• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas

    2021-04-22 05:34:24WeiQI齊巍QiuyunWANG王秋云JunfengSHAO邵俊峰AnminCHEN陳安民andMingxingJIN金明星
    Plasma Science and Technology 2021年4期
    關(guān)鍵詞:安民明星

    Wei QI(齊巍),Qiuyun WANG(王秋云),Junfeng SHAO(邵俊峰),Anmin CHEN(陳安民)and Mingxing JIN(金明星)

    1 Beijing Institute of Tracking and Telecommunications Technology,Beijing 100094,People’s Republic of China

    2 Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,People’s Republic of China

    3 State Key Laboratory of Laser Interaction With Matter & Innovation Laboratory of Electro-Optical Countermeasures Technology,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,People’s Republic of China

    Abstract The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy(LIBS)was investigated experimentally.An Al target was ablated to produce laser-induced plasma.The Al target was uniformly heated to a maximum of 250°C.The measured molecular emission was AlO(Δν=0)from the femtosecond LIBS of the Al target.The measurements indicated that the molecular emission of AlO increased as the temperature of the Al target increased.In addition,a two-temperature model was used to simulate the evolution of the electron and lattice temperature of the Al target with different initial temperatures.The simulated results showed that the electron and lattice temperatures of Al irradiated by the femtosecond laser increased as the initial temperature of the Al target increased; also,the simulated ablated depth increased.Therefore,an increase in the initial Al target temperature resulted in an enhancement in the spectral signal of AlO from the femtosecond LIBS of Al,which was directly related to the increase in the size of the ablated crater.The study suggested that increasing the temperature of the target improves the intensity of molecular emission in femtosecond LIBS.

    Keywords:laser-induced breakdown spectroscopy,femtosecond laser,sample temperature,AlO

    1.Introduction

    Laser-induced breakdown spectroscopy(LIBS)is an analytical technique that has been used for many years[1-4].It is essentially a spectroscopic technique due to the analysis of spectral signals from laser-induced plasmas.It is easy to understand the physical process of LIBS.A high-energy laser pulse is converged at a material that can be solid,liquid,or gas[5-10].The material will be heated rapidly,vaporized,dissociated,and ionized,generating hot luminous plasma with a high temperature and a high density.When the laser pulse terminates,the plasma begins to cool in the ambient atmosphere or in a vacuum.The electrons of the atoms and ions at the excited states in the plasma transit to low states,producing a characteristic optical emission signal,which includes discrete lines,bands,and continua[11-13].The characteristic emission is related to the natural properties of the material.Therefore,LIBS can provide qualitative and quantitative information on the material.

    With the development of the LIBS technique,many studies on LIBS have begun to focus on molecular emission from laser-induced plasma[14,15].The molecular emission technique can be used for the detection and analysis of organic materials including nitrocompounds,polymers,explosives,and biological samples[16].Zhao et al demonstrated atomic and molecular spectra of laser-ablated nitromethane[17],discussing the time-resolved spectra and the formation mechanisms of CN and C2.Trautner et al reported laser ablation of a polyethylene sample[18],they detected and simulated C2swan and CN violet and red bands.De Lucia et al investigated the influence of variable selection on partial least squares discriminant analysis models based on LIBS[19],showing that high nitrogen molecules and some organic materials may be identified.Samuels et al used LIBS to study bacterial spores,molds,and pollens[20],finding that the bacterial spores and the molds and pollens could be discriminated by LIBS.However,as compared to traditional LIBS with a nanosecond pulse laser,LIBS studies employing a femtosecond pulsed laser have shown some advantages for exploring LIBS analysis[21-28].There are considerable physical differences between a nanosecond pulse and a femtosecond pulse for laser ablation of samples.The femtosecond laser can provide a lot of advantages in LIBS analysis,including(i)a low ablation threshold,(ii)a small heataffected zone,(iii)a high ablation efficiency,(iv)a low continuous spectrum,and(v)a long propagation distance of a few kilometers through femtosecond laser filamentation.In addition,femtosecond laser ablation generates low-temperature plasma,which is suitable for the formation of molecules in LIBS[29,30].Serrano et al discussed the effect of pulse width on the formation of diatomic molecules by femtosecond and nanosecond laser-produced plasmas[31],demonstrating that the femtosecond laser can better reflect the material structure compared with the nanosecond laser.Kalam et al investigated LIBS of six high-energy materials excited by femtosecond and nanosecond lasers[32];their results showed that molecular emission was prominent in femtosecond LIBS,while the atomic spectrum dominated nanosecond LIBS.Harilal et al compared molecular spectra from nanosecond,femtosecond,and filament-induced plasmas[33],finding that molecular temperatures were lower for femtosecond LIBS,and molecular species at early times for femtosecond LIBS compared with nanosecond LIBS could be observed.

    Figure 1.Schematic diagram of experimental setup.

    The femtosecond laser presents a good advantage for molecular detection in LIBS[21-27].In order to improve the sensitivity and practicability of femtosecond LIBS detection of molecules,it is necessary to increase the molecular emission intensity of femtosecond LIBS.From many previously published papers,several experimental techniques have been used to increase the emission intensity of LIBS[34],such as:double-pulse LIBS[35-37],spatially confined LIBS[38,39],magnetically confined LIBS[40,41],flame-enhanced LIBS[42,43],nano-particle-enhanced LIBS[44],surface-enhanced LIBS[45],and discharge-assisted LIBS[46-48].Also,increasing the sample temperature is an effective method to improve the optical signal of LIBS[49-56].Hai et al explored the influence of molybdenum-tungsten target temperature on the spectra from laser-excited molybdenumtungsten plasmas[57],finding that the spectral line emission,ablation crater,plasma temperature,and electron density increased obviously as the target was heated.Lednev et al studied the influence of low-alloy steel temperature on the laser-ablated process and detection sensitivity of LIBS[58],finding that increasing the surface temperature was beneficial in enhancing the spectral signal.Tavassoli et al investigated the influence of the aluminum sample temperature on the spectral signal of LIBS[59]; their results showed that increasing the target temperature enhanced spectral emission intensity,and thus enhanced the analysis sensitivity of the target composition.These studies discussed the relationship between atomic emission spectra and the sample temperature.It is also necessary to discuss the change in molecular emission spectra with sample temperature in femtosecond LIBS.

    This paper studies the influence of Al target temperature on the molecular emission of femtosecond laser-produced Al plasma.The emission intensity of diatomic molecular aluminum monoxide(AlO)from the Al plasma was measured at different sample temperatures.Also,we calculated the thermal dynamics of the Al target under femtosecond laser irradiation using a two-temperature equation for different Al temperatures.

    2.Experimental setup

    Figure 2.Schematic diagram of femtosecond laser irradiation of metal.

    As can be seen in figure 1,a regeneration amplified Ti:sapphire laser(Coherent,Libra)with a wavelength of 800 nm,and a pulse duration of 50 fs,was used to ablate the aluminum plate with 99.9% purity.The laser system operated in singleshot mode was fired by sending a command(‘man:trig’)to the serial port(RS232)of the synchronization and delay generator(SDG).The laser energy was attenuated to an experimental value by using a combination of half-wave plate and Glan-laser prism.Next,the pulse was converged to the target surface to produce Al plasma using a focusing lens(10 cm).The diameter of the spot on the sample surface is around 200 μm.The sample was pasted on a heating table through a high thermal conductive silica gel sheet.The heating table was placed on an X-Y-Z stage(PT3-Z8,Thorlabs)to provide a fresh surface.The sample was uniformly heated up to a maximum of 250°C.A thermocouple was used to monitor and feed back the sample temperature.Approximately 10 min was needed to stabilize the sample temperature during the heating process.The excited optical emission was collected by a lens with a focal length of 75 mm and a diameter of 50 mm,at an angle of 45° relative to the target surface and the laser beam direction was converged to an optical fiber,and was guided to a spectrometer with a grating of 1200 lines(PI-Acton,Princeton Instruments).The discrete optical emission of the spectrometer was detected on an ICCD(PI-MAX4,1024I,Princeton-Instruments).Data processing is performed by a personal computer.The pulse and the ICCD were synchronized by the SDG of the femtosecond amplification system.The gain and ICCD were adjusted to 25,and the gate delay and width were set to 500 ns and 10 μs,respectively,to optimize signal intensity,eliminate continuum emission,and avoid signal saturation.Each spectrum was an average of 80 laser pulses.All of the experiments were carried out at atmospheric pressure.

    3.Mathematical model

    When a femtosecond pulse laser interacts with metal,free electrons within the metal absorb pulse energy through the inverse bremsstrahlung absorption process.The electron temperature will rise rapidly because electron thermal capacity is very small.Then,the absorbed energy is diffused deeper into the metal through the thermal diffusion of electrons,and the electron energy obtained by absorbing laser pulse energy is transferred to the lattice through the coupling between the electrons and lattice.Considering a 1D metal film(see figure 2),the temporal and spatial variations in the electron temperature(Te)and the lattice temperature(Tl)can be expressed by a 1D two-temperature model(TTM),as follows[60-62]:

    where t is the delay time,x is the depth,Ce=Ce0Teis the electron thermal capacity[63],Clis the lattice thermal capacity,is the electron heatG0((ATe+Tl)/B+1)is the electron-lattice coupling coefconductivity,klis the lattice heat conductivity,G=ficient,and S is the laser item.

    The source(S)can be described by the following expression[64]:

    where R is the laser reflectivity,α is the laser absorption coefficient,I is the laser fluence,tpis the laser pulse width,β=4 ln(2).

    The values of R and α for a metal are mainly due to the dielectric function ε of the metal[65,66]:

    ε∞is the dielectric constant,ω is the light frequency.is the plasma frequency,ne,me,and ε0are the electron density,the electron mass,and the electrical permittivity of free space,respectively.τ can be expressed by[67]

    The real and imaginary parts are[68]:

    and

    The reflectivity is dependent on n and κ

    The absorption coefficient is the dependence of κ

    where c is the speed of light in a vacuum.

    Before the femtosecond laser reaches the sample,the electron and lattice systems are the target temperature(T0),

    In the femtosecond time scale,the heat loss of the front and rear surfaces of the metal target can be neglected.The boundary conditions of equations(1)and(2)are

    where L is the metal thickness.

    Figure 3.Emission spectra of AlO(Δν=0)at different sample temperatures(25°C,100°C and 250°C).Laser energies are 1.4 mJ(a)and 1.9 mJ(b).

    4.Results and discussion

    4.1.Experimental results

    In the experiment,the femtosecond pulse ablated the Al target to produce Al plasma.The molecular emission from the Al plasma was AlO diatomic radicals.The measured molecular band was the B2Σ+-X2Σ+system with Δν=0.Figure 3 presents the spectral bands of AlO(Δν=0)at three sample temperatures(25 °C,100 °C,and 250 °C)for two laser energies(1.4 and 1.9 mJ).As can be observed from the figure,when the Al target temperature increases,the spectral emission of AlO(Δν=0)increases but there is no significant increase in the background emission.Moreover,the peak positions of AlO(0-0)and(1-1)are unchanged for different Al target temperatures.In our opinion,an enhancement in the signal-to-background ratio and,correspondingly,in the detection sensitivity,is possible by increasing the target temperature.Figure 4 shows the peak emission intensities of AlO(0-0)and(1-1)as functions of the Al target temperature for different laser energies.It can be seen that the emission intensities of AlO(0-0)and(1-1)increase monotonously when the Al target temperatures increase from 25 °C to 250°C.The emission improvement can be observed at all laser energies.The results indicate that the same,or even stronger,molecular emission from laser-induced plasma,with less laser energy and higher target temperature,can be obtained.

    Figure 4.Evolution of spectral peak intensities at AlO(0-0)and(1-1)with sample temperature.Laser energies are 0.4,0.9,1.4 and 1.9 mJ.

    Figure 5 shows the comparison between experimental and fitted spectra of the AlO(Δν=0)molecular emission band for 0.4 and 1.9 mJ laser energies and a 25 °C sample temperature.The experimental data was fitted to get the vibrational temperature by using the existing theoretical model[69].The fitted spectra are in agreement with the experimental spectra.The corresponding vibration temperatures are 3495 K and 3563 K for 0.4 and 1.9 mJ laser energies,respectively.Figure 6 shows the vibration temperature with the sample temperature for different laser energies.The changes in the vibration temperature with the sample temperature are similar to the changes in the AlO molecular emission with the sample temperature.The vibration temperature increases as the Al target temperature increases.Obviously,the increase in the Al target temperature enhances the interaction between the femtosecond laser and the Al target.

    It is also interesting to see the influence of the sample temperature on the Al(I)line.Figure 7 presents the evolution of the Al(I)line with a sample temperature.As seen from the figure,the change in the Al(I)line is similar to the change in the AlO(Δν=0)band emission as the Al target temperature increases.The result is consistent with some published results for the influence of target temperature on atomic emission line[58,70-73].These published results suggested that the enhancement mechanism on the emission line is due to the enhanced coupling of laser and target.To investigate the Al target ablation,the morphology of the ablation crater by femtosecond laser was measured by an optical microscope.Figure 8 presents the morphologies of the ablation craters for 0.9 and 1.9 mJ laser energies at 25 °C and 250 °C Al target temperatures.It can be observed that the ablation of the Al target surface is more obvious at high target temperature(250 °C)compared to that at low target temperature(25 °C).At the same time,compared with the melting phenomenon at 0.9 and 1.9 mJ energies,the melting phenomenon in the ablation crater at high energy is more obvious.This shows that increasing the Al target temperature enhances the absorption of femtosecond laser energy,and the energy needed for the Al target to melt also decreases,which makes the femtosecond laser ablation more obvious.In addition,the higher target temperature can result in a decrease in air density near the target surface,which may influence the expansion of the plasma plume;also,the change in air density will cause the change in the refractive index of air,which may lead to the change in the laser focusing condition.The two factors may influence the spectral emission intensity,and further experiments are required to be able to discuss this in detail.

    Figure 5.Comparison between typical experimental and fitted AlO(Δν=0)emission bands for 0.4(a)and 1.9(b)mJ laser energies and a 25 °C sample temperature.

    Figure 6.Evolution of vibration temperature with sample temperature.

    Figure 7.Evolution of Al(I)line with sample temperature.(a)Spectra for different sample temperatures at 1.9 mJ laser energy,(b)Al(I)394.4 nm peak intensities as a function of sample temperature.

    Figure 8.Morphologies of ablation craters by femtosecond laser for 0.9 and 1.9 mJ laser energies at 25°C and 250°C Al target temperatures.

    Table 1.Thermal and optical coefficients of Al used in TTM.

    4.2.Simulated results

    The experimental results mentioned above display an efficient enhancement in the molecular emission intensity with increasing target temperature.On the other hand,in theory,the increase in the intensity of the molecular band comes from the increase in the number of molecules.Obviously,the most direct way to increase molecular emission intensity is to increase the number of molecules.To increase the number of molecules,the ablation mass needs to be improved.At the same laser energy,increasing the target temperature enhances the interaction between laser and target.The ablation mass can be significantly increased by increasing the target temperature.In order to evaluate the effect of the Al temperature on the ablation mass,we simulated the thermal dynamics of the Al target under femtosecond laser irradiation at different target temperatures using 1D TTM,as mentioned in section 3.

    For the simulation of the femtosecond pulse irradiation of Al,the laser width is 50 fs,the wavelength is 800 nm,and the simulated Al sample thickness is L=500 nm.The corresponding thermal and optical coefficients are summarized in table 1[74,75].Figure 9 shows the evolution of electron and lattice temperatures with the delay time for 25°C and 150°C sample temperatures at the sample surface.The laser fluence is 1 J cm?2.As seen in the figure,the changes in the electron and lattice temperature are different from each other.Free electrons in the metal target absorb laser energy when the laser beam irradiates the metal,and the electron temperature rises rapidly.Next,there are two main physical processes:one is the electron heat diffusion in metal; another one is the coupling of electron and lattice,electrons transfer energy to the lattice.Due to the two physical processes,the electron temperature increases in short delay time and decreases,while the lattice temperature increases slowly,and finally the electron and lattice achieve thermal equilibrium.

    Figure 9.Evolution of electron and lattice temperatures with delay time for 25 °C and 150 °C sample temperatures at sample surface.Laser fluence is 1 J cm?2.

    Figure 10.Evolution of lattice temperature with delay time for different sample temperatures at sample surface.Laser fluence is 1 J cm?2.

    In addition,the Al target temperature has a great influence on the changes in the electron and lattice temperatures.The electron temperature with the Al target temperature of 150 °C is higher than that with the Al target temperature of 25 °C.The maximum electron temperatures for 25 °C and 150 °C are 26.5×103K and 33.9×103K,respectively.The detailed changes in the lattice temperature at different sample temperatures are presented in figure 10.The surface lattice temperature becomes higher as the temperature of the Al target.The increase in the lattice temperature comes from free electrons in the metal target.Metal surface reflectivity decreases with the increase in the metal temperature.Free electrons in the Al target with higher temperature can absorb more energy from the femtosecond pulse laser.More pulse energy is transferred to the lattice,resulting in a higher lattice temperature.

    Figure 11.Distribution of lattice temperature with sample depth for different sample temperatures at 20 ps delay time.Laser fluence is 1 J cm?2.

    Figure 11 presents the evolution of the lattice temperature with the sample depth for different sample temperatures at 20 ps delay time.The laser fluence is 1 J cm?2.The initial temperature of the Al target has a great influence on the distribution of lattice temperature.When the initial target temperature increases from 25 °C to 250 °C,the surface lattice temperature rises from 4.8×103K to 10.1×103K; at 200 nm depth,the lattice temperature rises from 0.8×103K to 1.2×103K.It can be observed that the lattice temperature difference at the surface for different Al target temperatures is large,but the difference gradually decreases with the increase in the target depth,indicating that the effect of the Al sample temperature on the surface temperature is greater.When a femtosecond laser irradiates the metal surface,the electrons within the penetration depth of the target surface absorb laser energy; next,the electrons transfer the energy to a deeper target by electron thermal diffusion.More laser energy needs a longer time transfer process,so the temperature difference under higher Al temperature is bigger.Next,the ablation depth was calculated by the distribution of the lattice temperature.

    Figure 12 presents the evolution of the ablation depth with the delay time for different Al target temperatures.Here,we defined that,as the lattice temperature reached the boiling point temperature of Al,the corresponding depth was evaporated and ablated.With increasing the delay time,the ablation depth gradually increases and reaches a hundred nanometers for different sample temperatures.It is also seen that the delay time of ablation becomes short from 1.1 ps to 0.5 ps,as the Al target temperature increases from 25 °C to 250 °C,and the ablation depth becomes deeper with increasing the sample temperature.That is to say,by heating the Al target,more mass Al samples can be evaporated.The simulated result may illustrate that the improvement of the molecular emission intensity is based on the enhancement in the laser ablation.The calculated results are in agreement with the experimental results(see figure 8).As discussed earlier,the evaporated depth of the sample is proportional to the molecular number within the plasma;the molecular number is proportional to the spectral emission.Thus,the improvement in the evaporated depth leads to an increase in the spectral band emission.Due to the experimental and simulated results,we can draw a conclusion that increasing the sample temperature can improve the molecular emission and the ablation depth.

    Figure 12.Evolution of ablation depth with delay time for different sample temperatures.Laser fluence is 1 J cm?2.

    5.Conclusion

    We studied the influence of the target temperature on the AlO molecular signal from the femtosecond LIBS of Al.The emission intensity of AlO(Δν=0)was measured at different target temperatures.The measured results showed that,as the Al target temperature increased,the spectral emission of AlO increased,but there was no significant increase in the background emission.In addition,the TTM was used to simulate the thermal dynamics of Al under femtosecond pulse laser irradiation for different Al target temperatures.The electron and lattice temperatures increased as the Al target temperature increased.Moreover,the ablation depth became deeper for higher Al target temperatures.A greater mass of Al material would be evaporated by raising the Al temperature.The simulated result illustrated that improvement in the molecular emission intensity is based on enhancement of the evaporated volume.

    Acknowledgments

    We acknowledge the support by Scientific and Technological Research Project of the Education Department of Jilin Province,China(No.JJKH20200937KJ),and National Natural Science Foundation of China(Nos.11674128,11674124,and 11974138).

    猜你喜歡
    安民明星
    THE EXISTENCE AND NON-EXISTENCE OFSIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN*
    打羽毛球
    明星猝死背后
    南方周末(2019-11-28)2019-11-28 08:37:59
    易安民聲
    易安民聲
    交通安全小明星
    幼兒園(2017年23期)2018-02-07 15:26:54
    明星們愛用什么健身APP
    Coco薇(2017年2期)2017-04-25 03:02:27
    扒一扒明星們的
    Coco薇(2016年10期)2016-11-29 16:59:54
    龔遂治亂安民的“高招”
    誰(shuí)是大明星
    18禁观看日本| 久久久久久久精品精品| 久久精品国产鲁丝片午夜精品| 国产亚洲最大av| 波野结衣二区三区在线| 欧美 日韩 精品 国产| 免费久久久久久久精品成人欧美视频| 美女脱内裤让男人舔精品视频| 女的被弄到高潮叫床怎么办| 国产片内射在线| 最新的欧美精品一区二区| 两个人免费观看高清视频| 亚洲国产色片| 各种免费的搞黄视频| 伊人亚洲综合成人网| 午夜激情久久久久久久| 有码 亚洲区| 久久久久人妻精品一区果冻| 我要看黄色一级片免费的| 狂野欧美激情性bbbbbb| 新久久久久国产一级毛片| 日本欧美视频一区| 久久鲁丝午夜福利片| 国产精品二区激情视频| 母亲3免费完整高清在线观看 | 最新中文字幕久久久久| 性少妇av在线| 久久ye,这里只有精品| 高清不卡的av网站| 日韩一区二区三区影片| 丁香六月天网| 精品酒店卫生间| 久久精品国产亚洲av高清一级| 免费高清在线观看视频在线观看| 亚洲欧美成人综合另类久久久| 精品久久久久久电影网| 成人漫画全彩无遮挡| 9色porny在线观看| 91精品国产国语对白视频| 亚洲五月色婷婷综合| 九九爱精品视频在线观看| 日韩电影二区| 国产av精品麻豆| 婷婷色麻豆天堂久久| 免费播放大片免费观看视频在线观看| 91久久精品国产一区二区三区| 亚洲,一卡二卡三卡| 毛片一级片免费看久久久久| 可以免费在线观看a视频的电影网站 | 两个人免费观看高清视频| 女人久久www免费人成看片| 精品人妻偷拍中文字幕| av又黄又爽大尺度在线免费看| 亚洲,一卡二卡三卡| 九色亚洲精品在线播放| 十八禁高潮呻吟视频| 在线精品无人区一区二区三| 亚洲精品久久久久久婷婷小说| 一本色道久久久久久精品综合| 在线观看美女被高潮喷水网站| 亚洲色图综合在线观看| 一边摸一边做爽爽视频免费| 天天影视国产精品| 熟女电影av网| 视频区图区小说| 一边亲一边摸免费视频| 99久国产av精品国产电影| 国产片特级美女逼逼视频| 久久久久网色| 亚洲图色成人| 亚洲在久久综合| 成年美女黄网站色视频大全免费| 一级,二级,三级黄色视频| 最新中文字幕久久久久| 亚洲 欧美一区二区三区| 丝袜脚勾引网站| 亚洲av在线观看美女高潮| a级片在线免费高清观看视频| 熟女电影av网| 18禁裸乳无遮挡动漫免费视频| 9色porny在线观看| 日韩中文字幕欧美一区二区 | 毛片一级片免费看久久久久| 国产精品久久久久久精品古装| 久热这里只有精品99| 午夜福利在线免费观看网站| 欧美日韩一级在线毛片| 青春草亚洲视频在线观看| 中文乱码字字幕精品一区二区三区| 亚洲av在线观看美女高潮| 日韩电影二区| 亚洲精品美女久久久久99蜜臀 | 国产亚洲av片在线观看秒播厂| 亚洲第一青青草原| 美女大奶头黄色视频| 国产成人91sexporn| 午夜激情久久久久久久| 亚洲欧美中文字幕日韩二区| 日本91视频免费播放| 熟女av电影| 久久99一区二区三区| 久久精品国产自在天天线| 国产日韩一区二区三区精品不卡| 少妇人妻精品综合一区二区| 另类亚洲欧美激情| 日韩av在线免费看完整版不卡| av免费在线看不卡| 观看美女的网站| 欧美成人午夜精品| 欧美变态另类bdsm刘玥| 天天躁夜夜躁狠狠久久av| 亚洲美女视频黄频| 亚洲 欧美一区二区三区| 亚洲精品第二区| 久久狼人影院| 国产成人精品久久二区二区91 | 免费观看av网站的网址| 爱豆传媒免费全集在线观看| 欧美人与性动交α欧美软件| 欧美精品高潮呻吟av久久| 国产精品二区激情视频| 看非洲黑人一级黄片| 午夜免费鲁丝| 免费看av在线观看网站| 亚洲精品久久成人aⅴ小说| 性高湖久久久久久久久免费观看| 另类亚洲欧美激情| 国产黄色免费在线视频| 成人国产麻豆网| 欧美少妇被猛烈插入视频| 少妇的丰满在线观看| 亚洲欧洲日产国产| 秋霞在线观看毛片| 日韩,欧美,国产一区二区三区| 亚洲一区二区三区欧美精品| 在线观看国产h片| 亚洲欧美中文字幕日韩二区| 国产精品不卡视频一区二区| 亚洲美女黄色视频免费看| av天堂久久9| 最近的中文字幕免费完整| 久久这里有精品视频免费| 亚洲一码二码三码区别大吗| 少妇的丰满在线观看| 中文字幕精品免费在线观看视频| 欧美97在线视频| 日本-黄色视频高清免费观看| 日本wwww免费看| 午夜福利视频精品| 亚洲伊人色综图| 成年人免费黄色播放视频| av在线观看视频网站免费| 国产精品 欧美亚洲| 在线 av 中文字幕| 国产淫语在线视频| 这个男人来自地球电影免费观看 | 亚洲国产欧美网| 国产精品蜜桃在线观看| 久久久久国产网址| 国产熟女午夜一区二区三区| 日本av手机在线免费观看| 老汉色∧v一级毛片| 在线精品无人区一区二区三| 精品国产乱码久久久久久小说| 久久久久久久精品精品| 丝瓜视频免费看黄片| 亚洲精品,欧美精品| 色婷婷av一区二区三区视频| 一本大道久久a久久精品| av线在线观看网站| 久久99一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 国产在视频线精品| 欧美精品高潮呻吟av久久| 免费观看在线日韩| 可以免费在线观看a视频的电影网站 | 欧美另类一区| 亚洲三区欧美一区| 国产在线免费精品| 亚洲国产av新网站| 亚洲成人手机| 天天躁狠狠躁夜夜躁狠狠躁| 波野结衣二区三区在线| 女人精品久久久久毛片| 亚洲一区中文字幕在线| 国产av一区二区精品久久| 老鸭窝网址在线观看| av网站在线播放免费| 亚洲精品日本国产第一区| 日韩视频在线欧美| 国产女主播在线喷水免费视频网站| 最新中文字幕久久久久| 大片免费播放器 马上看| 丝瓜视频免费看黄片| 久久久久久久久久人人人人人人| av网站在线播放免费| 丝袜脚勾引网站| 午夜福利一区二区在线看| 亚洲精品自拍成人| av卡一久久| 午夜精品国产一区二区电影| 丝袜美腿诱惑在线| xxx大片免费视频| 久久久久网色| 丁香六月天网| 亚洲一区二区三区欧美精品| 在线观看免费高清a一片| 韩国精品一区二区三区| 波野结衣二区三区在线| 又粗又硬又长又爽又黄的视频| 欧美日韩av久久| 国产精品国产av在线观看| 丝袜人妻中文字幕| 99久久综合免费| 极品少妇高潮喷水抽搐| 日本免费在线观看一区| 国产精品欧美亚洲77777| 久久人人爽人人片av| 99国产精品免费福利视频| 久久精品国产自在天天线| 亚洲婷婷狠狠爱综合网| av在线app专区| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产一区二区| 欧美日韩精品网址| kizo精华| 午夜av观看不卡| 多毛熟女@视频| 亚洲精品成人av观看孕妇| 亚洲男人天堂网一区| 日韩中字成人| av不卡在线播放| 久久婷婷青草| 青草久久国产| 久久午夜福利片| 国产一区有黄有色的免费视频| 人人妻人人澡人人爽人人夜夜| 色吧在线观看| 97精品久久久久久久久久精品| 亚洲精品久久成人aⅴ小说| 亚洲精品久久久久久婷婷小说| 人人妻人人添人人爽欧美一区卜| 伊人久久国产一区二区| 久久久久久久久久久久大奶| 黄片播放在线免费| 十八禁高潮呻吟视频| 久久久久久久久久久久大奶| 毛片一级片免费看久久久久| 国产色婷婷99| a级毛片在线看网站| xxxhd国产人妻xxx| 一个人免费看片子| 男女啪啪激烈高潮av片| 精品少妇久久久久久888优播| 国产精品久久久久成人av| 免费大片黄手机在线观看| 亚洲av.av天堂| 老司机影院成人| 免费看不卡的av| 欧美日韩视频精品一区| 国产免费一区二区三区四区乱码| 欧美精品高潮呻吟av久久| 伊人亚洲综合成人网| 久久久久久久久免费视频了| 亚洲精品在线美女| 国产免费福利视频在线观看| 中国国产av一级| 天天躁夜夜躁狠狠躁躁| 交换朋友夫妻互换小说| 久久久久久久精品精品| 97在线人人人人妻| 91国产中文字幕| 亚洲国产最新在线播放| 成人午夜精彩视频在线观看| 天天躁夜夜躁狠狠久久av| 亚洲情色 制服丝袜| 999久久久国产精品视频| 黄频高清免费视频| 我的亚洲天堂| 国产野战对白在线观看| 久久99蜜桃精品久久| 91精品伊人久久大香线蕉| 日韩电影二区| 精品国产乱码久久久久久小说| 亚洲四区av| 国产精品国产av在线观看| 婷婷色综合大香蕉| 亚洲欧美清纯卡通| 蜜桃在线观看..| 精品国产一区二区久久| 97人妻天天添夜夜摸| 久久久久久久亚洲中文字幕| 91aial.com中文字幕在线观看| av国产久精品久网站免费入址| 亚洲第一av免费看| 制服诱惑二区| 国产精品99久久99久久久不卡 | 欧美日韩精品成人综合77777| 亚洲精品日本国产第一区| 黑丝袜美女国产一区| 亚洲色图综合在线观看| 在线天堂中文资源库| 成人影院久久| 少妇被粗大的猛进出69影院| 性少妇av在线| 一区二区三区激情视频| 美女脱内裤让男人舔精品视频| 欧美另类一区| 伊人久久国产一区二区| 国产精品偷伦视频观看了| 91精品伊人久久大香线蕉| 男女无遮挡免费网站观看| 欧美日韩精品成人综合77777| 女性被躁到高潮视频| 人人妻人人爽人人添夜夜欢视频| 欧美日韩亚洲国产一区二区在线观看 | 精品一品国产午夜福利视频| 国产97色在线日韩免费| 久久久精品区二区三区| 免费大片黄手机在线观看| 观看av在线不卡| 欧美国产精品va在线观看不卡| 18+在线观看网站| 七月丁香在线播放| 一边摸一边做爽爽视频免费| 日本-黄色视频高清免费观看| 亚洲国产欧美在线一区| 久久人人97超碰香蕉20202| 交换朋友夫妻互换小说| 最近中文字幕高清免费大全6| 丁香六月天网| 99香蕉大伊视频| 亚洲国产精品成人久久小说| 99国产综合亚洲精品| 成人18禁高潮啪啪吃奶动态图| 亚洲少妇的诱惑av| 国产精品成人在线| 日韩欧美精品免费久久| 少妇被粗大的猛进出69影院| 桃花免费在线播放| 丰满饥渴人妻一区二区三| 叶爱在线成人免费视频播放| 丰满迷人的少妇在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 免费播放大片免费观看视频在线观看| 在线免费观看不下载黄p国产| 美女脱内裤让男人舔精品视频| 亚洲国产精品一区三区| videos熟女内射| 最新的欧美精品一区二区| 国语对白做爰xxxⅹ性视频网站| 国产xxxxx性猛交| 91aial.com中文字幕在线观看| 亚洲欧美一区二区三区久久| 欧美黄色片欧美黄色片| 午夜激情久久久久久久| 久久精品国产亚洲av天美| av在线观看视频网站免费| 又黄又粗又硬又大视频| 国产精品麻豆人妻色哟哟久久| 男人操女人黄网站| 侵犯人妻中文字幕一二三四区| 国产精品一区二区在线观看99| 欧美少妇被猛烈插入视频| 成年av动漫网址| 91午夜精品亚洲一区二区三区| 多毛熟女@视频| 国产在线一区二区三区精| 成人毛片a级毛片在线播放| 免费观看无遮挡的男女| 亚洲欧美成人精品一区二区| 中文字幕色久视频| 久久精品国产a三级三级三级| av在线观看视频网站免费| 99久久精品国产国产毛片| 高清视频免费观看一区二区| 日韩三级伦理在线观看| 久久久久久久国产电影| 亚洲精品久久久久久婷婷小说| 高清不卡的av网站| 熟女av电影| 亚洲av福利一区| 女人被躁到高潮嗷嗷叫费观| 日韩人妻精品一区2区三区| 国产免费一区二区三区四区乱码| 黄色配什么色好看| 丰满迷人的少妇在线观看| 日本欧美视频一区| 日产精品乱码卡一卡2卡三| 老司机亚洲免费影院| 人人妻人人澡人人爽人人夜夜| 激情五月婷婷亚洲| 巨乳人妻的诱惑在线观看| 亚洲美女视频黄频| 女人被躁到高潮嗷嗷叫费观| 免费人妻精品一区二区三区视频| 国产精品久久久久成人av| 亚洲中文av在线| 国产精品 欧美亚洲| 午夜影院在线不卡| 超色免费av| 国产精品久久久久久精品电影小说| 欧美日韩综合久久久久久| 精品少妇久久久久久888优播| h视频一区二区三区| av片东京热男人的天堂| 成年av动漫网址| 中文字幕人妻丝袜制服| 丰满迷人的少妇在线观看| 精品人妻偷拍中文字幕| 不卡av一区二区三区| 人人妻人人澡人人爽人人夜夜| 国产日韩一区二区三区精品不卡| 成人午夜精彩视频在线观看| 日日撸夜夜添| 国产精品久久久久久精品电影小说| 丝袜美腿诱惑在线| 久久久久人妻精品一区果冻| 少妇的逼水好多| 久久人人爽av亚洲精品天堂| 久久久国产精品麻豆| 99九九在线精品视频| 叶爱在线成人免费视频播放| 人妻少妇偷人精品九色| 久久久久久久久久久久大奶| 另类精品久久| 最新中文字幕久久久久| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产一区二区精华液| 国产不卡av网站在线观看| 国产成人av激情在线播放| 美女高潮到喷水免费观看| 99久久综合免费| 亚洲第一区二区三区不卡| 中文乱码字字幕精品一区二区三区| 亚洲精品自拍成人| 18禁动态无遮挡网站| 国产成人91sexporn| 巨乳人妻的诱惑在线观看| 久久久精品94久久精品| 久久精品国产亚洲av涩爱| 中文字幕av电影在线播放| 黑丝袜美女国产一区| 在线 av 中文字幕| 国产精品成人在线| 亚洲国产精品国产精品| 欧美日韩亚洲国产一区二区在线观看 | 黄片播放在线免费| 亚洲av电影在线进入| 99久国产av精品国产电影| www日本在线高清视频| 亚洲av日韩在线播放| 亚洲欧美一区二区三区国产| 欧美人与性动交α欧美精品济南到 | www.av在线官网国产| 午夜老司机福利剧场| 大话2 男鬼变身卡| 丰满饥渴人妻一区二区三| 成人国产麻豆网| 一级爰片在线观看| av天堂久久9| 美女高潮到喷水免费观看| 夜夜骑夜夜射夜夜干| 成人毛片a级毛片在线播放| 在线观看www视频免费| 久久精品国产自在天天线| 午夜福利视频在线观看免费| 男女高潮啪啪啪动态图| 国产欧美亚洲国产| 欧美国产精品va在线观看不卡| 亚洲精品久久久久久婷婷小说| 午夜精品国产一区二区电影| 亚洲av福利一区| 亚洲第一青青草原| 99九九在线精品视频| 中文天堂在线官网| 欧美日韩亚洲高清精品| 国产精品亚洲av一区麻豆 | 亚洲精品自拍成人| 18禁观看日本| 2018国产大陆天天弄谢| 精品人妻熟女毛片av久久网站| 一级毛片我不卡| 久久久亚洲精品成人影院| 999精品在线视频| 女人精品久久久久毛片| kizo精华| av国产久精品久网站免费入址| 久久久久久久久久久久大奶| 亚洲国产成人一精品久久久| 午夜激情久久久久久久| 不卡视频在线观看欧美| 亚洲av免费高清在线观看| 免费人妻精品一区二区三区视频| 亚洲国产精品国产精品| av一本久久久久| 国产一区二区激情短视频 | 国产精品成人在线| 丁香六月天网| 国产日韩一区二区三区精品不卡| 成人亚洲欧美一区二区av| 亚洲欧美精品综合一区二区三区 | 日韩中文字幕欧美一区二区 | 一级片免费观看大全| 亚洲国产欧美日韩在线播放| 少妇的丰满在线观看| 尾随美女入室| 天天躁日日躁夜夜躁夜夜| 老鸭窝网址在线观看| 国产一级毛片在线| 亚洲av福利一区| 另类亚洲欧美激情| 好男人视频免费观看在线| a级毛片在线看网站| 国产爽快片一区二区三区| 又粗又硬又长又爽又黄的视频| 99re6热这里在线精品视频| 一区二区三区乱码不卡18| 男女边摸边吃奶| 精品99又大又爽又粗少妇毛片| 熟女少妇亚洲综合色aaa.| 日韩,欧美,国产一区二区三区| 老司机亚洲免费影院| 国产 一区精品| 国产日韩欧美在线精品| 国产成人av激情在线播放| 免费观看av网站的网址| 国产精品久久久久久精品古装| 日韩三级伦理在线观看| 不卡视频在线观看欧美| 久久久久网色| 国产极品粉嫩免费观看在线| 久久婷婷青草| av卡一久久| 亚洲精品自拍成人| 亚洲伊人色综图| 中文字幕最新亚洲高清| 99精国产麻豆久久婷婷| 性色av一级| 成年女人毛片免费观看观看9 | 午夜精品国产一区二区电影| www.精华液| 女性生殖器流出的白浆| 日本欧美国产在线视频| 两性夫妻黄色片| 午夜影院在线不卡| 啦啦啦中文免费视频观看日本| 午夜福利网站1000一区二区三区| 久久久久久久大尺度免费视频| 777米奇影视久久| 久久久久国产网址| 国产成人aa在线观看| 亚洲国产av影院在线观看| 亚洲精华国产精华液的使用体验| 午夜福利影视在线免费观看| 如日韩欧美国产精品一区二区三区| 亚洲第一av免费看| 日日摸夜夜添夜夜爱| 天天躁夜夜躁狠狠久久av| 久久精品国产a三级三级三级| 国产高清国产精品国产三级| 国产av码专区亚洲av| 免费看av在线观看网站| 久久久国产一区二区| 国产精品.久久久| av女优亚洲男人天堂| 搡女人真爽免费视频火全软件| 国产av一区二区精品久久| 亚洲欧美一区二区三区久久| 街头女战士在线观看网站| 久久国产精品男人的天堂亚洲| 黄色怎么调成土黄色| 交换朋友夫妻互换小说| 亚洲图色成人| 黑人欧美特级aaaaaa片| 高清黄色对白视频在线免费看| 男人舔女人的私密视频| av天堂久久9| 成年美女黄网站色视频大全免费| 中文字幕亚洲精品专区| av一本久久久久| 日本免费在线观看一区| 欧美成人精品欧美一级黄| 各种免费的搞黄视频| 日本黄色日本黄色录像| 国产精品免费视频内射| 桃花免费在线播放| 捣出白浆h1v1| 国产成人aa在线观看| 日韩不卡一区二区三区视频在线| 欧美老熟妇乱子伦牲交| 日韩免费高清中文字幕av| 日本av免费视频播放| 美女中出高潮动态图| 久久韩国三级中文字幕| 亚洲av国产av综合av卡| 高清在线视频一区二区三区| 国产精品一区二区在线不卡| 免费观看av网站的网址| 18禁观看日本| 国产一区二区 视频在线| 国产成人精品久久久久久| 九九爱精品视频在线观看| 精品第一国产精品| 人成视频在线观看免费观看| 欧美成人午夜免费资源| 黄片播放在线免费| 电影成人av| tube8黄色片| 在线观看免费高清a一片| 国产黄频视频在线观看| 久久婷婷青草| 国产在视频线精品| 国产极品粉嫩免费观看在线| 尾随美女入室|