• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling of electronegative collisional warm plasma for plasma-surface interaction process

    2021-04-22 05:34:22
    Plasma Science and Technology 2021年4期

    Plasma Science and Technology Laboratory,Department of Physics,Indian Institute of Technology Delhi,New Delhi-110 016,India

    Abstract An electronegative collisional plasma having warm and massive positive ions,non-extensive distributed electrons and Boltzmann distributed negative ions is modelled for the plasma-surface interaction process that is used for the surface nitriding.Specifically the sheath formation is evaluated through the Bohm’s criterion,which is found to be modified,and the variation of the sheath thickness and profiles of the density of plasma species and the net space charge density in the sheath region in addition to the electric potential.The effect of ion temperature,nonextensivity and collisional parameter is examined in greater detail considering the collisional cross-section to obey power-law dependency on the positive ion velocity.The positive ions are found to enter in the sheath region at lower velocities in the collisional plasma compared to the case of collision-less plasma; this velocity sees minuscule reduction with increasing nonextensivity.The increasing ion temperature and collisional parameter lead to the formation of sheath with smaller thickness.

    Keywords:electronegative sheath,ion temperature,non-extensivity,sheath thickness,power-law dependency,collisions

    1.Introduction

    Nowadays,plasma-based surface treatments[1,2]are widely adopted to enhance the mechanical and tribological properties of the materials which are widely used in the automobiles,semiconductors and microelectronics industries[3-7].When a conducting material comes in the contact with plasma,then there is a formation of a thin layer of the charged species at the interface of the plasma and material’s surface.Such a thin layer is termed as sheath that plays a momentous role in analyzing the plasma-surface interactions[8].The investigation of sheath characteristics in different plasma systems has been carried out by several researchers[9-28].The sheath characteristics have been found to show a distinct nature,when negative ions are introduced in the system[23,29-32].Many researchers have observed noteworthy influence on the characteristics of the probe in the cases of low-frequency sheath processes[33-35].X-ray emission has also been observed,when the laser light is launched on tin slab forming a sheath of ions that radiate[36-38].Langmuir probe analysis permits to measure the behaviour of plasma parameters in distinctive plasma systems[39].

    The impact of ion temperature on the sheath characteristics in electropositive plasma has been studied by Crespo[16].The analysis of sheath formation in the presence of negative ions and warm positive ions has been carried out by Dhawan and Malik[9,29].Hatami[40]and Moulick et al[17]have investigated the presence of two varieties of positive ions in the electropositive and electronegative plasma,respectively,under the collisional environment.The impact of ionization rate on the sheath transition from electropositive to electronegative plasma has been examined by Crespo et al[18].Yasserian et al[26]have investigated the influence of the magnetic field in electronegative discharge.

    It has been validated both experimentally and theoretically that for the low-pressure electronegative plasmas,the behaviour of the negative ion density is appropriated to illustrate with the Boltzmann distribution[41,42].A lowpressure electronegative plasma(Ar-O2)has been experimentally investigated by Ghim and Hershkowitz[41]through Langmuir probe analysis.They observed that the distribution of the negative ions follows Boltzmann relation with a temperature of 0.06±0.02 eV,while the resulting parameters werene=3.8 ×109cm?3andTe=0.69 eV.Here,positive and negative ions ofAr+and O?were formed.Franklin and Snell[42]have also shown for low-pressure electronegative plasmas that the spatial distribution of the negative ions is in well agreement with the Boltzmann distribution.

    In space plasmas,the existence of high energy tail velocity distribution of the particles has been validated by distinct satellite measurements.Such particle distributions,which are deviated from the Boltzmann distribution,have also been implemented successfully on the stellar plasmas and solar winds[43,44].Moreover,the deviation in the distribution of the electrons from their well-known Boltzmann distribution has even been seen in the various laboratories measurements also.In 1994,Liu et al[45]have provided a strong confirmation of the presence of non-Maxwellian velocity distributions of electrons in a particular plasma experiment,where low-pressure argon gas(neutral densitynargon~1013cm?3and P~0.3 mTorr)was exposed to pulsed discharges.Langmuir probe data,i.e.probe currentIprobeas a function of probe voltageVprobeagreed with a non-Maxwellian distribution.Plasma density(electron density)ne=4 ×1010cm?3and electron temperatureTe=0.69 eV were the resulting parameters.Tsallis[46],therefore,has introduced new statistics which is labelled as non-extensive statistics or Tsallis statistics to investigate such systems where the distribution of the particles is far away from their Boltzmann distribution.Then in 1997,Tsallis and Souza[47]have demonstrated that the same experimental data can be well fitted with non-extensive thermo-statistical formalism.The impact of non-extensive distributed electrons and thermal positive ions has been investigated by Hatami[48]on electropositive sheath structure.Borgohain and Saharia[13]have introduced the q non-extensive electrons in electronegative plasma with cold positive ions.Safa et al[15]have studied the velocity distribution of non-extensive electrons in magnetised electropositive plasma sheath.The inspection of Debye length and floating potential in electropositive plasmas with non-extensive distributed electrons has been carried out by Sharifian et al[49].The examination of two non-Maxwellian electrons in unmagnetized electropositive plasma has been carried by Hatami and Tribeche[12].Basnet and Khanal[11]have analyzed the Maxwellian and non-Maxwellian electrons in magnetized electropositive plasma.The impact of ionization on sheath characteristics with two-temperature non-extensive distributed electrons has been investigated by Dhawan et al[21].

    Researchers,while examining the impact of non-extensive distributed electrons on the sheath structure,have either neglected the temperature of positive ions or collisions or both,though the plasmas used for processing or plasma-surface interaction carry finite temperature ions and the ions may also have collisions with the neutral particles in addition to the usual collisions of electrons with the neutrals.Moreover,negative ions are intensely introduced for achieving better processing.Therefore,in the present work,we have modelled a collisional plasma which has negative ions and positive ions along with the electrons.This is done for understanding the plasma-surface interaction process via the generation of sheath on a metallic probe.For developing this model,positive ions,negative ions and electrons are respectively described by fluid approach,Boltzmann distribution and nonextensive distribution.

    2.Basic equations for modelling

    The basic equations required to investigate the collisional electronegative plasma with warm positive ions as fluid,qnon-extensive distributed electrons and Boltzmann distributed negative ions are stated as follows

    whereΥ+,?+,m+andτ+are the density,velocity,mass and temperature of the positive ions,respectively.Υ?,ΥeandΥgare the densities of negative ions,electrons and neutrals,respectively.Υ+0,Υ?0andΥe0are the background densities of the positive ions,negative ions and electrons,respectively.τ?andτeare the temperatures of the negative ions and electrons,respectively.φis the electric potential andeis the electronic charge.qdefines the non-extensivity of the system andσ(?+)is a momentum-transfer collisional cross-section,which has power-law dependence on the velocity of the positive ions and is given by

    We have considered the case of the constant mean free path or constant collisional cross-section,i.e.p=0.Equations(1)-(7)are normalized with the help of the following dimensionless parameters

    where Ω+0is the electropositivity,i.e.background density ratio of the positive ions to electrons of the system.The prime(′)and double prime(″)depict the first and second-order derivates,respectively,with respect toξ.

    3.Boundary conditions and modified Bohm’s criterion

    Equations(10)and(13)are coupled differential equations which will be solved with the help of appropriate numerical methods.In this paper,we have adopted the Runge-Kutta(RK)method of fourth-order.We must enumerate the initial conditions to apply the RK method on the given problem.The starting point of the numerical integration is assumed at the sheath edge,i.e.ξ=ξ0=0 and the numerical integration would terminate at the point of zero electron density.The wall/probe position,i.e.ξ=ξPis located at the point of zero electron density.The distance between the sheath edge and the wall/probe position is designated as the sheath thickness,i.e.ξ0?ξP.The initial value of the normalized electric potential at the sheath edge is assumed approximately equal to zero,i.e.ψ0=0.0001.However,the initial value of the normalized electric field at the sheath edge is assumed to nonzero to avoid the divergence of the numerical solutions,i.e.=0.1 is chosen.The allowed values of the positive ion velocity at the sheath edge,i.e.χ+0for a given set of parameters is calculated using the Sagdeev potential approach.Using the Sagdeev potential approach,the expression for the allowed values ofχ+0is determined as

    Forτ+→ 0 ?β+→ ∞,equation(15)appears as

    This is agreeing with the results of Borgohain and Saharia[13].

    For Ω?0→0,equation(15)looks as

    This is agreeing with the results of Hatami[50].

    For Ω?0→0 andα→0,equation(15)appears as

    For Ω?0→0,α→0 andτ+→ 0 ?β+→ ∞,equation(15)appears as

    This is agreeing with the results of Tribeche et al[51]and Gougam and Tribeche[52].

    For Ω?0→0,α→0,τ+→ 0 ?β+→ ∞andq→ 1,equation(15)appears as

    This is agreeing with the results of Chen[53].

    4.Results and discussions

    The behaviour of the minimum allowed values of positive ion velocity at the sheath edge,i.e.χ+0 ,as a function of nonextensive parameter(q)for different collisional parameterα(figure 1(a)),electronegativity Ω?0(figure 1(b)),negative ion temperatureβ?(figure 1(c)),and positive ion temperatureβ+(figure 1(d)),is portrayed in figure 1.A significant reduction inχ+0with an increased Ω?0,β?andβ+is observed.Also,a minuscule reduction inχ+0is detected with the increasedαandq.From figure 1(a),we can conclude that in the collisional environment,positive ions can enter in the sheath regime even at lower velocities than the usual Bohm velocity.Figure 1(b)validates the fact that the negative ions help positive ions to get in the sheath regime.The temperature of electrons is appearing in the collisional parameter through the definition of the Debye length.In our study,the electron temperature is assumed to be constant and in order to see the effect of electron-to-positive(negative)ion temperature ratioβ+(β?),we have varied the corresponding ion temperature and kept the other parameters fixed.We have seen the effect of non-extensive and collisional parameters just by changing their values(one at a time)and keeping all the other parameters fixed.Therefore,in our study with constant electron temperature and varying ion temperature,qandαdo not change with the temperature of electrons,positive ions and negative ions.This also explains the almost linear behaviour of the minimum allowed value of the positive ion velocity(χ+0)at the sheath edge withqandαin figure 1(a).The value ofχ+0is reduced from 0.469 to 0.369 with an increased collisional parameter(α)from 0 to 0.5.With an increase in the collisional parameter,the percentage reduction inχ+0is observed to be reduced,i.e.,the effect of collision on the variation of Bohm velocity is more prominent for lower values ofα.The magnitude ofχ+0cannot continue to decrease because of the upper limit of the positive ion velocity at the sheath edge(please see equation(15)).This behaviour is in agreement with the results of other researchers also[13,54].

    Figure 1.Behaviour ofχ+0 as a function of the non-extensive parameter(q)for(a)different values of the collisional parameter(α)when and β?=10;(b)for different values of electronegativity(Ω?0)whenand β?=10;(c)for different values of negative ion temperature(β?)whenand Ω?0=5; and(d)for different values of positive ion temperature(β+)whenand Ω?0=5.

    The distribution of all the charged species densities,i.e.positive ions,negative ions and electrons,in the sheath regime is depicted in figures 2(a)and(b)for different positive ion temperature(β+).The densities of negative species are reduced with a considerable rate and approximately approach to zero near the probe/wall position.This is due to a negatively biased probe/wall.Moreover,because of the higher mass of the negative ions,their density is reduced approximately to zero even at a significant distance from the wall/probe position towards the sheath edge.Higher density of the positive ions is found near the probe for the increased value ofβ+.Also,the sheath of larger thickness is formed for higher value ofβ+.This is due to almost perfect shielding of the probe surface/voltage for lowerβ+values.

    Figure 2.Behaviour of charged species densities,i.e.Ω+,Ω?and Ωe as a function of distance from the sheath edge to probe/wall position for different values of(a) β+=5 and(b) β+=25 when=0.1,α=0.1, β?=10, q=0.5 and Ω?0=2.Behaviour of net space charge density,ΩNet(c)as a function of distance from the sheath edge to probe/wall position for different values of β+ with the similar aforesaid parameters.

    Figure 3.Behaviour of(a)electric potential(ψ)and(b)positive ion velocity(χ+)as a function of distance from the sheath edge to probe/wall position for different values of collisional parameter(α)when=0.1, β?=10, β+=15, q=0.5 and Ω?0=5.

    The profile of net space charge density(ΩNet=Ω+?Ω??Ωe)for different electron-to-positive ion temperature ratio(β+)is also seen in figure 2(c).The positive magnitude of ΩNetindicates that the sheath is composed of the majority of the positive ions.For both the values ofβ+=5 and 25,a steep rise and then the reduction in the space charge density are seen.This nature of the graph can be understood as follows.In the proximity of the sheath edge,a peak is appeared which is the main characteristic of the sheath regime;positive ions might accumulate here in a huge number.Then the net charge decreases due to the presence of some negative ions and electrons.Since the ions become more energetic for their higher temperature and can reach near the probe in higher number,the magnitude of the net space charge is expected to increase,which is the case in the figure(compare the cases withβ+=5 and 25).Since the positive ion flux is an invariant quantity(please see equation(9)),the number density of these ions,a little away from the peak region,decreases due to their acceleration(higher velocity)into the sheath regime.Hence,for the higher temperature of the ions,here the space charge decreases and also a dip in the net charge occurs as a result of imbalance of the pressure gradient,collisional and accelerating forces.

    The profiles of the electric potentialψ(figure 3(a))and the positive ion velocityχ+(figure 3(b))for different collisional parameterαare shown in figure 3.With an increase inα,the number of collisions between positive ions and neutrals is also increased and so the energy loss.Therefore,the energy gain by the positive ions as they move toward the probe/wall surface is relatively lesser for higherα.The magnitude ofψis increased with a slightly rapid rate for higherα.Also,a lower sheath thickness is recorded for higherα.

    Figure 4.Comparative study of charged species densities as a function of distance from the sheath edge to probe/wall position for electropositive(thin lines)and electronegative plasma(thick lines)when=0.1, β?=10, β+=5, q=0.5 and α=0.1.Here,Ω?0=0 corresponds to electropositive plasma.

    A comparative study of the charged species densities for electropositive and electronegative plasma is depicted in figure 4.Here,Ω?0=0 and Ω?0=2 correspond to the cases of electropositive and electronegative plasmas,respectively.The densities of the charged species are reduced with a considerable rate in the case of electronegative plasma,whereas for the case of electropositive plasma,sheath thickness of higher magnitude is resulted.

    We can discuss the validity of the range of electron-tonegative ion temperature ratio β?keeping in mind the experimental studies of Ghim and Hershkowitz[41]who investigated a low-pressure electronegative plasma(Ar-O2)through Langmuir probe.They observed the Boltzmann distribution of the negative ions for the temperature range of 0.06±0.02 eV with the resulting parameters ne=3.8×109cm?3and Te=0.69 eV.Corresponding to this experimental data,the temperature ratio β?in our calculations lies in the range of 8.625-17.25.In figures 2-4,the value of β?was chosen as 10,which lies in the desired range obtained experimentally.On the other hand,Borgohain and Saharia[13]have considered the range 0<β?<20 in electronegative plasma with q non-extensive electrons and cold positive ions.In order to further explore the process,we had chosen the range 1<β?<30 only in figure 1.This might be justified for the low-pressure plasmas,where the temperatures of ions and electrons less than 1 eV(with electron temperature even a little more than 1 eV)are generally attained for both the cases,i.e.when negative ions have similar and miniatured temperature in comparison to that of the electrons.Since we discussed all the results keeping β?=10,the conclusions drawn in the manuscript are well-meant.

    In the present theoretical model,the sheath thickness has been normalized with the Debye length(λde).In un-normalized form,for collisional electronegative plasma,the sheath thickness has been calculated and found to be of the order of 1.26 mm for the non-extensive distributed electrons and of the order of 0.217 mm for the Boltzmann distributed electrons.For collision-less electronegative plasma,the sheath thickness amounts to 1.3 mm and 0.222 mm for the non-extensive distributed electrons and the Boltzmann distributed electrons,respectively.The sheath of 0.5 mm thickness is found to be formed for the Boltzmann distributed electrons in collision-less plasma that does not have negative ions(electropositive plasma).Han et al[55]have experimentally determined the sheath thickness of the order of 0.36 mm for the electropositive plasma.Hence,the calculated values of the sheath thickness based on our modelling and the experimental value are close.

    The magnitude of the Debye length will reduce with an increment in the plasma density,this in turn results in the reduction of the magnitude of the sheath thickness.In our theoretical model,when the plasma density is increased from 2.5× 1010to 9.5× 1010cm?3,the value of the sheath thickness is found to be reduced from 1.26 to 0.64 mm for the non-extensive distributed electrons,whereas 0.217 to 0.11 mm for the Boltzmann distributed electrons.Consistent to our observation,Han et al[55]also have experimentally determined the reduction in the value of the sheath thickness from 0.36 to 0.28 mm when the plasma density was increased from2.5× 1010to9.5× 1010cm?3.

    We can discuss qualitatively the effect of temperature gradient(spatial variation of the temperature of charged species)on the sheath formation.The behaviour of the sheath is expected to be modified once we consider the temperature gradient.For example,we may observe more dips in the net space charge profile(figure 2(c))and also the sheath thickness may vary.However,the effect of temperature gradient on the sheath thickness may not be significant in view of the smaller temperature-gradient-driven drift(force)in comparison to the one driven by pressure-gradient/thermal pressure.

    Finally,this is worth mentioning that our results shall play an advantageous role in plasma systems where the temperature of the positive ions and the presence of collisions between the ions and neutrals have a significant effect on the sheath formed at material’s surface; hence,the plasma processing and plasma-surface interaction can be understood.These results will also be beneficial in the plasma systems like fusion[56]and astrophysical plasmas where the distribution of the particles is far away from their usual Boltzmann distribution.

    5.Conclusions

    The dependence of minimum allowed positive ion velocity at the sheath edge(for the formation of sheath)on the positive and negative ion temperatures,electronegativity,collisional parameter and non-extensivity was understood.When collisions between the positive ions and the neutrals are considered,then these ions are found to enter in the sheath regime even at lower velocities than the usual Bohm velocity,which means the Bohm’s criterion is modified.The sheath thickness is reduced with an increment in the temperature of the positive ions and the collisional parameter.The energy gain by the positive ions during their movement towards the probe/wall position is relatively lesser for the case of higher collisional parameter.The distribution of all the charged species densities for the cases of electropositive and electronegative plasma was also compared and noteworthy modifications were observed,proving the role of negative ions in plasmasurface interaction process.

    Acknowledgments

    Rajat Dhawan acknowledges the Council of Scientific and Industrial Research(CSIR),Government of India for providing financial support(Grant Reference Number:09/086(1289)/2017-EMR-1).

    久久天堂一区二区三区四区| 97人妻精品一区二区三区麻豆 | 香蕉丝袜av| tocl精华| 国产又黄又爽又无遮挡在线| 国产精品98久久久久久宅男小说| 亚洲专区中文字幕在线| 99在线人妻在线中文字幕| 一边摸一边抽搐一进一小说| 婷婷丁香在线五月| 久久久久精品国产欧美久久久| 伦理电影免费视频| 亚洲第一电影网av| 国产成人av教育| 国产成人欧美在线观看| 久久久久久亚洲精品国产蜜桃av| 在线看三级毛片| 老司机福利观看| 亚洲人成网站高清观看| 老汉色∧v一级毛片| 色综合亚洲欧美另类图片| 国产成人精品久久二区二区91| 女警被强在线播放| 久久精品国产综合久久久| 日本免费一区二区三区高清不卡| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成伊人成综合网2020| 精品国内亚洲2022精品成人| 韩国精品一区二区三区| 亚洲熟妇熟女久久| 精品熟女少妇八av免费久了| 色播在线永久视频| 国产野战对白在线观看| АⅤ资源中文在线天堂| 国产精品,欧美在线| netflix在线观看网站| 国产成人精品久久二区二区免费| 久久久久国产一级毛片高清牌| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产中文字幕在线视频| 亚洲在线自拍视频| 亚洲午夜理论影院| 精品少妇一区二区三区视频日本电影| 男女下面进入的视频免费午夜 | 婷婷丁香在线五月| 国产精品乱码一区二三区的特点| 国产精品久久久久久人妻精品电影| 白带黄色成豆腐渣| 亚洲一区二区三区色噜噜| 亚洲 国产 在线| 日韩免费av在线播放| 啦啦啦免费观看视频1| 久久精品国产清高在天天线| 亚洲中文av在线| 久久精品国产亚洲av高清一级| 欧美色视频一区免费| 久久久久久久久免费视频了| 精品国产超薄肉色丝袜足j| 国产91精品成人一区二区三区| 国产精品久久视频播放| 夜夜躁狠狠躁天天躁| 在线观看www视频免费| 欧美激情 高清一区二区三区| 日韩高清综合在线| 黑人欧美特级aaaaaa片| 国产精品综合久久久久久久免费| 听说在线观看完整版免费高清| 久久久精品国产亚洲av高清涩受| 亚洲自偷自拍图片 自拍| 精品久久久久久,| 欧美激情高清一区二区三区| 日本三级黄在线观看| 亚洲av五月六月丁香网| 少妇被粗大的猛进出69影院| 久久久国产成人免费| 国产精品电影一区二区三区| 无遮挡黄片免费观看| 丝袜美腿诱惑在线| 亚洲精品国产一区二区精华液| 欧美精品亚洲一区二区| 亚洲精品美女久久久久99蜜臀| tocl精华| 韩国av一区二区三区四区| 久久婷婷成人综合色麻豆| 一二三四社区在线视频社区8| 久久久精品欧美日韩精品| 一进一出抽搐gif免费好疼| 亚洲国产精品sss在线观看| 精品乱码久久久久久99久播| 制服丝袜大香蕉在线| 久久草成人影院| 亚洲va日本ⅴa欧美va伊人久久| 亚洲第一av免费看| 高清毛片免费观看视频网站| 精品久久久久久久人妻蜜臀av| 好男人电影高清在线观看| or卡值多少钱| 国产久久久一区二区三区| 国产精品免费视频内射| 欧美黑人欧美精品刺激| 两人在一起打扑克的视频| 搡老熟女国产l中国老女人| 日韩成人在线观看一区二区三区| 中国美女看黄片| 黑人欧美特级aaaaaa片| 2021天堂中文幕一二区在线观 | 国产精品野战在线观看| 久久国产乱子伦精品免费另类| 国内毛片毛片毛片毛片毛片| √禁漫天堂资源中文www| av免费在线观看网站| 久久99热这里只有精品18| 色精品久久人妻99蜜桃| 一级毛片女人18水好多| 国产三级在线视频| а√天堂www在线а√下载| 亚洲av电影不卡..在线观看| 动漫黄色视频在线观看| 欧美性猛交╳xxx乱大交人| 成年免费大片在线观看| 少妇 在线观看| 欧美黄色片欧美黄色片| 桃色一区二区三区在线观看| 亚洲中文字幕日韩| 国产一区二区三区在线臀色熟女| 欧美国产日韩亚洲一区| 大型黄色视频在线免费观看| 免费女性裸体啪啪无遮挡网站| 国产亚洲欧美精品永久| 亚洲中文字幕一区二区三区有码在线看 | 99在线人妻在线中文字幕| 久久久久久免费高清国产稀缺| 亚洲精品国产区一区二| 欧美在线黄色| 视频区欧美日本亚洲| 男人的好看免费观看在线视频 | av片东京热男人的天堂| 亚洲专区国产一区二区| 19禁男女啪啪无遮挡网站| 免费在线观看成人毛片| 国产精品99久久99久久久不卡| 99热只有精品国产| 久久精品国产99精品国产亚洲性色| 曰老女人黄片| 久久久久久久午夜电影| 国产成人啪精品午夜网站| 亚洲国产高清在线一区二区三 | 男女那种视频在线观看| 国产精品久久久久久亚洲av鲁大| 这个男人来自地球电影免费观看| 精品高清国产在线一区| 男女做爰动态图高潮gif福利片| 国产精华一区二区三区| 成人永久免费在线观看视频| 99精品欧美一区二区三区四区| 很黄的视频免费| 亚洲最大成人中文| 国产欧美日韩精品亚洲av| 非洲黑人性xxxx精品又粗又长| 欧美乱色亚洲激情| 国产精品,欧美在线| 在线观看免费午夜福利视频| 老熟妇乱子伦视频在线观看| 亚洲中文av在线| 特大巨黑吊av在线直播 | 热99re8久久精品国产| 欧美性长视频在线观看| 亚洲片人在线观看| 中文字幕精品亚洲无线码一区 | or卡值多少钱| 法律面前人人平等表现在哪些方面| 亚洲中文日韩欧美视频| 制服丝袜大香蕉在线| 亚洲五月婷婷丁香| 欧美国产日韩亚洲一区| 岛国在线观看网站| 久久人人精品亚洲av| 成人免费观看视频高清| 欧美中文综合在线视频| 人人妻,人人澡人人爽秒播| 人成视频在线观看免费观看| 精品久久久久久久久久免费视频| 精品人妻1区二区| 一级片免费观看大全| 人妻丰满熟妇av一区二区三区| 日韩欧美国产一区二区入口| 两性夫妻黄色片| 久久精品亚洲精品国产色婷小说| 变态另类丝袜制服| 校园春色视频在线观看| 国产av在哪里看| 国产精品久久视频播放| 欧美绝顶高潮抽搐喷水| 99热只有精品国产| 美女扒开内裤让男人捅视频| 亚洲 国产 在线| 一个人观看的视频www高清免费观看 | 国产精品久久久久久精品电影 | 搡老岳熟女国产| 国产亚洲av嫩草精品影院| 好看av亚洲va欧美ⅴa在| 亚洲激情在线av| 免费在线观看亚洲国产| 黄色 视频免费看| 欧美成人性av电影在线观看| 波多野结衣巨乳人妻| 久久精品夜夜夜夜夜久久蜜豆 | 国产亚洲欧美精品永久| 神马国产精品三级电影在线观看 | 高清在线国产一区| 老熟妇仑乱视频hdxx| 国产午夜精品久久久久久| 两个人免费观看高清视频| 欧美又色又爽又黄视频| 亚洲片人在线观看| av视频在线观看入口| 成年女人毛片免费观看观看9| 女人爽到高潮嗷嗷叫在线视频| 欧美+亚洲+日韩+国产| 黄片小视频在线播放| 老汉色∧v一级毛片| 国产精品久久久人人做人人爽| 97碰自拍视频| 国产精品,欧美在线| 国产国语露脸激情在线看| 欧美性长视频在线观看| 国产真人三级小视频在线观看| 日韩av在线大香蕉| 97超级碰碰碰精品色视频在线观看| 国内精品久久久久精免费| 黄色 视频免费看| 国产成人精品久久二区二区91| 亚洲 欧美一区二区三区| 男女下面进入的视频免费午夜 | 中文资源天堂在线| 十八禁网站免费在线| 精品久久蜜臀av无| 2021天堂中文幕一二区在线观 | 亚洲精品一区av在线观看| 十八禁人妻一区二区| 国产伦一二天堂av在线观看| 亚洲无线在线观看| 国内精品久久久久精免费| av欧美777| 午夜老司机福利片| 亚洲国产欧美日韩在线播放| 午夜免费激情av| 老司机深夜福利视频在线观看| 国产av不卡久久| 国内久久婷婷六月综合欲色啪| 久久久久亚洲av毛片大全| 91国产中文字幕| 日本熟妇午夜| 国产精品精品国产色婷婷| 久久国产精品人妻蜜桃| 日韩成人在线观看一区二区三区| x7x7x7水蜜桃| 国产精品综合久久久久久久免费| 亚洲成av人片免费观看| 久久国产精品影院| 色播亚洲综合网| 看免费av毛片| 伊人久久大香线蕉亚洲五| 免费女性裸体啪啪无遮挡网站| 国产成人啪精品午夜网站| 精品国产亚洲在线| 国产黄a三级三级三级人| 欧美丝袜亚洲另类 | 女同久久另类99精品国产91| 久久狼人影院| 可以免费在线观看a视频的电影网站| 一进一出抽搐gif免费好疼| 久久天躁狠狠躁夜夜2o2o| 又黄又粗又硬又大视频| 久久久久久国产a免费观看| 久久午夜综合久久蜜桃| av中文乱码字幕在线| av超薄肉色丝袜交足视频| 国产亚洲欧美精品永久| 可以免费在线观看a视频的电影网站| 又紧又爽又黄一区二区| 国产一区二区三区在线臀色熟女| 国产又黄又爽又无遮挡在线| 欧美日本亚洲视频在线播放| 国产精华一区二区三区| 日韩国内少妇激情av| 天堂动漫精品| xxxwww97欧美| 变态另类成人亚洲欧美熟女| 90打野战视频偷拍视频| 精品日产1卡2卡| 久久婷婷成人综合色麻豆| 99国产精品一区二区蜜桃av| 一区二区三区国产精品乱码| 国产精品久久久人人做人人爽| 日本一区二区免费在线视频| 国产亚洲精品一区二区www| 亚洲,欧美精品.| 男人操女人黄网站| 99国产精品一区二区三区| 中文字幕人妻丝袜一区二区| 国产精品亚洲av一区麻豆| 精品不卡国产一区二区三区| 嫩草影院精品99| 级片在线观看| 神马国产精品三级电影在线观看 | 午夜成年电影在线免费观看| 日韩免费av在线播放| 99国产综合亚洲精品| 伦理电影免费视频| 欧美又色又爽又黄视频| 日日干狠狠操夜夜爽| 久久热在线av| 久久久国产欧美日韩av| 久久午夜亚洲精品久久| 天天一区二区日本电影三级| www.999成人在线观看| 精品日产1卡2卡| 身体一侧抽搐| 天堂√8在线中文| 在线观看舔阴道视频| 丁香欧美五月| 日韩高清综合在线| 男男h啪啪无遮挡| 99re在线观看精品视频| 久久性视频一级片| 熟女电影av网| 亚洲精品久久国产高清桃花| 国产精品亚洲一级av第二区| 免费看十八禁软件| 变态另类成人亚洲欧美熟女| 在线观看午夜福利视频| 日韩中文字幕欧美一区二区| 国产亚洲av嫩草精品影院| 国产亚洲av高清不卡| 母亲3免费完整高清在线观看| 欧美乱色亚洲激情| 亚洲欧美一区二区三区黑人| 又黄又爽又免费观看的视频| 亚洲国产精品成人综合色| 欧美国产精品va在线观看不卡| 成在线人永久免费视频| 成人永久免费在线观看视频| 51午夜福利影视在线观看| 久久精品亚洲精品国产色婷小说| 搡老妇女老女人老熟妇| 中文字幕精品免费在线观看视频| а√天堂www在线а√下载| 搡老熟女国产l中国老女人| 午夜福利免费观看在线| 9191精品国产免费久久| 久久中文字幕人妻熟女| 熟妇人妻久久中文字幕3abv| 亚洲欧美一区二区三区黑人| 亚洲一区二区三区不卡视频| 嫩草影院精品99| 人妻丰满熟妇av一区二区三区| 丁香欧美五月| 天堂√8在线中文| 88av欧美| a在线观看视频网站| 久久国产亚洲av麻豆专区| 国内少妇人妻偷人精品xxx网站 | 日日夜夜操网爽| 精华霜和精华液先用哪个| 1024手机看黄色片| 岛国在线观看网站| av视频在线观看入口| 色婷婷久久久亚洲欧美| 午夜亚洲福利在线播放| 婷婷亚洲欧美| 亚洲精品久久国产高清桃花| 久久精品91蜜桃| 久久九九热精品免费| 亚洲成人免费电影在线观看| 两性夫妻黄色片| 亚洲精品中文字幕在线视频| 精品熟女少妇八av免费久了| 久久久久亚洲av毛片大全| 精品无人区乱码1区二区| 嫩草影视91久久| 日本一区二区免费在线视频| 日本五十路高清| 国产区一区二久久| 色在线成人网| 精品欧美一区二区三区在线| 日本 av在线| 午夜久久久在线观看| 99re在线观看精品视频| 国产精品 欧美亚洲| 草草在线视频免费看| 国产精品永久免费网站| 在线免费观看的www视频| 男女那种视频在线观看| 国产精品九九99| 丁香六月欧美| 免费高清在线观看日韩| 欧美 亚洲 国产 日韩一| 叶爱在线成人免费视频播放| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久水蜜桃国产精品网| 久久久久久久久免费视频了| 变态另类丝袜制服| 色综合婷婷激情| 91成年电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩亚洲综合一区二区三区_| 老司机深夜福利视频在线观看| 日日干狠狠操夜夜爽| 欧美日本视频| 久久久久久久精品吃奶| 一级a爱视频在线免费观看| 俺也久久电影网| 欧美三级亚洲精品| 亚洲人成电影免费在线| av中文乱码字幕在线| 国产亚洲欧美98| 中文字幕人成人乱码亚洲影| svipshipincom国产片| 久久中文看片网| 男女那种视频在线观看| 国产一区二区激情短视频| 精品久久久久久久人妻蜜臀av| 久久精品国产清高在天天线| 免费看日本二区| 亚洲av片天天在线观看| 中文字幕精品免费在线观看视频| 88av欧美| 国产精品亚洲av一区麻豆| 欧美三级亚洲精品| 国产亚洲精品久久久久5区| 免费一级毛片在线播放高清视频| 香蕉av资源在线| 国产v大片淫在线免费观看| 国产精品久久久久久亚洲av鲁大| 中文字幕精品亚洲无线码一区 | 极品教师在线免费播放| 曰老女人黄片| 久久久久九九精品影院| 12—13女人毛片做爰片一| 麻豆成人午夜福利视频| 国产精品影院久久| 精品久久久久久成人av| 亚洲成人国产一区在线观看| 精品国内亚洲2022精品成人| 在线播放国产精品三级| 国产激情欧美一区二区| 亚洲第一青青草原| 国产人伦9x9x在线观看| av在线播放免费不卡| xxxwww97欧美| 亚洲熟女毛片儿| 香蕉丝袜av| 精品一区二区三区av网在线观看| 91成人精品电影| 好男人在线观看高清免费视频 | 国产欧美日韩一区二区三| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽| 丝袜美腿诱惑在线| 我的亚洲天堂| 久久精品aⅴ一区二区三区四区| 美女 人体艺术 gogo| 老熟妇乱子伦视频在线观看| 免费看美女性在线毛片视频| 黑人操中国人逼视频| 精品国产乱码久久久久久男人| 757午夜福利合集在线观看| 亚洲精华国产精华精| 亚洲精品中文字幕在线视频| 很黄的视频免费| 啦啦啦免费观看视频1| 国内久久婷婷六月综合欲色啪| 中文字幕人妻丝袜一区二区| av电影中文网址| a级毛片在线看网站| 中文亚洲av片在线观看爽| 免费在线观看黄色视频的| 无遮挡黄片免费观看| 国产片内射在线| 19禁男女啪啪无遮挡网站| 熟妇人妻久久中文字幕3abv| 日韩高清综合在线| 波多野结衣高清无吗| 校园春色视频在线观看| 国产精品一区二区三区四区久久 | 日本精品一区二区三区蜜桃| 久久精品国产综合久久久| 久久久久久久精品吃奶| 悠悠久久av| 在线av久久热| 在线免费观看的www视频| 人人妻人人看人人澡| 亚洲精品中文字幕一二三四区| 精品少妇一区二区三区视频日本电影| 免费在线观看黄色视频的| 美女免费视频网站| 黄色a级毛片大全视频| 日韩视频一区二区在线观看| 一级a爱视频在线免费观看| 久9热在线精品视频| 男女午夜视频在线观看| 级片在线观看| 亚洲人成77777在线视频| 老司机在亚洲福利影院| 欧美日韩一级在线毛片| 97人妻精品一区二区三区麻豆 | 国产精品香港三级国产av潘金莲| 午夜免费鲁丝| 精品免费久久久久久久清纯| 999久久久精品免费观看国产| 免费在线观看亚洲国产| 国产精品久久久久久精品电影 | 欧美成人性av电影在线观看| 国产99白浆流出| 最新在线观看一区二区三区| 欧美激情 高清一区二区三区| 色播在线永久视频| 一级片免费观看大全| 老汉色∧v一级毛片| 久久草成人影院| 男女床上黄色一级片免费看| 韩国av一区二区三区四区| 狠狠狠狠99中文字幕| 欧美性长视频在线观看| 日日干狠狠操夜夜爽| 午夜免费激情av| 欧美国产精品va在线观看不卡| 国产精品自产拍在线观看55亚洲| 国产aⅴ精品一区二区三区波| 亚洲片人在线观看| 国产精品久久电影中文字幕| 草草在线视频免费看| 成人18禁在线播放| 亚洲激情在线av| 中文在线观看免费www的网站 | 国产不卡一卡二| 日本三级黄在线观看| 国产一区二区激情短视频| 欧美不卡视频在线免费观看 | 亚洲精品av麻豆狂野| 国产成人精品久久二区二区91| 亚洲成人久久性| 欧美成人免费av一区二区三区| 免费高清视频大片| 天天一区二区日本电影三级| 99在线视频只有这里精品首页| 国产在线观看jvid| 啦啦啦观看免费观看视频高清| 亚洲七黄色美女视频| 悠悠久久av| 一卡2卡三卡四卡精品乱码亚洲| 欧美激情极品国产一区二区三区| 欧美不卡视频在线免费观看 | 国产成人精品久久二区二区免费| 中亚洲国语对白在线视频| 午夜福利在线在线| 正在播放国产对白刺激| 91成年电影在线观看| 日本成人三级电影网站| 老司机午夜十八禁免费视频| 人人妻,人人澡人人爽秒播| 成年免费大片在线观看| 亚洲电影在线观看av| 精华霜和精华液先用哪个| 亚洲成a人片在线一区二区| av中文乱码字幕在线| e午夜精品久久久久久久| 免费看a级黄色片| 国产av一区在线观看免费| 国产精品自产拍在线观看55亚洲| 日韩中文字幕欧美一区二区| 狂野欧美激情性xxxx| 一二三四社区在线视频社区8| 美女国产高潮福利片在线看| bbb黄色大片| 日韩欧美一区二区三区在线观看| 色综合婷婷激情| 午夜福利视频1000在线观看| www日本黄色视频网| 黄色毛片三级朝国网站| 丝袜人妻中文字幕| 亚洲美女黄片视频| 脱女人内裤的视频| 亚洲精华国产精华精| 女人高潮潮喷娇喘18禁视频| 91老司机精品| 国产精品久久久久久人妻精品电影| 一进一出抽搐gif免费好疼| 色尼玛亚洲综合影院| 叶爱在线成人免费视频播放| 亚洲一区二区三区色噜噜| 午夜久久久在线观看| 亚洲人成77777在线视频| 国产99白浆流出| 99热这里只有精品一区 | 美国免费a级毛片| 制服诱惑二区| 在线观看一区二区三区| 99国产精品99久久久久| 国产成人影院久久av| 18禁黄网站禁片免费观看直播| 中文字幕av电影在线播放| 久久精品91无色码中文字幕| 久久国产乱子伦精品免费另类| 黄色a级毛片大全视频| 男女视频在线观看网站免费 | 国产精品日韩av在线免费观看| 国语自产精品视频在线第100页| 两人在一起打扑克的视频| 十八禁网站免费在线| 亚洲专区国产一区二区| 国产单亲对白刺激| 国产成年人精品一区二区| 搡老熟女国产l中国老女人|