• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of the impurity-induced silicon nanocone growth by low energy helium plasma irradiation

    2021-04-22 05:34:30QuanSHI石權(quán)ShinKAJITAShuyuDAI戴舒宇ShuangyuanFENG馮雙園andNoriyasuOHNO
    Plasma Science and Technology 2021年4期

    Quan SHI(石權(quán)),Shin KAJITA,Shuyu DAI(戴舒宇),Shuangyuan FENG(馮雙園) and Noriyasu OHNO

    1 Graduate School of Engineering,Nagoya University,Nagoya 464-8603,Japan

    2 Institute of Materials and Systems for Sustainability,Nagoya University,Nagoya 464-8603,Japan

    3 Key Laboratory of Materials Modification by Laser,Ion and Electron Beams Ministry of Education,School of Physics,Dalian University of Technology,Dalian 116024,People’s Republic of China

    Abstract The formation mechanism of nanocone structure on silicon(Si)surface irradiated by helium plasma has been investigated by experiments and simulations.Impurity(molybdenum)aggregated as shields on Si was found to be a key factor to form a high density of nanocone in our previous study.Here to concrete this theory,a simulation work has been developed with SURO code based on the impurity concentration measurement of the nanocones by using electron dispersive x-ray spectroscopy.The formation process of the nanocone from a flat surface was presented.The modeling structure under an inclining ion incident direction was in good agreement with the experimental result.Moreover,the redeposition effect was proposed as another important process of nanocone formation based on results from the comparison of the cone diameter and sputtering yield between cases with and without the redeposition effect.

    Keywords:black silicon,helium plasma,nanocone,simulation

    1.Introduction

    Silicon with a high density of nanocone morphology,known as black silicon(Si),is one of the promising materials for the solar cell and field emitter[1,2].Various techniques have been conducted to fabricate nanocones on the Si surface such as reactive ion etching,wet chemical etching,and laser pulses[3-5].Helium(He)plasma irradiation,which is relatively simple and economical,is another method to form nanostructure on the surface of material.Kajita et al have observed cone structure,of which He bubbles on the tip,on titanium and stainless steel[6,7].As for the Si material,dense nanocone was formed with crystal nature remained at low energy(<100 eV)of He plasma[8-10].Recently,we found that the formation of nanocone structure was strongly affected by the deposition of impurity on the Si surface[11].On Si material,impurity-induced nanostructure was broadly reported with argon(Ar)plasma irradiation.Nanorods have formed at various temperatures with the supply of molybdenum(Mo)seed atoms.Ozaydin et al and Tanemura et al have reported that nanodot structure cannot be identified without Mo impurity introduced[12,13].

    However,the mechanism of impurity-induced Si nanocone is still in discussion.Iron and chromium(Cr)impurities are seemed as melted catalytic-sphere to lead the nanocone growth in the 1500 eV of Ar plasma environment[14].At a lower Ar ion energy(300 eV),Ozaydin et al concluded that the tensile stress plays a dominant role in driving the nanodot formation[12].The shielding effect of impurity was also considered to contribute to the formation of cone structure on both Si[15]and Cr[16]substrates,because impurities were observed on the tip of the cone.

    Simulation is a persuasive method to verify the mechanism of nanocone formation.Time development of conical shape has been produced with pure Ar ion bombardment[17].In that model,the cone structure was initially developed from a small protuberance,which represents the asperity on the surface,and finally eroded.However,the nanocone structures in our previous study[11]were steady for long-time irradiation and the original surface was smooth in nanoscale.Moreover,a black dot,which was likely to be the impurity shield,was observed on the tip of cone.Thus,it is meaningful to simulate the cone formation based on the shielding effect.

    Several issues related with plasma surface interaction have been investigated with the three-dimensional Monte Carlo code SURO[18,19].In this work,we upgraded SURO to develop the formation of Si nanocone.Redeposition of Si was found to be another important process during the irradiation.

    Figure 1.(a)TEM of a single nanocone.The EDX mapping of(b)Si and(c)Mo on the nanocone in(a).(d)The distribution of Mo atoms ratio calculated by Mo atoms/(Mo atoms+Si atoms).Three specific regions of the Mo ratio were marked.

    2.Preparation of simulation

    2.1.Impurity distribution

    In our previous study,Si nanocone was fabricated with He plasma at 57 eV as a result of the Mo seeding from the sample mask[11].To support the simulation model,electron dispersive x-ray spectroscopy(EDX)mapping was used to examine the distribution of impurities of the cone,as shown in figure 1.The observed cone was shown by transmission electron microscopy in figure 1(a).Figures 1(b)and(c)show the intensity of Si and Mo respectively for K line.They suggest that the intensity of Si is higher at the bottom than that of the top region.Moreover,size of Si presenting region,is smaller than Mo.With the data from figures 1(b)and(c),the atomic concentration of Mo,CMo,was deduced from

    where CSiis the atomic concentration of Si,kMo,Siis a constant that accounts for the relative detection efficiency which is approximately 4 according to[20],IMoand ISiare the x-ray intensities for Mo and Si,respectively.The distribution of the Mo concentration is shown in figure 1(d).One can see that the average concentration of Mo is high(about 0.3)at the profile of the nanocone.This phenomenon suggests the present of a Mo deposition layer,mixed with Si,corresponding to the profile region of the cone with higher transparency shown in figure 1(a).On the tip,the ratio of Mo in the deposition layer is even higher(about 0.6)which indicates the surface diffusion or adatoms.This result is in agreement with the hypothesis of the shielding effect.The atomic concentration of Mo on the tip of cone was set as an input factor in the following simulation model.

    2.2.Simulation model

    In SURO code,the size of the simulation region is 0.5×0.5 μm2separated into 50×50 meshes.To perform the impurity effect,Mo impurities are set initially at the center of the entire region occupying 4 meshes as shown in figure 2(b).The fractions of Mo in those meshes were simply set as 0.6,while the rest of the meshes were pure Si.Information on height,species of particles,number of particles,the slope of the local region,etc is stored in each mesh.The information will be updated after a single time loop of 0.01 s.

    Figure 2.(a)A schematic of SURO code,(b)simulation region set up from top view,and(c)the polar angle and azimuthal angle used in the local coordinate.

    The code can be mainly separated into two segments,i.e.sputtering and redeposition,as shown in figure 2(a).First,He ions randomly incident from the top in a vertical direction towards the Si surface.Sputtering happens when ions hit the Si surface which belongs to a certain mesh.Then the changes in surface height at that mesh will be calculated based on the sputtering information.The results in section 3.1 were deduced from only the first part.

    In the second part,the sputtered Si atoms will leave the surface at a certain angle and energy.In the local coordinate,as shown in figure 2(c),the polar angle and the azimuthal angle are assumed as the sine[21]and uniform distribution,respectively.The energy of sputtered Si follows the Thompson distribution[22].The system will trace the sputtered Si atoms until they re-deposit on the surface or exceed the simulation region.

    Because sputtering is the most important process in the simulation,we test the energy and angular dependence of sputtering yield for both Si and Mo materials and compared with the results from A-CAT[23]code and some experiments[24]as shown in figure 3.The sputtering yield is deduced from the following equations:

    Here,E0is the projectile energy,α is the angle of incident ion to the surface normal,f and αoptare used as fitting parameters.

    Figures 3(a)and(c)are the energy dependence of sputtering yield at the normal incident direction on Mo and Si,respectively.The sputtering yield calculated in SURO code is slightly higher than the A-CAT code.However,the results are consistent with the experimental data well.It is shown that the sputtering yield of Mo is much smaller than that of Si.Because the He ion energy in our previous experiment was~60 eV,all the results presented in section 3 were obtained at the ion energy of 60 eV.Moreover,the angular dependence of sputtering yields has been considered as an important factor that leads to the formation of conical structure in many research[17];thus,we benchmark the angular dependence of sputtering yields for Mo and Si as shown in figures 3(b)and(c).In order to approach the experiment result in[11],the angular dependence of sputtering yields for Mo and Si are calculated under 60 eV of He ion energy.The sputtering yield for Mo is zero in the A-CAT calculation at 60 eV.On Si material,the result calculated from SURO has a similar profile with that from A-CAT.

    3.Results and discussion

    3.1.Nanocone formation

    Figure 4 shows the formation process of Mo-induced Si nanocone.Cone structures at 20,100,and 200 s are shown in figures 4(a)-(c),respectively.The original height of the surface was 0 μm.Because the sputtering yield of Mo is smaller than that of Si,a small protuberance formed from the flat surface where Mo impurities located.As the erosion goes deeper,the cone shape formed and the height gradually becomes larger.The angular dependence of sputtering yield was thought to be an important factor for the formation of nanocone[17].Besides,the incident angle for a maximum sputtering yield was considered to significantly influence the cone shape[25,26].However,a similar result was not shown in our research.The height of the cone will keep increasing as the irradiation time passes,while the diameter,i.e.the width of the bottom of the cone,is not clearly extended and only consistent with the Mo covered region.It is probably because that protuberance without the coverage of Mo will be sputtered immediately,due to the higher sputtering yield at a tilted incident angle.Hence,we conclude that the shielding effect of Mo is a primary reason for the nanocone formation.The diameter of the cone will be discussed again in section 3.2 with redeposition effect.

    Figure 3.Energy(a),(c)dependence of sputtering yield for the normal incident,and angle(b),(d)dependence of sputtering yield at He ion energy of 60 eV on Mo(a),(b)and Si(c),(d),respectively,from SURO,A-CAT code,and experimental results.

    Figure 4.Cone structure evolution at(a)t=20 s,(b)t=100 s,(c)t=200 s,from the side view.

    The direction of Si nanocone pointed was found to be followed the incident ion in our previous study[11].As shown in figure 5(a),the cone structures are inclined to the surface.Generally,the direction of the incident ion is perpendicular to the target surface because of the sheath layer.However,the configuration of the sheath was changed close to the sample mask which was made of Mo.With the influence of the mask,the direction of the electric field was inclined away from the mask.In figure 5(a)we rotated the image to make the direction of incident ion perpendicular to the horizontal for a convenient comparison with the simulation result in figure 5(b).

    In this study,we changed the angle between the incident He ions and the surface.Because only unique value of height is allowed for one(x,y)coordinate in our model,we tilt the surface and keep the incident ions parallel to the z axis instead of inclining the incident direction.As shown in figure 5(b),the growth direction is not normal to the surface but parallel to the direction of the incident ions.This result suggested that,the direction of the cone is strongly affected by the angle of the incident ion.

    3.2.Redeposition effect

    Figure 5.(a)Rotated image of nanocone formed on the surface with oblique incident He ion in the experiment.(b)Nanocone formed on the tilted surface.The directions of incident ions in(a)and(b)are set the same for convenient comparison.

    Figure 6.Cross-section of the nanocone with(red dashed)and without(blue solid)redeposition effect after 1000 s.

    Figure 6 shows the cross-section of the nanocone with and without redeposition effect after He ions irradiation for 1000 s.At the base of the surface and the tip of the cone,the height of the redeposition(the second part introduced in section 2.2)case is almost the same as the case without the redeposition effect.At the bottom of the cone,however,the height of the former is much higher than that of the latter.Thus,the redeposition is more likely to occur at the bottom of the cone other than uniformly on the whole surface.This is because that sputtered Si atom left the surface at a certain angle which avoids it to redeposit at the same position where it had been sputtered.However,it possibly hit the cone which protruded from the surface.We assumed that if the hit energy is smaller than the surface binding energy,deposition occurs at the hit point.Consequently,the height of the surface at the hit point is increased according to the number of deposited atoms.Considering the structure of the cone,the upper region was too small for the sputtered atoms to reach,while the bottom can receive the atoms from the ground region of the surface.This phenomenon can be considered as one of the processes to increase the cone diameter.Moreover,the heavier redeposition of Si at the bottom region diluted the concentration of Mo which explains the lower Mo ratio at the bottom of the deposition layer observed in the EDX mapping in figure 1.

    In the former study,the effective sputtering yield for black Si was found to be significantly decreased compared with that on the flat surface.Here,we developed a nanocone array with 49 cones to approach the black Si case.Morphologies of Si surface developed with and without the redeposition effect are shown in figures 7(a)and(b),respectively.By comparing the erosion depth of(a)and(b)at the center of the sample as shown in figure 7(c),one can recognize that the redeposition effect becomes heavier than the single cone case in figure 6.This can be explained by the enhanced redeposition from the surrounding cone.Moreover,the redeposition effect is one of the important process leading to the reduction of the effective sputtering yield which was observed in[11].Without the redeposition process,the sputtering yield is roughly2.3 ×10?2which is almost the same as the value(2.31 ×10?2)calculated on the flat Si surface in figure 3(c).

    However,this reduction is still far from the real condition in which the effective sputtering yield of black Si was 80%less than that on a pristine surface.This is probably because the surface in our simulation model almost consists of pure Si other than the tip of cones.While in the actual irradiation,even if not as much as tips,the Si substrate is also mixed with Mo.The effective sputtering yield of Cr cone surface exposed to a He plasma at an incident ion energy of 80 eV has been measured during the irradiation[16].The decrease of effective sputtering yield can be separated into two phases:(1)a rapid decrease by 50% up to an ion fluence of 5 ×1024m?2at the beginning;(2)a linear mild decrease of 1.3% per the ion fluence of 1 ×1024m?2.Considering the measurement of the atomic concentration of the Si nanocone surface performed by Ying et al[14],the deposition of impurities on the sample was saturated in a very low ion fluence.Thus,we believe that the first phase of the sputtering yield reduction is due to the impurity accumulation on the surface.The second phase might be explained by the redeposition effect.Figure 7(d)shows the reduction of the effective sputtering yield with increasing the ion fluence in the redeposition model.The reduction rate was 3.6% per 1 ×1024m?2of the fluence which is in the same order of magnitude as the result in[16].This result suggests that the formation of dense nanocone will reduce the effective sputtering yield due to the enhanced line-of-sight redeposition.

    Figure 7.Surface morphology with the structure of 49 nanocones with(a)and without(b)redeposition effect after 1000 s.(c)Comparison in the cross-section view of the nanocone at the center of(a)and(b).(d)Effective sputtering yield with redeposition effect as a function of ion fluence.

    4.Summary

    In this study,we measured the distribution of Mo on the Si nanocone formed by He plasma irradiation.A high density Mo zone,which is considered as a shield for the seed of nanocone formation,with a Mo fraction of 0.6 was observed on the tip of cone.Based on the shield effect model,we reproduced the development of cone structure with time initiated from a flat Si surface by SURO code.The direction of the cone structure follows the incident ion in a tilted substrate case,which is consistent with the experimental result.Redeposition of sputtered Si atoms was suggested to be another important process in the formation of nanocone.The redeposition effect will enlarge the diameter of the cone.Moreover,it could be the reason for the gentle decrease of the sputtering yield during the long period of irradiation.

    Acknowledgments

    This work was supported in part by a Grant-in Aid for Scientific Research(Nos.17KK0132,19H01874)from the Japan Society for the Promotion of Science(JSPS).The contribution by Dr Shuyu Dai was also supported by National MCF Energy R&D Program of China(Nos.2018YFE0311100 and 2018YFE0303105)and National Natural Science Foundation of China(No.12075047).

    亚洲欧美激情在线| 好看av亚洲va欧美ⅴa在| 少妇被粗大的猛进出69影院| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美激情在线| 又紧又爽又黄一区二区| 一本大道久久a久久精品| 怎么达到女性高潮| www国产在线视频色| 久久九九热精品免费| 两个人视频免费观看高清| 国产精品精品国产色婷婷| 国产成年人精品一区二区| 欧美+亚洲+日韩+国产| 亚洲国产精品合色在线| 免费观看精品视频网站| 两个人看的免费小视频| 欧美中文综合在线视频| 熟女少妇亚洲综合色aaa.| 成熟少妇高潮喷水视频| 精品欧美一区二区三区在线| 极品人妻少妇av视频| 日本一区二区免费在线视频| 后天国语完整版免费观看| 久久性视频一级片| 亚洲成av人片免费观看| 嫁个100分男人电影在线观看| 一级,二级,三级黄色视频| 日本免费a在线| 免费看美女性在线毛片视频| or卡值多少钱| 久久久水蜜桃国产精品网| 少妇被粗大的猛进出69影院| 免费av毛片视频| 日韩精品免费视频一区二区三区| 色在线成人网| 91字幕亚洲| 午夜视频精品福利| 老汉色∧v一级毛片| 亚洲国产欧美日韩在线播放| 久久婷婷成人综合色麻豆| 欧美日韩精品网址| 欧美性长视频在线观看| 搞女人的毛片| 亚洲午夜精品一区,二区,三区| 免费一级毛片在线播放高清视频 | 久久精品国产综合久久久| 日日摸夜夜添夜夜添小说| 国产99久久九九免费精品| 日日爽夜夜爽网站| 啦啦啦韩国在线观看视频| 最新美女视频免费是黄的| 精品久久久久久成人av| 日本三级黄在线观看| 成人18禁在线播放| www.精华液| 亚洲欧洲精品一区二区精品久久久| 久久草成人影院| 美女扒开内裤让男人捅视频| 在线播放国产精品三级| 国产成人av激情在线播放| 91在线观看av| 国产熟女xx| 一二三四在线观看免费中文在| 一级a爱视频在线免费观看| 久热爱精品视频在线9| 精品国产超薄肉色丝袜足j| 亚洲熟女毛片儿| 少妇粗大呻吟视频| 午夜精品国产一区二区电影| 啦啦啦免费观看视频1| 欧美黑人欧美精品刺激| 黄色视频,在线免费观看| 久久午夜亚洲精品久久| 欧美中文综合在线视频| 91九色精品人成在线观看| 国产精品99久久99久久久不卡| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久精品吃奶| 国产蜜桃级精品一区二区三区| 亚洲激情在线av| 女生性感内裤真人,穿戴方法视频| 亚洲无线在线观看| 亚洲国产精品成人综合色| 一级片免费观看大全| 国产精华一区二区三区| 久久香蕉激情| 两人在一起打扑克的视频| 午夜福利成人在线免费观看| 亚洲欧洲精品一区二区精品久久久| 两个人看的免费小视频| 色尼玛亚洲综合影院| 免费在线观看日本一区| 亚洲专区字幕在线| 成年版毛片免费区| 亚洲国产高清在线一区二区三 | 国产人伦9x9x在线观看| 亚洲情色 制服丝袜| 国产精品电影一区二区三区| 亚洲国产欧美网| 亚洲欧美日韩另类电影网站| 麻豆久久精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 美女大奶头视频| 他把我摸到了高潮在线观看| АⅤ资源中文在线天堂| 亚洲精品国产精品久久久不卡| 一夜夜www| 后天国语完整版免费观看| 国产单亲对白刺激| 欧洲精品卡2卡3卡4卡5卡区| 国内精品久久久久精免费| 9191精品国产免费久久| 欧美日韩瑟瑟在线播放| 亚洲中文字幕日韩| 99国产极品粉嫩在线观看| 波多野结衣av一区二区av| 男人舔女人下体高潮全视频| 在线永久观看黄色视频| 亚洲中文av在线| 午夜亚洲福利在线播放| 亚洲精华国产精华精| 91国产中文字幕| 三级毛片av免费| 久久草成人影院| 国产aⅴ精品一区二区三区波| 窝窝影院91人妻| 熟妇人妻久久中文字幕3abv| 在线观看66精品国产| 日韩精品青青久久久久久| 美女大奶头视频| 午夜福利,免费看| 精品国产乱码久久久久久男人| a级毛片在线看网站| 国产精品美女特级片免费视频播放器 | 两个人视频免费观看高清| 美女 人体艺术 gogo| 国产成人一区二区三区免费视频网站| 法律面前人人平等表现在哪些方面| 亚洲午夜理论影院| 亚洲欧美精品综合一区二区三区| 黄色 视频免费看| 午夜a级毛片| 国产欧美日韩精品亚洲av| 黄色视频,在线免费观看| 91国产中文字幕| 亚洲avbb在线观看| 国产激情欧美一区二区| 久久久久国产精品人妻aⅴ院| 久久久久久人人人人人| 免费少妇av软件| 一区二区日韩欧美中文字幕| 一二三四社区在线视频社区8| 日韩欧美免费精品| 亚洲五月婷婷丁香| 中出人妻视频一区二区| 国产精品电影一区二区三区| 又黄又爽又免费观看的视频| 亚洲国产欧美日韩在线播放| 久久婷婷人人爽人人干人人爱 | 最近最新中文字幕大全电影3 | 欧美一级毛片孕妇| 我的亚洲天堂| 激情在线观看视频在线高清| 国产高清视频在线播放一区| 国产高清激情床上av| 日韩视频一区二区在线观看| 午夜精品在线福利| 一卡2卡三卡四卡精品乱码亚洲| 麻豆一二三区av精品| 国产乱人伦免费视频| 久久人人精品亚洲av| 国产av一区二区精品久久| 国产伦人伦偷精品视频| 精品国产一区二区久久| 午夜成年电影在线免费观看| 热re99久久国产66热| 999久久久精品免费观看国产| 欧美黑人精品巨大| 91av网站免费观看| tocl精华| 亚洲欧洲精品一区二区精品久久久| 麻豆国产av国片精品| 免费一级毛片在线播放高清视频 | 男女之事视频高清在线观看| 久久性视频一级片| √禁漫天堂资源中文www| 精品国产乱子伦一区二区三区| 在线十欧美十亚洲十日本专区| 精品一区二区三区视频在线观看免费| 成人国产一区最新在线观看| 在线永久观看黄色视频| 丝袜美腿诱惑在线| 国产欧美日韩综合在线一区二区| 黄色丝袜av网址大全| 超碰成人久久| 国产高清视频在线播放一区| 久久狼人影院| 19禁男女啪啪无遮挡网站| 午夜免费激情av| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品中文字幕看吧| 亚洲精品在线观看二区| 啦啦啦 在线观看视频| 久久九九热精品免费| 久久久久精品国产欧美久久久| 岛国在线观看网站| 午夜影院日韩av| 美女高潮喷水抽搐中文字幕| 亚洲黑人精品在线| 精品国产一区二区久久| 最新美女视频免费是黄的| 色老头精品视频在线观看| 日本五十路高清| 国产精品日韩av在线免费观看 | 一级毛片女人18水好多| 手机成人av网站| 涩涩av久久男人的天堂| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久久人妻精品电影| 免费不卡黄色视频| 日日夜夜操网爽| 一边摸一边做爽爽视频免费| 精品一品国产午夜福利视频| 黄色视频,在线免费观看| 别揉我奶头~嗯~啊~动态视频| 黄色丝袜av网址大全| 美女国产高潮福利片在线看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲熟妇熟女久久| 中国美女看黄片| 少妇的丰满在线观看| 麻豆一二三区av精品| 激情视频va一区二区三区| 午夜a级毛片| 国产成人精品久久二区二区91| 老司机午夜十八禁免费视频| 日韩大尺度精品在线看网址 | 成在线人永久免费视频| 波多野结衣一区麻豆| 黄色丝袜av网址大全| 欧美不卡视频在线免费观看 | 欧美一级a爱片免费观看看 | 给我免费播放毛片高清在线观看| 午夜久久久在线观看| 国产成人精品久久二区二区免费| 亚洲成人免费电影在线观看| 久久婷婷人人爽人人干人人爱 | 成人亚洲精品av一区二区| netflix在线观看网站| 国产精品久久久久久亚洲av鲁大| 99国产综合亚洲精品| 别揉我奶头~嗯~啊~动态视频| 免费观看精品视频网站| 亚洲中文字幕一区二区三区有码在线看 | 老熟妇仑乱视频hdxx| 一进一出好大好爽视频| 亚洲五月天丁香| 欧美中文综合在线视频| 亚洲最大成人中文| 亚洲自拍偷在线| 久久久久久大精品| 久久九九热精品免费| 多毛熟女@视频| 午夜激情av网站| 国产精品香港三级国产av潘金莲| 亚洲国产精品成人综合色| 成人亚洲精品av一区二区| 在线十欧美十亚洲十日本专区| 亚洲自拍偷在线| 午夜亚洲福利在线播放| 成年女人毛片免费观看观看9| 色老头精品视频在线观看| av欧美777| 国产精品久久久久久人妻精品电影| 亚洲avbb在线观看| 97人妻天天添夜夜摸| 男人舔女人下体高潮全视频| 国产伦人伦偷精品视频| 成人国语在线视频| 成人永久免费在线观看视频| 男女午夜视频在线观看| av在线天堂中文字幕| 亚洲一区高清亚洲精品| 国产伦一二天堂av在线观看| 伊人久久大香线蕉亚洲五| 成人亚洲精品一区在线观看| 久久久精品国产亚洲av高清涩受| 国产成人精品久久二区二区免费| 97碰自拍视频| 午夜福利免费观看在线| 18禁黄网站禁片午夜丰满| 精品久久久精品久久久| 国产av在哪里看| 高清黄色对白视频在线免费看| 欧美日韩亚洲国产一区二区在线观看| 老熟妇乱子伦视频在线观看| 欧美黑人精品巨大| 午夜福利视频1000在线观看 | 国产又色又爽无遮挡免费看| 91成人精品电影| 亚洲av熟女| 首页视频小说图片口味搜索| 在线十欧美十亚洲十日本专区| av视频免费观看在线观看| 亚洲人成电影观看| 久久久久久久久免费视频了| 不卡一级毛片| 亚洲无线在线观看| 欧美色欧美亚洲另类二区 | 久久久久久大精品| 91麻豆av在线| 曰老女人黄片| 亚洲成人国产一区在线观看| tocl精华| 国产成人精品久久二区二区免费| 97人妻精品一区二区三区麻豆 | 色综合亚洲欧美另类图片| 99riav亚洲国产免费| 国产在线精品亚洲第一网站| 午夜福利高清视频| 免费高清在线观看日韩| 午夜福利成人在线免费观看| 侵犯人妻中文字幕一二三四区| 亚洲片人在线观看| 又大又爽又粗| 午夜免费鲁丝| 嫩草影视91久久| 精品国产乱码久久久久久男人| 成人亚洲精品av一区二区| 老司机在亚洲福利影院| 国产又色又爽无遮挡免费看| 色播亚洲综合网| 午夜免费鲁丝| 免费看a级黄色片| 亚洲黑人精品在线| 久久热在线av| 日韩欧美国产一区二区入口| 国产精品自产拍在线观看55亚洲| 亚洲成国产人片在线观看| 亚洲一区中文字幕在线| 日本 av在线| 日韩大码丰满熟妇| 午夜免费鲁丝| 韩国精品一区二区三区| 亚洲一码二码三码区别大吗| 国产片内射在线| 国产亚洲av高清不卡| 亚洲 国产 在线| 好男人电影高清在线观看| 成人av一区二区三区在线看| 成年版毛片免费区| 久久久久久久久中文| 精品久久久久久成人av| 欧美成人一区二区免费高清观看 | 亚洲国产精品成人综合色| 国产精品久久电影中文字幕| 久久国产精品影院| 免费av毛片视频| 男人操女人黄网站| 亚洲一区中文字幕在线| 亚洲欧美日韩无卡精品| 麻豆av在线久日| 精品国内亚洲2022精品成人| 啦啦啦免费观看视频1| 丝袜人妻中文字幕| 亚洲欧美日韩高清在线视频| 亚洲专区中文字幕在线| 久久中文字幕一级| 国产激情久久老熟女| 色婷婷久久久亚洲欧美| 国产精品香港三级国产av潘金莲| 精品免费久久久久久久清纯| 天堂影院成人在线观看| 久久婷婷成人综合色麻豆| 日本免费a在线| 国产精品永久免费网站| 999久久久精品免费观看国产| 啦啦啦 在线观看视频| 狂野欧美激情性xxxx| 国产亚洲精品一区二区www| 久久国产精品男人的天堂亚洲| 又大又爽又粗| 男男h啪啪无遮挡| 亚洲第一av免费看| 高清毛片免费观看视频网站| 国产精品野战在线观看| 亚洲美女黄片视频| 啪啪无遮挡十八禁网站| 性少妇av在线| 亚洲精品国产色婷婷电影| 91成人精品电影| 18美女黄网站色大片免费观看| 精品一区二区三区av网在线观看| 人人妻人人澡欧美一区二区 | 亚洲精品av麻豆狂野| 国产男靠女视频免费网站| 中亚洲国语对白在线视频| 亚洲在线自拍视频| 亚洲专区中文字幕在线| 满18在线观看网站| 夜夜躁狠狠躁天天躁| 村上凉子中文字幕在线| 欧美成人性av电影在线观看| 两个人看的免费小视频| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利在线观看吧| 成人精品一区二区免费| av在线播放免费不卡| 嫁个100分男人电影在线观看| 91在线观看av| 在线永久观看黄色视频| 日韩有码中文字幕| 免费在线观看视频国产中文字幕亚洲| 国产主播在线观看一区二区| 久久香蕉激情| 国产伦一二天堂av在线观看| 91麻豆精品激情在线观看国产| 日本一区二区免费在线视频| 亚洲av片天天在线观看| 亚洲片人在线观看| 国产成人av教育| 精品福利观看| 国产91精品成人一区二区三区| 人人妻人人澡人人看| 女性被躁到高潮视频| 免费av毛片视频| 亚洲欧美激情综合另类| 中文亚洲av片在线观看爽| 久久人妻福利社区极品人妻图片| 美女扒开内裤让男人捅视频| 国产成人欧美| 精品国产乱码久久久久久男人| 18禁黄网站禁片午夜丰满| 啪啪无遮挡十八禁网站| 日日夜夜操网爽| 国产精品免费一区二区三区在线| 久久精品91无色码中文字幕| 精品高清国产在线一区| 欧美午夜高清在线| 日韩一卡2卡3卡4卡2021年| 成人特级黄色片久久久久久久| 日日干狠狠操夜夜爽| 国产成人免费无遮挡视频| 国产蜜桃级精品一区二区三区| 精品一区二区三区四区五区乱码| 女同久久另类99精品国产91| 久久中文字幕人妻熟女| 久久久久久久久免费视频了| 亚洲精品久久成人aⅴ小说| aaaaa片日本免费| 成人特级黄色片久久久久久久| 91av网站免费观看| 窝窝影院91人妻| 国产一卡二卡三卡精品| 亚洲欧美精品综合久久99| 纯流量卡能插随身wifi吗| 久久久久久久久久久久大奶| 精品久久久精品久久久| 啦啦啦 在线观看视频| 正在播放国产对白刺激| 亚洲成人精品中文字幕电影| 欧美日韩一级在线毛片| 女同久久另类99精品国产91| 国产成人精品无人区| 国产成人精品久久二区二区免费| 男女床上黄色一级片免费看| 国产精品永久免费网站| 日本欧美视频一区| 精品一区二区三区四区五区乱码| 国产一级毛片七仙女欲春2 | 51午夜福利影视在线观看| 欧美乱码精品一区二区三区| 欧美激情极品国产一区二区三区| 成人亚洲精品av一区二区| 亚洲精品国产区一区二| 亚洲国产精品成人综合色| 女人爽到高潮嗷嗷叫在线视频| 女生性感内裤真人,穿戴方法视频| 欧美大码av| 午夜a级毛片| 欧美丝袜亚洲另类 | 免费久久久久久久精品成人欧美视频| 韩国精品一区二区三区| 免费在线观看黄色视频的| 亚洲 欧美 日韩 在线 免费| 母亲3免费完整高清在线观看| 国产精品亚洲美女久久久| 国产午夜精品久久久久久| 最新美女视频免费是黄的| av在线播放免费不卡| 大码成人一级视频| av天堂在线播放| 免费在线观看黄色视频的| 国产一级毛片七仙女欲春2 | 久久午夜亚洲精品久久| 麻豆成人av在线观看| 免费高清在线观看日韩| 久久国产精品人妻蜜桃| 两个人免费观看高清视频| 欧美日韩亚洲国产一区二区在线观看| 精品电影一区二区在线| 给我免费播放毛片高清在线观看| 国产精品免费视频内射| 一夜夜www| 亚洲午夜理论影院| 亚洲av成人av| 久久久久久久久免费视频了| 男人舔女人下体高潮全视频| 亚洲免费av在线视频| 亚洲 国产 在线| 亚洲成av人片免费观看| 少妇 在线观看| av视频在线观看入口| 老司机深夜福利视频在线观看| 国产成年人精品一区二区| www.熟女人妻精品国产| 最好的美女福利视频网| 欧美色视频一区免费| 久久久久久免费高清国产稀缺| 国产精品 国内视频| 久久久久国产精品人妻aⅴ院| 制服丝袜大香蕉在线| 美国免费a级毛片| 久久久国产精品麻豆| 国产精品电影一区二区三区| 亚洲av美国av| 亚洲欧洲精品一区二区精品久久久| 男女下面进入的视频免费午夜 | 日本 欧美在线| 九色亚洲精品在线播放| 久久久久久久精品吃奶| 99国产精品一区二区三区| 免费观看人在逋| 亚洲av成人一区二区三| 日韩视频一区二区在线观看| 在线国产一区二区在线| 成人亚洲精品一区在线观看| 丁香六月欧美| 国产一区二区三区在线臀色熟女| 久久国产亚洲av麻豆专区| 亚洲av日韩精品久久久久久密| 丁香六月欧美| 国产成人精品在线电影| 精品国内亚洲2022精品成人| 女性生殖器流出的白浆| 中文字幕久久专区| 啦啦啦 在线观看视频| 亚洲国产日韩欧美精品在线观看 | 麻豆成人av在线观看| 亚洲精品久久国产高清桃花| 国产精品国产高清国产av| 久久久久久久精品吃奶| 亚洲午夜精品一区,二区,三区| 两个人视频免费观看高清| 不卡av一区二区三区| 啪啪无遮挡十八禁网站| 免费无遮挡裸体视频| cao死你这个sao货| 国产乱人伦免费视频| 中国美女看黄片| 侵犯人妻中文字幕一二三四区| 亚洲五月婷婷丁香| 成人特级黄色片久久久久久久| 久久九九热精品免费| 12—13女人毛片做爰片一| 欧美日韩福利视频一区二区| 亚洲第一av免费看| 亚洲av电影不卡..在线观看| 亚洲国产看品久久| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区三| 久久国产精品人妻蜜桃| 人人妻人人爽人人添夜夜欢视频| 免费在线观看日本一区| 亚洲熟妇熟女久久| 热re99久久国产66热| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 午夜亚洲福利在线播放| 手机成人av网站| 日本 欧美在线| 亚洲精品在线美女| 在线观看日韩欧美| 韩国精品一区二区三区| 国产亚洲欧美98| 国产又爽黄色视频| 欧美中文综合在线视频| 男女做爰动态图高潮gif福利片 | 中文亚洲av片在线观看爽| 久久午夜亚洲精品久久| 波多野结衣高清无吗| 亚洲免费av在线视频| 国产又爽黄色视频| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美三级三区| 久久人人爽av亚洲精品天堂| 一二三四社区在线视频社区8| 99国产精品99久久久久| 亚洲av电影在线进入| 黑人操中国人逼视频| 久久久国产精品麻豆| 久久精品亚洲精品国产色婷小说| а√天堂www在线а√下载| 老司机在亚洲福利影院| 亚洲人成电影观看| 国产欧美日韩一区二区三区在线| 美女 人体艺术 gogo| 波多野结衣av一区二区av| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 50天的宝宝边吃奶边哭怎么回事| 女性生殖器流出的白浆| 亚洲专区字幕在线| 夜夜爽天天搞|