• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of Al,Mg,Ca,and Zn in copper slag by LIBS combined with calibration curve and PLSR methods

    2024-03-19 02:37:24JunweiJIA賈軍偉ZhifengLIU劉志峰CongyuanPAN潘從元andHuaqinXUE薛驊骎
    Plasma Science and Technology 2024年2期
    關鍵詞:志峰

    Junwei JIA (賈軍偉),Zhifeng LIU (劉志峰),Congyuan PAN (潘從元) and Huaqin XUE (薛驊骎)

    1 School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,People’s Republic of China

    2 Hefei GStar Intelligent Control Technical Co.Ltd.,Hefei 230088,People’s Republic of China

    3 Anhui Industrial Combustion Monitoring Technology and Equipment Engineering Laboratory,Hefei 230088,People’s Republic of China

    Abstract The precise measurement of Al,Mg,Ca,and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy.In this study,a remote laser-induced breakdown spectroscopy (LIBS) system was utilized for the spectral analysis of copper slag samples at a distance of 2.5 m.The composition of copper slag was then analyzed using both the calibration curve (CC) method and the partial least squares regression (PLSR) analysis method based on the characteristic spectral intensity ratio.The performance of the two analysis methods was gauged through the determination coefficient (R2),average relative error (ARE),root mean square error of calibration (RMSEC),and root mean square error of prediction (RMSEP).The results demonstrate that the PLSR method significantly improved both R2 for the calibration and test sets while reducing ARE,RMSEC,and RMSEP by 50% compared to the CC method.The results suggest that the combination of LIBS and PLSR is a viable approach for effectively detecting the elemental concentration in copper slag and holds potential for online detection of the elemental composition of high-temperature molten copper slag.

    Keywords: copper slag,element,remote,LIBS,PLSR

    1.Introduction

    In copper pyrometallurgy,copper slag is a vital product,and accurate control of the smelting process necessitates timely updates regarding the slag viscosity.This is because viscosity governs both heat and quality transfer in the slag and has a direct relationship with the loss of valuable elements and the durability of the smelting furnace.Al,Mg,and Ca content in the slag directly affects its viscosity,while Zn is a crucial element in the smelting process.Therefore,a precise and efficient determination of their respective concentrations is of great significance in achieving precise control of production processes.

    Currently,chemical analysis methods such as X-ray fluorescence analysis (XRF) [1,2] and inductively coupled plasma emission spectroscopy (ICP) [3] are commonly employed for determining the composition of copper slag.However,these methods require meticulous sampling and preparation procedures,resulting in long analysis time,which is incapable of meeting the demands of precise process control for the rapid analysis of copper slag composition.On the other hand,Laser-Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopy technology that enables quantitative or qualitative analysis of sample elemental composition.With its remote non-contact detection capabilities,absence of any complex sample pretreatment requirements,rapid analysis speed,simultaneous analysis of multiple elements,lack of radiation,and robust adaptability to harsh environments [4],it has been extensively applied in various fields [5] such as environmental monitoring [6],resource exploration [7-9],metal smelting [10],and agricultural production [11].

    In metal smelting,LIBS technology is mostly used for detecting the composition of alloys,stainless steel,steel slag,and other components [12-18].It is seldom used for detecting the composition of copper slag.Only Fran?oisetalstudied the feasibility of analyzing the slag composition in secondary copper production [19].Furthermore,traditional LIBS systems have short detection distances,making them unsuitable for detecting high-temperature melt composition in the smelting process.Yoonetalused LIBS and partial least squares regression (PLSR) method to analyze heavy metals in sediments [20].Kashiwakura and Wagatsuma used LIBS and PLSR method to analyze austenitic stainless steel[21].Brinkmannetalused laser-induced breakdown spectroscopy combined with PLSR method to determine copper in ores [22].These studies all indicated that LIBS combined with PLSR method is a good approach for component analysis.To address this issue,we utilized a remote LIBS system to detect the concentrations of Al,Mg,Ca,and Zn in copper slag.The results were subsequently analyzed and compared using the calibration curve and the PLSR methods.Implementing the LIBS system has established a viable solution for the online and rapid detection of molten slag composition for the copper smelting process.

    2.Experiment

    2.1.Experimental instrument

    The rendering of the schematic diagram of the LIBS system is shown in figure 1.A nanosecond Q-switched Nd: YAG laser (Quantel Ultra100) was employed at 1064 nm with a pulse energy of 100 mJ,a repetition rate of 10 Hz and a pulse duration of 7 ns.The pulse laser emitted by the laser is reflected by the dielectric film mirror (Beamsplitter,R> 96%at 1064 nm andT> 90 at 250-700 nm) and directly incident onto the convex mirror (Mirror1,R> 90% at 250-1100 nm)through a small hole in the center of the concave mirror(Mirror2,R> 90% at 250-1100 nm).It is subsequently reflected by the convex mirror to the concave mirror and focused on the sample in front to excite the plasma.The signal light emitted by the plasma returns along the original optical path focuses through the dielectric film mirror and is transmitted to the spectrometer through collecting lens and optical fiber for spectral collection.A spectrometer(AvaSpec-ULS2048CL-EVO,Avantes) with three channel was used to detect the spectral wavelength regions of 270-610 nm with a delay time of 1.28μs and the integration time of 1.05 ms,respectively.The focal length (detection distance) of the system can be changed by adjusting the position of the convex reflector,and the detection distance of this system is from 1.5 to 3.6 m.The details of the experimental system were described in our previous work [23,24].For this experiment,a detection distance of 2.5 m was applied.

    Figure 1.The rendering of the schematic diagram of the LIBS system.

    2.2.Samples

    105 slag powder samples were collected from a copper smelter company.Of these,74 samples were used for the calibration set,whereas 31 were reserved for the test set.Table 1 presents the certified concentration range of Al,Mg,Ca,and Zn elements in both the calibration and test set samples.To prepare the samples for analysis,the powder samples were pressed into pellets with a diameter of 36 mm and a thickness of 3 mm,using an electric hydraulic jack under pressure of 30 MPa for 5 min,followed by 3 min of dwell time,and 2 min of release time.For each particle sample,analysis was conducted on nine different positions,with each position subjected to 200 shots to generate an average spectrum that improved the signal-to-noise ratio(SNR).Consequently,each sample was represented by nine spectra from distinct positions.

    2.3.Analysis methods

    The calibration curve (CC) method is one of the most widely used and straightforward quantitative techniques.It involves generating a linear relationship between each element’s spectral intensity and concentration by analyzing a series of samples possessing known component information.However,this method is vulnerable to matrix effects,making it ideal for quantitative analysis of non-major elements in samples with similar matrices.

    Partial least squares regression (PLSR) is a novel technique that leverages multivariate statistical data analysis methods such as principal component analysis,canonical correlation analysis,and linear regression analysis to model multiple independent variables using either a single (PLSR1)or multiple (PLSR2) dependent variables.Compared to the CC method,PLSR has several advantages,particularly when dealing with multiple correlations between variables and small sample sizes in linear regression analysis.In this study,we employed a single dependent variable partial least squares regression (PLSR1) model to analyze the elemental composition of copper slag.

    To estimate and compare the analytical performance of the CC and PLSR methods regarding their quantitative analytical capabilities,we utilized several evaluation parameters,including the determination coefficient (R2),the aver-age relative error (ARE),as well as the root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP).The expressions of these parameters are provided below:

    Table 1.Measured elements in copper slag,concentration ranges of training,and test set.

    whereyi,predictedandyi,actualare the predicted and certified concentration of samplei,respectively.is the average value of the predicted concentration of samplei,kis the number of samples in the calibration or test set,andmis the number of samples in the calibration set,andnis the number of samples in the test set.

    3.Results and discussion

    3.1.Quantitative analysis with calibration curve (CC) method

    To account for the impact of self-absorption and pulse-topulse variations,we selected the normalized intensity ratios of Al 308.2 nm/Fe 351.3 nm,Mg 383.7 nm/Fe 353.6 nm,Ca 445.5 nm/Fe 427.2 nm,and Zn 481.1 nm/Fe 495.7 nm,with Fe serving as the standard internal element,to establish calibration curves for Al,Mg,Ca,and Zn elements.In order to reduce the influence of different channels,the characteristic spectral lines of the matrix Fe element and the target element in the normalized intensity of the target element are located in the same channel.The full channel spectrum of the slag sample and the characteristic spectral lines of the target element in different channels are shown in figure 2.All emission lines were identified based on a representative spectrum utilizing the NIST LIBS database [25].

    The calibration curves of Al,Mg,Ca,and Zn elements are shown in figure 3.As shown in figure 3,theR2values are 0.9309,0.9724,0.9507 and 0.9915,respectively.These results indicate a strong linear relationship between the concentration of elements and the spectral intensity of the respective calibration samples.

    Furthermore,we employed the calibration curves to determine the element content in both the calibration and test sets.The analysis results for both sets are presented in figure 4.The calibration set ofR2values for each element is 0.9667,0.9793,0.9507,and 0.9955,respectively.The corresponding ARE values for each element in the calibration set are 11.87%,6.75%,14.11%,and 7.32%,while the RMSEC values for each element in the calibration set are 0.1536,0.0886,0.1895,and 0.0958,respectively.

    In figure 4,the test set ofR2values for each element in the test set are 0.9117,0.9662,0.9439,and 0.9927,respectively.The ARE values for each element in the calibration set are 11.24%,6.92%,9.53%,and 7.1%,respectively.The RMSEP values for each element in the calibration set are 0.1435,0.0904,0.1126,and 0.099,respectively.

    The limit of detections (LODs) of the target elements were calculated the standard IUPAC by 3σ/k,whereσis the standard deviation of the background near the analysis line,andkis the slope of the fitted line for the intensity ratio [26].The calculated LODs of Al,Mg,Ca,and Zn are 0.16 wt.%,0.091 wt.%,0.055 wt.%,and 0.11 wt.%,respectively.

    The results indicated that the calibration curve method was less impacted by matrix effects when the sample matrix was consistent.This was evidenced by theR2values of Al,Mg,Ca,and Zn elements in both the calibration and test set exceeding 0.90.Further,the RMSEC and RMSEP values were nearby,emphasizing the stability and accuracy of the calibration curve method for detecting elemental composition in pyrometallurgy copper slag samples.

    3.2.Quantitative analysis with partial least squares regression (PLSR) method

    Generally,PLSR is used for spectral data analysis,often using spectral data within the entire or partial band range as input data.These spectral data contain many useless noise signals,and the analysis results are susceptible to interference from noise signals.This article uses the normalized intensity of the target elements and matrix element spectral intensity ratio and the certified concentration of the target element as input data for the PLSR model,reducing the interference of different noise signals and the risk of overfitting.According to the NIST LIBS database,the spectra lines of the Al,Mg,Ca,and Zn elements are extracted,as shown in table 2.The emission lines of Fe are also selected as the internal standard lines.Using the Fe element as the internal standard element,we obtained the normalized intensity of each target element as the input data for PLSR analysis.

    Figure 2.Full channel spectrum (a) and characteristic spectral lines of different elements in channel 1 to channel 3 ((b)-(d)).

    Figure 3.The calibration curves of Al,Mg,Ca,and Zn elements.

    Figure 4.The calibration and test set results of the CC method.

    PLSR is a multivariate statistical analysis method based on factor analysis that can effectively eliminate multiple correlations.The selection of the number of principal components (PC) is a crucial parameter that affects the performance of the PLSR model.To avoid over-fitting or sub-fitting of the model,a 10-fold cross-validation method is used to optimize the selection of the number of principal components (PC).Figure 5 shows the relationship between the number of PCs for Al,Mg,Ca,and Zn elements and root mean square error of cross validation (RMSECV) of the validation model.The optimal PC numbers for Al,Mg,Ca,and Zn elements are 9,16,13,and 16,respectively,when the RMSECV values reach their minimum or constant values.

    Subsequently,we have built a PLSR model,utilizing the optimal number of PCs for each element,to determine the elemental content in the calibration and test set samples.The obtained results are displayed in figure 6.TheR2values of the calibration set for each element in the calibration set are 0.9906,0.9966,0.9969,and 0.9992,respectively.The corresponding ARE values for each element in the calibration set are 6.91%,2.89%,4.39%,and 4.08%,with the RMSEC values being 0.0823,0.0359,0.0541,and 0.0408,respectively.

    The results obtained for the test set,as shown in figure 6,indicate that theR2values of each element test set are 0.9543,0.99,0.972,and 0.9968,respectively.The correspondingAREvalues for each element in the test set are 7.24%,3.75%,7.19%,and 5.65%,respectively,with the RMSEP values being 0.021,0.0164,0.0033,and 0.0171,respectively.It is noteworthy that compared to the CC method,the PLSR method has enhanced the calibration set and test setR2values,reducing ARE,RMSEC,and RMSEP by approximately 50%.This suggests that the accuracy and stability of prediction have been significantly improved.Hence,it is evident that the PLSR method exhibits excellent quantitative analysis ability for elements in copper slag samplescompared to the CC method.

    Table 2.Emission lines selected for PLSR.

    Figure 5.The number of principal components versus RMSECV for Al,Mg,Ca,and Zn.

    Figure 6.The calibration and test set results of the PLSR method.

    Table 3.Comparisons of R2,ARE,RMSEC of Al,Mg,Ca,and Zn elements calculated by CC and PLSR analysis methods of the calibration set.

    The obtainedR2,ARE,RMSEC,and RMSEP values for Al,Mg,Ca,and Zn elements from the CC and PLSR analysis method are summarized in tables 3 and 4.These results establish that the PLSR method surpasses the CC method regarding predictive accuracy.Leveraging multivariate input data with various spectral line intensity ratios,we reduced the influence of matrix and self-absorption effects.This study demonstrates that integrating LIBS and PLSR enables accurate detection of the elemental concentration in copper slag,thus serving as a reliable and practical approach.Furthermore,this study could serve as a valuable reference for online detection of the elemental composition of hightemperature molten copper slag using the LIBS system.

    4.Conclusions

    In conclusion,a remote LIBS system combined with CC and PLSR methods based on characteristic spectral intensity ratios has been successfully utilized to detect Al,Mg,Ca,and Zn elements in copper slag samples from pyrometallurgy processes.The precision and accuracy of the two analysis methods were investigated and evaluated using a comparison with reference values.It was evident that the PLSR method outperformed the CC method in terms of the improvement ofR2for both the calibration set and test set,as well as the significant reduction in ARE,RMSEC,and RMSEP to approximately half of those of the CC method.This indicates that the PLSR method demonstrates a higher accuracy in the quantitative analysis of elements in copper slag samples.Based on the results,the combination of LIBS and PLSR is a viable approach to detecting the elemental concentration in copper slag.It could serve as a reference for online detection of the elemental composition of hightemperature molten copper slag using the LIBS system.

    Table 4.Comparisons of R2,ARE,RMSEP of Al,Mg,Ca,and Zn elements calculated by CC and PLSR analysis methods of the test set.

    Acknowledgments

    This work is supported by funding for research activities of postdoctoral researchers in Anhui Province and special funds for developing Anhui Province’s industrial “three highs” and high-tech industries.

    猜你喜歡
    志峰
    韓志峰
    當代作家(2023年5期)2023-07-10 22:13:48
    Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields
    廖志峰運用六味地黃湯治療雜病經(jīng)驗
    芝士店
    山西文學(2018年6期)2018-11-13 10:43:08
    Sex determination and differentiation in Aurelia sp.1: the absence of temperature dependence*
    一題多變各顯其彰
    “廣廈獎”評審委員會
    Thermal and tilt effects on bearing characteristics of hydrostatic oil pad in rotary table*
    Effect of Starch Dodecenylsuccinylation on the Adhesion and Film Properties of Dodecenylsuccinylated Starch for Polyester Warp Sizing
    陳志峰:野性之魅
    中國攝影家(2012年8期)2012-04-29 00:44:03
    久久人人爽人人片av| 久久国产精品男人的天堂亚洲 | 五月天丁香电影| 亚洲欧美清纯卡通| 一区二区三区乱码不卡18| 卡戴珊不雅视频在线播放| 日本爱情动作片www.在线观看| 9色porny在线观看| a级毛片免费高清观看在线播放| 国产片内射在线| 欧美性感艳星| 91在线精品国自产拍蜜月| 中文字幕av电影在线播放| 高清不卡的av网站| 免费观看无遮挡的男女| 黄色毛片三级朝国网站| 久久97久久精品| 99久久综合免费| 能在线免费看毛片的网站| 国产精品久久久久久av不卡| 男男h啪啪无遮挡| 久久午夜福利片| 精品少妇内射三级| 精品少妇内射三级| 国产在视频线精品| 国产精品久久久久成人av| 国产精品久久久久成人av| 下体分泌物呈黄色| 水蜜桃什么品种好| 人妻系列 视频| 超碰97精品在线观看| 欧美成人精品欧美一级黄| 亚洲av不卡在线观看| 老熟女久久久| tube8黄色片| 国产又色又爽无遮挡免| 91精品一卡2卡3卡4卡| 国产精品嫩草影院av在线观看| 国产在视频线精品| 午夜激情av网站| 热re99久久精品国产66热6| 性色av一级| 欧美成人午夜免费资源| 一个人免费看片子| 99久久精品国产国产毛片| 在线观看三级黄色| 观看av在线不卡| 亚洲精品乱码久久久久久按摩| 三级国产精品欧美在线观看| 国产在线视频一区二区| 久久精品国产亚洲av涩爱| 成年女人在线观看亚洲视频| 久久精品国产鲁丝片午夜精品| 高清毛片免费看| 丝瓜视频免费看黄片| 成年av动漫网址| 久久99热6这里只有精品| 色婷婷久久久亚洲欧美| 在线观看www视频免费| 午夜福利视频在线观看免费| 成人综合一区亚洲| 久久久精品免费免费高清| 国产av一区二区精品久久| 亚洲精品一二三| 久久女婷五月综合色啪小说| 精品人妻一区二区三区麻豆| 极品少妇高潮喷水抽搐| 精品一品国产午夜福利视频| 蜜桃在线观看..| 熟女av电影| 十八禁网站网址无遮挡| 国产熟女欧美一区二区| 大话2 男鬼变身卡| 欧美精品人与动牲交sv欧美| 国产熟女午夜一区二区三区 | 精品少妇内射三级| 亚洲综合精品二区| a级毛片黄视频| 亚洲精品成人av观看孕妇| 如何舔出高潮| 欧美精品高潮呻吟av久久| 99久久精品一区二区三区| 伦精品一区二区三区| 精品酒店卫生间| 欧美日韩一区二区视频在线观看视频在线| 久久热精品热| 国产精品偷伦视频观看了| 亚洲国产av新网站| 国产男女内射视频| 人人妻人人添人人爽欧美一区卜| 成人无遮挡网站| 国产 精品1| 另类精品久久| 99久久人妻综合| 亚洲少妇的诱惑av| 人妻 亚洲 视频| 不卡视频在线观看欧美| 国产高清不卡午夜福利| 男女边摸边吃奶| 3wmmmm亚洲av在线观看| 黑人高潮一二区| 中国国产av一级| 精品卡一卡二卡四卡免费| 乱码一卡2卡4卡精品| 国产成人精品一,二区| 国产午夜精品一二区理论片| 日韩,欧美,国产一区二区三区| 人人妻人人澡人人爽人人夜夜| 人妻夜夜爽99麻豆av| 国产精品无大码| 一本色道久久久久久精品综合| 黑人猛操日本美女一级片| 91在线精品国自产拍蜜月| 免费日韩欧美在线观看| 99热全是精品| 黑人巨大精品欧美一区二区蜜桃 | 精品亚洲成国产av| 国产又色又爽无遮挡免| 亚洲av二区三区四区| 91久久精品电影网| 欧美日韩视频精品一区| 久久久国产一区二区| 一级二级三级毛片免费看| 亚洲高清免费不卡视频| 一边摸一边做爽爽视频免费| 99久久人妻综合| 99久久精品一区二区三区| 亚洲中文av在线| 国产成人精品无人区| 欧美日韩视频精品一区| 国产精品人妻久久久影院| 9色porny在线观看| 春色校园在线视频观看| 建设人人有责人人尽责人人享有的| 国产深夜福利视频在线观看| 成人综合一区亚洲| 亚洲中文av在线| 日韩在线高清观看一区二区三区| 麻豆成人av视频| 日本-黄色视频高清免费观看| 午夜日本视频在线| 亚洲伊人久久精品综合| a级毛片免费高清观看在线播放| 亚洲精品av麻豆狂野| 国产片特级美女逼逼视频| 精品99又大又爽又粗少妇毛片| 在线观看免费视频网站a站| 亚洲中文av在线| 欧美三级亚洲精品| 亚洲精品日韩av片在线观看| 一本—道久久a久久精品蜜桃钙片| 男女边吃奶边做爰视频| 啦啦啦中文免费视频观看日本| 午夜91福利影院| 国产乱来视频区| 自线自在国产av| 欧美变态另类bdsm刘玥| 国产白丝娇喘喷水9色精品| 大话2 男鬼变身卡| 精品国产乱码久久久久久小说| av又黄又爽大尺度在线免费看| 在线观看国产h片| 在线观看免费高清a一片| 少妇人妻精品综合一区二区| 纯流量卡能插随身wifi吗| 精品视频人人做人人爽| av有码第一页| 亚洲精品久久久久久婷婷小说| 亚洲一级一片aⅴ在线观看| 国产精品一区二区在线不卡| 精品卡一卡二卡四卡免费| 熟女人妻精品中文字幕| 99久久人妻综合| 国产成人freesex在线| 日韩一本色道免费dvd| 色婷婷av一区二区三区视频| 欧美性感艳星| 热99国产精品久久久久久7| 欧美亚洲日本最大视频资源| 日韩电影二区| 性高湖久久久久久久久免费观看| 91午夜精品亚洲一区二区三区| 99热网站在线观看| 亚洲欧美日韩卡通动漫| 免费黄色在线免费观看| 国产亚洲av片在线观看秒播厂| 精品人妻在线不人妻| 成人亚洲欧美一区二区av| 久久99蜜桃精品久久| 国产精品免费大片| 国产免费一区二区三区四区乱码| 99热6这里只有精品| 日本91视频免费播放| 国产成人一区二区在线| 一级毛片黄色毛片免费观看视频| 超色免费av| 久久人人爽人人爽人人片va| 美女内射精品一级片tv| a级毛色黄片| 在线观看免费视频网站a站| 免费高清在线观看日韩| av福利片在线| 青春草亚洲视频在线观看| 美女cb高潮喷水在线观看| 亚洲国产欧美日韩在线播放| 午夜免费男女啪啪视频观看| 色网站视频免费| 久久精品国产自在天天线| 男女高潮啪啪啪动态图| 好男人视频免费观看在线| 如何舔出高潮| 亚洲精品一二三| 欧美精品一区二区大全| 最近最新中文字幕免费大全7| 高清不卡的av网站| 久久精品久久久久久久性| 国产精品国产av在线观看| 高清午夜精品一区二区三区| 免费观看a级毛片全部| 自拍欧美九色日韩亚洲蝌蚪91| 美女cb高潮喷水在线观看| av在线app专区| 免费大片黄手机在线观看| 亚洲色图 男人天堂 中文字幕 | 观看av在线不卡| 免费大片18禁| 国产日韩欧美视频二区| 成人午夜精彩视频在线观看| 天天躁夜夜躁狠狠久久av| 国产精品三级大全| 老司机影院成人| 久久久国产欧美日韩av| 少妇高潮的动态图| 日本色播在线视频| 亚洲国产精品一区三区| 少妇人妻精品综合一区二区| 国产不卡av网站在线观看| 日韩人妻高清精品专区| 大片电影免费在线观看免费| 免费日韩欧美在线观看| 国产日韩欧美亚洲二区| 波野结衣二区三区在线| 又大又黄又爽视频免费| 久久青草综合色| 在线观看www视频免费| 中国美白少妇内射xxxbb| 汤姆久久久久久久影院中文字幕| 男女高潮啪啪啪动态图| 欧美xxxx性猛交bbbb| 午夜视频国产福利| 天天操日日干夜夜撸| 一级片'在线观看视频| 国产片特级美女逼逼视频| 中文字幕久久专区| 亚洲第一区二区三区不卡| 免费不卡的大黄色大毛片视频在线观看| 在线精品无人区一区二区三| 午夜福利在线观看免费完整高清在| 色婷婷av一区二区三区视频| 午夜老司机福利剧场| 新久久久久国产一级毛片| 黑丝袜美女国产一区| 桃花免费在线播放| 性色avwww在线观看| 国产日韩欧美亚洲二区| 国产男女超爽视频在线观看| 国产一区二区在线观看av| 王馨瑶露胸无遮挡在线观看| 99久久人妻综合| 人体艺术视频欧美日本| 日韩大片免费观看网站| 国产精品久久久久成人av| 在线观看一区二区三区激情| 在线看a的网站| 亚洲av福利一区| 亚洲国产色片| 两个人免费观看高清视频| 亚洲av国产av综合av卡| 亚洲精品国产色婷婷电影| 三级国产精品片| 免费看光身美女| 又大又黄又爽视频免费| 插阴视频在线观看视频| 乱码一卡2卡4卡精品| 在线看a的网站| 欧美少妇被猛烈插入视频| 少妇人妻精品综合一区二区| 国产精品不卡视频一区二区| av在线观看视频网站免费| 亚洲情色 制服丝袜| 999精品在线视频| videosex国产| www.色视频.com| 免费观看的影片在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲精品aⅴ在线观看| 欧美国产精品一级二级三级| 99热6这里只有精品| 亚洲无线观看免费| 五月伊人婷婷丁香| 亚洲高清免费不卡视频| 老女人水多毛片| 寂寞人妻少妇视频99o| 大片电影免费在线观看免费| 韩国av在线不卡| 久久鲁丝午夜福利片| 亚洲欧洲国产日韩| 性色avwww在线观看| 免费少妇av软件| 日韩av不卡免费在线播放| 久久ye,这里只有精品| 国产视频内射| 国产成人精品在线电影| 久久99精品国语久久久| 最近中文字幕高清免费大全6| 超碰97精品在线观看| 亚洲国产日韩一区二区| 日韩不卡一区二区三区视频在线| 夜夜骑夜夜射夜夜干| 日韩视频在线欧美| 交换朋友夫妻互换小说| 日本猛色少妇xxxxx猛交久久| 少妇熟女欧美另类| 国产一区二区三区综合在线观看 | 看非洲黑人一级黄片| 好男人视频免费观看在线| 国产色爽女视频免费观看| 日韩av不卡免费在线播放| 日韩成人av中文字幕在线观看| 高清毛片免费看| 纵有疾风起免费观看全集完整版| 多毛熟女@视频| 国产一级毛片在线| 久久精品人人爽人人爽视色| 亚洲综合色惰| 国产精品一区www在线观看| 国产不卡av网站在线观看| 欧美人与性动交α欧美精品济南到 | 日韩中文字幕视频在线看片| 狂野欧美白嫩少妇大欣赏| www.av在线官网国产| 成人国产av品久久久| 我的老师免费观看完整版| 午夜久久久在线观看| 51国产日韩欧美| 欧美人与善性xxx| 国产伦精品一区二区三区视频9| 色婷婷久久久亚洲欧美| 麻豆成人av视频| 少妇人妻久久综合中文| 五月天丁香电影| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 亚洲综合精品二区| 一区二区日韩欧美中文字幕 | 波野结衣二区三区在线| 又粗又硬又长又爽又黄的视频| 妹子高潮喷水视频| 日韩熟女老妇一区二区性免费视频| 五月玫瑰六月丁香| 日韩一区二区三区影片| 大香蕉久久网| 黑人高潮一二区| 三级国产精品片| 国产免费现黄频在线看| 黑人高潮一二区| 久久99热6这里只有精品| 亚洲成人av在线免费| 日本猛色少妇xxxxx猛交久久| 少妇熟女欧美另类| 亚洲中文av在线| 色哟哟·www| 欧美亚洲日本最大视频资源| 精品国产一区二区三区久久久樱花| a级毛片免费高清观看在线播放| 成年av动漫网址| 亚洲精品aⅴ在线观看| 日日摸夜夜添夜夜爱| 男人添女人高潮全过程视频| 男人操女人黄网站| 久久国内精品自在自线图片| 18+在线观看网站| 国产极品粉嫩免费观看在线 | 精品一品国产午夜福利视频| 在线观看免费日韩欧美大片 | 美女脱内裤让男人舔精品视频| 亚洲av二区三区四区| 99久久中文字幕三级久久日本| 少妇人妻精品综合一区二区| 久久久久久久久久久免费av| 午夜激情久久久久久久| 亚洲成人一二三区av| 欧美三级亚洲精品| 成人18禁高潮啪啪吃奶动态图 | 免费av不卡在线播放| 激情五月婷婷亚洲| 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| xxxhd国产人妻xxx| 丁香六月天网| 国产极品天堂在线| 热re99久久国产66热| 亚洲人成网站在线观看播放| 少妇人妻 视频| 久久久久网色| 免费大片黄手机在线观看| 日本猛色少妇xxxxx猛交久久| 国产深夜福利视频在线观看| 视频在线观看一区二区三区| 高清欧美精品videossex| 国产成人精品福利久久| 国产视频首页在线观看| 91成人精品电影| 免费观看a级毛片全部| 精品一区二区三区视频在线| 黄色一级大片看看| 激情五月婷婷亚洲| 丁香六月天网| 欧美日韩精品成人综合77777| 久久久久精品性色| 久久精品人人爽人人爽视色| 伦理电影免费视频| 精品人妻一区二区三区麻豆| 国产极品天堂在线| 国产精品熟女久久久久浪| 国产免费现黄频在线看| 黑人欧美特级aaaaaa片| 亚洲av成人精品一区久久| 国产国语露脸激情在线看| 天堂俺去俺来也www色官网| 亚洲欧美精品自产自拍| 在线观看美女被高潮喷水网站| 夜夜爽夜夜爽视频| 日韩不卡一区二区三区视频在线| 久久精品国产亚洲网站| 免费高清在线观看日韩| 天堂8中文在线网| av视频免费观看在线观看| 97超视频在线观看视频| 99热这里只有精品一区| 国产精品偷伦视频观看了| 亚洲国产色片| 色网站视频免费| 亚洲精品av麻豆狂野| 中国美白少妇内射xxxbb| 有码 亚洲区| 日日啪夜夜爽| 男人操女人黄网站| 99热6这里只有精品| 亚洲第一区二区三区不卡| 99久久综合免费| 免费大片黄手机在线观看| 国产精品一区二区在线不卡| 国产日韩欧美在线精品| 久久久久久久久大av| 中文字幕制服av| 亚洲av国产av综合av卡| av不卡在线播放| 免费看光身美女| 久久久精品94久久精品| 国产深夜福利视频在线观看| av免费观看日本| 国产精品国产三级专区第一集| 免费av中文字幕在线| 成年av动漫网址| 国产一区二区三区av在线| 久久人人爽人人片av| 高清黄色对白视频在线免费看| 啦啦啦视频在线资源免费观看| 亚洲国产精品999| 国产精品三级大全| 亚洲欧美色中文字幕在线| 国产成人91sexporn| 香蕉精品网在线| 免费人妻精品一区二区三区视频| 简卡轻食公司| 久久人妻熟女aⅴ| 99九九在线精品视频| 成人免费观看视频高清| 黄片播放在线免费| 亚洲欧美成人精品一区二区| 九色成人免费人妻av| 免费黄频网站在线观看国产| 国产极品粉嫩免费观看在线 | kizo精华| 男女高潮啪啪啪动态图| 精品一品国产午夜福利视频| 中国三级夫妇交换| 欧美 日韩 精品 国产| 男人操女人黄网站| 少妇熟女欧美另类| 交换朋友夫妻互换小说| 男人爽女人下面视频在线观看| 在线天堂最新版资源| 丰满少妇做爰视频| 色94色欧美一区二区| 91在线精品国自产拍蜜月| 国产精品99久久久久久久久| 中文字幕最新亚洲高清| 久久这里有精品视频免费| 少妇的逼好多水| 成人综合一区亚洲| 99久久中文字幕三级久久日本| 精品亚洲成a人片在线观看| 九九久久精品国产亚洲av麻豆| 蜜桃久久精品国产亚洲av| 免费播放大片免费观看视频在线观看| 三上悠亚av全集在线观看| 国产一区二区三区av在线| 蜜桃国产av成人99| 欧美日韩在线观看h| 人妻系列 视频| 两个人的视频大全免费| 亚洲av免费高清在线观看| 狠狠婷婷综合久久久久久88av| 嫩草影院入口| 国产精品一区二区三区四区免费观看| 亚洲情色 制服丝袜| 午夜免费观看性视频| 精品久久蜜臀av无| 老女人水多毛片| 一区二区av电影网| 蜜桃久久精品国产亚洲av| 看非洲黑人一级黄片| 国产精品久久久久久精品古装| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美一区二区三区国产| 日韩一本色道免费dvd| 亚洲欧美一区二区三区国产| 成人毛片60女人毛片免费| 国产片特级美女逼逼视频| 国产免费福利视频在线观看| 亚洲欧美清纯卡通| 熟女电影av网| 能在线免费看毛片的网站| 99re6热这里在线精品视频| 一级二级三级毛片免费看| 91精品一卡2卡3卡4卡| 久久影院123| 尾随美女入室| 中国国产av一级| 人人妻人人爽人人添夜夜欢视频| 99九九线精品视频在线观看视频| 久久这里有精品视频免费| a级毛片免费高清观看在线播放| 国产免费又黄又爽又色| 18禁裸乳无遮挡动漫免费视频| 少妇人妻精品综合一区二区| 国产精品国产三级专区第一集| 三级国产精品片| 亚洲美女黄色视频免费看| 久久精品国产亚洲网站| 18在线观看网站| 午夜激情福利司机影院| 国产精品偷伦视频观看了| 三级国产精品片| 日韩人妻高清精品专区| 免费黄色在线免费观看| 亚洲激情五月婷婷啪啪| 人妻系列 视频| 久久热精品热| 秋霞在线观看毛片| 伊人亚洲综合成人网| 亚洲精品第二区| 在线观看免费日韩欧美大片 | 国产黄色免费在线视频| 日韩 亚洲 欧美在线| 边亲边吃奶的免费视频| 黄色视频在线播放观看不卡| 男女啪啪激烈高潮av片| 久久精品国产亚洲网站| 欧美日韩在线观看h| 香蕉精品网在线| 成人黄色视频免费在线看| 美女国产高潮福利片在线看| 日韩熟女老妇一区二区性免费视频| 精品国产国语对白av| 国产毛片在线视频| 亚洲国产欧美在线一区| 久久国产精品男人的天堂亚洲 | 国产男女内射视频| 精品一品国产午夜福利视频| 制服人妻中文乱码| 免费看光身美女| 热re99久久国产66热| 国产精品久久久久久久电影| 精品久久久精品久久久| 国产免费福利视频在线观看| 熟女人妻精品中文字幕| 在线观看免费日韩欧美大片 | 亚洲熟女精品中文字幕| 久热久热在线精品观看| 少妇人妻 视频| 亚洲图色成人| 日韩中文字幕视频在线看片| 秋霞伦理黄片| 亚洲国产精品一区三区| 国产在线免费精品| 成人无遮挡网站| 人妻夜夜爽99麻豆av| 少妇熟女欧美另类| 3wmmmm亚洲av在线观看| 新久久久久国产一级毛片| 久久久国产一区二区| 91精品一卡2卡3卡4卡| 高清不卡的av网站| 大陆偷拍与自拍| av不卡在线播放| 男女啪啪激烈高潮av片| 香蕉精品网在线| 又大又黄又爽视频免费| 久久久a久久爽久久v久久| 亚洲欧洲日产国产| 伦精品一区二区三区| 精品卡一卡二卡四卡免费|