• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas

    2021-04-22 05:34:24WeiQI齊巍QiuyunWANG王秋云JunfengSHAO邵俊峰AnminCHEN陳安民andMingxingJIN金明星
    Plasma Science and Technology 2021年4期
    關(guān)鍵詞:安民明星

    Wei QI(齊巍),Qiuyun WANG(王秋云),Junfeng SHAO(邵俊峰),Anmin CHEN(陳安民)and Mingxing JIN(金明星)

    1 Beijing Institute of Tracking and Telecommunications Technology,Beijing 100094,People’s Republic of China

    2 Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,People’s Republic of China

    3 State Key Laboratory of Laser Interaction With Matter & Innovation Laboratory of Electro-Optical Countermeasures Technology,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,People’s Republic of China

    Abstract The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy(LIBS)was investigated experimentally.An Al target was ablated to produce laser-induced plasma.The Al target was uniformly heated to a maximum of 250°C.The measured molecular emission was AlO(Δν=0)from the femtosecond LIBS of the Al target.The measurements indicated that the molecular emission of AlO increased as the temperature of the Al target increased.In addition,a two-temperature model was used to simulate the evolution of the electron and lattice temperature of the Al target with different initial temperatures.The simulated results showed that the electron and lattice temperatures of Al irradiated by the femtosecond laser increased as the initial temperature of the Al target increased; also,the simulated ablated depth increased.Therefore,an increase in the initial Al target temperature resulted in an enhancement in the spectral signal of AlO from the femtosecond LIBS of Al,which was directly related to the increase in the size of the ablated crater.The study suggested that increasing the temperature of the target improves the intensity of molecular emission in femtosecond LIBS.

    Keywords:laser-induced breakdown spectroscopy,femtosecond laser,sample temperature,AlO

    1.Introduction

    Laser-induced breakdown spectroscopy(LIBS)is an analytical technique that has been used for many years[1-4].It is essentially a spectroscopic technique due to the analysis of spectral signals from laser-induced plasmas.It is easy to understand the physical process of LIBS.A high-energy laser pulse is converged at a material that can be solid,liquid,or gas[5-10].The material will be heated rapidly,vaporized,dissociated,and ionized,generating hot luminous plasma with a high temperature and a high density.When the laser pulse terminates,the plasma begins to cool in the ambient atmosphere or in a vacuum.The electrons of the atoms and ions at the excited states in the plasma transit to low states,producing a characteristic optical emission signal,which includes discrete lines,bands,and continua[11-13].The characteristic emission is related to the natural properties of the material.Therefore,LIBS can provide qualitative and quantitative information on the material.

    With the development of the LIBS technique,many studies on LIBS have begun to focus on molecular emission from laser-induced plasma[14,15].The molecular emission technique can be used for the detection and analysis of organic materials including nitrocompounds,polymers,explosives,and biological samples[16].Zhao et al demonstrated atomic and molecular spectra of laser-ablated nitromethane[17],discussing the time-resolved spectra and the formation mechanisms of CN and C2.Trautner et al reported laser ablation of a polyethylene sample[18],they detected and simulated C2swan and CN violet and red bands.De Lucia et al investigated the influence of variable selection on partial least squares discriminant analysis models based on LIBS[19],showing that high nitrogen molecules and some organic materials may be identified.Samuels et al used LIBS to study bacterial spores,molds,and pollens[20],finding that the bacterial spores and the molds and pollens could be discriminated by LIBS.However,as compared to traditional LIBS with a nanosecond pulse laser,LIBS studies employing a femtosecond pulsed laser have shown some advantages for exploring LIBS analysis[21-28].There are considerable physical differences between a nanosecond pulse and a femtosecond pulse for laser ablation of samples.The femtosecond laser can provide a lot of advantages in LIBS analysis,including(i)a low ablation threshold,(ii)a small heataffected zone,(iii)a high ablation efficiency,(iv)a low continuous spectrum,and(v)a long propagation distance of a few kilometers through femtosecond laser filamentation.In addition,femtosecond laser ablation generates low-temperature plasma,which is suitable for the formation of molecules in LIBS[29,30].Serrano et al discussed the effect of pulse width on the formation of diatomic molecules by femtosecond and nanosecond laser-produced plasmas[31],demonstrating that the femtosecond laser can better reflect the material structure compared with the nanosecond laser.Kalam et al investigated LIBS of six high-energy materials excited by femtosecond and nanosecond lasers[32];their results showed that molecular emission was prominent in femtosecond LIBS,while the atomic spectrum dominated nanosecond LIBS.Harilal et al compared molecular spectra from nanosecond,femtosecond,and filament-induced plasmas[33],finding that molecular temperatures were lower for femtosecond LIBS,and molecular species at early times for femtosecond LIBS compared with nanosecond LIBS could be observed.

    Figure 1.Schematic diagram of experimental setup.

    The femtosecond laser presents a good advantage for molecular detection in LIBS[21-27].In order to improve the sensitivity and practicability of femtosecond LIBS detection of molecules,it is necessary to increase the molecular emission intensity of femtosecond LIBS.From many previously published papers,several experimental techniques have been used to increase the emission intensity of LIBS[34],such as:double-pulse LIBS[35-37],spatially confined LIBS[38,39],magnetically confined LIBS[40,41],flame-enhanced LIBS[42,43],nano-particle-enhanced LIBS[44],surface-enhanced LIBS[45],and discharge-assisted LIBS[46-48].Also,increasing the sample temperature is an effective method to improve the optical signal of LIBS[49-56].Hai et al explored the influence of molybdenum-tungsten target temperature on the spectra from laser-excited molybdenumtungsten plasmas[57],finding that the spectral line emission,ablation crater,plasma temperature,and electron density increased obviously as the target was heated.Lednev et al studied the influence of low-alloy steel temperature on the laser-ablated process and detection sensitivity of LIBS[58],finding that increasing the surface temperature was beneficial in enhancing the spectral signal.Tavassoli et al investigated the influence of the aluminum sample temperature on the spectral signal of LIBS[59]; their results showed that increasing the target temperature enhanced spectral emission intensity,and thus enhanced the analysis sensitivity of the target composition.These studies discussed the relationship between atomic emission spectra and the sample temperature.It is also necessary to discuss the change in molecular emission spectra with sample temperature in femtosecond LIBS.

    This paper studies the influence of Al target temperature on the molecular emission of femtosecond laser-produced Al plasma.The emission intensity of diatomic molecular aluminum monoxide(AlO)from the Al plasma was measured at different sample temperatures.Also,we calculated the thermal dynamics of the Al target under femtosecond laser irradiation using a two-temperature equation for different Al temperatures.

    2.Experimental setup

    Figure 2.Schematic diagram of femtosecond laser irradiation of metal.

    As can be seen in figure 1,a regeneration amplified Ti:sapphire laser(Coherent,Libra)with a wavelength of 800 nm,and a pulse duration of 50 fs,was used to ablate the aluminum plate with 99.9% purity.The laser system operated in singleshot mode was fired by sending a command(‘man:trig’)to the serial port(RS232)of the synchronization and delay generator(SDG).The laser energy was attenuated to an experimental value by using a combination of half-wave plate and Glan-laser prism.Next,the pulse was converged to the target surface to produce Al plasma using a focusing lens(10 cm).The diameter of the spot on the sample surface is around 200 μm.The sample was pasted on a heating table through a high thermal conductive silica gel sheet.The heating table was placed on an X-Y-Z stage(PT3-Z8,Thorlabs)to provide a fresh surface.The sample was uniformly heated up to a maximum of 250°C.A thermocouple was used to monitor and feed back the sample temperature.Approximately 10 min was needed to stabilize the sample temperature during the heating process.The excited optical emission was collected by a lens with a focal length of 75 mm and a diameter of 50 mm,at an angle of 45° relative to the target surface and the laser beam direction was converged to an optical fiber,and was guided to a spectrometer with a grating of 1200 lines(PI-Acton,Princeton Instruments).The discrete optical emission of the spectrometer was detected on an ICCD(PI-MAX4,1024I,Princeton-Instruments).Data processing is performed by a personal computer.The pulse and the ICCD were synchronized by the SDG of the femtosecond amplification system.The gain and ICCD were adjusted to 25,and the gate delay and width were set to 500 ns and 10 μs,respectively,to optimize signal intensity,eliminate continuum emission,and avoid signal saturation.Each spectrum was an average of 80 laser pulses.All of the experiments were carried out at atmospheric pressure.

    3.Mathematical model

    When a femtosecond pulse laser interacts with metal,free electrons within the metal absorb pulse energy through the inverse bremsstrahlung absorption process.The electron temperature will rise rapidly because electron thermal capacity is very small.Then,the absorbed energy is diffused deeper into the metal through the thermal diffusion of electrons,and the electron energy obtained by absorbing laser pulse energy is transferred to the lattice through the coupling between the electrons and lattice.Considering a 1D metal film(see figure 2),the temporal and spatial variations in the electron temperature(Te)and the lattice temperature(Tl)can be expressed by a 1D two-temperature model(TTM),as follows[60-62]:

    where t is the delay time,x is the depth,Ce=Ce0Teis the electron thermal capacity[63],Clis the lattice thermal capacity,is the electron heatG0((ATe+Tl)/B+1)is the electron-lattice coupling coefconductivity,klis the lattice heat conductivity,G=ficient,and S is the laser item.

    The source(S)can be described by the following expression[64]:

    where R is the laser reflectivity,α is the laser absorption coefficient,I is the laser fluence,tpis the laser pulse width,β=4 ln(2).

    The values of R and α for a metal are mainly due to the dielectric function ε of the metal[65,66]:

    ε∞is the dielectric constant,ω is the light frequency.is the plasma frequency,ne,me,and ε0are the electron density,the electron mass,and the electrical permittivity of free space,respectively.τ can be expressed by[67]

    The real and imaginary parts are[68]:

    and

    The reflectivity is dependent on n and κ

    The absorption coefficient is the dependence of κ

    where c is the speed of light in a vacuum.

    Before the femtosecond laser reaches the sample,the electron and lattice systems are the target temperature(T0),

    In the femtosecond time scale,the heat loss of the front and rear surfaces of the metal target can be neglected.The boundary conditions of equations(1)and(2)are

    where L is the metal thickness.

    Figure 3.Emission spectra of AlO(Δν=0)at different sample temperatures(25°C,100°C and 250°C).Laser energies are 1.4 mJ(a)and 1.9 mJ(b).

    4.Results and discussion

    4.1.Experimental results

    In the experiment,the femtosecond pulse ablated the Al target to produce Al plasma.The molecular emission from the Al plasma was AlO diatomic radicals.The measured molecular band was the B2Σ+-X2Σ+system with Δν=0.Figure 3 presents the spectral bands of AlO(Δν=0)at three sample temperatures(25 °C,100 °C,and 250 °C)for two laser energies(1.4 and 1.9 mJ).As can be observed from the figure,when the Al target temperature increases,the spectral emission of AlO(Δν=0)increases but there is no significant increase in the background emission.Moreover,the peak positions of AlO(0-0)and(1-1)are unchanged for different Al target temperatures.In our opinion,an enhancement in the signal-to-background ratio and,correspondingly,in the detection sensitivity,is possible by increasing the target temperature.Figure 4 shows the peak emission intensities of AlO(0-0)and(1-1)as functions of the Al target temperature for different laser energies.It can be seen that the emission intensities of AlO(0-0)and(1-1)increase monotonously when the Al target temperatures increase from 25 °C to 250°C.The emission improvement can be observed at all laser energies.The results indicate that the same,or even stronger,molecular emission from laser-induced plasma,with less laser energy and higher target temperature,can be obtained.

    Figure 4.Evolution of spectral peak intensities at AlO(0-0)and(1-1)with sample temperature.Laser energies are 0.4,0.9,1.4 and 1.9 mJ.

    Figure 5 shows the comparison between experimental and fitted spectra of the AlO(Δν=0)molecular emission band for 0.4 and 1.9 mJ laser energies and a 25 °C sample temperature.The experimental data was fitted to get the vibrational temperature by using the existing theoretical model[69].The fitted spectra are in agreement with the experimental spectra.The corresponding vibration temperatures are 3495 K and 3563 K for 0.4 and 1.9 mJ laser energies,respectively.Figure 6 shows the vibration temperature with the sample temperature for different laser energies.The changes in the vibration temperature with the sample temperature are similar to the changes in the AlO molecular emission with the sample temperature.The vibration temperature increases as the Al target temperature increases.Obviously,the increase in the Al target temperature enhances the interaction between the femtosecond laser and the Al target.

    It is also interesting to see the influence of the sample temperature on the Al(I)line.Figure 7 presents the evolution of the Al(I)line with a sample temperature.As seen from the figure,the change in the Al(I)line is similar to the change in the AlO(Δν=0)band emission as the Al target temperature increases.The result is consistent with some published results for the influence of target temperature on atomic emission line[58,70-73].These published results suggested that the enhancement mechanism on the emission line is due to the enhanced coupling of laser and target.To investigate the Al target ablation,the morphology of the ablation crater by femtosecond laser was measured by an optical microscope.Figure 8 presents the morphologies of the ablation craters for 0.9 and 1.9 mJ laser energies at 25 °C and 250 °C Al target temperatures.It can be observed that the ablation of the Al target surface is more obvious at high target temperature(250 °C)compared to that at low target temperature(25 °C).At the same time,compared with the melting phenomenon at 0.9 and 1.9 mJ energies,the melting phenomenon in the ablation crater at high energy is more obvious.This shows that increasing the Al target temperature enhances the absorption of femtosecond laser energy,and the energy needed for the Al target to melt also decreases,which makes the femtosecond laser ablation more obvious.In addition,the higher target temperature can result in a decrease in air density near the target surface,which may influence the expansion of the plasma plume;also,the change in air density will cause the change in the refractive index of air,which may lead to the change in the laser focusing condition.The two factors may influence the spectral emission intensity,and further experiments are required to be able to discuss this in detail.

    Figure 5.Comparison between typical experimental and fitted AlO(Δν=0)emission bands for 0.4(a)and 1.9(b)mJ laser energies and a 25 °C sample temperature.

    Figure 6.Evolution of vibration temperature with sample temperature.

    Figure 7.Evolution of Al(I)line with sample temperature.(a)Spectra for different sample temperatures at 1.9 mJ laser energy,(b)Al(I)394.4 nm peak intensities as a function of sample temperature.

    Figure 8.Morphologies of ablation craters by femtosecond laser for 0.9 and 1.9 mJ laser energies at 25°C and 250°C Al target temperatures.

    Table 1.Thermal and optical coefficients of Al used in TTM.

    4.2.Simulated results

    The experimental results mentioned above display an efficient enhancement in the molecular emission intensity with increasing target temperature.On the other hand,in theory,the increase in the intensity of the molecular band comes from the increase in the number of molecules.Obviously,the most direct way to increase molecular emission intensity is to increase the number of molecules.To increase the number of molecules,the ablation mass needs to be improved.At the same laser energy,increasing the target temperature enhances the interaction between laser and target.The ablation mass can be significantly increased by increasing the target temperature.In order to evaluate the effect of the Al temperature on the ablation mass,we simulated the thermal dynamics of the Al target under femtosecond laser irradiation at different target temperatures using 1D TTM,as mentioned in section 3.

    For the simulation of the femtosecond pulse irradiation of Al,the laser width is 50 fs,the wavelength is 800 nm,and the simulated Al sample thickness is L=500 nm.The corresponding thermal and optical coefficients are summarized in table 1[74,75].Figure 9 shows the evolution of electron and lattice temperatures with the delay time for 25°C and 150°C sample temperatures at the sample surface.The laser fluence is 1 J cm?2.As seen in the figure,the changes in the electron and lattice temperature are different from each other.Free electrons in the metal target absorb laser energy when the laser beam irradiates the metal,and the electron temperature rises rapidly.Next,there are two main physical processes:one is the electron heat diffusion in metal; another one is the coupling of electron and lattice,electrons transfer energy to the lattice.Due to the two physical processes,the electron temperature increases in short delay time and decreases,while the lattice temperature increases slowly,and finally the electron and lattice achieve thermal equilibrium.

    Figure 9.Evolution of electron and lattice temperatures with delay time for 25 °C and 150 °C sample temperatures at sample surface.Laser fluence is 1 J cm?2.

    Figure 10.Evolution of lattice temperature with delay time for different sample temperatures at sample surface.Laser fluence is 1 J cm?2.

    In addition,the Al target temperature has a great influence on the changes in the electron and lattice temperatures.The electron temperature with the Al target temperature of 150 °C is higher than that with the Al target temperature of 25 °C.The maximum electron temperatures for 25 °C and 150 °C are 26.5×103K and 33.9×103K,respectively.The detailed changes in the lattice temperature at different sample temperatures are presented in figure 10.The surface lattice temperature becomes higher as the temperature of the Al target.The increase in the lattice temperature comes from free electrons in the metal target.Metal surface reflectivity decreases with the increase in the metal temperature.Free electrons in the Al target with higher temperature can absorb more energy from the femtosecond pulse laser.More pulse energy is transferred to the lattice,resulting in a higher lattice temperature.

    Figure 11.Distribution of lattice temperature with sample depth for different sample temperatures at 20 ps delay time.Laser fluence is 1 J cm?2.

    Figure 11 presents the evolution of the lattice temperature with the sample depth for different sample temperatures at 20 ps delay time.The laser fluence is 1 J cm?2.The initial temperature of the Al target has a great influence on the distribution of lattice temperature.When the initial target temperature increases from 25 °C to 250 °C,the surface lattice temperature rises from 4.8×103K to 10.1×103K; at 200 nm depth,the lattice temperature rises from 0.8×103K to 1.2×103K.It can be observed that the lattice temperature difference at the surface for different Al target temperatures is large,but the difference gradually decreases with the increase in the target depth,indicating that the effect of the Al sample temperature on the surface temperature is greater.When a femtosecond laser irradiates the metal surface,the electrons within the penetration depth of the target surface absorb laser energy; next,the electrons transfer the energy to a deeper target by electron thermal diffusion.More laser energy needs a longer time transfer process,so the temperature difference under higher Al temperature is bigger.Next,the ablation depth was calculated by the distribution of the lattice temperature.

    Figure 12 presents the evolution of the ablation depth with the delay time for different Al target temperatures.Here,we defined that,as the lattice temperature reached the boiling point temperature of Al,the corresponding depth was evaporated and ablated.With increasing the delay time,the ablation depth gradually increases and reaches a hundred nanometers for different sample temperatures.It is also seen that the delay time of ablation becomes short from 1.1 ps to 0.5 ps,as the Al target temperature increases from 25 °C to 250 °C,and the ablation depth becomes deeper with increasing the sample temperature.That is to say,by heating the Al target,more mass Al samples can be evaporated.The simulated result may illustrate that the improvement of the molecular emission intensity is based on the enhancement in the laser ablation.The calculated results are in agreement with the experimental results(see figure 8).As discussed earlier,the evaporated depth of the sample is proportional to the molecular number within the plasma;the molecular number is proportional to the spectral emission.Thus,the improvement in the evaporated depth leads to an increase in the spectral band emission.Due to the experimental and simulated results,we can draw a conclusion that increasing the sample temperature can improve the molecular emission and the ablation depth.

    Figure 12.Evolution of ablation depth with delay time for different sample temperatures.Laser fluence is 1 J cm?2.

    5.Conclusion

    We studied the influence of the target temperature on the AlO molecular signal from the femtosecond LIBS of Al.The emission intensity of AlO(Δν=0)was measured at different target temperatures.The measured results showed that,as the Al target temperature increased,the spectral emission of AlO increased,but there was no significant increase in the background emission.In addition,the TTM was used to simulate the thermal dynamics of Al under femtosecond pulse laser irradiation for different Al target temperatures.The electron and lattice temperatures increased as the Al target temperature increased.Moreover,the ablation depth became deeper for higher Al target temperatures.A greater mass of Al material would be evaporated by raising the Al temperature.The simulated result illustrated that improvement in the molecular emission intensity is based on enhancement of the evaporated volume.

    Acknowledgments

    We acknowledge the support by Scientific and Technological Research Project of the Education Department of Jilin Province,China(No.JJKH20200937KJ),and National Natural Science Foundation of China(Nos.11674128,11674124,and 11974138).

    猜你喜歡
    安民明星
    THE EXISTENCE AND NON-EXISTENCE OFSIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN*
    打羽毛球
    明星猝死背后
    南方周末(2019-11-28)2019-11-28 08:37:59
    易安民聲
    易安民聲
    交通安全小明星
    幼兒園(2017年23期)2018-02-07 15:26:54
    明星們愛用什么健身APP
    Coco薇(2017年2期)2017-04-25 03:02:27
    扒一扒明星們的
    Coco薇(2016年10期)2016-11-29 16:59:54
    龔遂治亂安民的“高招”
    誰(shuí)是大明星
    国产成人a∨麻豆精品| 卡戴珊不雅视频在线播放| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品久久久久久婷婷小说| 超色免费av| 日韩不卡一区二区三区视频在线| 啦啦啦在线观看免费高清www| 我的亚洲天堂| 中文字幕高清在线视频| 国产黄色视频一区二区在线观看| 国产成人欧美| 国产成人系列免费观看| 午夜福利一区二区在线看| videosex国产| 久久久亚洲精品成人影院| 看非洲黑人一级黄片| 十分钟在线观看高清视频www| 国产人伦9x9x在线观看| 丰满少妇做爰视频| 九色亚洲精品在线播放| 免费黄网站久久成人精品| 久久精品aⅴ一区二区三区四区| 在线天堂中文资源库| 高清黄色对白视频在线免费看| 欧美人与性动交α欧美精品济南到| 亚洲av福利一区| 综合色丁香网| 久久精品亚洲熟妇少妇任你| 无限看片的www在线观看| 久久久久网色| 狠狠精品人妻久久久久久综合| 久热这里只有精品99| 久久女婷五月综合色啪小说| 久久久亚洲精品成人影院| 国产一区二区在线观看av| 亚洲国产精品一区三区| 日韩免费高清中文字幕av| 妹子高潮喷水视频| 日韩视频在线欧美| 女性生殖器流出的白浆| 丝袜人妻中文字幕| 在线观看三级黄色| 在线观看免费高清a一片| 亚洲精品成人av观看孕妇| 亚洲成人免费av在线播放| 久久精品国产亚洲av涩爱| 欧美精品人与动牲交sv欧美| 亚洲欧洲国产日韩| 久久影院123| av女优亚洲男人天堂| 国产深夜福利视频在线观看| 国产精品国产av在线观看| 高清视频免费观看一区二区| 国产淫语在线视频| 色网站视频免费| 欧美精品一区二区免费开放| 欧美中文综合在线视频| 日韩欧美精品免费久久| 亚洲国产欧美日韩在线播放| 国产精品久久久人人做人人爽| 欧美日韩亚洲综合一区二区三区_| 两性夫妻黄色片| 亚洲国产中文字幕在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲色图综合在线观看| 久久久久久免费高清国产稀缺| 男人添女人高潮全过程视频| 国产男女超爽视频在线观看| 如日韩欧美国产精品一区二区三区| 高清av免费在线| 午夜91福利影院| 一本大道久久a久久精品| av卡一久久| 精品国产超薄肉色丝袜足j| 美女中出高潮动态图| 人体艺术视频欧美日本| 婷婷色综合大香蕉| 成人18禁高潮啪啪吃奶动态图| 在线 av 中文字幕| 十八禁高潮呻吟视频| 国产探花极品一区二区| 汤姆久久久久久久影院中文字幕| 亚洲av福利一区| 欧美乱码精品一区二区三区| 亚洲国产欧美日韩在线播放| 欧美人与善性xxx| 人成视频在线观看免费观看| 一区二区三区精品91| 国产亚洲欧美精品永久| 亚洲婷婷狠狠爱综合网| 飞空精品影院首页| 欧美激情 高清一区二区三区| 大话2 男鬼变身卡| 亚洲精品乱久久久久久| 色播在线永久视频| 999久久久国产精品视频| 亚洲国产精品999| 国产精品久久久久久人妻精品电影 | av网站免费在线观看视频| 成人国产av品久久久| 97人妻天天添夜夜摸| 人人妻,人人澡人人爽秒播 | 亚洲国产最新在线播放| 97精品久久久久久久久久精品| 波多野结衣av一区二区av| 伦理电影大哥的女人| 亚洲人成电影观看| 午夜激情久久久久久久| 高清欧美精品videossex| 国产欧美日韩一区二区三区在线| 熟女av电影| 一级片免费观看大全| 视频区图区小说| 久久久久人妻精品一区果冻| 老司机亚洲免费影院| 中文字幕亚洲精品专区| 蜜桃在线观看..| 满18在线观看网站| 亚洲在久久综合| 欧美激情 高清一区二区三区| 亚洲av国产av综合av卡| 久久久久精品国产欧美久久久 | 欧美国产精品一级二级三级| 国产无遮挡羞羞视频在线观看| 不卡视频在线观看欧美| 国产成人91sexporn| 亚洲自偷自拍图片 自拍| 亚洲精品久久成人aⅴ小说| 色精品久久人妻99蜜桃| 黄片播放在线免费| 免费黄网站久久成人精品| 在线天堂最新版资源| xxx大片免费视频| 免费黄色在线免费观看| 亚洲精品美女久久av网站| 日韩制服骚丝袜av| 91精品伊人久久大香线蕉| 美女视频免费永久观看网站| 日本黄色日本黄色录像| 成人黄色视频免费在线看| 国产日韩一区二区三区精品不卡| 亚洲欧美激情在线| 亚洲视频免费观看视频| 美女高潮到喷水免费观看| 午夜av观看不卡| 久久综合国产亚洲精品| 日韩中文字幕欧美一区二区 | av有码第一页| 免费观看a级毛片全部| 日韩成人av中文字幕在线观看| 亚洲精品在线美女| 国产一区二区三区综合在线观看| 99热国产这里只有精品6| 成年女人毛片免费观看观看9 | 三上悠亚av全集在线观看| 欧美日本中文国产一区发布| 中文字幕人妻熟女乱码| 热re99久久国产66热| 久久精品国产a三级三级三级| 伦理电影大哥的女人| 国产国语露脸激情在线看| 啦啦啦在线免费观看视频4| 热re99久久精品国产66热6| 考比视频在线观看| 只有这里有精品99| 看免费av毛片| 欧美成人精品欧美一级黄| 日韩,欧美,国产一区二区三区| 男女之事视频高清在线观看 | 美女主播在线视频| 丝瓜视频免费看黄片| 黄色视频不卡| 国产极品粉嫩免费观看在线| 亚洲精品久久午夜乱码| 中文字幕制服av| 秋霞伦理黄片| 91精品三级在线观看| 观看av在线不卡| 啦啦啦视频在线资源免费观看| 在线亚洲精品国产二区图片欧美| 免费高清在线观看日韩| 99热网站在线观看| 亚洲婷婷狠狠爱综合网| 男女午夜视频在线观看| 日韩熟女老妇一区二区性免费视频| 日韩伦理黄色片| 日日爽夜夜爽网站| 涩涩av久久男人的天堂| 中文字幕另类日韩欧美亚洲嫩草| 狂野欧美激情性xxxx| 一本久久精品| 精品亚洲成a人片在线观看| 99国产综合亚洲精品| 免费高清在线观看视频在线观看| 亚洲情色 制服丝袜| 国产精品一二三区在线看| 亚洲国产精品999| 欧美人与性动交α欧美精品济南到| av国产精品久久久久影院| 中文字幕制服av| 免费高清在线观看日韩| 爱豆传媒免费全集在线观看| 国产老妇伦熟女老妇高清| 青春草视频在线免费观看| 成人毛片60女人毛片免费| 国产激情久久老熟女| 777久久人妻少妇嫩草av网站| 久久狼人影院| 亚洲av中文av极速乱| 精品第一国产精品| 日韩制服丝袜自拍偷拍| 欧美激情高清一区二区三区 | 97精品久久久久久久久久精品| 国产又色又爽无遮挡免| 成人手机av| 一二三四中文在线观看免费高清| 亚洲图色成人| 国产成人精品久久二区二区91 | 国产精品蜜桃在线观看| 国产精品.久久久| 中国三级夫妇交换| 最近2019中文字幕mv第一页| 欧美黑人欧美精品刺激| 99精品久久久久人妻精品| netflix在线观看网站| 亚洲国产毛片av蜜桃av| 国产福利在线免费观看视频| 亚洲精品久久午夜乱码| 国产野战对白在线观看| 午夜福利网站1000一区二区三区| 国产精品一区二区在线不卡| 如何舔出高潮| 最近中文字幕2019免费版| 久久久久国产一级毛片高清牌| 欧美日韩精品网址| 另类亚洲欧美激情| 国产欧美日韩综合在线一区二区| 国产视频首页在线观看| 国产精品久久久久久久久免| 中文字幕另类日韩欧美亚洲嫩草| svipshipincom国产片| 国产精品久久久久久精品古装| 亚洲国产日韩一区二区| 爱豆传媒免费全集在线观看| 国产日韩欧美视频二区| 国产精品.久久久| 可以免费在线观看a视频的电影网站 | 在线观看www视频免费| 女性生殖器流出的白浆| 一本—道久久a久久精品蜜桃钙片| 在现免费观看毛片| 欧美人与善性xxx| 日韩精品有码人妻一区| 一本大道久久a久久精品| 亚洲人成网站在线观看播放| 一区在线观看完整版| 日韩欧美精品免费久久| 免费黄频网站在线观看国产| 亚洲人成电影观看| 精品卡一卡二卡四卡免费| 国产亚洲av片在线观看秒播厂| 日韩一本色道免费dvd| 国产99久久九九免费精品| 极品少妇高潮喷水抽搐| 亚洲av国产av综合av卡| 2018国产大陆天天弄谢| 黄色 视频免费看| 免费观看人在逋| 欧美另类一区| 飞空精品影院首页| 你懂的网址亚洲精品在线观看| 久久久精品94久久精品| 伊人久久国产一区二区| av网站免费在线观看视频| 最近中文字幕高清免费大全6| 极品少妇高潮喷水抽搐| 日韩伦理黄色片| 国产精品国产三级国产专区5o| 中文字幕另类日韩欧美亚洲嫩草| 美女福利国产在线| 欧美人与善性xxx| 国产精品 欧美亚洲| 国产日韩欧美亚洲二区| 观看av在线不卡| 国产日韩欧美视频二区| 母亲3免费完整高清在线观看| 咕卡用的链子| 亚洲av日韩精品久久久久久密 | 9191精品国产免费久久| 精品少妇黑人巨大在线播放| 成人影院久久| 美女午夜性视频免费| 精品一区二区免费观看| 国产精品蜜桃在线观看| 青草久久国产| 一级a爱视频在线免费观看| 精品免费久久久久久久清纯 | 免费黄频网站在线观看国产| 日本wwww免费看| 妹子高潮喷水视频| 亚洲av国产av综合av卡| 水蜜桃什么品种好| 高清黄色对白视频在线免费看| 99九九在线精品视频| 日本黄色日本黄色录像| 两个人看的免费小视频| 少妇被粗大的猛进出69影院| 午夜激情久久久久久久| 亚洲欧美色中文字幕在线| 国产麻豆69| 老司机靠b影院| 一级,二级,三级黄色视频| 久久精品亚洲熟妇少妇任你| 国产野战对白在线观看| 欧美人与性动交α欧美精品济南到| 韩国av在线不卡| 男的添女的下面高潮视频| 我要看黄色一级片免费的| 成人免费观看视频高清| 丁香六月欧美| 欧美激情极品国产一区二区三区| 黄片播放在线免费| 亚洲成人国产一区在线观看 | 一边摸一边做爽爽视频免费| 美女大奶头黄色视频| 国产精品熟女久久久久浪| 99国产综合亚洲精品| 毛片一级片免费看久久久久| 亚洲中文av在线| 观看美女的网站| 久久毛片免费看一区二区三区| 大片电影免费在线观看免费| 国产一区有黄有色的免费视频| 99久久精品国产亚洲精品| 亚洲美女搞黄在线观看| 看非洲黑人一级黄片| 美女视频免费永久观看网站| 国产精品无大码| 亚洲欧美激情在线| 婷婷色麻豆天堂久久| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版| 99久国产av精品国产电影| 国产av精品麻豆| 毛片一级片免费看久久久久| 久久精品人人爽人人爽视色| 嫩草影院入口| 亚洲中文av在线| 丁香六月欧美| 成人免费观看视频高清| 国产成人a∨麻豆精品| 精品酒店卫生间| 看免费av毛片| 九草在线视频观看| 久久热在线av| 久久亚洲国产成人精品v| 国产亚洲最大av| avwww免费| 99精国产麻豆久久婷婷| 一本久久精品| 天堂中文最新版在线下载| 日韩免费高清中文字幕av| 人体艺术视频欧美日本| 国产在视频线精品| 亚洲欧美一区二区三区黑人| 一本大道久久a久久精品| 香蕉丝袜av| 午夜福利影视在线免费观看| 男女之事视频高清在线观看 | 国产乱来视频区| 十八禁人妻一区二区| 侵犯人妻中文字幕一二三四区| 久久国产精品大桥未久av| 99九九在线精品视频| 亚洲成人av在线免费| 99久久99久久久精品蜜桃| 国产免费现黄频在线看| av国产久精品久网站免费入址| 午夜福利免费观看在线| av卡一久久| 亚洲成人av在线免费| 一本久久精品| 国产成人精品久久二区二区91 | 在线天堂最新版资源| 亚洲精品国产av成人精品| av.在线天堂| 欧美国产精品va在线观看不卡| 亚洲国产精品一区二区三区在线| 97人妻天天添夜夜摸| a级毛片在线看网站| a 毛片基地| 亚洲精品视频女| 亚洲五月色婷婷综合| 十八禁人妻一区二区| 国产无遮挡羞羞视频在线观看| 免费观看a级毛片全部| 国产欧美日韩一区二区三区在线| 日韩一卡2卡3卡4卡2021年| videos熟女内射| 色吧在线观看| 美女中出高潮动态图| 免费av中文字幕在线| 久热这里只有精品99| 欧美精品av麻豆av| 国产探花极品一区二区| av卡一久久| 国产熟女欧美一区二区| 一边摸一边抽搐一进一出视频| 日韩一本色道免费dvd| 欧美成人午夜精品| 观看av在线不卡| 国产深夜福利视频在线观看| 各种免费的搞黄视频| 男女无遮挡免费网站观看| 一级片'在线观看视频| 精品一品国产午夜福利视频| 丰满迷人的少妇在线观看| 不卡视频在线观看欧美| 精品卡一卡二卡四卡免费| 国产有黄有色有爽视频| 欧美日韩精品网址| 两性夫妻黄色片| 999久久久国产精品视频| 亚洲伊人久久精品综合| 久久国产精品男人的天堂亚洲| 美女扒开内裤让男人捅视频| 蜜桃在线观看..| 久久久久久久精品精品| 国产男女超爽视频在线观看| 亚洲自偷自拍图片 自拍| 男女免费视频国产| 国产乱来视频区| 婷婷色综合大香蕉| 丁香六月天网| 日韩av免费高清视频| 久久久欧美国产精品| 国产一区二区 视频在线| 在线天堂中文资源库| netflix在线观看网站| 国产免费福利视频在线观看| 欧美精品亚洲一区二区| 一区在线观看完整版| 国产精品一二三区在线看| 亚洲色图 男人天堂 中文字幕| www.自偷自拍.com| av又黄又爽大尺度在线免费看| 两个人免费观看高清视频| 青青草视频在线视频观看| 欧美激情极品国产一区二区三区| 中文字幕精品免费在线观看视频| 久久久久久久久久久久大奶| 美女视频免费永久观看网站| 国产97色在线日韩免费| 新久久久久国产一级毛片| 中国三级夫妇交换| 在线看a的网站| 9热在线视频观看99| 1024视频免费在线观看| 午夜精品国产一区二区电影| 狂野欧美激情性xxxx| 国产精品久久久人人做人人爽| 青青草视频在线视频观看| 亚洲成色77777| 老司机影院成人| 日韩av在线免费看完整版不卡| 在线观看www视频免费| 亚洲av成人精品一二三区| 在线观看人妻少妇| 黑人猛操日本美女一级片| 不卡视频在线观看欧美| 一本大道久久a久久精品| 亚洲精品自拍成人| 久久久久久人妻| 国产精品人妻久久久影院| 亚洲视频免费观看视频| 日日爽夜夜爽网站| 满18在线观看网站| 亚洲成人一二三区av| 精品国产一区二区久久| 国产色婷婷99| av天堂久久9| 成人免费观看视频高清| 曰老女人黄片| 欧美日韩一级在线毛片| 国产色婷婷99| 亚洲精品久久午夜乱码| 成年美女黄网站色视频大全免费| 亚洲五月色婷婷综合| 99热国产这里只有精品6| 国产一区有黄有色的免费视频| 久久ye,这里只有精品| 在线天堂中文资源库| 中文字幕精品免费在线观看视频| av在线观看视频网站免费| 丝瓜视频免费看黄片| 免费久久久久久久精品成人欧美视频| 人人妻人人爽人人添夜夜欢视频| 精品久久久精品久久久| 日韩大码丰满熟妇| 嫩草影视91久久| 国产男女内射视频| 十八禁网站网址无遮挡| 热99国产精品久久久久久7| 亚洲精品,欧美精品| 亚洲精品一区蜜桃| 国产亚洲午夜精品一区二区久久| 成年人免费黄色播放视频| 中文字幕精品免费在线观看视频| 国产精品偷伦视频观看了| 精品人妻一区二区三区麻豆| 免费av中文字幕在线| 伦理电影大哥的女人| av女优亚洲男人天堂| 哪个播放器可以免费观看大片| 国产亚洲精品第一综合不卡| 亚洲av电影在线观看一区二区三区| 90打野战视频偷拍视频| 一级a爱视频在线免费观看| 国产国语露脸激情在线看| 搡老岳熟女国产| 欧美日韩视频高清一区二区三区二| 精品国产露脸久久av麻豆| 免费黄色在线免费观看| 日韩一卡2卡3卡4卡2021年| 秋霞伦理黄片| 男男h啪啪无遮挡| 亚洲国产欧美一区二区综合| www.自偷自拍.com| 激情五月婷婷亚洲| 久久久国产精品麻豆| 亚洲精品日本国产第一区| 免费人妻精品一区二区三区视频| 国产乱人偷精品视频| 久久ye,这里只有精品| 黑丝袜美女国产一区| 99热全是精品| 亚洲伊人久久精品综合| 亚洲精华国产精华液的使用体验| 亚洲国产欧美网| 这个男人来自地球电影免费观看 | 熟女少妇亚洲综合色aaa.| 在线天堂中文资源库| 亚洲自偷自拍图片 自拍| 日本av免费视频播放| 久久国产精品男人的天堂亚洲| 欧美日韩视频高清一区二区三区二| 免费观看av网站的网址| 超碰97精品在线观看| 亚洲国产欧美在线一区| 九草在线视频观看| 亚洲国产精品成人久久小说| 视频区图区小说| 久热这里只有精品99| 色播在线永久视频| 18在线观看网站| 十八禁高潮呻吟视频| 国产男女内射视频| 欧美激情极品国产一区二区三区| 日韩 亚洲 欧美在线| 亚洲欧洲国产日韩| 亚洲欧美成人精品一区二区| 无限看片的www在线观看| 午夜av观看不卡| 国产淫语在线视频| 精品少妇内射三级| 超色免费av| 亚洲欧美色中文字幕在线| 免费观看性生交大片5| 男的添女的下面高潮视频| www.自偷自拍.com| 制服人妻中文乱码| 中文字幕人妻丝袜制服| 国产无遮挡羞羞视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人精品福利久久| 欧美精品亚洲一区二区| 免费不卡黄色视频| 尾随美女入室| 女性被躁到高潮视频| 少妇被粗大猛烈的视频| 另类亚洲欧美激情| 国产在视频线精品| 婷婷色综合大香蕉| 亚洲人成网站在线观看播放| 最近手机中文字幕大全| 国产 一区精品| 日韩精品免费视频一区二区三区| 亚洲婷婷狠狠爱综合网| 久久性视频一级片| 国产精品香港三级国产av潘金莲 | 乱人伦中国视频| 久久久久人妻精品一区果冻| 亚洲欧美一区二区三区黑人| 男人舔女人的私密视频| 精品一区在线观看国产| 男女之事视频高清在线观看 | 国产淫语在线视频| 精品国产国语对白av| 成人手机av| h视频一区二区三区| 天天躁日日躁夜夜躁夜夜| 免费观看a级毛片全部| 午夜福利一区二区在线看| 午夜福利影视在线免费观看| 婷婷色综合大香蕉| 国产成人午夜福利电影在线观看| 免费在线观看视频国产中文字幕亚洲 | 精品人妻熟女毛片av久久网站| 亚洲国产精品成人久久小说| 99久久精品国产亚洲精品| 老汉色av国产亚洲站长工具| 一级a爱视频在线免费观看| 国产成人欧美在线观看 | 一区二区av电影网| 一本一本久久a久久精品综合妖精|