• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields

    2022-03-10 03:50:02ZhifengZHU朱志峰BoLI李博QiangGAO高強(qiáng)JiajianZHU朱家健andZhongshanLI李中山
    Plasma Science and Technology 2022年2期
    關(guān)鍵詞:李博志峰朱家

    Zhifeng ZHU(朱志峰),Bo LI(李博),Qiang GAO(高強(qiáng)),Jiajian ZHU(朱家健) and Zhongshan LI(李中山),3

    1 State Key Laboratory of Engines,Tianjin University,Tianjin 300350,People’s Republic of China

    2 College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,People’s Republic of China

    3 Division of Combustion Physics,Lund University,Lund SE-22100,Sweden

    Abstract Precise control of the discharge in space and time is of great significance for better applications of discharge plasma.Here,we used a femtosecond laser filament to trigger and guide a highvoltage DC pulse discharge to achieve spatiotemporal control of the discharge plasma.In space,the discharge plasma is distributed strictly along the channel generated by the femtosecond laser filament.The breakdown voltage threshold is reduced,and the discharge length is extended.In time,the electrical parameters such as the electrode voltage and the electrode gap affect discharge delay time and jitter.By optimizing the parameters,we can achieve sub-nanosecond jitter of the discharge.Based on the spatiotemporal control of the discharge,we applied filamenttriggered discharge for one-dimensional composition measurements of the gas flow field.Besides,the technique shows great potential in studying the spatiotemporal evolution of discharge plasma.

    Keywords:femtosecond laser,filamentation,high voltage discharge,discharge plasma,spectrum

    1.Introduction

    Atmospheric pressure gas discharges have been used in widespread applications,including spark gap switch[1],combustion ignition[2,3],material preparation[4,5],environmental pollution control[6],and biomedicine[7].A stable discharge is an essential basis for its applications.However,the discharge inception in air relies on the acceleration of free electrons in the local electric field and the subsequent electron avalanches[8-10].Breakdown starts with the development of a high conductive channel between both electrodes,which is commonly formed by streamers or leaders[11,12].Generally,positive streamers attain a characteristically ragged,zigzagged,and narrow shape[13].The propagation path of discharge leaders is usually twisted[14,15].The discharge mechanism leads to the spatiotemporal instability of the discharge,which imposes a potential limitation on the practical applications of discharge plasma.Hence,precise control of the discharge in space and time is of great importance,for which,triggering and controlling discharges by a laser is a promising method.

    In a laser-triggered discharge,there are essentially three methods[16,17].First,the laser beam is focused on the surface of one of the electrodes to create a high degree of ionization.Second,the laser beam is focused on the electrode gap to break down the gas.Third,the laser creates a low ionization plasma in a long gap between the electrodes.The first two methods typically use a nanosecond(ns)laser,while the last one uses a femtosecond(fs)laser.

    In most cases,the plasma produced by an ns laser can efficiently trigger the discharge.However,due to the limited plasma volume,it is not suitable for triggering and guiding long-distance discharges.Femtosecond laser filamentation is a dynamically self-guided propagation region where selffocusing by the Kerr effect and defocusing by the generated plasma result in a continuous extended length of low-density plasma[18].The filament is a weak conductive channel with a diameter on the order of a hundred microns and a length longer than the Rayleigh length[19],which can trigger and guide long-distance discharges.

    Early works about the control of the discharge by the fs filament have been done.In spatial control,the discharge arc propagates along the fs filament[20-24].In addition,the electric discharges can be effectively manipulated along a complex predefined path by using judiciously shaped laser radiation[25].In temporal control,different parameters[26,27],such as laser energy,and electrode voltage,have a significant impact on the discharge delay time and jitter.A higher electrode voltage and laser energy result in a short discharge delay time and jitter[28,29].The discharge jitter can be controlled to be within sub-nanoseconds[30,31].Thus,fs laser filament-triggered discharge shows great potential for many applications[32,33],such as guiding lightning[34-36],fast switches for high-voltage connection[37,38],and reconfigurable RF antennas[39,40].

    Due to the luminescence characteristics of discharge plasma,we believe that the discharge triggered by the fs laser filament also has excellent potential for one-dimensional composition measurements.The accuracy of spatial and temporal control of the discharge plasma affects the spatial and temporal resolution of one-dimensional composition measurements.So,it is necessary to study the spatial and temporal control of the discharge triggered by an fs laser filament,which is the basis of its applications.

    This paper presents the results of an experimental investigation of the spatial and temporal control of the discharge triggered by the fs laser filament.In spatial control,the discharge path and discharge length triggered by the fs laser filament were investigated.In temporal control,the discharge delay time and the jitter were found to be highly dependent on several parameters such as the time interval between the laser pulse and the voltage pulse,the electrode voltage,and the electrode gap.The discharge plasma is distributed strictly along the channel generated by the fs laser filament.The discharge jitter can be controlled to be within sub-nanoseconds.Finally,based on the spatiotemporal control of the discharge plasma,we employed the discharge plasma in a free gas jet of SF6.The one-dimensional temporally and spatially resolved spectra of the discharge plasma in SF6were measured.The results demonstrated that fs laser filament-triggered discharge could be used for online one-dimensional composition measurements of gas flow fields.Femtosecond laser filament-triggered discharge is also helpful to study the spatiotemporal evolution of discharge plasma.

    2.Experimental setup

    Figure 1(a)illustrates the experimental setup.The fs laser source was the fundamental output from an fs Ti:sapphire laser(Spitfire Ace,Spectra-Physics),800 nm in wavelength,45 fs in pulse duration,and 6 mJ in pulse energy.The repetition rate of the fs laser in the experiment was 10 Hz.The laser was focused by a spherical lens(f=500 mm),and a visible fs laser filament was formed.

    Figure 1.(a)Experimental setup,(b)time sequence waveforms of voltage and scattering signal of fs laser.

    Two conical electrodes connected to the positive and ground terminals,respectively,of a high-voltage DC pulse power supply(HVP-20,Xi’an Smart Maple Electronic Technology)were placed close to the filament.The distance between the tip of the electrodes and the filament path is about 0.2 mm.The discharge gap could be adjusted using a translation table.The power supply output is a square wave voltage pulse with 10 Hz in pulse frequency,1 μs in pulse width,and 50 ns in both rising and falling time.The voltage amplitude ranges from 0 to 20 kV.

    The time interval between the laser pulse and the voltage pulse was controlled by a digital pulse generator(DG 645,Stanford Research Systems).The scattering signal of the fs laser was detected by a photodiode(DET10A/M,THORLABS),and the voltage between the electrodes was detected by a voltage probe(P6015A,Tektronix).The waveforms were simultaneously recorded by a 600 MHz oscilloscope(WaveRunner 606zi,Teledyne Lecroy).Figure 1(b)shows the time sequence waveforms of the voltage and the scattering signal of the fs laser.The extreme points of the waveforms can be found by mathematical derivation(judged by the first and second derivatives).For the voltage pulse,the last time of the maximum near the rapid voltage drop(range a in figure 1(b))is considered as the moment of discharge breakdown.The last time of the minimum(range b in figure 1(b))near the voltage rise is considered as the moment of voltage rise.The range is generally 100 ns.The arrival time of the laser pulse can be obtained using the same method.After that,the voltage rise is defined as zero.The time delay(difference in time)between the voltage rise and the laser pulse can be obtained,which is defined as the time interval Δt.The time delay between the laser pulse and the discharge breakdown can be obtained,which is defined as the discharge delay time ΔT.The standard deviation of five measurements of the discharge delay time is defined as the discharge jitter.For example,Δt=100 ns,and ΔT=550 ns are shown in figure 1(b).

    Then John put spurs to his horse, calling with all his might Stop! stop! But the coach drove on as before, and though the little soldier rode after it for a day and a night, he never got one step nearer

    Finally,we placed the spatiotemporal controlled discharge plasma into a free gas jet of SF6surrounded by air.The optical emission spectra of the plasma were measured using a spectrometer(Acton 2300i,Princeton Instrument)combined with an ICCD camera(PIMAX3,Princeton Instrument).The emission from the discharge plasma was imaged onto the entrance slit,which was parallel with the filament to allow a spatially resolved measurement along the laser direction.All experiments were conducted at an ambient temperature of ~300 K.

    3.Results and discussions

    3.1.The spatial and temporal control of the discharge

    The propagation path of free electric discharges in the atmosphere is distorted and unpredictable.Figures 2(a)and(b)show the free discharges between the two electrodes.The voltage was 12 kV,and the electrode gap was 8 mm.We photographed the spatial paths of the electric discharges 30 times consecutively using an SLR camera and calculated the offset distance Δxof the discharge channel.The offset distance Δxis defined as the maximum distance between the discharge channel and the axis of the two electrode connections.When the discharge channel is offset upwards,the offset distance is defined as a positive value.The absolute value of the offset distance is defined as ΔX.The offset distance of the electric discharges is shown in figure 2(e).The offset distance Δxhas strong randomness.The average offset distance Δxis about -0.19 mm,and the maximum Δxis about 1.5 mm.The average of ΔXis about 0.74 mm.Figure 2(c)shows the fs laser filamentation.The laser pulse ionizes the gases in the filament and generates a channel of low conductivity.Triggered by this channel,the discharge strictly propagates along the channel,as shown in figure 2(d).In this case,almost no offset was observed with the spatial resolution of about 35 μm.

    Figure 2.(a)and(b)Electric discharges,(c)femtosecond laser filament,(d)filament-triggered discharge,(e)offset distance of electric discharges.

    The gas number density in the filament is reduced by the laser heating effect[41],which lowers the threshold of the breakdown voltage between the two electrodes.Therefore,the discharge arc length can be extended.Figure 3 shows the maximum arc length at different electrode voltages.The arc length is the distance between the electrodes,as the discharge triggered by the fs laser filament is spatially straight.The length can be approximately 32 mm at a voltage of 12 kV and laser energy of 6 mJ/pulse.

    Figure 3.(a)Maximum length versus electrode voltage,(b)minimum applied voltage and breakdown voltage at different electrode gaps.

    Figure 4.(a)Discharge delay time ΔT at different time intervals Δt at an applied voltage of 5 kV,(b)discharge jitter at different time intervals at an applied voltage of 5 kV.

    We further measured the minimum applied voltage for the electric discharge and the filament-triggered discharge at different electrode gaps.Then the breakdown voltage was calculated.The results are shown in figure 3(b).The minimum applied voltage increases linearly with the electrode gap increases.The breakdown voltage with filament is about 4 kV cm-1,roughly one-fourth of that without filament,i.e.about 16 kV cm-1.The laser filament decreases the breakdown voltage by a factor of about 4.Thus,triggered by a fs filament,a discharge plasma can be obtained where the discharge arc is distributed along the filament,and the discharge arc length can be extended.

    The discharge delay time and the jitter are essential parameters to characterize the stability of the discharge in time.These two essential parameters are evaluated here.For filament-triggered discharge,the filament generated before or during the application of the electric field can successfully trigger and guide the discharge.We found that the time interval between the filament and the electrode voltage affects the stability of the discharge.

    Figure 4(a)shows the discharge delay time at different time intervals with an electrode gap of 10 mm and a voltage of 5 kV.As the time interval Δtgradually increases,the discharge delay time ΔTdecreases.When Δt<0,the time interval and the discharge delay time are linearly correlated.The slope of the fitting line is -1.1,which is close to 1.The minimum discharge delay time is reached when the time interval is 0.When Δt>0,the discharge delay time is almost unchanged at about 500 ns.The filament will not successfully trigger and guide the discharge with larger or smaller time intervals.This curve also shows that the discharge breakdown inception can be controlled by simply adjusting the time interval Δt.

    Figure 5.Discharge delay time ΔT(a)and jitter(b)at different voltages.

    Figure 6.Discharge delay time ΔT(a)and jitter(b)at different gaps.

    The electron density of the fs laser filament drops rapidly after several nanoseconds[35,42].However,the filament generated 2 μs before the electric field can still successfully trigger and guide the discharge.This phenomenon proves that the low-density channel generated by the fs laser filament plays a key role in triggering the discharge.The existence of the minimum discharge delay time indicates that there is a threshold reduced electric field defined asE/N(whereNis the gas density).This field is about 30 kV cm-1.The gas density depletion increases with the laser energy deposited.

    We further measured the jitter of the discharge delay time at different time intervals,as shown in figure 4(b).The jitter is the standard deviation of five measurements of the discharge delay time.The average jitter is around 8 ns when Δt>0.It increases to around 48 ns when Δt<0.When the filament is generated in the presence of an external field,the electrons generated by multiphoton ionization of the fs laser will produce a significant Joule heating in the filament and increase the heating effect of the filament strongly[23].It reduces the gas density in the filament.The stability of the discharge will be improved.In addition,the electrons in the filament may act as seed electrons for the discharge and improve the stability of the discharge.Therefore,it is preferable to directly generate the fs laser filament in an electric field to reduce the discharge jitter.

    To optimize the discharge control,we investigated the effect of the electrode voltage on the discharge stability.Figure 5(a)shows the discharge delay time at different voltages.The electrode gap was set to 10 mm.The time interval was set to 200 and -200 ns.The horizontal coordinate is the voltage,and the vertical coordinate is the discharge delay time.The discharge delay time decreases with the increase of the discharge voltage.This trend is in agreement with the similar measurements in previous research[31].The discharge delay time decreases faster at a time interval of-200 ns.The minimum discharge delay time at a time interval of -200 ns is larger than 200 ns.Figure 5(b)shows the jitter at different voltages.Overall,the jitter at the time interval of 200 ns is smaller than that at -200 ns.This is consistent with the results in figure 4(b).A shorter discharge delay time can be obtained at a higher voltage.The jitter on the order of nanoseconds or even sub-nanoseconds can be obtained.

    The discharge delay time and the jitter at different gaps were measured and shown in figures 6(a)and(b),respectively.The electrode voltage was 8 kV.The time interval was 200 ns.The discharge delay time and the jitter increase exponentially as the gap increases.Thus,there is a trade-off between the discharge plasma length and the discharge stability.In other words,for one-dimensional composition measurements,there is a trade-off between the measurable spatial range and the temporal resolution.

    After the discussion above,we know that the precise control of the discharge in time can be accomplished by optimizing electrical parameters,such as the electrode gap,the electrode voltage,and the time interval between the fs laser filament and the electric field.For example,with a voltage of 20 kV,a time interval of 200 ns,and an electrode gap of 10 mm,a precisely controlled discharge with a discharge delay time of 24 ns and discharge jitter of 175 ps can be obtained.

    3.2.Application in diagnosing gas flow fields

    By optimizing the electrical parameters,we can obtain a discharge plasma that is precisely controlled in time and is spatially distributed along the filament.The discharge plasma combined with optical emission spectroscopy can be applied to measure the composition of gas flow fields along one direction.

    As an example,we performed a measurement investigation in sulfur hexafluoride(SF6)gas.Sulfur hexafluoride is often used as an insulating gas in high-voltage equipment[43],since it is extremely difficult to generate breakdown in SF6through electric discharge.Therefore,it becomes problematic when we would like to study the evolution of the discharge plasma in SF6.Femtosecond laser filament-triggered discharge mentioned above might help to address this issue since it can largely reduce the breakdown threshold.Meanwhile,the discharge is precisely controlled in time and is spatially distributed along the filament.Therefore,this method has significant advantages in studying the evolution of the discharge plasma in SF6.

    A glass pipe,2.8 mm in diameter,was used for this purpose.The pipe was supplied with pure SF6gas(99.999%purity),and the SF6gas was ejected from the pipe into ambient air with a speed of 5 m s-1.In the SF6gas near the pipe’s exit,an electric discharge triggered by the fs laser filament was generated.

    The optical emission spectra of the discharge plasma were measured using an imaging spectrometer with a gate width of 100 μs.The entrance slit of the spectrometer was parallel with the filament,and hence,the plasma channel,to allow spatially resolved spectral measurements along the laser propagation direction.The results are shown in figure 7.Figure 7(a)shows the image of a one-dimensionally resolved spectrum of the flow field with the SF6gas in the middle position and the air on both sides.Two clear flow field boundaries between the SF6gas and the ambient air can be observed in figure 7(a)(as indicated by two arrows),which demonstrates the ability of fs laser filament-triggered discharge to undertake one-dimensional measurements of the gas flow field.

    The spectral intensities along the two white dashed lines in figure 7(a)are shown in figures 7(b)and(c),respectively.Figure 7(b)is the discharge plasma spectrum of SF6.A large number of F atoms and S ions appear in the SF6discharge plasma spectrum,with F atoms mainly at 600-800 nm and S ions at 500-550 nm.The F atoms and S ions are generated by the collisional dissociation of SF6molecules.The discharge plasma spectrum of air is dominated by O atoms and N ions,as shown in figure 7(c).

    The precise control of the discharge plasma in time makes it possible to investigate the temporal evolution of the plasma.Therefore,we further measured the temporally resolved spectra of the discharge plasma in SF6.In this case,we changed the gate width of the spectrometer to 100 ns to improve the temporal resolution.Figure 8 shows the decay of the spectral intensities of the F atom at 635 nm and the S ion at 503 nm.The exponential decay function was used to fit the data,and the lifetimes of F atom at 635 nm and S ion at 503 nm are 260 ns and 86 ns,respectively.

    Figure 7.(a)Image of one-dimensional spatially resolved spectrum of flow field,(b)discharge plasma spectrum of SF6,(c)discharge plasma spectrum of air.

    Figure 8.Decay of spectral intensities of F atom at 635 nm and S ion at 503 nm.

    The experimental results show that the discharge plasma is spatially distributed along the filament and is precisely controlled by the filament in time.Hence,the spectra of the discharge plasma can be measured with a high spatial and temporal resolution by an imaging spectrometer.The spatiotemporally resolved spectra of the discharge plasma triggered by fs laser filament demonstrate the potential for onedimensional composition measurements of gas flow fields.It also provides an effective technical method for studying the spatiotemporal evolution of discharge plasma.

    4.Conclusion

    This work investigated fs laser filament triggered and guided high-voltage DC pulse discharge.First,the spatial and temporal control of the discharge triggered by fs filament was studied.In space,the discharge plasma is routed along the channel generated by fs laser filament.The fs laser filament lowers the gas breakdown voltage and dramatically extends the spatial length of the discharge plasma.In time,the effect of electrical parameters,e.g.the time interval between the filament and the voltage,the electrode voltage,and the electrode gap on discharge delay time and the jitter was investigated.A shorter discharge delay time can be obtained at a higher voltage and a shorter gap.The discharge breakdown inception can be controlled by adjusting only the time interval.It is preferable to directly generate the laser filament in an electric field to reduce the discharge jitter.Optimization of the electrical parameters enables precise control of the discharge time on the order of sub-nanoseconds.

    Then,the feasibility of fs laser filament-triggered discharge in gaseous flow fields diagnostic applications was investigated.The controlled discharge plasma combined with optical emission spectroscopy is applied to measure the onedimensional composition of a gas flow field.The onedimensional temporally and spatially resolved spectra of the discharge plasma in SF6were obtained.In addition,the lifetimes of different spectral lines in the discharge plasma were calculated.The results demonstrate that fs laser filamenttriggered discharge can achieve one-dimensional composition measurements of flow fields.It is also helpful for the study of the spatiotemporal evolution of discharge plasma.

    Acknowledgments

    This work was funded by National Natural Science Foundation of China(NSFC)(Nos.51806149,91741205).

    猜你喜歡
    李博志峰朱家
    韓志峰
    Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
    欲訪江南媚,醉夢(mèng)朱家
    LabVIEW下通信原理實(shí)驗(yàn)教改探討
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    Muelleria pseudogibbula, a new species from a newly recorded genus (Bacillariophyceae) in China*
    一題多變各顯其彰
    Harry Potter 哈利·波特
    我和媽媽玩變身游戲
    (《七彩語(yǔ)文》總編 朱家瓏 書(shū))
    日韩三级视频一区二区三区| 人妻久久中文字幕网| 国产av精品麻豆| 大香蕉久久网| 91av网站免费观看| 一区二区三区激情视频| xxxhd国产人妻xxx| 亚洲精品国产色婷婷电影| 国产av又大| 人人妻人人澡人人爽人人夜夜| 91精品三级在线观看| 黑丝袜美女国产一区| 亚洲人成电影观看| 欧美大码av| 欧美日韩av久久| 女人高潮潮喷娇喘18禁视频| 欧美日本中文国产一区发布| 国产av又大| 老司机午夜福利在线观看视频 | 久久久久久亚洲精品国产蜜桃av| 国产精品一区二区在线不卡| 热99国产精品久久久久久7| 一二三四在线观看免费中文在| 三上悠亚av全集在线观看| 午夜福利欧美成人| 久久精品人人爽人人爽视色| 一区二区三区精品91| 成年女人毛片免费观看观看9 | 香蕉久久夜色| 九色亚洲精品在线播放| 韩国精品一区二区三区| 亚洲成人国产一区在线观看| 人成视频在线观看免费观看| 操出白浆在线播放| 日本一区二区免费在线视频| 国产黄色免费在线视频| 精品国产一区二区久久| 亚洲欧洲精品一区二区精品久久久| 人成视频在线观看免费观看| 99久久国产精品久久久| 免费av中文字幕在线| 国产精品电影一区二区三区 | 婷婷丁香在线五月| 黄色丝袜av网址大全| 9色porny在线观看| 欧美 亚洲 国产 日韩一| 久久婷婷成人综合色麻豆| 国产日韩欧美在线精品| videosex国产| 电影成人av| 热99re8久久精品国产| 国产精品免费大片| 丁香六月欧美| 精品国产亚洲在线| 日韩精品免费视频一区二区三区| 国产精品.久久久| a在线观看视频网站| 中亚洲国语对白在线视频| 国产熟女午夜一区二区三区| 午夜激情久久久久久久| 热re99久久国产66热| 色老头精品视频在线观看| 飞空精品影院首页| 国产精品国产av在线观看| 久久精品人人爽人人爽视色| 久久精品亚洲av国产电影网| 黄色丝袜av网址大全| 欧美乱码精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 1024香蕉在线观看| 狠狠狠狠99中文字幕| 麻豆国产av国片精品| av片东京热男人的天堂| 一区二区三区国产精品乱码| 亚洲成人免费电影在线观看| 精品一区二区三卡| 51午夜福利影视在线观看| 波多野结衣一区麻豆| 多毛熟女@视频| 大片免费播放器 马上看| 中文亚洲av片在线观看爽 | 色老头精品视频在线观看| 嫩草影视91久久| 国产伦理片在线播放av一区| 午夜福利在线观看吧| 色婷婷av一区二区三区视频| 国产成人免费无遮挡视频| 久久婷婷成人综合色麻豆| 欧美精品一区二区大全| 久热爱精品视频在线9| 中文字幕精品免费在线观看视频| 国产成人精品久久二区二区免费| av电影中文网址| 精品国产国语对白av| 91精品国产国语对白视频| 丁香六月欧美| 2018国产大陆天天弄谢| 日本vs欧美在线观看视频| 亚洲熟女精品中文字幕| 99精品久久久久人妻精品| 国产熟女午夜一区二区三区| av一本久久久久| 欧美激情久久久久久爽电影 | 日本黄色视频三级网站网址 | 亚洲国产av新网站| 亚洲精品自拍成人| 黄片小视频在线播放| 亚洲 欧美一区二区三区| 久久久久视频综合| 日韩有码中文字幕| 免费少妇av软件| 国产淫语在线视频| 无遮挡黄片免费观看| 亚洲自偷自拍图片 自拍| 99热网站在线观看| 久久香蕉激情| 十八禁人妻一区二区| 国产福利在线免费观看视频| 五月开心婷婷网| 国产91精品成人一区二区三区 | 久久精品成人免费网站| 叶爱在线成人免费视频播放| 99re6热这里在线精品视频| 国产高清激情床上av| 免费少妇av软件| 十八禁高潮呻吟视频| 韩国精品一区二区三区| 老熟妇仑乱视频hdxx| 建设人人有责人人尽责人人享有的| 五月天丁香电影| 色播在线永久视频| 日日爽夜夜爽网站| 人人妻人人添人人爽欧美一区卜| 多毛熟女@视频| 国产成人欧美在线观看 | 99riav亚洲国产免费| 久久中文字幕一级| 国产成人精品在线电影| 天堂动漫精品| 亚洲欧美精品综合一区二区三区| 99国产精品99久久久久| 50天的宝宝边吃奶边哭怎么回事| 成人18禁在线播放| 亚洲综合色网址| 热99re8久久精品国产| 欧美人与性动交α欧美精品济南到| 久久香蕉激情| 成人手机av| 91国产中文字幕| 性色av乱码一区二区三区2| 在线天堂中文资源库| 亚洲精品一二三| 欧美老熟妇乱子伦牲交| 午夜福利视频在线观看免费| 91字幕亚洲| 91字幕亚洲| tube8黄色片| 日韩成人在线观看一区二区三区| 亚洲久久久国产精品| 国产不卡av网站在线观看| 日韩成人在线观看一区二区三区| 国产深夜福利视频在线观看| 啦啦啦免费观看视频1| 极品少妇高潮喷水抽搐| 一进一出好大好爽视频| 国产一区二区三区综合在线观看| 欧美老熟妇乱子伦牲交| 亚洲成人国产一区在线观看| 1024香蕉在线观看| 他把我摸到了高潮在线观看 | 99riav亚洲国产免费| 视频在线观看一区二区三区| 欧美精品一区二区大全| 肉色欧美久久久久久久蜜桃| 亚洲av第一区精品v没综合| 国产精品一区二区在线观看99| 大陆偷拍与自拍| 男女之事视频高清在线观看| 亚洲欧美一区二区三区黑人| 日韩欧美免费精品| 一夜夜www| 欧美精品一区二区大全| 丝袜人妻中文字幕| 欧美日韩成人在线一区二区| 国产色视频综合| 一区在线观看完整版| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品美女特级片免费视频播放器 | 亚洲男人天堂网一区| 国产精品免费一区二区三区在线 | 不卡av一区二区三区| 另类精品久久| 老汉色∧v一级毛片| 日韩免费av在线播放| 精品人妻1区二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产主播在线观看一区二区| 欧美老熟妇乱子伦牲交| 十八禁网站网址无遮挡| 日本黄色日本黄色录像| 亚洲精品粉嫩美女一区| 男女免费视频国产| av超薄肉色丝袜交足视频| 精品福利永久在线观看| 美女主播在线视频| 一进一出抽搐动态| 99精品久久久久人妻精品| 亚洲伊人久久精品综合| 免费不卡黄色视频| 女警被强在线播放| 国产成人欧美在线观看 | 国产麻豆69| 最新在线观看一区二区三区| 国产成人啪精品午夜网站| 欧美大码av| 国产成人av激情在线播放| 色综合婷婷激情| 激情在线观看视频在线高清 | 亚洲av成人一区二区三| 在线十欧美十亚洲十日本专区| 欧美 亚洲 国产 日韩一| 久热爱精品视频在线9| 大型黄色视频在线免费观看| 国产日韩欧美亚洲二区| 国产野战对白在线观看| 少妇被粗大的猛进出69影院| 宅男免费午夜| 久久人妻熟女aⅴ| 超色免费av| 亚洲精品乱久久久久久| 黑人猛操日本美女一级片| 91麻豆av在线| 亚洲国产中文字幕在线视频| 香蕉国产在线看| 啪啪无遮挡十八禁网站| 亚洲色图 男人天堂 中文字幕| 一区二区av电影网| 2018国产大陆天天弄谢| 99精品在免费线老司机午夜| 久久国产亚洲av麻豆专区| a级毛片黄视频| 天堂俺去俺来也www色官网| 新久久久久国产一级毛片| 国产日韩欧美在线精品| 搡老岳熟女国产| 精品视频人人做人人爽| 国产在线视频一区二区| 国产一区二区三区在线臀色熟女 | 亚洲欧洲日产国产| 黄片播放在线免费| 亚洲午夜理论影院| 777久久人妻少妇嫩草av网站| 中文亚洲av片在线观看爽 | 国产无遮挡羞羞视频在线观看| 97在线人人人人妻| 日本精品一区二区三区蜜桃| 久久中文字幕一级| 男女免费视频国产| 美女主播在线视频| 一级毛片电影观看| 女人爽到高潮嗷嗷叫在线视频| 精品少妇一区二区三区视频日本电影| 亚洲精品在线美女| 久久精品熟女亚洲av麻豆精品| 欧美黄色片欧美黄色片| 高清黄色对白视频在线免费看| 午夜老司机福利片| 2018国产大陆天天弄谢| 国产精品电影一区二区三区 | 在线播放国产精品三级| 色视频在线一区二区三区| 99国产精品一区二区三区| 999久久久精品免费观看国产| 国产主播在线观看一区二区| 啦啦啦 在线观看视频| 午夜福利在线观看吧| 麻豆国产av国片精品| 精品久久蜜臀av无| 精品一区二区三区av网在线观看 | 纯流量卡能插随身wifi吗| av在线播放免费不卡| 久久久欧美国产精品| 中文字幕另类日韩欧美亚洲嫩草| 两性夫妻黄色片| 成年女人毛片免费观看观看9 | 最近最新免费中文字幕在线| 国产区一区二久久| 看免费av毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 中国美女看黄片| 成人手机av| 自拍欧美九色日韩亚洲蝌蚪91| 99久久99久久久精品蜜桃| 12—13女人毛片做爰片一| avwww免费| 国内毛片毛片毛片毛片毛片| 国产黄频视频在线观看| 一本—道久久a久久精品蜜桃钙片| 黄色a级毛片大全视频| 老司机在亚洲福利影院| 欧美+亚洲+日韩+国产| 欧美变态另类bdsm刘玥| 精品久久久久久久毛片微露脸| 日本av免费视频播放| 国产精品 欧美亚洲| 不卡av一区二区三区| 欧美日韩黄片免| 精品国产一区二区三区四区第35| 中文字幕另类日韩欧美亚洲嫩草| 18禁美女被吸乳视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清国产精品国产三级| 国产精品99久久99久久久不卡| 欧美亚洲日本最大视频资源| 久久狼人影院| 欧美激情高清一区二区三区| 日本wwww免费看| 黄片播放在线免费| 下体分泌物呈黄色| 人人妻,人人澡人人爽秒播| 久久久久精品人妻al黑| 叶爱在线成人免费视频播放| 精品国产一区二区久久| 多毛熟女@视频| 青青草视频在线视频观看| 午夜激情av网站| 国产野战对白在线观看| 亚洲av美国av| 肉色欧美久久久久久久蜜桃| 欧美成狂野欧美在线观看| 国产单亲对白刺激| 中文字幕高清在线视频| 一二三四在线观看免费中文在| 十八禁高潮呻吟视频| 欧美黑人欧美精品刺激| 男女下面插进去视频免费观看| 精品第一国产精品| 国产精品免费视频内射| 国产精品麻豆人妻色哟哟久久| 日韩熟女老妇一区二区性免费视频| 久久免费观看电影| 两人在一起打扑克的视频| 久久人人爽av亚洲精品天堂| 女人爽到高潮嗷嗷叫在线视频| 在线亚洲精品国产二区图片欧美| 国产精品国产av在线观看| 女性生殖器流出的白浆| 欧美亚洲 丝袜 人妻 在线| 麻豆国产av国片精品| 欧美一级毛片孕妇| 欧美乱码精品一区二区三区| 老熟女久久久| 亚洲精品粉嫩美女一区| 视频在线观看一区二区三区| 亚洲综合色网址| 王馨瑶露胸无遮挡在线观看| 免费在线观看影片大全网站| 深夜精品福利| 男女边摸边吃奶| 亚洲avbb在线观看| 美国免费a级毛片| 老熟女久久久| videosex国产| 精品久久久久久电影网| 国产精品一区二区免费欧美| 曰老女人黄片| 国产91精品成人一区二区三区 | 色综合欧美亚洲国产小说| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美一级毛片孕妇| 亚洲色图综合在线观看| 在线亚洲精品国产二区图片欧美| 女性生殖器流出的白浆| 女人精品久久久久毛片| 亚洲中文日韩欧美视频| 老司机靠b影院| 午夜福利,免费看| 两性夫妻黄色片| 中文字幕av电影在线播放| 欧美日韩亚洲高清精品| 91精品三级在线观看| 欧美乱妇无乱码| 国产99久久九九免费精品| 12—13女人毛片做爰片一| 美女高潮到喷水免费观看| 无人区码免费观看不卡 | 宅男免费午夜| 欧美乱妇无乱码| 久久青草综合色| 国产精品久久久久久精品古装| 在线天堂中文资源库| 国产精品美女特级片免费视频播放器 | 久久午夜综合久久蜜桃| 中文亚洲av片在线观看爽 | 日韩欧美一区视频在线观看| 国产精品 国内视频| 国产精品免费大片| 又紧又爽又黄一区二区| 黄片小视频在线播放| 69精品国产乱码久久久| 在线观看免费高清a一片| 人人妻,人人澡人人爽秒播| 亚洲人成77777在线视频| 亚洲国产欧美在线一区| 国产精品一区二区精品视频观看| 中文字幕人妻丝袜一区二区| 美女主播在线视频| 一本久久精品| 日韩欧美一区视频在线观看| 国产成人影院久久av| av国产精品久久久久影院| 18禁观看日本| 狠狠婷婷综合久久久久久88av| 久久久国产一区二区| 亚洲成人免费电影在线观看| 中文字幕人妻丝袜一区二区| 黄色片一级片一级黄色片| 中文字幕精品免费在线观看视频| 久久久精品免费免费高清| 最新的欧美精品一区二区| 精品少妇久久久久久888优播| 久久人人97超碰香蕉20202| 肉色欧美久久久久久久蜜桃| 国产亚洲午夜精品一区二区久久| 高清欧美精品videossex| 国产xxxxx性猛交| 天天操日日干夜夜撸| 久久精品国产99精品国产亚洲性色 | 国产日韩欧美亚洲二区| 精品免费久久久久久久清纯 | 69精品国产乱码久久久| 国产成人av激情在线播放| 国产精品影院久久| 男女免费视频国产| 久久影院123| 日本五十路高清| 90打野战视频偷拍视频| 亚洲成国产人片在线观看| 在线观看免费视频日本深夜| 国产午夜精品久久久久久| 国产单亲对白刺激| 少妇 在线观看| 国产一区二区激情短视频| 99在线人妻在线中文字幕 | 国产又色又爽无遮挡免费看| 又大又爽又粗| 国产免费视频播放在线视频| 亚洲成人国产一区在线观看| 老司机午夜福利在线观看视频 | 成年动漫av网址| 亚洲熟女精品中文字幕| 老司机深夜福利视频在线观看| 99在线人妻在线中文字幕 | 国产精品 欧美亚洲| 波多野结衣av一区二区av| 日韩大码丰满熟妇| 黑人操中国人逼视频| 亚洲精品久久成人aⅴ小说| 亚洲一卡2卡3卡4卡5卡精品中文| 一本久久精品| 亚洲,欧美精品.| 精品国产一区二区久久| 777久久人妻少妇嫩草av网站| 欧美激情极品国产一区二区三区| 老司机午夜福利在线观看视频 | 搡老岳熟女国产| 桃红色精品国产亚洲av| 久久精品国产综合久久久| 另类亚洲欧美激情| 久久久国产成人免费| 女性被躁到高潮视频| 99re6热这里在线精品视频| 狂野欧美激情性xxxx| 超碰97精品在线观看| 老司机影院毛片| 国产精品 欧美亚洲| 亚洲专区中文字幕在线| 一边摸一边抽搐一进一小说 | 国产成人啪精品午夜网站| 国产成人欧美| 交换朋友夫妻互换小说| 在线观看免费高清a一片| 在线永久观看黄色视频| 99热国产这里只有精品6| 麻豆成人av在线观看| 久久人妻福利社区极品人妻图片| 国产高清国产精品国产三级| 精品人妻1区二区| 久久精品亚洲av国产电影网| av不卡在线播放| 久久av网站| 国产亚洲午夜精品一区二区久久| 日本五十路高清| 后天国语完整版免费观看| 午夜激情av网站| 国产亚洲精品久久久久5区| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美在线精品| 国产成人av教育| 国产一区二区三区视频了| 18禁美女被吸乳视频| 久久久久久久久免费视频了| 国产主播在线观看一区二区| 精品久久久久久电影网| 久久久久久人人人人人| 制服诱惑二区| 亚洲成人免费电影在线观看| 国产伦人伦偷精品视频| 91麻豆av在线| 欧美+亚洲+日韩+国产| 香蕉国产在线看| 久久国产精品影院| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看日本一区| 国产免费av片在线观看野外av| 亚洲成a人片在线一区二区| 美女视频免费永久观看网站| 大型av网站在线播放| 757午夜福利合集在线观看| 午夜福利乱码中文字幕| 性少妇av在线| 每晚都被弄得嗷嗷叫到高潮| 中国美女看黄片| 日韩免费高清中文字幕av| 亚洲久久久国产精品| 精品熟女少妇八av免费久了| 午夜日韩欧美国产| 99国产精品免费福利视频| 18禁黄网站禁片午夜丰满| 我要看黄色一级片免费的| 免费高清在线观看日韩| 一级毛片精品| 精品乱码久久久久久99久播| 大码成人一级视频| 999久久久国产精品视频| 大香蕉久久成人网| 亚洲成人免费电影在线观看| cao死你这个sao货| 欧美精品啪啪一区二区三区| 人成视频在线观看免费观看| 不卡av一区二区三区| 国内毛片毛片毛片毛片毛片| 怎么达到女性高潮| 国产不卡av网站在线观看| 91麻豆av在线| 国产精品久久久av美女十八| 桃花免费在线播放| 伊人久久大香线蕉亚洲五| 99香蕉大伊视频| 亚洲精品成人av观看孕妇| 老鸭窝网址在线观看| 热99国产精品久久久久久7| 成年人免费黄色播放视频| 免费一级毛片在线播放高清视频 | 欧美日韩av久久| 亚洲一码二码三码区别大吗| 日日摸夜夜添夜夜添小说| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 精品一品国产午夜福利视频| 大码成人一级视频| 亚洲美女黄片视频| 欧美成狂野欧美在线观看| 久久国产精品影院| 久久久久久久久久久久大奶| 99久久99久久久精品蜜桃| 高清视频免费观看一区二区| www.熟女人妻精品国产| 精品国产一区二区三区四区第35| 一本色道久久久久久精品综合| 亚洲伊人色综图| 黄色片一级片一级黄色片| 老熟妇仑乱视频hdxx| 欧美人与性动交α欧美精品济南到| 国产无遮挡羞羞视频在线观看| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 久久免费观看电影| 国产精品1区2区在线观看. | 天天躁夜夜躁狠狠躁躁| 免费在线观看黄色视频的| 大型黄色视频在线免费观看| 国产一卡二卡三卡精品| 国产精品 欧美亚洲| kizo精华| 黑人欧美特级aaaaaa片| 成年人免费黄色播放视频| 亚洲欧美一区二区三区久久| 最近最新中文字幕大全免费视频| 美国免费a级毛片| 久久精品国产亚洲av高清一级| 午夜福利影视在线免费观看| 精品国产一区二区三区久久久樱花| 搡老熟女国产l中国老女人| 欧美激情高清一区二区三区| 欧美国产精品va在线观看不卡| 亚洲精品中文字幕一二三四区 | videosex国产| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| 一边摸一边抽搐一进一出视频| 人成视频在线观看免费观看| 久热爱精品视频在线9| 成人手机av| 纯流量卡能插随身wifi吗| 久久这里只有精品19| 新久久久久国产一级毛片| 大片电影免费在线观看免费| 欧美老熟妇乱子伦牲交| 午夜免费鲁丝| 90打野战视频偷拍视频| 一本综合久久免费| 天堂中文最新版在线下载|