• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Field-induced N′eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature?

    2021-03-11 08:33:50PengWang王鵬HuiZhao趙輝ZhongzhiLuan欒仲智SiyuXia夏思宇TaoFeng豐韜andLifanZhou周禮繁
    Chinese Physics B 2021年2期
    關(guān)鍵詞:趙輝王鵬周禮

    Peng Wang(王鵬), Hui Zhao(趙輝), Zhongzhi Luan(欒仲智),Siyu Xia(夏思宇), Tao Feng(豐韜), and Lifan Zhou(周禮繁),?

    1College of Mathematics and Physics,Qingdao University of Science and Technology,Qingdao 266061,China

    2National Laboratory of Solid State Microstructures,Jiangsu Provincial Key Laboratory for Nanotechnology and Department of Physics,Nanjing University,Nanjing 210093,China

    Keywords: spin Hall magnetoresistance,ferrimagnets,magnetic insulators,magnetization switching

    1. Introduction

    In ferrimagnetic materials,the magnetic moments in two or more magnetic sub-lattices with different magnetic moments are anti-ferromagnetically exchange-coupled, resulting in non-zero magnetic moments and angular momenta at absolute zero temperature. If the sub-lattice with a higher magnetic moment has a weaker molecular field than that of the sub-lattice with a lower magnetic moment, the total magnetization and angular momentum can be zero at certain temperatures, called the magnetization compensation point (TM)and the angular momentum compensation point(TA),respectively, owing to the different rates of decrease with temperature for diverse sub-lattices. Recently,the physical properties in the vicinity of TMand TAhave received increasing attention for their rich physics and potential high-speed and lowenergy-consumption spintronic applications.[1]For instance,the size of the skyrmions is reducible to the dimension of 10 nm in the vicinity of TMbecause of the significantly weak stray field.[2]The spin–orbit-torque efficiency substantially increases close to TMdue to the negative exchange interaction in ferrimagnets.[3,4]The domain wall motion mobility was found to be enhanced dramatically up to 2×104m·s?1·T?1close to TAin GdFeCo.[5]

    In anti-ferromagnetic (AFM) spintronics, the control of the N′eel vector is of vital importance as it forms the basis for AFM information devices.[6]Two methods of manipulating the N′eel vector have been widely investigated: electric current and magnetic field(H). The N′eel-order manipulation by current was first reported in the conducting AFM CuMnAs via the staggered current-induced effective field.[7]Recent works have claimed the current-induced switching of the N′eel vector via the spin–orbit torque from an adjacent heavy metal layer,[8,9]but the validity of the experimental evidence is still under debate.[10]The N′eel vectors of anti-ferromagnets can be switched to perpendicular to H above a critical field,[11]known as the spin-flop(SF)transition. The AFM SF is widely used in the studies of spin transport in AFM insulators such as the spin Seebeck effect,[12]AFM magnon transport,[13]and spin superfluidity.[14,15]A field of the order of 10 T is usually required to achieve the SF phase.[16,17]The sub-lattice moments can be canted and then tuned to be aligned parallel to each other with a further increase in H. Ferrimagnets can be regarded as quasi-antiferromagnets in terms of nearly zero total moments in the vicinity of TM. In comparison with anti-ferromagnets, the compensated ferrimagnets show richer magnetic order transitions close to TMand their N′eel vector is easier to manipulate,[18–20]providing another platform for studying the rich physics related to the N′eel order.However,at present,it is generally believed that the N′eel vector of the compensated ferrimagnets undergoes an SF transition,and then all the sub-lattice moments turn toward H with a further increase in H.[18,19,21]

    Most of the magnetic measurement techniques are not able to measure the N′eel vector of the compensated ferrimagnets because of the near-zero magnetization. The spin Hall magnetoresistance(SMR)[22,23]was previously demonstrated to act as a convenient tool for measuring the orientation of the N′eel vector of an AFM insulator.[24–26]In this study,we successfully used SMR to assess the magnetic order transition induced by the temperature(T)and H around TMof Gd3Fe5O12(GdIG).Notably,the SMR is negative sign for a certain range of H around TM. In contrast, the SMR is always positive for temperatures far from TM. We attributed this to the switching of the N′eel-vector direction of GdIG twice by H around TM, meaning that bi-orientation of the GdIG N′eel vector is achieved. The theoretical calculations combining the N′eel’s theory[27]and SMR theory[25,28]of ferrimagnetism are consistent with our observations and demonstrate the bi-reorientation of the N′eel vector.

    2. Experimental details

    Single-crystalline GdIG films were epitaxially grown on Gd3Ga5O12(111)(GGG)substrates by pulsed laser deposition(PLD)at 750?C.The oxygen pressure during deposition was 9×10?3Torr(1 Torr=1.33322×102Pa)and the background vacuum was 2×10?7Torr. The energy of the laser pulse was 230 mJ/mm2. The surface morphology of the GdIG films was characterized by atomic force microscopy(AFM).The results are shown in Fig.1(a). The film is significantly smooth with a root-mean-square (RMS) roughness of 0.227 nm over a scanning area of 2μm×2μm. Figure 1(b)shows the x-ray diffraction (XRD) pattern of the GdIG/GGG film. A strong GdIG(444)peak was observed,indicating a good crystal quality. The magnetic properties of GdIG were characterized by a quantum design superconducting quantum interference device vibrating sample magnetometer (SQUID-VSM). The Pt Hall bars with 0.3-mm wide and 3-mm long were deposited on the GdIG films through a shadow mask by direct current(DC)magnetron sputtering at room temperature. The magnetoresistance (MR) measurements were performed in a physical property measurement system(PPMS)using the four-wire method with a combination of a Keithley 2400 SourceMeter and a Keithley 2002 voltmeter.

    Fig.1. (a) AFM topography image of the GdIG/GGG (111) film. Root-mean-square roughness is 0.272 nm. (b) XRD pattern of our GdIG/GGG(111)film analyzed from 20?to 90?. (c)Temperature dependence of Ms for the GdIG(150 nm)/GGG(111)film. Red line is the fitting curve and the inset picture is a sketch of three different magnetic sub-lattices of GdIG.Double-headed arrows indicate exchange interactions. Inset figure shows the hysteresis loops of the GdIG(150 nm)/GGG(111)film measured at 70 K,190 K,and 280 K.

    3. Results and discussion

    The Fe3+ions in a unit cell of GdIG are surrounded by 8 oxygen octahedrons (a sites) and 12 oxygen tetrahedrons(d sites). The Gd3+ions sit in 12 oxygen dodecahedrons (c sites). The interaction between the a-site Fe3+ions and the d-site Fe3+ions is an anti-ferromagnetic super-exchange(exchange constant Jad) interaction, resulting in a net magnetic moment MFebecause of the unequal numbers of the a-site and d-site Fe3+ions. The Gd3+ions are ferromagnetically and anti-ferromagnetically coupled to the a-site Fe3+ions(exchange constant Jac)and the d-site Fe3+ions(exchange constant Jdc),respectively,[29,30]as schematically shown in the inset of Fig.1(c).The magnetic moment of the Gd3+ions MGdis anti-parallel to MFebecause of|Jac|?|Jdc|.[31,32]Owing to the negligible interaction between the Gd3+ions and|Jdc|?|Jad|,MGddeclines more rapidly than MFewith increasing temperature. Eventually,MGdand MFecancel out each other at TMto give the total magnetic moment of zero.[33]Figure 1(c) displays the T-dependence of the saturation magnetization Msof our GdIG (150 nm)/GGG (111) sample, where Msis extracted from the hysteresis loops. The hysteresis loops measured at three typical temperatures are shown in the inset of Fig.1(c).The coercivity is small,indicating a small anisotropy of GdIG.[34]It is observed that the behavior of Msis consistent with the above description and TMis ~185 K for this sample.This value is lower than the bulk value for GdIG ~288 K,[31]which may be due to the strain effect of the GGG substrate on the PLD grown film.[35]

    In order to estimate the strength of the exchange interactions in the GdIG film,we fitted the curve of Msas a function of T [Fig.1(c)], with N′eel’s theory on ferrimagnetism. Because Jadis much larger than all other exchange constants,the a-site and d-site Fe sub-lattices are treated as a single entity with a net magnetic moment. Thus, GdIG can be simplified as a two-sub-lattice ferrimagnet including the Fe and Gd sublattices. According to the molecular field approximation, the T-dependence of Fe and Gd sub-lattice moments can be obtained by[36,37]

    with

    where gFe(Gd)=2 is the Land′e factor of Fe3+(Gd3+),[38,39]JFe=5/2 and JGd=7/2 are the angular momentum quantum numbers of the Fe3+and Gd3+ions, respectively; BJis the Brillouin function;μBis the Bohr magneton;μ0is the vacuum permeability; Nddis the intra-sub-lattice molecular field constant between the Fe3+ions;Ndcis the inter-sub-lattice molecular field constant; and kBis the Boltzmann constant. Here,the interaction between Gd3+ions is ignored. With the Curie temperature Tc~550 K[29]and H =0, we used the expression Ms=||MFe|?|MGd||and Eq.(1)to evaluate the goodness of fit. The equations fits very well with the data, as shown by the red line in Fig.1(c),with Ndd=68.6 T/μBand Ndc=4.4 T/μB,which correspond to the molecular fields of ~332 T between a-sites and d-sites Fe3+ions and ~21 T(for Gd)between Fe3+and Gd3+ions around TM,respectively.[36,40]The yielded TM=183 K is close to the experimental value. Such good agreement indicates that the molecular field approximation can accurately describe the evolution of the sub-lattice magnetic moments of the Fe3+and Gd3+ions as functions of T and H.

    In normal metal/ferromagnetic insulator bilayers,the longitudinal resistivity (ρ) of the normal metal depends on the orientation of the magnetic moment,which is the SMR.[22,28]Considering ferrimagnetism with two magnetic sub-lattices,both sub-lattices contribute to the SMR. ρ is then given by[25,41]

    where ?1(?2) is the angle between the magnetic moment M1(M2) of the sub-lattice and the spin polarization (σ) of the spin-Hall-generated spin current, ?ρ1(?ρ2) is the corresponding SMR coefficient of the magnetic sub-lattice, and ρ0is a constant resistivity offset. For an anti-ferromagnet or a ferromagnet close to TM, the N′eel vector is defined as n=(M1?M2)/|M1?M2|. When M1=?M2, one obtains ρ =ρ0?(?ρ1+?ρ2)cos2?n,where ?nis the angle between n and σ, which is the same as the expression for the ferromagnet. Therefore,one can determine the direction of n using ρ.

    The experimental geometry for the MR measurements is schematically shown in Fig.2(a). The directions of the DC and the normal direction to the sample are defined as the x and z directions,respectively. The resistivities of the 3-nm thick Pt strip on GdIG(150 nm)film were measured at 300 K by applying H along the x,y,and z axes,respectively. ρ significantly depends on the direction of H,and consequently the magnetization M, as shown in Fig.2(b). ρ increases with increasing H after M is saturated. This behavior was previously attributed to the Hanle MR[42]and the“new MR”.[43]More importantly,at high field,the expression ρ‖≈ρ⊥>ρTstill holds and the MR ratios ?ρ‖/ρT= (ρ‖?ρT)/ρTand ?ρ⊥/ρT=(ρ⊥?ρT)/ρT, remain positive, where ρ‖, ρTand ρ⊥are the resistivities for H ‖ x, H ‖ y, and H ‖ z, respectively.Angular-dependent MR (ADMR) measurements were then performed in a constant applied field while rotating the samples. The results forμ0H=1 T are shown in Fig.2(c),where?ρ/ρ(angle)=[ρ(angle)?ρ(angle=90?)]/ρ(angle=90?),and the angles α,β,and γ are defined in Fig.2(a). ?ρ/ρ(α)and ?ρ/ρ(β) are positive for all angles. For the α-scan, the field is large enough to achieve H ‖M. ?ρ/ρ(α) is well fitted with the cos2α function. For the β-scan, ?ρ/ρ(β)deviates from the cos2β function owing to the misalignment of H and M caused by the demagnetization field.[44]The amplitude of the γ-scan is one order of magnitude smaller than those of the α-and β-scans.These features are similar to those of the Pt/Y3Fe5O12(YIG)system and are consistent with the SMR mechanism.[24,25]As ρ measured with H swept along the x and z axes and the ADMR for the α-and the β-scans are almost identical after M is saturated, we focused on the measurement of H applied along the x and y axes and the α-scan in the following studies.

    Fig.2. (a)Schematic diagram of the MR measurements in three planes. Film plane is defined as the x–y plane. Current is applied along the x direction. α,β and γ are the angles between H and x(in x–y plane),z(in y–z plane),and z(in x–z plane)axes, respectively. (b)Resistivity as a function of field measured on the Pt (3 nm)/GdIG (150 nm)/GGG (111) sample for field applied along x, y, and z axes. (c)ADMRs measured in the x–y, y–z, and x–z planes withμ0H=1 T.All measurements are performed at 300 K.

    Fig.3. (a) ADMRs measured in the x–y plane for the Pt (3 nm)/GdIG(150 nm)/GGG(111)sample at three different temperatures withμ0H=1 T.(b) Temperature-dependence of the SMR ratios extracted from the ADMRs measured in the x–y plane withμ0H=1 T.

    Figure 3(a) shows the ADMR results of the α-scans atμ0H = 1 T and three typical temperatures (100 K, 190 K,and 280 K). At T =280 K and 100 K, which are far from TM, ?ρ/ρ(α) is always positive, meaning that ρ‖>ρT. At T = 190 K, in the vicinity of TM, the curve is shifted by 90?as compared to the data measured at T = 280 K and 100 K, leading to ρ‖<ρTor a negative SMR. The ADMR at 190 K exhibits a slight deviation from the cos2α function because of the misalignment of H and M in the vicinity of TM. The ADMR around TMcould produce complex angular dependence since sub-lattice magnetic moments have different angular dependence on magnetic field for an inhomogeneous sample.[20]We carried out the same measurements from T =300 K to T =100 K.The extracted SMR ratio is shown in Fig.3(b). The SMR is negative close to TMof GdIG. In comparison, for the ferrimagnetic insulator YIG, which has no magnetization compensation point,the SMR for Pt/YIG is positive,[46,47]suggesting that our observation is related to the magnetic structure transition for GdIG close to TM.

    A simple method to directly assess the magnetic structure transition is through magnetic moment measurement techniques such as SQUID-VSM. For our GdIG (150 nm)/GGG(0.5 mm)sample,the magnetic moment of the GGG substrate is approximately two and three orders of magnitude higher than that of the GdIG film at 300 K and 190 K, respectively,for μ0H =1 T. Therefore, this approach is not suitable because the paramagnetic signal of the GGG substrate is too large to accurately determine the magnetic structure transition of GdIG. Instead, we performed MR measurements as a function of H to investigate the negative MR close to TM.This method has been verified to be a reliable tool in determining the orientation of the N′eel vector of an anti-ferromagnetic insulator.[24–26]Figure 4(a)shows ρ‖and ρTas a function of H for H applied along the x and y axes,respectively,at 190 K.The sharp downward peak of ρ‖near H = 0 is due to the magnetization reversal at the coercivity of GdIG, similar to the peaks in Fig.2(b). After H exceeds the saturation field(~0.1 T), M should be aligned with H. In this range of magnetic field,the SMR predicts the constant ρ‖and ρT,and the“new MR”mechanism predicts the monotonic increases in ρ‖and ρT. However, our observations are inconsistent with these two predictions. ρ‖and ρTnotably demonstrate nonmonotonic behaviors with minimum and maximum values,respectively, as shown in Fig.4(a). As a result, ?ρ‖/ρTis positive in low magnetic fields, negative in the field range of~0.40 T<μ0H <~1.65 T with a maximum negative SMR ratio of approximately ?3.2×10?4at ~0.8 T,and then turns positive atμ0H>~1.65 T,as shown in Fig.4(b).

    Fig.4. (a) Resistivity as a function of H with H applied along the x and y axes at 190 K.(b)Calculated ?ρ‖/ρT from 0.1 T to 9 T using the data from(a).

    These findings are only observed when T is close to TMstrongly suggesting that this phenomenon is connected with the compensated ferrimagnetism. A negative SMR was observed in Pt/NiO/YIG tri-layers due to a critical temperature where the SMR changed from positive to negative with decreasing T.[26,48–50]The negative SMR is attributed to either the occurrence of spin-flip scattering for the reflected spin at the NiO/YIG interface or the spin being reflected back at the Pt/NiO interface and the SF coupling between YIG and NiO. Whichever conclusion is correct, neither can be applied to our system because of the absence of the antiferromagnet/ferromagnet interface for the spin-flipping scattering or SF coupling in a single GdIG layer. A negative SMR was also reported in the heterostructure of a heavy metal Pt and an anti-ferromagnet,[24]which is explained by the 90?phase-shift due to the H-induced SF.However,the SMR does not change sign in presence of sweeping H,implying that the explanation of a negative SMR cannot be applied to our system. In fact, a negative SMR was previously observed in Pt and indium/yttrium-doped GdIG(Y1Gd2Fe4In1O12)bi-layers close to the TM, which is attributed to the negligible contribution of Gd to the SMR and MFeperpendicular to H at a relatively large H close to TM.[41]The second change in the sign of SMR can occur when H exceeds the AFM coupling strength (~21 T for our sample according to the fitting results with Eq.(1))to align MGdand MFeto a parallel position.[36,41]However, this is inconsistent with our observation that the second change in the sign of SMR occurs atμ0H <2 T. Therefore, the conclusion that the second SMR sign change is due to the alignment of MGdand MFeis invalidated.

    Here,we proposed a model within the molecular field approximation framework that fits our observations. The energy E in GdIG due to the Zeeman energy of the molecular fields and the external field is given by

    where θFe(Gd)is the angle between MFe(Gd)and H,as defined in the inset of Fig.5(a). Because of the small anisotropy of the(111)-oriented GdIG,[34]the magneto-crystalline anisotropy energy is ignored. Combining Eqs. (1) and (3), the Hdependences of θFeand θGdcan be calculated numerically by computing the minimum value of E(θFe, θGd). The result at T = 190 K is shown in Fig.5(a). At low magnetic fields,the normalized N′eel vector nGdIG=(MFe?MGd)/|MFe?MGd|is parallel to H due to the small net magnetic moment.At μ0H ≈0.9 T, an SF transition, that is nGdIG⊥H, occurs.However, with a further increase in the magnetic field, unlike antiferromagnets in which both sub-lattice moments tilt towards H,MFe,and MGdtend to align antiparallel and parallel with H,respectively,and nGdIGaligns anti-parallel with H. The bi-reorientation transition of the N′eel vector is shown in Fig.5(b). With θFe(H)and the SMR mainly contributed by the Fe sub-lattice moments suggested by Ref.[41],ρ is calculated from Eq.(2)as

    where ?ρFeis the SMR coefficient for the Fe sub-lattice. The calculated results of Eq. (4), as shown in Fig.5(c), are in good agreement with the experimental results [as shown in Fig.4(a)]. Based on the good agreement between the theoretical and the experimental results,we concluded that the observed SMR behaviors originate from the field-induced N′eelvector bi-reorientation.

    Fig.5. (a)Calculated results of θFe (brown line)and θGd (green line)using Eqs. (1) and (3) at 190 K and the inset defines θFe and θGd. (b) Orientations of the Fe sub-lattice and Gd sub-lattice moments with respect to the H where H =H1, H2, and H3, which are defined in (a), n is the N′eel vector of GdIG.(c)Calculated resistivity as a function of field using Eq.(4)and the data shown in(a).

    In addition to theoretical calculations, this observation can be understood phenomenologically. Because of the very strong interaction between the Fe3+ions and the weak interaction between the Gd3+ions, the Fe and Gd sub-lattices in GdIG can be considered individually as a“ferromagnetic system” and a “paramagnetic system”, respectively. MGdis induced by the external and molecular fields. At T ~TM, that is, MFe≈?MGd, GdIG undergoes an SF transition or a reorientation of nGdIGfor a relatively large magnetic field similar to an anti-ferromagnet. On further increasing the magnetic field, MFeremains constant as a “ferromagnet”. In contrast,MGdincreases significantly as a“paramagnet”when the magnetic field is increased leading to |MFe|<|MGd| or the transformation from an anti-ferromagnet into a ferrimagnet. As a result, MFeor nGdIGis aligned antiparallel with H above a critical magnetic field, indicating the occurrence of a second re-orientation[Fig.5(b)]. Our findings indicate that the direction of the N′eel vector of a ferrimagnet can be tuned across a wide range from 0?to 90?and then to 180?by the appropriate external magnetic field close to the TM.

    4. Conclusions

    We systematically investigated SMR in Pt/GdIG bilayers under a wide range of temperatures and magnetic fields. Our findings indicate that SMR in Pt/GdIG bilayers is positive for temperatures far from TM, similar to that of the Pt/YIG bilayer. In the vicinity of TM,the field-dependent SMR ratio not only exhibits a non-monotonic behavior, but also changes its sign twice.We attribute this behavior to the field-induced N′eel vector bi-reorientation. This observation can be explained by the fact that the Gd sub-lattice moment increases more rapidly than the Fe sub-lattice moment by the external field since the molecular field of the Gd ions are much weaker than that of the Fe ions. We also showed that the calculations based on the molecular field approximation and SMR theory can accurately predict the experimental phenomena. Our results demonstrate that SMR is a simple method for detecting accurately the N′eel vector of a ferrimagnet. The direction of the N′eel vector of a ferrimagnet can be tuned across a wide range by an external magnetic field in the vicinity of TM.

    猜你喜歡
    趙輝王鵬周禮
    王鵬:初心不改 篤行致遠(yuǎn)
    Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane
    《軟件工程》線上線下混合式教學(xué)模式改革
    張滿菊 周禮平作品選
    周禮與儒學(xué)的機(jī)理
    《周禮》大宰九式研究
    古代文明(2016年2期)2016-04-26 07:14:47
    Tracking algorithm of BPSK signal in low bit SNR and high dynamic scenarios
    愛情路上,好馬也吃回頭草
    分憂(2014年5期)2014-09-10 07:22:44
    愛情路上,好馬也吃回頭草
    幸福家庭(2014年8期)2014-08-22 20:07:31
    葉適門人孫之宏及其《周禮說》考述
    免费搜索国产男女视频| 久久婷婷人人爽人人干人人爱| 免费一级毛片在线播放高清视频| 精品日产1卡2卡| 色视频www国产| 1024手机看黄色片| 欧美xxxx黑人xx丫x性爽| 免费人成视频x8x8入口观看| 九九热线精品视视频播放| 日韩中字成人| 少妇熟女aⅴ在线视频| 国产精品一区二区免费欧美| 蜜桃久久精品国产亚洲av| 干丝袜人妻中文字幕| 欧美丝袜亚洲另类 | 日韩精品有码人妻一区| 国产一区二区激情短视频| 女人十人毛片免费观看3o分钟| 亚洲欧美日韩高清专用| 久久久久久久久久久丰满 | 亚洲成人久久性| 久久久午夜欧美精品| 国产主播在线观看一区二区| 18禁在线播放成人免费| 简卡轻食公司| 精品久久久噜噜| 人妻制服诱惑在线中文字幕| 成人av一区二区三区在线看| 日日撸夜夜添| 久久亚洲真实| 亚洲精品乱码久久久v下载方式| 欧美激情国产日韩精品一区| 国产三级中文精品| 国产一区二区亚洲精品在线观看| 日本欧美国产在线视频| 九色国产91popny在线| 久久久久久久久久成人| 精品人妻偷拍中文字幕| 久久精品综合一区二区三区| 日本撒尿小便嘘嘘汇集6| 看片在线看免费视频| av.在线天堂| 色综合亚洲欧美另类图片| 免费观看人在逋| 亚洲成a人片在线一区二区| 国产激情偷乱视频一区二区| 波多野结衣高清无吗| 成年女人永久免费观看视频| 中文字幕精品亚洲无线码一区| 免费人成在线观看视频色| 欧美日韩黄片免| 国产精品,欧美在线| 亚洲va在线va天堂va国产| 免费看日本二区| 男女那种视频在线观看| 最近最新中文字幕大全电影3| xxxwww97欧美| 特大巨黑吊av在线直播| 亚洲第一电影网av| 啦啦啦观看免费观看视频高清| 日韩一区二区视频免费看| 午夜视频国产福利| 老熟妇仑乱视频hdxx| 波多野结衣高清无吗| 在线观看一区二区三区| 国产一区二区在线观看日韩| 99热只有精品国产| 国产欧美日韩一区二区精品| 成人亚洲精品av一区二区| 久久久精品大字幕| 又黄又爽又刺激的免费视频.| 亚洲性久久影院| .国产精品久久| 亚洲色图av天堂| 国产精品国产高清国产av| 天堂av国产一区二区熟女人妻| 精品99又大又爽又粗少妇毛片 | 热99re8久久精品国产| 最后的刺客免费高清国语| 99久久无色码亚洲精品果冻| 亚洲av第一区精品v没综合| 国产精品日韩av在线免费观看| 国产一级毛片七仙女欲春2| 在线观看66精品国产| 91午夜精品亚洲一区二区三区 | 国产综合懂色| .国产精品久久| 日本与韩国留学比较| 我的女老师完整版在线观看| 天天躁日日操中文字幕| 成年女人毛片免费观看观看9| 亚洲精华国产精华液的使用体验 | 女同久久另类99精品国产91| 亚洲无线观看免费| 国产伦精品一区二区三区四那| 国产av不卡久久| 国产av不卡久久| 亚洲熟妇熟女久久| 小说图片视频综合网站| 亚洲午夜理论影院| 久久久久久久久中文| 国产aⅴ精品一区二区三区波| 色尼玛亚洲综合影院| 又黄又爽又刺激的免费视频.| 白带黄色成豆腐渣| 3wmmmm亚洲av在线观看| 嫩草影院精品99| 中亚洲国语对白在线视频| 欧美xxxx性猛交bbbb| 黄色丝袜av网址大全| 欧美日本视频| 午夜福利高清视频| 免费电影在线观看免费观看| 免费搜索国产男女视频| 色视频www国产| 久久国产精品人妻蜜桃| 国产黄片美女视频| 久久久午夜欧美精品| 丰满乱子伦码专区| 精品无人区乱码1区二区| 观看免费一级毛片| 欧美不卡视频在线免费观看| 97人妻精品一区二区三区麻豆| АⅤ资源中文在线天堂| 男人的好看免费观看在线视频| 干丝袜人妻中文字幕| 成人精品一区二区免费| 日本免费一区二区三区高清不卡| 久久久久久久久大av| 嫩草影院精品99| 午夜福利视频1000在线观看| 亚洲不卡免费看| 在线观看舔阴道视频| 我的老师免费观看完整版| 他把我摸到了高潮在线观看| www.www免费av| 极品教师在线视频| 亚洲午夜理论影院| 精品人妻1区二区| АⅤ资源中文在线天堂| 国产v大片淫在线免费观看| 国产亚洲精品av在线| 日日啪夜夜撸| 美女xxoo啪啪120秒动态图| 天天躁日日操中文字幕| 中文字幕久久专区| 日韩人妻高清精品专区| 岛国在线免费视频观看| 国产精品久久久久久久久免| 国内精品一区二区在线观看| 日韩一本色道免费dvd| 深夜精品福利| av视频在线观看入口| aaaaa片日本免费| 国产精品电影一区二区三区| 精品一区二区三区人妻视频| 久久久久久国产a免费观看| 亚洲欧美激情综合另类| 伦精品一区二区三区| 97碰自拍视频| 十八禁网站免费在线| 午夜激情福利司机影院| 成人一区二区视频在线观看| 午夜福利高清视频| 亚洲七黄色美女视频| 两人在一起打扑克的视频| 国产精品国产高清国产av| 亚洲成人中文字幕在线播放| 一个人观看的视频www高清免费观看| 观看免费一级毛片| 小蜜桃在线观看免费完整版高清| 国产探花极品一区二区| 网址你懂的国产日韩在线| 97碰自拍视频| 亚洲av免费在线观看| 在线免费观看的www视频| 亚洲最大成人av| 亚洲五月天丁香| 好男人在线观看高清免费视频| 成年人黄色毛片网站| 别揉我奶头~嗯~啊~动态视频| 熟女人妻精品中文字幕| 在现免费观看毛片| 国产真实乱freesex| 国产麻豆成人av免费视频| 老司机午夜福利在线观看视频| 欧美另类亚洲清纯唯美| 亚洲第一电影网av| 国产精品伦人一区二区| 国产精品永久免费网站| 18+在线观看网站| 波多野结衣高清无吗| 淫秽高清视频在线观看| 韩国av在线不卡| 色5月婷婷丁香| 亚洲乱码一区二区免费版| 久久久精品欧美日韩精品| 很黄的视频免费| 亚洲中文日韩欧美视频| 欧美+亚洲+日韩+国产| 国产 一区精品| 亚洲欧美日韩无卡精品| 91精品国产九色| 日韩欧美精品免费久久| 又紧又爽又黄一区二区| 美女黄网站色视频| 老熟妇乱子伦视频在线观看| 黄色日韩在线| 九九在线视频观看精品| 网址你懂的国产日韩在线| 欧美日韩黄片免| 日日啪夜夜撸| 亚洲图色成人| 免费观看精品视频网站| 九色国产91popny在线| 一个人观看的视频www高清免费观看| 国产一区二区在线av高清观看| 香蕉av资源在线| 亚洲成人中文字幕在线播放| 日韩欧美精品v在线| 成人亚洲精品av一区二区| 美女cb高潮喷水在线观看| 哪里可以看免费的av片| 欧美bdsm另类| 男人舔女人下体高潮全视频| 男女下面进入的视频免费午夜| 91av网一区二区| 成人性生交大片免费视频hd| 国产人妻一区二区三区在| 国产淫片久久久久久久久| 男插女下体视频免费在线播放| 欧美性猛交╳xxx乱大交人| 精品久久国产蜜桃| 麻豆国产97在线/欧美| 国产精品一及| 99久久中文字幕三级久久日本| av.在线天堂| 国产成人一区二区在线| 中出人妻视频一区二区| 乱系列少妇在线播放| 国产成人aa在线观看| 一区二区三区免费毛片| 91久久精品国产一区二区成人| 国产一区二区在线av高清观看| 99久久中文字幕三级久久日本| 99热网站在线观看| 久久久久久久久久黄片| 亚洲一级一片aⅴ在线观看| 十八禁网站免费在线| 哪里可以看免费的av片| 国产精品日韩av在线免费观看| 少妇裸体淫交视频免费看高清| 一边摸一边抽搐一进一小说| 美女cb高潮喷水在线观看| 能在线免费观看的黄片| 国产成人影院久久av| 欧美色视频一区免费| 可以在线观看的亚洲视频| 久9热在线精品视频| 真人一进一出gif抽搐免费| 99在线视频只有这里精品首页| 51国产日韩欧美| 美女 人体艺术 gogo| 亚洲人与动物交配视频| bbb黄色大片| 久久久久性生活片| 51国产日韩欧美| 午夜激情福利司机影院| 成人性生交大片免费视频hd| 午夜激情福利司机影院| 在线看三级毛片| 夜夜夜夜夜久久久久| 免费看av在线观看网站| 色av中文字幕| 又爽又黄a免费视频| 又黄又爽又刺激的免费视频.| 十八禁国产超污无遮挡网站| 久久国产精品人妻蜜桃| av黄色大香蕉| 久久久久久久亚洲中文字幕| 十八禁国产超污无遮挡网站| 欧美潮喷喷水| 亚洲精华国产精华液的使用体验 | 国产欧美日韩精品一区二区| 小蜜桃在线观看免费完整版高清| 亚洲va日本ⅴa欧美va伊人久久| 国产在线男女| 亚洲国产精品合色在线| 精品不卡国产一区二区三区| 成人国产综合亚洲| 全区人妻精品视频| 成人国产一区最新在线观看| 国产真实伦视频高清在线观看 | www.色视频.com| 国产国拍精品亚洲av在线观看| 一a级毛片在线观看| 亚洲一级一片aⅴ在线观看| 美女黄网站色视频| 色哟哟·www| 波多野结衣高清作品| 国产精品日韩av在线免费观看| 欧美zozozo另类| 国产亚洲精品久久久com| 在线免费观看不下载黄p国产 | 日韩高清综合在线| 国产精品嫩草影院av在线观看 | 麻豆国产97在线/欧美| 亚洲精品国产成人久久av| 欧美性猛交╳xxx乱大交人| 久久久久久久精品吃奶| 在线观看午夜福利视频| 国产精品一区www在线观看 | 亚洲国产日韩欧美精品在线观看| 婷婷丁香在线五月| 成人永久免费在线观看视频| 精品人妻偷拍中文字幕| 日韩欧美三级三区| 一区二区三区四区激情视频 | 成人特级黄色片久久久久久久| 精品一区二区三区视频在线观看免费| 久久热精品热| 国产一区二区三区av在线 | 国产一级毛片七仙女欲春2| 久久久久久九九精品二区国产| 日韩中字成人| 黄色女人牲交| 我要看日韩黄色一级片| 毛片一级片免费看久久久久 | 亚洲av免费在线观看| 久久久久久久午夜电影| 日本爱情动作片www.在线观看 | 日韩一本色道免费dvd| 国产av在哪里看| av在线蜜桃| 搡女人真爽免费视频火全软件 | 一级a爱片免费观看的视频| 丰满人妻一区二区三区视频av| 中文亚洲av片在线观看爽| 在线天堂最新版资源| 村上凉子中文字幕在线| 精品一区二区免费观看| 亚洲精品色激情综合| 亚洲性夜色夜夜综合| 97热精品久久久久久| 最近在线观看免费完整版| 亚洲人成伊人成综合网2020| 欧美成人免费av一区二区三区| 国产精品一区二区免费欧美| 日韩欧美在线二视频| 人妻丰满熟妇av一区二区三区| 免费看光身美女| 欧美三级亚洲精品| 又粗又爽又猛毛片免费看| 少妇丰满av| 欧美一区二区精品小视频在线| 亚洲欧美日韩无卡精品| 国产主播在线观看一区二区| 88av欧美| 露出奶头的视频| 欧美性感艳星| 日本 欧美在线| 日本撒尿小便嘘嘘汇集6| 欧美色视频一区免费| 如何舔出高潮| 十八禁国产超污无遮挡网站| 欧美人与善性xxx| 国产精品久久久久久久电影| 在线观看av片永久免费下载| av国产免费在线观看| АⅤ资源中文在线天堂| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美日韩卡通动漫| 欧美成人a在线观看| 一级黄片播放器| 午夜久久久久精精品| 亚洲av中文字字幕乱码综合| 国产毛片a区久久久久| 1000部很黄的大片| 欧美bdsm另类| 亚洲最大成人av| 在线观看午夜福利视频| 可以在线观看的亚洲视频| 亚洲男人的天堂狠狠| 干丝袜人妻中文字幕| 国产欧美日韩精品一区二区| 全区人妻精品视频| 亚洲精品一区av在线观看| 国产精品国产三级国产av玫瑰| 日本a在线网址| 别揉我奶头~嗯~啊~动态视频| 美女高潮的动态| av专区在线播放| 中文字幕av在线有码专区| 黄色一级大片看看| 日本免费一区二区三区高清不卡| 99久久精品热视频| 久久人人爽人人爽人人片va| 久久午夜福利片| 欧美丝袜亚洲另类 | 99热精品在线国产| 精华霜和精华液先用哪个| 日韩高清综合在线| 欧美最黄视频在线播放免费| 日韩精品中文字幕看吧| 日韩精品青青久久久久久| 国产精品,欧美在线| 深爱激情五月婷婷| 国产成人aa在线观看| 亚洲欧美激情综合另类| 人妻丰满熟妇av一区二区三区| 成年版毛片免费区| 日本五十路高清| 99热只有精品国产| 丝袜美腿在线中文| 日本撒尿小便嘘嘘汇集6| 国产av麻豆久久久久久久| 尾随美女入室| 亚洲国产高清在线一区二区三| 18禁黄网站禁片免费观看直播| 亚洲性夜色夜夜综合| 欧美色视频一区免费| 99久国产av精品| 麻豆一二三区av精品| 夜夜看夜夜爽夜夜摸| 少妇人妻一区二区三区视频| 国产高清视频在线观看网站| 最近最新免费中文字幕在线| 欧美色欧美亚洲另类二区| 精品一区二区三区av网在线观看| 看免费成人av毛片| 国产av在哪里看| 丰满乱子伦码专区| 国产精品久久久久久av不卡| 极品教师在线视频| 国产伦精品一区二区三区四那| 小说图片视频综合网站| 亚洲精品亚洲一区二区| 国产精品一及| 色精品久久人妻99蜜桃| 国产久久久一区二区三区| 特级一级黄色大片| 色哟哟哟哟哟哟| 国产精品免费一区二区三区在线| 天美传媒精品一区二区| 一本一本综合久久| 亚洲图色成人| 天天一区二区日本电影三级| 人人妻人人澡欧美一区二区| 精品午夜福利在线看| 午夜福利视频1000在线观看| 免费看日本二区| 特级一级黄色大片| 久久久午夜欧美精品| 国国产精品蜜臀av免费| 乱系列少妇在线播放| 国产欧美日韩精品一区二区| 亚洲第一区二区三区不卡| 久久精品夜夜夜夜夜久久蜜豆| 舔av片在线| 99热6这里只有精品| 黄色欧美视频在线观看| 亚洲av五月六月丁香网| 黄片wwwwww| 我要搜黄色片| 亚洲人成伊人成综合网2020| 啦啦啦观看免费观看视频高清| 全区人妻精品视频| 色综合亚洲欧美另类图片| 天天躁日日操中文字幕| 精品午夜福利视频在线观看一区| 搡老熟女国产l中国老女人| 国产三级中文精品| 长腿黑丝高跟| 毛片女人毛片| 老女人水多毛片| 一个人看的www免费观看视频| 精品久久久久久久久亚洲 | 成人无遮挡网站| 18禁裸乳无遮挡免费网站照片| 欧美国产日韩亚洲一区| 精品福利观看| 波野结衣二区三区在线| 精品久久久久久,| 日韩精品有码人妻一区| 日韩强制内射视频| 国产精品美女特级片免费视频播放器| 日日夜夜操网爽| 亚洲成人免费电影在线观看| 久久久久久久久大av| 久久久久久国产a免费观看| 国产欧美日韩一区二区精品| 又爽又黄a免费视频| 免费无遮挡裸体视频| 国产一级毛片七仙女欲春2| 亚洲一级一片aⅴ在线观看| 日韩高清综合在线| 精品一区二区三区av网在线观看| 麻豆久久精品国产亚洲av| 亚洲自偷自拍三级| 国内精品宾馆在线| 99久久精品一区二区三区| 99国产极品粉嫩在线观看| 亚洲av第一区精品v没综合| 亚洲精品乱码久久久v下载方式| 国产黄片美女视频| 亚洲综合色惰| 日韩高清综合在线| 免费在线观看日本一区| 欧美又色又爽又黄视频| 国产伦人伦偷精品视频| 精品日产1卡2卡| 免费观看在线日韩| 日韩亚洲欧美综合| 精品不卡国产一区二区三区| 久久久久久久久大av| 男人和女人高潮做爰伦理| 成人精品一区二区免费| 国产精品无大码| 男女视频在线观看网站免费| 级片在线观看| 日本黄色视频三级网站网址| 国产av不卡久久| 无人区码免费观看不卡| 国产精品99久久久久久久久| av中文乱码字幕在线| 极品教师在线免费播放| 欧美成人免费av一区二区三区| 国产探花极品一区二区| 亚洲国产精品sss在线观看| 国产伦人伦偷精品视频| 亚洲精品乱码久久久v下载方式| 搞女人的毛片| 男女做爰动态图高潮gif福利片| 色播亚洲综合网| 亚洲男人的天堂狠狠| 三级男女做爰猛烈吃奶摸视频| 一进一出好大好爽视频| 精品免费久久久久久久清纯| 如何舔出高潮| 99久久九九国产精品国产免费| 久久精品国产亚洲av香蕉五月| 久久6这里有精品| 欧洲精品卡2卡3卡4卡5卡区| 国产白丝娇喘喷水9色精品| 国产私拍福利视频在线观看| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久久久免费视频| 亚洲国产高清在线一区二区三| 亚洲国产欧洲综合997久久,| 可以在线观看的亚洲视频| 色综合婷婷激情| 精品人妻视频免费看| av视频在线观看入口| 别揉我奶头 嗯啊视频| 内射极品少妇av片p| 日韩中字成人| 最近最新免费中文字幕在线| 国产aⅴ精品一区二区三区波| 国产乱人伦免费视频| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜福利片| 成人综合一区亚洲| 最好的美女福利视频网| 一夜夜www| 免费黄网站久久成人精品| 国产极品精品免费视频能看的| 91久久精品国产一区二区三区| 日韩欧美免费精品| 亚洲自拍偷在线| 欧美性猛交黑人性爽| 国产大屁股一区二区在线视频| av中文乱码字幕在线| 亚洲精品456在线播放app | 亚洲国产精品合色在线| 欧美成人性av电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产伦人伦偷精品视频| 伊人久久精品亚洲午夜| 日本免费a在线| 91在线观看av| 日本a在线网址| 伦理电影大哥的女人| 最后的刺客免费高清国语| 在线观看免费视频日本深夜| 99久久精品国产国产毛片| 日本黄色视频三级网站网址| 欧美色视频一区免费| 成人毛片a级毛片在线播放| 欧美xxxx性猛交bbbb| 亚洲av中文av极速乱 | 免费看a级黄色片| 国产v大片淫在线免费观看| 成人国产麻豆网| 精品人妻一区二区三区麻豆 | 亚洲一区二区三区色噜噜| 国产亚洲av嫩草精品影院| 中文亚洲av片在线观看爽| 美女cb高潮喷水在线观看| 亚洲国产高清在线一区二区三| 午夜老司机福利剧场| 欧美+日韩+精品| 我要看日韩黄色一级片| 黄色欧美视频在线观看| 国产精品无大码| 成年人黄色毛片网站| 亚洲色图av天堂| 一级毛片久久久久久久久女| 国内精品久久久久精免费| 日韩欧美一区二区三区在线观看| 日本欧美国产在线视频| 精品一区二区三区人妻视频| 一区二区三区四区激情视频 | 亚洲国产精品sss在线观看| 麻豆国产av国片精品| 少妇高潮的动态图|