• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of ion cyclotron wave heating in the EXL-50U spherical tokamak based on dispersion relations

    2024-03-19 02:36:52HaojieMA馬好杰HuashengXIE謝華生andBoLI李博
    Plasma Science and Technology 2024年2期
    關(guān)鍵詞:李博

    Haojie MA (馬好杰),Huasheng XIE (謝華生) and Bo LI (李博),*

    1 School of Physics,Beihang University,Beijing 100191,People’s Republic of China

    2 Hebei Key Laboratory of Compact Fusion,Langfang 065001,People’s Republic of China

    3 ENN Science and Technology Development Co.Ltd.,Langfang 065001,People’s Republic of China

    Abstract This study investigates the single-pass absorption (SPA) of ion cyclotron range of frequency(ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak,which is an upgraded EXL-50 device with a central solenoid and a stronger magnetic field.The reliability of the kinetic dispersion equation is confirmed by the one-dimensional full-wave code,and the applicability of Porkolab's simplified theoretical SPA model is discussed based on the kinetic dispersion equation.Simulations are conducted to investigate the heating effects of the fundamental and second harmonic frequencies.The results indicate that with the design parameters of the EXL-50U device,the SPA for second harmonic heating is 63%,while the SPA for fundamental heating is 13%.Additionally,the optimal injection frequencies are 23 MHz at 0.9 T and 31 MHz at 1.2 T.The wave vector of the antenna parallel to the magnetic field,with a value of k‖=7.5 m-1,falls within the optimal heating region.Simulations reveal that the ICRF heating system can play an important role in the ion heating of the EXL-50U.

    Keywords: ion cyclotron range of frequency,single-pass absorption,spherical tokamak

    1.Introduction

    The spherical tokamak is a promising candidate for achieving controlled nuclear fusion with high beta [1-3].The EXL-50U is an upgraded device of the EXL-50 spherical tokamak [4-6],having a central solenoid and a stronger magnetic field,that was designed to enhance the plasma performance.The primary objectives of the EXL-50U device are to achieve ion temperatures between 2 and 5 keV and to ensure that the ion temperature in the plasma core exceeds the electron temperature,with a target ratio ofTi/Te~1.5 [6].

    Auxiliary heating power is crucial,especially for spherical tokamaks,which have limited internal space and which results in a small volt-seconds value for the central solenoid[7].Ion cyclotron range of frequency (ICRF) heating is the only auxiliary heating method that directly heats ions [8-13],making it a critical component in achieving high ion temperatures.Single-pass absorption (SPA) analysis provides a convenient method to quickly understand heating effects,and provides the total absorption proportions,which are not available with a full-wave code [14-17].The fundamental theory of ICRF fast wave heating in toroidal plasma is extended in [14,15],where Porkolab’s simplified theoretical SPA model is obtained based on the local approximation of the real and imaginary parts of the wave dispersion relation.Additionally,the absorption of ICRF fast waves with moderate to high ion cyclotron harmonics on DIII-D [16]and the ICRF heating effect of the HL-2M device were investigated using Porkolab’s SPA model [17].The SPA was calculated using the method and equations in [14] and used to evaluate ICRF core wave absorption in SPARC [18,19].Recently,the BON code for calculating the dispersion equation has been developed and initially used to analyze the accessibility of ion cyclotron waves [20].The dispersion relation is also widely used in the analysis of ICRF heating[8,21-24].

    Similar to other tokamaks [1-3],the plasma pre-heating scheme for the EXL-50U experiment involves using ohmic heating of the central solenoid to generate the initial plasma,followed by primarily utilizing a 2 MW neutral beam injection heating system.Additionally,ICRF heating will be attempted to achieve the main parameters [6].The 3-26 MHz ICRF system with a power of 100 kW was initially tested in the EXL-50 experiment,and is scheduled to be installed in the EXL-50U.Additionally,a 2 MW ICRF system with 10-40 MHz is being designed.In this work,the kinetic dispersion relations and the SPA at the mid-plane are obtained using the BON code [20].The on-axis heating SPAs of hydrogen plasma at fundamental and second harmonic frequencies in EXL-50U are calculated to evaluate the heating effect of ICRF.Moreover,optimalk‖and wave frequencies are provided for the experiments.The applicability of Porkolab’s simplified theoretical SPA model is discussed in comparison with the results obtained from the BON code.Furthermore,the absorption partitions of each species are shown using the SEMAL code,which solves the linearized Vlasov-Maxwell wave equation for all orders on the Larmor radius [25-28].

    This paper is organized as follows.The physical model is introduced in section 2.The heating schemes at a magnetic field of 0.9 T are presented in section 3,while the heating schemes at a magnetic field of 1.2 T are discussed in section 4.A summary and discussion of the results are presented in section 5.

    2.Physical model description

    2.1.Introduction of BON code

    The BON code is used for calculating the dispersion relations with the cold,warm multi-fluid and kinetic model [20].The kinetic dispersion relation,which is based on the Maxwell distribution,is utilized in this study to calculate the SPA heating effects of the ICRF,with

    Here,Zis the dispersion function and the subscriptsindicates the species,Γn(b)=In(b)e-b,where ωpsand ωcsare the plasma frequencies and cyclotron frequencies of species.Inis the modified Bessel function.Lzz=1 and the other term is 0 in the tensorL.In equations (1)-(3),the plasma parameters are included in ωpsand ωcs.Given the plasma parameters,k‖and the initialk⊥,thek⊥and SPA are obtained by solving the equation (1) in BON code using a Newton iteration method,where the subscripts ‖ and ⊥ denote parallel and perpendicular to the magnetic field,respectively.

    2.2.The parameters and profiles of the EXL-50U device

    As illustrated in table 1,the two main sets of plasma parameters for the EXL-50U are provided by the tokamak system code [6,29].For the SPA in this work,the magnetic field at the mid-plane is defined as

    whereB0is the magnetic field at the major radiusR0.Indeed,according to the two-dimensional Grad-Shafranov equation calculated in [6],the correction to equation (4) at the mid-plane due to the poloidal magnetic field is negligible.The temperature and density profiles of electrons and hydrogen ions are of the following type:

    whereT0andn0are the temperature and density atR0,respectively,xedgeis the coordinate of the edge of the profiles,x+R0is the radial coordinate,andsis the stepvalue of the profile atx=xedge.Figure 1 illustrates the temperature and density profiles obtained from equations (5)and (6),using parameters similar to those of EXL-50U (a) in table 1,wheres=0.95 andxedge=0.53 are fixed.

    Table 1.Main parameters of EXL-50U device.

    Figure 1.(a) 1D profiles of electrons and H ion densities with n0=2.5×1019.(b) 1D profiles of electrons and H ion temperature with Ti0=2.3×103 eV and Te0=1.53×103 eV.

    3.Heating schemes at a magnetic field of 0.9 T

    The two ICRF systems are used in the EXL-50U discharge operation within the frequency range of 3-40 MHz,and the initial plasma consists of pure hydrogen.The on-axis heating frequencies for the fundamental and second harmonic frequencies of hydrogen are 13.7 MHz and 27.4 MHz,respectively.Subsequently,the second harmonic on-axis heating scheme is described in section 3.1,and the fundamental frequency on-axis heating scheme is presented in section 3.2.Finally,the optimal wave frequency is discussed in section 3.3.

    3.1.On-axis heating scheme for second harmonic frequency

    As presented in [14,17],the SPA of Porkolab’s simplified theoretical model is calculated by 1-exp(-2η) ,where η is the tunneling factor that indicates the transferred wave power.In the case of hydrogen plasma in EXL-50U,the tunneling factor for the second harmonic heating is given by the following form [14,17]:

    where ωH,ω0,k‖,candRare the plasma frequency of hydrogen,the wave frequency,the parallel wave number of the antenna,the speed of light and the major radius,respectively.The beta for hydrogen ions is given by,wherenHandTHare the density and temperature of hydrogen,respectively,andB0denotes the magnetic field.Additionally,vtHrepresents the thermal speed of H ions.

    Figure 2 indicates the SPA effect for second harmonic heating,which is calculated using equations (7) and (8).As illustrated in figure 2(a),the efficiency of plasma core heating increases with the higher temperature and largerk‖of the antenna.Additionally,the pentagram in figure 2(b) indicates that the SPA efficiency for the EXL-50U design parameters is below 30% with the current system operating atk‖=7.5 m-1.

    Figure 2.SPA for H second harmonic heating obtained by Porkolab's simplified theoretical model.(a) SPA versus k‖ and ion temperature,where nH=2.5×1019 m-3.(b) SPA versus density and ion temperature,where k‖=7.5 m-1.The pentagram is the SPA within the design parameters.(c) SPA versus k‖ and density,where T= 2.0 keV.

    The imaginary part of the wave vector perpendicular to the magnetic field (ki⊥) is obtained using the BON code [20],and the SPA is obtained using[30,31].The kinetic dispersion equation and the applicability of the BON code are discussed in Appendix A.Figure 3 presents the kinetic dispersion relations obtained using the BON code,along with the SPA of the wave.These results are obtained with the typical EXL-50U parameters,specificallyTi0=2.3 keV,Te0=1.53 keV andn0=2.5×1019m-3.As shown in figure 3(b),in the on-axis heating scheme at the second harmonic,although the fundamental and third harmonic resonance layers are present in the plasma region,the energy deposition is minimal.The main energy deposition occurs in the vicinity of the second harmonic resonance layer.Furthermore,as the plasma temperature increases,the energy deposition region widens,which can be attributed to the enhanced effect of the Doppler shift with ω-k‖v‖-nωci=0 [32],wherenis the number of harmonics of the wave.

    Figure 3.(a) Numerical solution of k⊥ for the kinetic plasma dispersion equation with a fixed k‖=7.5 m-1 from the BON code.(b) The corresponding SPA heating efficiency.

    The absorption proportions of electrons and hydrogen ions as a function of the radius are also calculated using the SEMAL code for ICRF propagation from the low-field region,as shown in figure 4.It is found that the absorption of H ions occurs only near the magnetic axis.Although the absorption of electrons is present in a wide region,the main absorption occurs within a distance of 0.2 m from the magnetic axis.The results obtained from the SEMAL code provide further evidence of the reliability of the BON results.

    Figure 4.The absorption proportions of electrons and H ions obtained from the SEMAL code,where the parameters are set the same as in figure 3.

    Figure 5.SPA for H second harmonic heating obtained by the BON code.(a) SPA versus k‖ and ion temperature,where nH=2.5×1019 m-3.(b) SPA versus density and ion temperature,where k‖=7.5 m-1 .(c) SPA versus k‖ and density,where T =2.0 keV.

    Figure 5 illustrates the SPA effect of the second harmonic heating withk‖,density and temperature at the magnetic axis,calculated using the BON code.The region considered isR-R0=[-0.2,0.2] m,andTe=Tiis assumed.Results from figures 5(a) and (c) suggest that a better heating performance is achieved with a smallerk‖for lower temperature and density.Furthermore,an optimal range ofk‖exists as the temperature or density increases,which is consistent with the findings reported in [18,19].Additionally,k‖=7.5 m-1for the antenna is in the optimal region.As indicated by the pentagram in figure 5(b),the SPA for the EXL-50U design parameters is 40%.The heating effect of the second harmonic over the plasma region has also been obtained and is similar to the results near the magnetic axis,as presented in Appendix B..It is found that Porkolab’s simplified theoretical SPA model is different from the ones obtained from the BON code when comparing figures 2 and 5.The results of the BON code are obtained by accurately solving the full kinetic dispersion relation,whereas Porkolab's theoretical formulation is derived from some simplified assumptions.The differences between the two approaches may stem from these disparities.For instance,the theoretical model only calculates the wave polarization and SPA at the resonance layer.The details of these differences are beyond the scope of this study and could be addressed in future research.

    3.2.On-axis heating scheme for the fundamental frequency

    Although the heating effect of the fundamental frequency in hydrogen plasma is poor due to the zero wave polarizationE+[12,17] at the resonance layer,the heating effect of H ions at the fundamental frequency has been obtained using the BON code.Figure 6 presents the SPA heating effect near the magnetic axis for H fundamental frequency on-axis heating,calculated using the BON code withTe=Ti.The region considered in figure 6 is the same as in figure 5,i.e.R-R0=[-0.2,0.2]m.It is found that in the on-axis heating scheme with the fundamental frequency,the SPA is less than 10%,which is significantly lower than the SPA obtained for second harmonic heating.

    Figure 6.SPA for H fundamental frequency heating obtained by the BON code.(a) SPA versus k‖ and ion temperature,where nH=2.5×1019 m-3.(b) SPA versus density and ion temperature,where k‖=7.5 m-1.

    3.3.Optimal frequency for ICRF injection

    Figure 7 presents the heating effect of the SPA,with frequencies based on the target parameters of EXL-50U (a)in table 1.The absorption of H ions and electrons is obtained by setting the electron and H ion temperatures to 0.1 eV,respectively.It is found that the heating efficiency of SPA is significantly enhanced when the second harmonic resonance layer is present in the plasma,i.e.f>17 MHz.As the frequency increases,the second harmonic resonance layer moves closer to the magnetic axis from the boundary,and the heating efficiency of SPA increases.Furthermore,the best heating effect is achieved around the on-axis heating frequency.From figures 2-7,it is found that the heating efficiency of ICRF is less than 50% in the discharge mode of EXL-50U (a) in table 1.

    Figure 8 presents the absorption proportions of electrons and H ions obtained using the SEMAL code for wave frequencies ranging from 10 to 60 MHz.Consistent with the findings presented in figure 7,the proportion of H ion absorption undergoes a significant increase atf>17 MHz.Furthermore,the proportion of ion absorption surpasses that of electron absorption at 18.5 <f< 32.5 MHz,with the secondary cyclotron resonance layer moving from the lowfield side across the magnetic axis to the strong-field side.The absorption of ions is dominant again at 34.5 <f<38.5 MHz due to the third cyclotron resonance layer in the vicinity of the magnetic axis.

    Figure 7.The SPA heating efficiency versus the wave frequencies,where k‖=7.5 m-1.

    Figure 8.The absorption proportions of electrons and H ions with wave frequency obtained from the SEMAL code,with parameters identical to those used in figure 7.

    4.Heating schemes at a magnetic field of 1.2 T

    4.1.On-axis heating scheme for second harmonic frequency

    The on-axis heating frequencies for the fundamental and second harmonic frequencies of H ions are 18.3 MHz and 36.6 MHz,respectively.Figure 9 presents the SPA effect obtained using equations (7) and (8) at 1.2 T for the second harmonic frequency.Comparison of figure 9 with figure 2 indicates that the SPA heating effect is approximately the same for both discharge modes under the second harmonic heating scheme for H ions.Figure 10 shows the SPA obtained using the BON code for H second harmonic on-axis heating with the region considered asR-R0=[-0.15,0.15]m andTi=Teassumed.The SPA for the EXL-50U design parameters is more than 60%,as indicated by the pentagram in figure 10(b),which is significantly different from the SPA results predicted by Porkolab’s simplified theoretical model.Additionally,thek‖of the antenna is in the optimal range,which differs from the SPA results obtained theoretically in figure 9.Moreover,the heating effect of the second harmonic obtained from equations (7) and (8) is lower than that obtained from the kinetic dispersion relation.

    4.2.On-axis heating scheme for the fundamental frequency

    In the fundamental on-axis heating scheme,the second harmonic resonance layer is located outside the plasma.Figure 11 illustrates the SPA obtained for H fundamental onaxis heating with the region considered asR-R0=[-0.15,0.15] m andTi=Teassumed.The SPA of the EXL-50U design parameters is less than 14%,andk‖=7.5 m-1is within the optimal heating region.

    Figure 9.SPA for H second harmonic heating obtained by Porkolab’s simplified theoretical model.(a) SPA versus k‖ and ion temperature,where nH=4.0×1019 m-3.(b) SPA versus density and ion temperature,where k‖=7.5 m-1 .(c) SPA versus k‖ and density,where T =4.0 keV.

    Figure 10.SPA for H second harmonic heating obtained by the BON code.(a) SPA versus k‖ and ion temperature,where nH=4.0×1019 m-3.(b) SPA versus density and ion temperature,where k‖=7.5 m-1 .(c) SPA versus k‖ and density,where T =4.0keV.

    Figure 11.SPA for H fundamental frequency heating obtained by the BON code.(a) SPA versus k‖ and ion temperature,where nH=4.0×1019 m-3.(b) SPA versus density and ion temperature,where k‖=7.5 m-1.

    4.3.Optimal frequency for ICRF injection

    Figure 12 presents the heating effect of SPA with frequencies calculated based on the target parameters ofTi0=4.5 keV,Te0=3 keV ,andne0=4×1019m-3.It is found that the heating efficiency of SPA is significantly enhanced when the second harmonic resonance layer is present in the plasma,i.e.f>24.5 MHz.The optimal frequency is at 31 MHz,at which the resonance layer is located in the low-field region near the magnetic axis.There is a wide frequency range where SPA is greater than 50%,which is important for engineering debugging and the effectiveness of ICRF.

    Figure 12.SPA heating efficiency versus wave frequencies,where k‖=7.5 m-1.

    Figure 13.The absorption proportions of electrons and H ions with wave frequency obtained from the SEMAL code,with parameters identical to those used in figure 12.

    Figure 13 displays the absorption proportions of electrons and H ions in the range of 10-60 MHz.It is found that the absorption of H ions exceeds 50% at wave frequencies of 27-48 MHz.The results of a rapid increase in the proportion of H ion absorption atf>24.5 MHz,along with the proportion of H ion absorption surpassing electron absorption atf>27 MHz,are consistent with the findings presented in figure 12.

    5.Summary

    The SPA of ICRF heating in hydrogen plasma of the EXL-50U is investigated in this work using the kinetic dispersion equation.A comparison between Porkolab’s simplified theoretical SPA model and the kinetic dispersion relation reveals that the former yields smaller values.Furthermore,an optimal region ofk‖is identified during core heating,indicating that largerk‖values are not necessarily better.The SPA heating simulations for the fundamental and second harmonic frequencies of EXL-50U show that the antenna’sk‖=7.5 m-1is within the optimal heating region,and the optimal frequency ranges are 18.5-32.5 MHz at 0.9 T and 27-48 MHz at 1.2 T.These results provide a useful reference for debugging and experiments of the ICRF system.The absorption proportions of electrons and H ions are also provided using the SEMAL code,indicating that the ICRF heating system can play a significant role in ion heating of the EXL-50U.This study focused on the fundamental and second harmonic frequency heating of hydrogen plasma.It is important to note that the reabsorption of the remaining unabsorbed power from the ICRF at wall reflections is not taken into account.Moreover,the presence of unabsorbed ICRF power can lead to sputtering and impurity production from the wall,introducing new ions into the plasma.In addition,the dispersion relation and SPA heating simulations are only applicable for a convenient and preliminary assessment of the heating effect of the ICRF.Therefore,it is necessary to investigate the ICRF heating effect of multiple ions and perform two-dimensional full-wave simulations to gain a more comprehensive understanding of the ICRF heating performance in EXL-50U.

    Acknowledgments

    This work was supported by the National Magnetic Confinement Fusion Energy Program of China (No.2018 YFE0311300),the High-End Talents Program of Hebei Province,Innovative Approaches Towards Development of Carbon-Free Clean Fusion Energy (No.2021HBQZYCSB 006) and the Compact Fusion Project of the ENN Group.

    Appendix A.The accuracy of BON code

    The SPAs of the ray-tracing code and the BON code for ICRF heating at the mid-plane of the device are compared based on the same parameters.The BORAY code is a tool used for RF wave propagation and energy deposition,and it is also capable of performing ICRF propagation and heating simulations [30,31].In this study,the BORAY code is used to calculate the wave trajectory and energy deposition of ICRF at 27.4 MHz (i.e.second harmonic frequencies of H ion) near the mid-plane with an initial position set atR=1.25 m andZ=0 m,as well ask‖=8 m-1.The results are presented in figure A1,although the local approximation assumption for dispersion equation and ray-tracing may not be satisfied due to the comparable wavelengths of the ICRF to the device.The dispersion relation and SPA are calculated using the BON code with the same settings as in figure A1.This results indicates that the SPA calculated by the BON code at the mid-plane is in agreement with that by the BORAY code,as shown in figure A2.

    Appendix B.SPA for the full space

    The SPA heating effect of ICRF fast waves was calculated throughout the plasma region using the same parameters as in figure B1,as shown in figure 5.Compared to figure 5,it is found that the SPAs calculated near the magnetic axis and throughout the plasma region show little difference in the multi-harmonics heating of hydrogen plasma.

    Figure A2.(a) Numerical solution of k⊥ for the hot plasma dispersion equation using the same settings as in figure A1 of the BON code.(b) The corresponding SPA heating efficiency.

    Figure B1.SPA for H second harmonic heating obtained by the BON code throughout the entire plasma region.(a) SPA versus k‖and ion temperature,where nH=2.5×1019 m-3.(b) SPA versus density and ion temperature,where k‖=7.5 m-1 .(c) SPA versus k‖and density,where T =2.0 keV.

    猜你喜歡
    李博
    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    LabVIEW下的模擬電路實(shí)驗(yàn)教學(xué)創(chuàng)新對(duì)策
    Evolution of optical properties and molecular structure of PCBM films under proton irradiation
    LabVIEW下通信原理實(shí)驗(yàn)教改探討
    Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields
    Dynamical evolution of cross phase of edge fluctuations and transport bifurcation
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    Manipulating transition of a two-component Bose–Einstein condensate with a weak δ-shaped laser?
    Fully integrated modeling of surface water and groundwater in coastal areas *
    空間相機(jī)次鏡在軌校正仿真分析
    精品熟女少妇av免费看| 一个人看视频在线观看www免费| av在线老鸭窝| 免费人成视频x8x8入口观看| avwww免费| 天天一区二区日本电影三级| 色av中文字幕| 97热精品久久久久久| 高清日韩中文字幕在线| 搡老岳熟女国产| 伦理电影大哥的女人| 亚洲精品乱码久久久v下载方式| 日韩高清综合在线| 九色成人免费人妻av| 91久久精品电影网| 国产成人一区二区在线| 中文字幕免费在线视频6| 一边摸一边抽搐一进一小说| 久久久久久久久久黄片| 亚洲激情五月婷婷啪啪| 中国美白少妇内射xxxbb| 美女高潮的动态| 毛片一级片免费看久久久久| 国产精品国产三级国产av玫瑰| 国产三级在线视频| 欧美激情久久久久久爽电影| 国产大屁股一区二区在线视频| 在线免费观看不下载黄p国产| 免费搜索国产男女视频| 床上黄色一级片| 男女下面进入的视频免费午夜| 一进一出抽搐gif免费好疼| 国产午夜精品论理片| 丝袜喷水一区| 久久草成人影院| 插阴视频在线观看视频| 欧美一区二区亚洲| 国产精品人妻久久久影院| 波多野结衣高清无吗| 亚洲av五月六月丁香网| 国内精品久久久久精免费| 蜜桃亚洲精品一区二区三区| 男插女下体视频免费在线播放| 欧美性猛交╳xxx乱大交人| 高清日韩中文字幕在线| 国产午夜精品久久久久久一区二区三区 | 在线免费观看不下载黄p国产| 18禁裸乳无遮挡免费网站照片| 日本免费a在线| 亚洲自偷自拍三级| 久久这里只有精品中国| 午夜福利18| 成人毛片a级毛片在线播放| 女同久久另类99精品国产91| 亚洲性久久影院| 久久久精品大字幕| 亚洲国产精品国产精品| 特大巨黑吊av在线直播| 午夜激情欧美在线| 毛片女人毛片| 色播亚洲综合网| 久久久精品欧美日韩精品| 深夜精品福利| 亚洲欧美成人综合另类久久久 | 18禁裸乳无遮挡免费网站照片| а√天堂www在线а√下载| 欧美一区二区国产精品久久精品| 久久久久久久久久黄片| 亚洲美女视频黄频| 亚洲av中文av极速乱| 一级黄色大片毛片| 人妻制服诱惑在线中文字幕| 国内精品久久久久精免费| 色尼玛亚洲综合影院| 成年免费大片在线观看| 国产精品一区www在线观看| 99久久无色码亚洲精品果冻| 热99在线观看视频| 成人特级黄色片久久久久久久| 精品福利观看| 色5月婷婷丁香| a级一级毛片免费在线观看| 国产成人a区在线观看| 色尼玛亚洲综合影院| 亚洲欧美精品综合久久99| 国产麻豆成人av免费视频| videossex国产| 欧美zozozo另类| 97热精品久久久久久| 天美传媒精品一区二区| 九色成人免费人妻av| 久久精品国产亚洲av香蕉五月| 欧美+亚洲+日韩+国产| 成人特级黄色片久久久久久久| 免费无遮挡裸体视频| 亚洲av成人精品一区久久| 美女cb高潮喷水在线观看| 免费看美女性在线毛片视频| 亚洲美女视频黄频| 国产精品av视频在线免费观看| 99久久中文字幕三级久久日本| 国产精品嫩草影院av在线观看| 欧美不卡视频在线免费观看| 午夜免费男女啪啪视频观看 | 成人国产麻豆网| 欧美bdsm另类| 男人舔女人下体高潮全视频| 搡老岳熟女国产| 18禁黄网站禁片免费观看直播| 2021天堂中文幕一二区在线观| 悠悠久久av| 日本黄色视频三级网站网址| 亚洲人成网站在线播放欧美日韩| 欧美不卡视频在线免费观看| 亚洲,欧美,日韩| 亚洲性久久影院| 午夜免费男女啪啪视频观看 | 少妇人妻一区二区三区视频| av中文乱码字幕在线| 亚洲精品日韩在线中文字幕 | 亚洲专区国产一区二区| 欧美激情国产日韩精品一区| 在线国产一区二区在线| 成人一区二区视频在线观看| 国产成人a区在线观看| 中文在线观看免费www的网站| 精品日产1卡2卡| 麻豆av噜噜一区二区三区| 色视频www国产| 国产精品久久久久久久久免| 秋霞在线观看毛片| 精品久久久久久久久av| 嫩草影视91久久| 1000部很黄的大片| 国产成人精品久久久久久| 熟女电影av网| h日本视频在线播放| 黄色配什么色好看| 亚洲色图av天堂| 伦理电影大哥的女人| 精品福利观看| 婷婷精品国产亚洲av| 黄色一级大片看看| 大香蕉久久网| 婷婷亚洲欧美| 黄色日韩在线| 成人高潮视频无遮挡免费网站| 熟妇人妻久久中文字幕3abv| 国产精品99久久久久久久久| 国产伦一二天堂av在线观看| 国产午夜精品论理片| 日韩国内少妇激情av| 大香蕉久久网| 在线观看免费视频日本深夜| 91午夜精品亚洲一区二区三区| 国产免费一级a男人的天堂| 我的老师免费观看完整版| 永久网站在线| 成人av一区二区三区在线看| 国内少妇人妻偷人精品xxx网站| 国产爱豆传媒在线观看| 寂寞人妻少妇视频99o| 两个人的视频大全免费| 小说图片视频综合网站| h日本视频在线播放| 日本成人三级电影网站| 变态另类成人亚洲欧美熟女| 久久鲁丝午夜福利片| 日韩,欧美,国产一区二区三区 | www日本黄色视频网| 国产精品福利在线免费观看| 人人妻人人澡欧美一区二区| 午夜福利18| www日本黄色视频网| 最新中文字幕久久久久| 日韩精品有码人妻一区| 国产精品一及| 亚洲av第一区精品v没综合| 可以在线观看的亚洲视频| 熟女人妻精品中文字幕| 在线免费十八禁| 久久久国产成人精品二区| 成年av动漫网址| 亚洲国产精品久久男人天堂| 日本在线视频免费播放| 国产大屁股一区二区在线视频| 精品一区二区三区视频在线观看免费| 一区二区三区高清视频在线| 嫩草影视91久久| 91av网一区二区| avwww免费| 十八禁网站免费在线| 乱人视频在线观看| av视频在线观看入口| 国产精品久久久久久av不卡| 亚洲四区av| 麻豆精品久久久久久蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区免费欧美| 看黄色毛片网站| 国产伦在线观看视频一区| 成人高潮视频无遮挡免费网站| 亚洲国产高清在线一区二区三| 精品少妇黑人巨大在线播放 | 草草在线视频免费看| 日韩欧美三级三区| 中文字幕熟女人妻在线| 少妇猛男粗大的猛烈进出视频 | 国产白丝娇喘喷水9色精品| 看十八女毛片水多多多| 亚洲国产高清在线一区二区三| 久久精品人妻少妇| 欧美日韩精品成人综合77777| 日韩欧美一区二区三区在线观看| 亚洲av免费在线观看| 丰满乱子伦码专区| 亚洲av熟女| 最近手机中文字幕大全| 99热这里只有是精品在线观看| 内地一区二区视频在线| 亚洲在线观看片| 少妇的逼水好多| 色综合色国产| 色哟哟哟哟哟哟| 国产午夜精品久久久久久一区二区三区 | 看免费成人av毛片| 婷婷精品国产亚洲av| 成人av一区二区三区在线看| 国产亚洲91精品色在线| 99在线视频只有这里精品首页| 国产激情偷乱视频一区二区| 欧美激情久久久久久爽电影| 日本-黄色视频高清免费观看| 国产真实伦视频高清在线观看| 99热网站在线观看| 欧美一区二区国产精品久久精品| 色播亚洲综合网| 国产黄色视频一区二区在线观看 | 日日啪夜夜撸| 久久精品国产自在天天线| 波多野结衣高清作品| 亚洲av一区综合| 精品久久久久久久末码| 亚洲人与动物交配视频| 免费黄网站久久成人精品| 又黄又爽又刺激的免费视频.| 日韩一区二区视频免费看| 搞女人的毛片| 全区人妻精品视频| 欧美又色又爽又黄视频| 久久这里只有精品中国| 亚洲内射少妇av| 免费搜索国产男女视频| 国产片特级美女逼逼视频| 老司机午夜福利在线观看视频| 国产在线精品亚洲第一网站| 国产午夜精品论理片| 不卡一级毛片| 18禁黄网站禁片免费观看直播| 五月玫瑰六月丁香| 亚洲欧美日韩卡通动漫| 别揉我奶头~嗯~啊~动态视频| 欧美成人精品欧美一级黄| 男女那种视频在线观看| 少妇熟女aⅴ在线视频| 悠悠久久av| 国内揄拍国产精品人妻在线| 色综合站精品国产| 久久午夜福利片| 老司机福利观看| 亚洲成av人片在线播放无| 欧美区成人在线视频| 无遮挡黄片免费观看| 久久久成人免费电影| 日韩精品有码人妻一区| 亚洲最大成人av| 久久九九热精品免费| 日本一二三区视频观看| 国产v大片淫在线免费观看| 可以在线观看毛片的网站| 久久久欧美国产精品| 国产高清不卡午夜福利| 亚洲av中文av极速乱| 亚洲国产欧洲综合997久久,| 性插视频无遮挡在线免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲av成人精品一区久久| 看十八女毛片水多多多| 国产午夜福利久久久久久| 国产男靠女视频免费网站| 精品午夜福利在线看| 嫩草影院入口| 晚上一个人看的免费电影| 欧美高清成人免费视频www| 国产极品精品免费视频能看的| 男女下面进入的视频免费午夜| 听说在线观看完整版免费高清| 简卡轻食公司| 国产大屁股一区二区在线视频| 99久久九九国产精品国产免费| 蜜臀久久99精品久久宅男| 欧美精品国产亚洲| 一边摸一边抽搐一进一小说| 校园春色视频在线观看| 欧美日韩国产亚洲二区| 麻豆久久精品国产亚洲av| 国产精品一及| 欧美xxxx黑人xx丫x性爽| 成熟少妇高潮喷水视频| 国产成人一区二区在线| 国产av在哪里看| 色综合站精品国产| 国产精品美女特级片免费视频播放器| 99久久成人亚洲精品观看| 白带黄色成豆腐渣| 婷婷色综合大香蕉| 国产精品精品国产色婷婷| 日韩 亚洲 欧美在线| 国产色婷婷99| 女同久久另类99精品国产91| 搡女人真爽免费视频火全软件 | av女优亚洲男人天堂| 午夜精品国产一区二区电影 | 亚洲av一区综合| 18禁在线无遮挡免费观看视频 | 两性午夜刺激爽爽歪歪视频在线观看| 精品熟女少妇av免费看| 搡女人真爽免费视频火全软件 | 狂野欧美白嫩少妇大欣赏| 国产在视频线在精品| 日韩,欧美,国产一区二区三区 | 一本一本综合久久| 老女人水多毛片| 一个人看的www免费观看视频| www日本黄色视频网| 久久综合国产亚洲精品| 夜夜夜夜夜久久久久| 亚洲一区高清亚洲精品| 成人永久免费在线观看视频| 三级经典国产精品| 国产爱豆传媒在线观看| 我的女老师完整版在线观看| 一区二区三区免费毛片| 校园春色视频在线观看| 日韩,欧美,国产一区二区三区 | 午夜福利视频1000在线观看| 亚洲图色成人| 国产毛片a区久久久久| www日本黄色视频网| 男女之事视频高清在线观看| 女人被狂操c到高潮| 国产成人freesex在线 | 精品日产1卡2卡| 欧美不卡视频在线免费观看| 国产 一区精品| 亚洲av一区综合| 欧美中文日本在线观看视频| 亚洲无线观看免费| 国产精品久久久久久亚洲av鲁大| 亚洲18禁久久av| 久久久国产成人免费| 国产精品野战在线观看| 国产av一区在线观看免费| 亚洲一区二区三区色噜噜| 美女xxoo啪啪120秒动态图| 又爽又黄a免费视频| 22中文网久久字幕| 久久久久久国产a免费观看| 非洲黑人性xxxx精品又粗又长| 日韩一区二区视频免费看| 大型黄色视频在线免费观看| 国产一区二区亚洲精品在线观看| 麻豆国产av国片精品| 免费观看精品视频网站| 日本免费一区二区三区高清不卡| 国产男人的电影天堂91| 亚洲欧美中文字幕日韩二区| 午夜视频国产福利| 人人妻,人人澡人人爽秒播| 国产精品日韩av在线免费观看| 狂野欧美白嫩少妇大欣赏| 婷婷亚洲欧美| 香蕉av资源在线| 成人无遮挡网站| 国产高清三级在线| 不卡一级毛片| 久久人人爽人人爽人人片va| 三级毛片av免费| 欧美+日韩+精品| 一a级毛片在线观看| 91久久精品国产一区二区成人| 亚洲第一电影网av| 在线a可以看的网站| 99热只有精品国产| 国产片特级美女逼逼视频| 免费人成在线观看视频色| 亚洲精品在线观看二区| 成人漫画全彩无遮挡| 亚洲精品456在线播放app| 少妇高潮的动态图| 国产私拍福利视频在线观看| 麻豆国产av国片精品| 在线国产一区二区在线| 日产精品乱码卡一卡2卡三| а√天堂www在线а√下载| 亚洲精品乱码久久久v下载方式| 精品不卡国产一区二区三区| 99久久中文字幕三级久久日本| 久久久国产成人免费| 国产亚洲精品综合一区在线观看| 成人三级黄色视频| 久久天躁狠狠躁夜夜2o2o| 精品人妻一区二区三区麻豆 | 3wmmmm亚洲av在线观看| 中国美女看黄片| 中文字幕久久专区| 无遮挡黄片免费观看| 国产成人a∨麻豆精品| 国产在线精品亚洲第一网站| 91久久精品电影网| 少妇裸体淫交视频免费看高清| 欧洲精品卡2卡3卡4卡5卡区| 三级国产精品欧美在线观看| 国产一区二区三区在线臀色熟女| 精品午夜福利视频在线观看一区| 亚洲电影在线观看av| 激情 狠狠 欧美| 亚洲av电影不卡..在线观看| 免费观看在线日韩| 国产精品人妻久久久影院| aaaaa片日本免费| 少妇熟女aⅴ在线视频| 99久久中文字幕三级久久日本| 麻豆国产av国片精品| 日韩在线高清观看一区二区三区| 色噜噜av男人的天堂激情| 午夜福利在线观看吧| 国产av麻豆久久久久久久| 午夜影院日韩av| 中国美女看黄片| 看片在线看免费视频| 3wmmmm亚洲av在线观看| 高清毛片免费观看视频网站| 午夜视频国产福利| 色噜噜av男人的天堂激情| 99久国产av精品国产电影| 97超碰精品成人国产| 少妇被粗大猛烈的视频| 免费大片18禁| 又爽又黄无遮挡网站| 亚洲电影在线观看av| 观看美女的网站| 十八禁国产超污无遮挡网站| 免费看a级黄色片| 亚洲精品影视一区二区三区av| 免费一级毛片在线播放高清视频| 日本色播在线视频| 日本欧美国产在线视频| 欧美人与善性xxx| 免费在线观看影片大全网站| 香蕉av资源在线| 99热全是精品| 小说图片视频综合网站| 亚洲性夜色夜夜综合| av在线老鸭窝| 国产精品福利在线免费观看| 俺也久久电影网| 国产探花极品一区二区| АⅤ资源中文在线天堂| 精品久久久久久成人av| 日韩av不卡免费在线播放| 美女内射精品一级片tv| 亚洲精华国产精华液的使用体验 | 久久人人精品亚洲av| 男人的好看免费观看在线视频| 中国美白少妇内射xxxbb| 我的女老师完整版在线观看| 男人狂女人下面高潮的视频| 亚洲真实伦在线观看| 亚洲欧美清纯卡通| 又黄又爽又免费观看的视频| 亚洲av免费在线观看| 欧美丝袜亚洲另类| 在线观看66精品国产| 成年女人永久免费观看视频| 精品久久久久久久久久久久久| 波多野结衣高清无吗| 久久国内精品自在自线图片| 91在线观看av| 国产精品一及| 又爽又黄无遮挡网站| 插阴视频在线观看视频| 国产精品电影一区二区三区| 最新中文字幕久久久久| 国产黄色视频一区二区在线观看 | 久久久精品94久久精品| 特大巨黑吊av在线直播| 我的老师免费观看完整版| 亚洲av一区综合| 成人综合一区亚洲| 草草在线视频免费看| 99热这里只有是精品在线观看| av天堂中文字幕网| 99九九线精品视频在线观看视频| 十八禁国产超污无遮挡网站| 精品人妻视频免费看| 欧美色视频一区免费| 在线a可以看的网站| 久久综合国产亚洲精品| 国产在线精品亚洲第一网站| 欧美日本亚洲视频在线播放| 国产精品久久久久久av不卡| 久久久欧美国产精品| 高清日韩中文字幕在线| 成年免费大片在线观看| 身体一侧抽搐| 欧美成人a在线观看| 赤兔流量卡办理| 草草在线视频免费看| 三级毛片av免费| 日本-黄色视频高清免费观看| 91久久精品国产一区二区成人| 看片在线看免费视频| 国产精品国产三级国产av玫瑰| 亚洲欧美精品综合久久99| 日本-黄色视频高清免费观看| 日日摸夜夜添夜夜爱| 不卡视频在线观看欧美| 欧美性猛交黑人性爽| 最近最新中文字幕大全电影3| 日韩中字成人| 97超级碰碰碰精品色视频在线观看| 亚洲一区二区三区色噜噜| 六月丁香七月| 久久精品国产亚洲av涩爱 | www.色视频.com| 成人二区视频| 天天躁夜夜躁狠狠久久av| 俺也久久电影网| 婷婷亚洲欧美| 嫩草影院新地址| 国产精品人妻久久久久久| 长腿黑丝高跟| 乱码一卡2卡4卡精品| 最新中文字幕久久久久| 一级av片app| 免费看a级黄色片| 亚洲欧美中文字幕日韩二区| 中文亚洲av片在线观看爽| 六月丁香七月| 人妻制服诱惑在线中文字幕| 国产精品女同一区二区软件| 精品久久久久久久人妻蜜臀av| 国产精品人妻久久久影院| 精品人妻一区二区三区麻豆 | 国产一区二区三区在线臀色熟女| 人妻丰满熟妇av一区二区三区| 丰满的人妻完整版| 人妻久久中文字幕网| 欧美+亚洲+日韩+国产| 亚洲欧美中文字幕日韩二区| 高清午夜精品一区二区三区 | 成人漫画全彩无遮挡| 日韩大尺度精品在线看网址| 在线免费观看的www视频| 久久精品国产亚洲av天美| 少妇被粗大猛烈的视频| 一级av片app| 成人三级黄色视频| 久久久国产成人精品二区| 亚洲精品一区av在线观看| 精品人妻熟女av久视频| 在线观看av片永久免费下载| 国产美女午夜福利| 12—13女人毛片做爰片一| 亚洲四区av| 久久精品91蜜桃| 国产精品久久视频播放| 免费无遮挡裸体视频| 免费人成视频x8x8入口观看| 搞女人的毛片| 天美传媒精品一区二区| 国产午夜精品论理片| 国产精品精品国产色婷婷| 97超碰精品成人国产| 欧美性猛交黑人性爽| 日韩欧美在线乱码| 九九热线精品视视频播放| 波多野结衣巨乳人妻| 国产精品一区二区三区四区久久| 国产综合懂色| 美女黄网站色视频| 国产大屁股一区二区在线视频| 国产私拍福利视频在线观看| 国产综合懂色| 亚洲av美国av| 国产成人a区在线观看| 亚洲自偷自拍三级| 亚洲欧美日韩高清在线视频| 国产精品一区二区三区四区久久| 又黄又爽又刺激的免费视频.| 亚洲av免费在线观看| 国产成人a区在线观看| 国产精品一区二区三区四区久久| 又黄又爽又刺激的免费视频.| 亚洲自偷自拍三级| 久久久精品大字幕| 少妇的逼好多水| 国产精品野战在线观看| 久久久精品94久久精品| 小蜜桃在线观看免费完整版高清| 国产一区二区三区在线臀色熟女| 中国美白少妇内射xxxbb| 亚洲av一区综合| 国产精品乱码一区二三区的特点|