操中国人逼视频| 久久久久精品国产欧美久久久| 国产精品美女特级片免费视频播放器 | 两性夫妻黄色片| av超薄肉色丝袜交足视频| 国产在线视频一区二区| 国产一区有黄有色的免费视频| 精品国产超薄肉色丝袜足j| 午夜福利影视在线免费观看| 黄色a级毛片大全视频| 国产单亲对白刺激| 久久午夜亚洲精品久久| 免费观看人在逋| 欧美日本中文国产一区发布| 日韩视频在线欧美| 久久久久久免费高清国产稀缺| 亚洲专区字幕在线| 黄色a级毛片大全视频| 国产精品免费大片| 亚洲人成伊人成综合网2020| 午夜福利在线观看吧| 午夜福利在线免费观看网站| 国产精品国产av在线观看| 精品亚洲乱码少妇综合久久| 麻豆乱淫一区二区| 成人永久免费在线观看视频 | 欧美变态另类bdsm刘玥| 国产精品影院久久| 老汉色∧v一级毛片| 下体分泌物呈黄色| 亚洲中文日韩欧美视频| 搡老乐熟女国产| 99久久精品国产亚洲精品| 男女边摸边吃奶| 亚洲视频免费观看视频| 巨乳人妻的诱惑在线观看| 中文字幕制服av| 又紧又爽又黄一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 男女边摸边吃奶| 一夜夜www| 人人妻人人澡人人爽人人夜夜| 久久青草综合色| 国产高清videossex| 日韩中文字幕视频在线看片| 99久久精品国产亚洲精品| 亚洲成a人片在线一区二区| 最黄视频免费看| 超色免费av| 亚洲一区二区三区欧美精品| 国产免费福利视频在线观看| 国产免费现黄频在线看| 一本一本久久a久久精品综合妖精| 国产主播在线观看一区二区| 亚洲欧美色中文字幕在线| 日本五十路高清| 老司机靠b影院| 国产精品免费视频内射| 国产精品国产高清国产av | 真人做人爱边吃奶动态| 黑人欧美特级aaaaaa片| 夫妻午夜视频| 久久久国产一区二区| 久久精品国产99精品国产亚洲性色 | 欧美激情久久久久久爽电影 | 涩涩av久久男人的天堂| 国产精品久久久久久精品古装| 日韩一区二区三区影片| 欧美日韩av久久| 免费在线观看视频国产中文字幕亚洲| 日日摸夜夜添夜夜添小说| 久久影院123| 在线播放国产精品三级| √禁漫天堂资源中文www| 自拍欧美九色日韩亚洲蝌蚪91| e午夜精品久久久久久久| 亚洲人成伊人成综合网2020| 日本一区二区免费在线视频| 久久香蕉激情| 99精品久久久久人妻精品| 免费观看a级毛片全部| 在线观看免费日韩欧美大片| a在线观看视频网站| 国产黄色免费在线视频| 日韩人妻精品一区2区三区| 久久人妻熟女aⅴ| 肉色欧美久久久久久久蜜桃| 国产有黄有色有爽视频| 亚洲性夜色夜夜综合| 久久中文字幕人妻熟女| 久久人妻福利社区极品人妻图片| 国内毛片毛片毛片毛片毛片| 久久中文字幕人妻熟女| 香蕉丝袜av| 俄罗斯特黄特色一大片| 俄罗斯特黄特色一大片| 国内毛片毛片毛片毛片毛片| 99国产综合亚洲精品| 91av网站免费观看| 免费高清在线观看日韩| 黄色视频,在线免费观看| 亚洲人成77777在线视频| 日韩熟女老妇一区二区性免费视频| 亚洲熟妇熟女久久| 性高湖久久久久久久久免费观看| 成年人免费黄色播放视频| 美女高潮到喷水免费观看| 视频区欧美日本亚洲| 国产精品自产拍在线观看55亚洲 | 久久精品国产亚洲av香蕉五月 | 老熟妇仑乱视频hdxx| 丝袜在线中文字幕| 蜜桃国产av成人99| 精品国产超薄肉色丝袜足j| 妹子高潮喷水视频| 中文字幕制服av| 亚洲精品在线观看二区| 午夜福利视频在线观看免费| 国产精品久久久久久精品古装| 在线十欧美十亚洲十日本专区| 国产精品熟女久久久久浪| 国产在视频线精品| av不卡在线播放| 岛国在线观看网站| 亚洲午夜精品一区,二区,三区| 无限看片的www在线观看| 不卡av一区二区三区| 欧美激情久久久久久爽电影 | 日日夜夜操网爽| 一级毛片精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲自偷自拍图片 自拍| 国产精品久久久久成人av| 不卡av一区二区三区| 在线观看舔阴道视频| 91九色精品人成在线观看| 中文字幕精品免费在线观看视频| 夜夜骑夜夜射夜夜干| 亚洲午夜精品一区,二区,三区| 在线观看免费视频日本深夜| 国产日韩欧美视频二区| 色婷婷久久久亚洲欧美| 亚洲专区国产一区二区| 亚洲精品在线美女| 老熟妇仑乱视频hdxx| 男人舔女人的私密视频| 亚洲欧美激情在线| 成人av一区二区三区在线看| 三上悠亚av全集在线观看| 好男人电影高清在线观看| 久久久国产欧美日韩av| h视频一区二区三区| 18禁国产床啪视频网站| 亚洲中文av在线| 日韩欧美免费精品| 大型av网站在线播放| 高清毛片免费观看视频网站 | 久久久精品94久久精品| 最新美女视频免费是黄的| 国产97色在线日韩免费| 日韩一卡2卡3卡4卡2021年| 国产区一区二久久| 午夜激情久久久久久久| 人人澡人人妻人| 午夜日韩欧美国产| 又黄又粗又硬又大视频| 亚洲精品一卡2卡三卡4卡5卡| 国产无遮挡羞羞视频在线观看| 嫩草影视91久久| 天天躁狠狠躁夜夜躁狠狠躁| 精品人妻在线不人妻| 99re6热这里在线精品视频| 亚洲熟妇熟女久久| 日韩欧美免费精品| 久久免费观看电影| 欧美日韩福利视频一区二区| 国产区一区二久久| 黑人猛操日本美女一级片| 怎么达到女性高潮| 国产亚洲精品一区二区www | 久久国产亚洲av麻豆专区| 欧美 亚洲 国产 日韩一| 777久久人妻少妇嫩草av网站| 一区二区三区激情视频| 国产高清视频在线播放一区| 日韩成人在线观看一区二区三区| 在线永久观看黄色视频| 日韩三级视频一区二区三区| 99国产综合亚洲精品| 久久天躁狠狠躁夜夜2o2o| 中文字幕人妻熟女乱码| 成人国语在线视频| 欧美久久黑人一区二区| 香蕉久久夜色| 亚洲欧美激情在线| videos熟女内射| 欧美午夜高清在线| 一个人免费在线观看的高清视频| 51午夜福利影视在线观看| 国产黄频视频在线观看| 亚洲国产av新网站| 黑人猛操日本美女一级片| 日日夜夜操网爽| 亚洲一区中文字幕在线| 美女视频免费永久观看网站| 国产精品麻豆人妻色哟哟久久| 国产精品免费一区二区三区在线 | 日韩中文字幕欧美一区二区| 一级a爱视频在线免费观看| 欧美国产精品va在线观看不卡| 中文亚洲av片在线观看爽 | 老司机亚洲免费影院| 亚洲精品国产区一区二| 天天躁狠狠躁夜夜躁狠狠躁| 日本黄色视频三级网站网址 | 亚洲三区欧美一区| 丁香六月天网| kizo精华| 国产免费福利视频在线观看| 后天国语完整版免费观看| 久久久久视频综合| 亚洲欧美日韩高清在线视频 | 国产精品.久久久| 国产亚洲精品久久久久5区| 久久香蕉激情| 午夜久久久在线观看| 国产免费视频播放在线视频| 国产精品98久久久久久宅男小说| 自线自在国产av| 国产不卡av网站在线观看| 国产av精品麻豆| 青草久久国产| 精品午夜福利视频在线观看一区 | 免费日韩欧美在线观看| 黄色 视频免费看| 欧美+亚洲+日韩+国产| 好男人电影高清在线观看| 亚洲成人免费av在线播放| 丁香六月天网| 精品人妻熟女毛片av久久网站| 69av精品久久久久久 | 欧美日韩精品网址| 久久久久久久国产电影| 一区二区日韩欧美中文字幕| 亚洲av日韩精品久久久久久密| a级毛片在线看网站| 国产成人免费观看mmmm| 淫妇啪啪啪对白视频| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产a三级三级三级| 人妻一区二区av| 亚洲av欧美aⅴ国产| 首页视频小说图片口味搜索| 啦啦啦中文免费视频观看日本| 国产精品99久久99久久久不卡| 国产日韩欧美亚洲二区| 久久久久精品人妻al黑| 亚洲精品自拍成人| 色综合欧美亚洲国产小说| 丝袜美足系列| 国产精品久久久久久精品古装| 久久狼人影院| 亚洲九九香蕉| 在线观看免费午夜福利视频| 男女高潮啪啪啪动态图| 老司机深夜福利视频在线观看| 亚洲专区中文字幕在线| 亚洲av美国av| 久久久久久久久久久久大奶| 久久精品国产99精品国产亚洲性色 | 午夜福利一区二区在线看| 精品国产一区二区三区久久久樱花| av福利片在线| 人人澡人人妻人| 亚洲专区国产一区二区| 日本欧美视频一区| 肉色欧美久久久久久久蜜桃| 热99re8久久精品国产| av天堂久久9| 国产精品98久久久久久宅男小说| 日韩 欧美 亚洲 中文字幕| 一个人免费在线观看的高清视频| 欧美精品一区二区免费开放| 久久久精品94久久精品| 亚洲色图av天堂| 巨乳人妻的诱惑在线观看| 俄罗斯特黄特色一大片| 亚洲伊人久久精品综合| 一级毛片精品| 欧美亚洲日本最大视频资源| 少妇被粗大的猛进出69影院| 纵有疾风起免费观看全集完整版| 一本—道久久a久久精品蜜桃钙片| 国产成人精品久久二区二区免费| 免费在线观看影片大全网站| 一本一本久久a久久精品综合妖精| 嫁个100分男人电影在线观看| 久久久精品94久久精品| 一边摸一边抽搐一进一出视频| 国产日韩欧美亚洲二区| 午夜福利免费观看在线| 精品国产一区二区久久| 免费在线观看日本一区| 一二三四在线观看免费中文在| 日韩精品免费视频一区二区三区| 51午夜福利影视在线观看| 日韩中文字幕视频在线看片| 国产亚洲精品一区二区www | 999精品在线视频| 99精品欧美一区二区三区四区| 麻豆av在线久日| 久久久精品94久久精品| 黑人巨大精品欧美一区二区mp4| 久久精品国产亚洲av香蕉五月 | 中文字幕另类日韩欧美亚洲嫩草| 菩萨蛮人人尽说江南好唐韦庄| 亚洲中文日韩欧美视频| 亚洲伊人色综图| 久久国产精品大桥未久av| 亚洲伊人久久精品综合| 99久久99久久久精品蜜桃| 韩国精品一区二区三区| 日韩三级视频一区二区三区| 久久香蕉激情| 中文字幕高清在线视频| 嫩草影视91久久| 色94色欧美一区二区| 精品国产乱码久久久久久小说| 日日爽夜夜爽网站| 人人妻,人人澡人人爽秒播| 欧美黑人欧美精品刺激| 亚洲熟女精品中文字幕| 黄片播放在线免费| 黄色 视频免费看| 啦啦啦 在线观看视频| 免费在线观看黄色视频的| 亚洲av成人一区二区三| 十八禁高潮呻吟视频| 日韩欧美免费精品| av又黄又爽大尺度在线免费看| 五月天丁香电影| 久久天堂一区二区三区四区| 视频在线观看一区二区三区| 最近最新中文字幕大全电影3 | 久久精品熟女亚洲av麻豆精品| 欧美在线一区亚洲| av一本久久久久| 建设人人有责人人尽责人人享有的| 国产精品免费一区二区三区在线 | 国产免费av片在线观看野外av| 汤姆久久久久久久影院中文字幕| 国产日韩一区二区三区精品不卡| 又大又爽又粗| svipshipincom国产片| 久热爱精品视频在线9| 亚洲,欧美精品.| 午夜精品久久久久久毛片777| 免费一级毛片在线播放高清视频 | 国产无遮挡羞羞视频在线观看| 久久久水蜜桃国产精品网| 国产成人av教育| 久久精品亚洲精品国产色婷小说| 国产在线观看jvid| 纵有疾风起免费观看全集完整版| av一本久久久久| 国产成人欧美| 国产有黄有色有爽视频| 美女扒开内裤让男人捅视频| 一级黄色大片毛片| 亚洲成人国产一区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区三区乱码不卡18| 国产精品久久久av美女十八| 老鸭窝网址在线观看| 久久久久久久久免费视频了| 国产深夜福利视频在线观看| 黄频高清免费视频| www.熟女人妻精品国产| 热re99久久精品国产66热6| 国产亚洲欧美在线一区二区| 少妇的丰满在线观看| 一二三四在线观看免费中文在| 99国产精品免费福利视频| 日本一区二区免费在线视频| 夜夜骑夜夜射夜夜干| 一进一出好大好爽视频| 久久香蕉激情| 中文字幕精品免费在线观看视频| 精品人妻在线不人妻| 久9热在线精品视频| 国产亚洲精品一区二区www | av天堂在线播放| 狠狠狠狠99中文字幕| 成人18禁高潮啪啪吃奶动态图| 久久久久久人人人人人| 精品国产一区二区三区久久久樱花| 免费av中文字幕在线| 婷婷成人精品国产| 极品教师在线免费播放| 国产高清国产精品国产三级| 自线自在国产av| 天天操日日干夜夜撸| 久久热在线av| tube8黄色片| 久久久久国内视频| 色综合婷婷激情| 国产精品久久久人人做人人爽| 操出白浆在线播放| 五月天丁香电影| 日本精品一区二区三区蜜桃| 亚洲精品乱久久久久久| 在线观看66精品国产| 国产精品.久久久| 国产亚洲欧美精品永久| 欧美亚洲日本最大视频资源| 免费女性裸体啪啪无遮挡网站| 成人18禁高潮啪啪吃奶动态图| 嫩草影视91久久| 1024视频免费在线观看| 色综合婷婷激情| 考比视频在线观看| 久久这里只有精品19| 亚洲欧美激情在线| 国产av精品麻豆| 欧美大码av| videos熟女内射| 欧美成狂野欧美在线观看| 精品国产国语对白av| 国产不卡av网站在线观看| 极品人妻少妇av视频| 亚洲精品成人av观看孕妇| 老司机影院毛片| 久久影院123| 午夜福利视频在线观看免费| 如日韩欧美国产精品一区二区三区| 老司机深夜福利视频在线观看| 高清视频免费观看一区二区| 成年女人毛片免费观看观看9 | 欧美日韩亚洲国产一区二区在线观看 | 91av网站免费观看| 亚洲情色 制服丝袜| 丁香欧美五月| 18禁黄网站禁片午夜丰满| 97人妻天天添夜夜摸| 91成年电影在线观看| 青青草视频在线视频观看| 国产又爽黄色视频| 免费在线观看黄色视频的| 变态另类成人亚洲欧美熟女 | 啦啦啦中文免费视频观看日本| 精品视频人人做人人爽| 国产精品美女特级片免费视频播放器 | 欧美av亚洲av综合av国产av| 中文字幕人妻熟女乱码| 一级a爱视频在线免费观看| 亚洲性夜色夜夜综合| 亚洲情色 制服丝袜| 人妻 亚洲 视频| aaaaa片日本免费| 激情视频va一区二区三区| 亚洲av欧美aⅴ国产| 丰满少妇做爰视频| 天堂动漫精品| 欧美国产精品一级二级三级| 十八禁高潮呻吟视频| 免费观看a级毛片全部| 国产日韩欧美视频二区| 在线看a的网站| 王馨瑶露胸无遮挡在线观看| 男女床上黄色一级片免费看| av一本久久久久| 国产在线观看jvid| 国产精品秋霞免费鲁丝片| 久久婷婷成人综合色麻豆| 中亚洲国语对白在线视频| 久久精品亚洲精品国产色婷小说| 成年人免费黄色播放视频| 丰满迷人的少妇在线观看| 日韩精品免费视频一区二区三区| 免费不卡黄色视频| 亚洲 国产 在线| 欧美成狂野欧美在线观看| 9热在线视频观看99| 精品免费久久久久久久清纯 | 亚洲国产欧美在线一区| 十八禁高潮呻吟视频| av福利片在线| 久久婷婷成人综合色麻豆| 国产黄频视频在线观看| 亚洲五月色婷婷综合| 99国产精品一区二区蜜桃av | 亚洲精品久久午夜乱码| 国产精品免费一区二区三区在线 | 俄罗斯特黄特色一大片| 少妇猛男粗大的猛烈进出视频| 亚洲精品美女久久av网站| 久久影院123| 他把我摸到了高潮在线观看 | 天天躁夜夜躁狠狠躁躁| 别揉我奶头~嗯~啊~动态视频| 亚洲成人免费电影在线观看| av超薄肉色丝袜交足视频| 热99国产精品久久久久久7| 中文字幕人妻丝袜制服| 丰满少妇做爰视频| 国产免费现黄频在线看| 91精品国产国语对白视频| 欧美黄色片欧美黄色片| 欧美精品av麻豆av| 久久天堂一区二区三区四区| 欧美国产精品一级二级三级| 啦啦啦免费观看视频1| 一本—道久久a久久精品蜜桃钙片| 日韩免费av在线播放| 69精品国产乱码久久久| 久久久久久免费高清国产稀缺| 91国产中文字幕| 一区二区三区激情视频| 最新的欧美精品一区二区| 亚洲欧美激情在线| 一边摸一边抽搐一进一小说 | 亚洲av成人一区二区三| 国产亚洲欧美在线一区二区| 国产av国产精品国产| 国产精品九九99| 日日摸夜夜添夜夜添小说| 成年人免费黄色播放视频| 日日摸夜夜添夜夜添小说| 国产午夜精品久久久久久| 成人精品一区二区免费| 国产男女超爽视频在线观看| 一区二区三区乱码不卡18|