• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

    404 Not Found


    nginx
    404 Not Found

    404 Not Found


    nginx
    404 Not Found

    404 Not Found


    nginx
    404 Not Found

    404 Not Found


    nginx
    404 Not Found

    404 Not Found


    nginx
    404 Not Found

    404 Not Found


    nginx

    Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2?

    2021-03-11 08:33:48Yu于奧博Huang黃喆Zhang張馳Wu吳宇峰Wang王騰Xie謝濤Liu劉暢Li李浩Peng彭煒Luo羅會仟Mu牟剛Xiao肖宏You尤立星andHu胡濤
    Chinese Physics B 2021年2期
    關(guān)鍵詞:張馳李浩

    A B Yu(于奧博), Z Huang(黃喆), C Zhang(張馳), Y F Wu(吳宇峰), T Wang(王騰),T Xie(謝濤), C Liu(劉暢), H Li(李浩), W Peng(彭煒), H Q Luo(羅會仟),7,G Mu(牟剛), H Xiao(肖宏), L X You(尤立星), and T Hu(胡濤),?

    1State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China

    2Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    3Center for High Pressure Science and Technology Advanced Research,Beijing 100094,China

    4CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    5University of Chinese Academy of Sciences,Beijing 100049,China

    6Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    7Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: iron based superconductors,vortex pinning,anisotropy

    1. Introduction

    Vortex pinning governing the critical current density(Jc)is crucial to the practical applications of superconducting materials. Jcis defined as the maximum electrical current density that sustains superconductivity without resistance,that is,increasing the current density beyond Jcwill lead to the depinning of the vortices and consequently to the disappearance of zero resistance. The study of vortex pinning and Jcenhancement is therefore carried out intensively.[1–4]In a real superconductor, vortex pinning is closely related to the defect structure in the material and the properties of the vortex matter.[1]Thus one can improve the value of Jcby the fabrication of superlattices,[5]irradiation,[6,7]and introduction of stacking faults.[8]In particular, for high temperature cuprate superconductors, the layered structure has a dramatic influence on properties of the vortex matter.[1,9]Pancake vortices arise in each CuO2layer of cuprates, the interaction between which is found to enhance the vortex pinning.[9,10]For a material with weak interlayer interaction, the superconductivity is highly anisotropic and the vortex line is highly flexible,which can be deformed easily. While in the strong interlayer interaction case, the superconductor has moderately anisotropic vortices.[9,10]Consequently, the interlayer interaction determines superconducting anisotropy and significantly affects the Jcin layered structure superconductors.[1,9]

    The iron based superconductors(FeSCs)are a new class of high transition temperature(Tc)superconductors[11,12]with a generally smaller superconducting anisotropy than cuprates.This system attracts a lot of research interest because of its outstanding properties[13,14]like high Tc, large upper critical field, and high Jc. Similar to cuprates, FeSCs reveal a layered structure, with FeAs superconducting layers alternating with the insulating layers or other conducting layers, which leads to the different anisotropy among different systems.[15]For example,in the bilayer FeSC CaKFe4As4(Fe1144),FeAs layers are separated by Ca and K atoms along c axes,[16]which leads to a small anisotropy γ ≈3 near Tc.[17,18]Meanwhile, a high Jc,[19,20]combined with the high upper critical field[17]and the unconventional superconductivity,[19]is also observed in Fe1144. In contrast, in another newly discovered bilayer FeSC KCa2Fe4As4F2(Fe12442), the FeAs layers are alternately separated by conductive K and insulating CaF2layers,[21]which results in a relatively weaker interlayer interaction than that in Fe1144. The properties of 12442 family[22–25]are close to those of bilayer cuprates and it is a well connector between FeSCs and cuprates. Our previous work[26,27]showed that the γ of Fe12442 is ~15 near Tc,which is much larger than that of Fe1144. Such distinct superconducting anisotropies in these two bilayer systems provide an unique opportunity to understand the role of interlayer interaction in the vortex pinning of FeSCs.

    2. Experiment

    The single crystals of CaKFe4As4and KCa2Fe4As4F2are grown by using the self-flux method.[17,28,29]Sharp superconducting transition at Tcin resistance and magnetization measurements shows a high-quality of our single crystal samples.The angular(θ)dependent torque is measured at different temperatures and applied magnetic fields by using piezoresistive torque magnetometer in the Quantum Design physical property measurement system(PPMS).θ is the angle between the applied field and c axes of the single crystal. The temperature dependent 4-wire resistance measurements are performed by the resistance bridge options of PPMS with 0 T ≤H ≤9 T at a heating rate 1 K/min. The magnetic moment measurements are carried out by using magnetic property measurement systems (MPMS) with H =10 Oe applied along c axes of the single crystal. The transport data of Fe12442 in the paper are taken from our previous work.[26]

    3. Results and discussion

    Fig.1. Temperature T dependence of resistance R of CaKFe4As4 at different applied magnetic fields H with H ‖ c (a) and H ‖ ab (b).(c) T dependent of upper critical field Hc2 for CaKFe4As4 at H ‖ c and H ‖ ab. (d) The upper critical field anisotropy parameter γ = of CaKFe4As4, KCa2Fe4As4F2,[26] Ba0.72K0.28Fe2As2,[15]and NdFeAsO0.82F0.18.[30] The dashed lines are guides to the eyes.

    In order to investigate the correlation between superconducting anisotropy and vortex pinning,we study the thermally activated flux-flow (TAFF) behavior in FeSCs. Based on the TAFF model ρ(H,T)=ρ0exp(?U/kBT),one can acquire the thermal activation energy U from the slope of liner portion of Arrhenius plot ln(ρ/ρ0) versus T?1, where ρ0is a factor independent of the magnetic field and kBis the Boltzmann constant. Figures 2(a) and 2(b) show the resistance Arrhenius plots of Fe1144 and Fe12442 single crystals for magnetic field along c-axes of the samples with 1 T ≤H ≤9 T. The obtained thermal activation energy U at different magnetic fields is shown in Fig.2(c), along with that of Fe1111 and Fe122.[15,35]The relationship of γ and U for four single crystals is plotted in Fig.2(d). Error bars are given by mean deviation. Figure 2(d)shows that the average U in the investigated H range of these FeSCs samples is anti-correlated with their superconducting anisotropy γ. For Fe12442 and Fe1144, the anti-correlated relation is independent of samples as shown in Fig.A1.Interestingly,such an anti-correlated relationship was also observed at T =0 K in series BaFe2?xNixAs2,where the one that exhibits the maximum Jc[36]has the smallest γ.[37]In general,many factors,such as disorder landscape,defect,and other material parameters, have important influences on vortex pinning of superconductors. However, the revealed anticorrelated relationship between U and γ here suggests that the interlayer interaction can not be neglected in vortex pinning in FeSCs. In addition, it is worth noting that the anisotropy of Fe1144 is almost the same as that of Fe122 while the pinning energy of Fe1144 is slightly larger than that of Fe122 as shown in Fig.2(d).It may reflect that besides the interlayer interaction, the unique inherent defect structure of Fe1144 also significantly enhances the Jc.[20]

    Fig.2. Arrhenius plots obtained from R vs. T under H ‖ c for CaKFe4As4 (a)and KCa2Fe4As4F2 (b). (c)The H dependence of thermal activation energy U for Fe1144 (our data), Fe12442 (our data),Fe122,[15] and Fe1111.[35] (d) The γ vs. U. Error bars are mean deviation and the dash lines are guides to the eyes.

    Furthermore,compared with the transport measurements,magnetic torque is sensitive to the magnetic anisotropy of materials. By using torque measurements,one can obtain the superconductivity anisotropy γ and Jcsimultaneously. That is,the reversible part of magnetic torque reflects the equilibrium state and is determined by the thermodynamic parameters and their anisotropy,[38]while the irreversible part reflects the nonequilibrium state resulting from vortex pinning,whose amplitude is governed by the critical current density Jc.[39,40]

    The torque of a sample with magnetic moment M in magnetic field H can be expressed as

    For the anisotropic materials whose moment and field are noncollinear,the magnitude of torque is[31]

    Fig.4. Anisotropy parameters γ of Fe1144 and Fe12442 obtained from torque measurements. (a) H dependence of γ at the reduced temperature T/Tc=0.97. (b)T dependence of γ for H=7 T.Error bars are the uncertainty of fit and the dash lines are guide to the eyes.

    On the other hand, the irreversible part τirris related to Jc,[39,40]that is,

    whereV is the volume of the single crystal and r is sample’s diameter(given that the sample has a cylinder shape,V =πr2d,d is the thickness of the single crystal). For two-dimensional(2D)superconductors,Abrikosov lattice is only related to the perpendicular component of the magnetic field (H cosθ).[51]Then the critical current density in 2D regime can be expressed as Jc(θ,H)=Jc(H cosθ).[39]Thus it is convenient to plot Jcvs. H cosθ. Figure 5(a)shows H cosθ dependence of Jcmeasured at temperature T/Tc= 0.97 under different fields. The solid squares are the Jcfrom the torque measurements while the solid stars from magnetization measurements in previous report.[20]And the hollow circles are data for Fe12442. It is found that the Jcs measured at different H do not scale with each other but show a decreasing tendency with the increase of H. It suggests that Fe1144 is not a 2D superconductor in consistent with the fact that γ ≈3. Jcmeasured at H =2 T is roughly comparable with the value from previous report,[20](the small deviation may be caused by differences of the measure method and sample’s shape),suggesting that the Jccalculated based on Eq.(4)is reasonable. Note that,Jcof Fe12442 is located at the bottom left corner of Fig.5(a), suggesting a much lower critical current density as compared with Fe1144.Similar results can be found in Fig.5(b),where Jcis measured at different reduced temperature(T/Tc)and H=7 T.The solid stars are data measured at T =33 K with T/Tc=0.938 from the previous magnetization measurements,[20]which are close to our data measured at the same T/Tc. It is also found that Jcin Fe1144 at the investigated ranges is much higher than that in Fe12442 (hollow circles) at lower reduced T/Tc. Therefore, vortex pinning in Fe1144 is much stronger than that in Fe12442. The high Jcin Fe1144 was interpreted in terms of the unique defect structure which leads to the advantageous vortex pinning properties.[20]While according to the discussion above,the interlayer interaction may also involve in vortex pinning in Fe1144 and Fe12442.

    Fig.5. The critical current density Jc of Fe1144 (solid squares) and Fe12442 (hollow circles) as a function of H cosθ at T/Tc =0.97 (a)and H=7 T(b). Solid stars are data taken from Ref.[20].

    4. Conclusion

    In summary,we have presented a detailed electrical transport and angular dependent torque investigation on Fe1144 and Fe12442 single crystals. In the resistance measurements,the anisotropy parameter of upper critical field γ around Tcof Fe1144 is about 3, which is clearly smaller than that of Fe12442 (γ ≈15). By transforming resistance–temperature(R–T)curves to the Arrhenius plots, we find that Fe1144 has a larger activation energy than Fe12442. In combination with the literature data, we conclude that the FeSC with a smaller anisotropy exhibits a stronger vortex pinning. The magnetic torque measurements further confirm this result. At temperature T →Tc, γ ≈3 for Fe1144 and γ ≈15 for Fe12442 are obtained by fitting reversible torque using the Kogan’s model.Besides,the critical current density in Fe1144 is much higher than that in Fe12442 at the same reduced temperature and magnetic field. Our results suggest that the interlayer interaction may also take action on vortex pinning in FeSCs.

    Appendix A

    The obtained TAFF energies of two single crystals at different magnetic fields are summarized in Fig.A1. We find that TAFF energy U/kB(solid points)ranges from 22671 K to 5202 K for Fe1144,which is a little larger than the U/kBcalculated from previous report for Fe1144 (hollow points).[52]The value of U/kBfor Fe12442 single crystal(solid points)is ranging from 1661 K to 315 K,which is also a little larger than that of polycrystal(hollow points).[21]The difference of U between our results and literature most likely results from the different disorder landscape, defect, and quality of different samples,e.g.,our samples are single crystal while the sample in literature is polycrystal.

    Fig.A1. The H dependence of activation energy U obtain from our data(solid points)and literature(hollow points). The blue and red hollows are the activation energy of Fe1144 single crystal[52]and Fe12442 polycrystal data,[21] respectively.

    Nevertheless both of our data and literature show that the TAFF energy U in Fe1144 is much larger than that in Fe12442.Thus our results suggest that the interlayer interaction may play a crucial role in vortex pinning in Fe12442 and Fe1144.

    Figures A2(a)–A2(d) show the τrev= (τinc+τdec)/2(empty circles)of Fe1144 and Fe12442,where the irreversible part has been masked, and the fitting results (solid lines)by Kogan’s model[38]at different temperatures and magnetic fields.

    Figures A3(a) and A3(b) show the τirr=(τinc?τdec)/2 of Fe1144 and Fe12442 at different temperatures and magnetic fields. Sharp peaks are observed around 90?, which are caused by the vortex pinning as the case of cuprate superconductor Bi2Sr2CaCu2Ox.[39]Fe1144 shows a higher peak than Fe12442 at the same magnetic field and reduced T/Tc, suggesting that the vortex pinning in Fe1144 is stronger than that in Fe12442.

    Fig.A2. The τrev (circles) and Kogan’s model fitting curves (lines) at different temperatures and magnetic fields of CaKFe4As4 [(a)and(c)]and KCa2Fe4As4F2 [(b)and(d)].

    Fig.A3. Irreversible torque τirr of CaKFe4As4 and KCa2Fe4As4F2 as a function of angle θ measured at T/Tc =0.97 for different magnetic fields(a)and H=7 T for different temperatures(b).

    猜你喜歡
    張馳李浩
    “算兩次”法在數(shù)學(xué)解題中的應(yīng)用
    Structural origin for composition-dependent nearest atomic distance in Cu–Zr metallic glass
    Fast and perfect state transfer in superconducting circuit with tunable coupler
    Quantum estimation of rotational speed in optomechanics
    Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
    松弛
    好人張馳
    如此改材料
    北極光(2018年4期)2018-08-30 09:10:14
    李浩:總有那么一股勁兒——走進(jìn)空軍某試驗訓(xùn)練基地?zé)o人機飛行員李浩
    張馳
    黃河之聲(2016年24期)2016-04-22 02:39:44
    404 Not Found

    404 Not Found


    nginx
    404 Not Found

    404 Not Found


    nginx
    404 Not Found

    404 Not Found


    nginx
    404 Not Found

    404 Not Found


    nginx
    404 Not Found

    404 Not Found


    nginx
    99久久精品国产亚洲精品| 人人妻人人澡人人爽人人夜夜| a级毛片黄视频| 午夜激情久久久久久久| 国产成人av教育| 久久精品亚洲av国产电影网| 亚洲精品久久久久久婷婷小说| 亚洲成国产人片在线观看| 99国产精品99久久久久| 悠悠久久av| 亚洲,欧美精品.| 免费观看人在逋| 午夜老司机福利片| 男男h啪啪无遮挡| 国产精品国产三级国产专区5o| 精品一品国产午夜福利视频| 久久国产精品大桥未久av| 99精品久久久久人妻精品| 国产人伦9x9x在线观看| 侵犯人妻中文字幕一二三四区| 午夜免费观看性视频| 黑丝袜美女国产一区| 热99久久久久精品小说推荐| 亚洲精品成人av观看孕妇| 2018国产大陆天天弄谢| 狂野欧美激情性xxxx| 国产精品欧美亚洲77777| 美女主播在线视频| 夜夜夜夜夜久久久久| 婷婷丁香在线五月| 正在播放国产对白刺激| 啦啦啦视频在线资源免费观看| 老司机深夜福利视频在线观看 | 国产精品香港三级国产av潘金莲| 99国产精品免费福利视频| 日韩视频一区二区在线观看| 国产精品 国内视频| 99精品久久久久人妻精品| 久久久久视频综合| 青青草视频在线视频观看| 在线十欧美十亚洲十日本专区| 12—13女人毛片做爰片一| 国产真人三级小视频在线观看| 国产精品二区激情视频| 久久人妻熟女aⅴ| 中亚洲国语对白在线视频| 免费在线观看黄色视频的| 大片电影免费在线观看免费| 国产高清videossex| 午夜日韩欧美国产| 精品卡一卡二卡四卡免费| 97人妻天天添夜夜摸| 性色av一级| 日本五十路高清| 国产又爽黄色视频| 亚洲国产看品久久| 国产91精品成人一区二区三区 | 新久久久久国产一级毛片| 欧美av亚洲av综合av国产av| 国产成人系列免费观看| 国产精品久久久av美女十八| 99re6热这里在线精品视频| 精品一区二区三卡| videosex国产| 视频在线观看一区二区三区| 一区二区av电影网| 亚洲国产中文字幕在线视频| 黄色a级毛片大全视频| 亚洲精品国产av成人精品| 国产成人欧美| 一二三四在线观看免费中文在| 少妇被粗大的猛进出69影院| 如日韩欧美国产精品一区二区三区| 久久人人爽av亚洲精品天堂| 99久久人妻综合| 性高湖久久久久久久久免费观看| 中文字幕色久视频| 精品少妇一区二区三区视频日本电影| 99国产精品免费福利视频| 别揉我奶头~嗯~啊~动态视频 | 99精国产麻豆久久婷婷| 国产男女内射视频| 亚洲精品成人av观看孕妇| 午夜福利,免费看| 亚洲色图 男人天堂 中文字幕| 人人妻人人添人人爽欧美一区卜| 每晚都被弄得嗷嗷叫到高潮| 国产精品av久久久久免费| 在线av久久热| 欧美国产精品va在线观看不卡| 国产xxxxx性猛交| 欧美在线一区亚洲| 精品第一国产精品| 12—13女人毛片做爰片一| 国产一区二区激情短视频 | avwww免费| 男女边摸边吃奶| 777米奇影视久久| 老熟妇乱子伦视频在线观看 | 爱豆传媒免费全集在线观看| 亚洲专区字幕在线| 在线观看免费视频网站a站| 男女边摸边吃奶| 青春草亚洲视频在线观看| 妹子高潮喷水视频| 亚洲人成77777在线视频| 菩萨蛮人人尽说江南好唐韦庄| 91麻豆av在线| 两个人看的免费小视频| 99国产精品一区二区三区| 色婷婷久久久亚洲欧美| 日本wwww免费看| 法律面前人人平等表现在哪些方面 | 美女大奶头黄色视频| 中文欧美无线码| 91麻豆av在线| 中国国产av一级| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人av激情在线播放| 老熟妇乱子伦视频在线观看 | 亚洲一码二码三码区别大吗| 亚洲熟女精品中文字幕| 国产精品一区二区在线不卡| 精品人妻1区二区| 狠狠狠狠99中文字幕| 欧美中文综合在线视频| 亚洲精品成人av观看孕妇| 午夜福利乱码中文字幕| 亚洲黑人精品在线| 伦理电影免费视频| 老汉色∧v一级毛片| 人人妻人人澡人人爽人人夜夜| 各种免费的搞黄视频| 日韩 亚洲 欧美在线| 99精品欧美一区二区三区四区| 亚洲人成电影免费在线| 天天躁日日躁夜夜躁夜夜| 丝袜喷水一区| 伊人亚洲综合成人网| 9色porny在线观看| 无遮挡黄片免费观看| av网站免费在线观看视频| 久久影院123| 悠悠久久av| 久久人妻福利社区极品人妻图片| 国产亚洲午夜精品一区二区久久| 国产亚洲一区二区精品| 肉色欧美久久久久久久蜜桃| 久久综合国产亚洲精品| 日本91视频免费播放| 欧美精品一区二区大全| 制服人妻中文乱码| av在线app专区| 午夜福利一区二区在线看| 欧美精品一区二区免费开放| 精品少妇内射三级| 青春草视频在线免费观看| 嫁个100分男人电影在线观看| 免费一级毛片在线播放高清视频 | 亚洲精品中文字幕一二三四区 | 动漫黄色视频在线观看| 久久久国产精品麻豆| 精品久久蜜臀av无| 在线亚洲精品国产二区图片欧美| 天天操日日干夜夜撸| 亚洲av电影在线观看一区二区三区| 国产高清视频在线播放一区 | 欧美成人午夜精品| 大陆偷拍与自拍| 2018国产大陆天天弄谢| 日韩欧美国产一区二区入口| 嫁个100分男人电影在线观看| 国产成人a∨麻豆精品| 美女中出高潮动态图| 亚洲五月婷婷丁香| 咕卡用的链子| 国产av一区二区精品久久| 午夜精品久久久久久毛片777| 搡老熟女国产l中国老女人| 久热这里只有精品99| 免费观看a级毛片全部| 欧美乱码精品一区二区三区| 国产精品久久久人人做人人爽| 午夜福利在线观看吧| 久久影院123| 亚洲精品一区蜜桃| 91国产中文字幕| 一区二区三区乱码不卡18| 欧美变态另类bdsm刘玥| 国产国语露脸激情在线看| 在线十欧美十亚洲十日本专区| 亚洲男人天堂网一区| 亚洲av男天堂| 久热爱精品视频在线9| 国产一区二区激情短视频 | 十八禁网站免费在线| 老司机午夜十八禁免费视频| 亚洲欧美日韩另类电影网站| 男女之事视频高清在线观看| 99国产精品99久久久久| 亚洲男人天堂网一区| 久久久久久亚洲精品国产蜜桃av| 飞空精品影院首页| 久久人妻福利社区极品人妻图片| 日日夜夜操网爽| 精品国产一区二区三区四区第35| 久久久精品国产亚洲av高清涩受| 国产亚洲av高清不卡| 久久女婷五月综合色啪小说| 夫妻午夜视频| 91字幕亚洲| 电影成人av| 亚洲精品久久午夜乱码| 一区二区日韩欧美中文字幕| av片东京热男人的天堂| 国产精品国产三级国产专区5o| 国产男女超爽视频在线观看| 精品国内亚洲2022精品成人 | 老司机在亚洲福利影院| 美女脱内裤让男人舔精品视频| 国产高清国产精品国产三级| 亚洲精品中文字幕在线视频| 日韩熟女老妇一区二区性免费视频| 2018国产大陆天天弄谢| 国产亚洲精品第一综合不卡| 国产黄频视频在线观看| 亚洲一区中文字幕在线| 国产精品自产拍在线观看55亚洲 | 999久久久国产精品视频| 满18在线观看网站| 日本av手机在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 美女大奶头黄色视频| 99久久99久久久精品蜜桃| 另类亚洲欧美激情| 老司机午夜福利在线观看视频 | 国产成人系列免费观看| 国产一区二区在线观看av| 不卡av一区二区三区| 啦啦啦免费观看视频1| 99香蕉大伊视频| 欧美日韩精品网址| 国产男女超爽视频在线观看| 日日爽夜夜爽网站| 99re6热这里在线精品视频| 午夜激情久久久久久久| 无遮挡黄片免费观看| 一区在线观看完整版| 五月天丁香电影| 女人久久www免费人成看片| 国产人伦9x9x在线观看| 午夜免费观看性视频| 少妇人妻久久综合中文| 中文字幕制服av| 中亚洲国语对白在线视频| 丁香六月欧美| 国产在线观看jvid| 亚洲色图 男人天堂 中文字幕| 精品国产国语对白av| 男人添女人高潮全过程视频| 精品久久久久久电影网| 午夜精品国产一区二区电影| 国内毛片毛片毛片毛片毛片| 亚洲avbb在线观看| 国产精品免费视频内射| 亚洲av美国av| 老司机午夜十八禁免费视频| 亚洲国产欧美日韩在线播放| 久久精品亚洲av国产电影网| 黄色视频在线播放观看不卡| 国产成人精品久久二区二区91| 精品高清国产在线一区| 亚洲男人天堂网一区| 国产激情久久老熟女| 女人高潮潮喷娇喘18禁视频| 电影成人av| 真人做人爱边吃奶动态| 国产伦理片在线播放av一区| 精品一区在线观看国产| 国产主播在线观看一区二区| 国产男人的电影天堂91| 无遮挡黄片免费观看| 日本一区二区免费在线视频| 亚洲国产欧美日韩在线播放| 亚洲色图 男人天堂 中文字幕| 黄色视频在线播放观看不卡| 欧美在线一区亚洲| 男人爽女人下面视频在线观看| 久久久国产精品麻豆| 天堂8中文在线网| 国产真人三级小视频在线观看| 亚洲国产av影院在线观看| 热re99久久精品国产66热6| 欧美精品人与动牲交sv欧美| 亚洲国产精品成人久久小说| 高清黄色对白视频在线免费看| 精品国产国语对白av| 亚洲国产日韩一区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲国产毛片av蜜桃av| 夜夜夜夜夜久久久久| 天天躁夜夜躁狠狠躁躁| 欧美日韩一级在线毛片| 成人av一区二区三区在线看 | av天堂久久9| 午夜影院在线不卡| 亚洲成国产人片在线观看| 伊人久久大香线蕉亚洲五| 国产色视频综合| 国产精品99久久99久久久不卡| 国产亚洲精品久久久久5区| 午夜日韩欧美国产| 国产一区二区三区在线臀色熟女 | 高清黄色对白视频在线免费看| 在线观看舔阴道视频| 国产在线免费精品| 黄色怎么调成土黄色| 18禁国产床啪视频网站| 两个人看的免费小视频| 高清视频免费观看一区二区| 人人妻人人添人人爽欧美一区卜| 91精品三级在线观看| 亚洲av电影在线观看一区二区三区| 一区二区日韩欧美中文字幕| 免费av中文字幕在线| 精品一区二区三卡| 国产精品免费大片| 午夜免费观看性视频| 国产亚洲欧美精品永久| 美女中出高潮动态图| 成年女人毛片免费观看观看9 | av不卡在线播放| 国产精品一区二区在线观看99| 亚洲情色 制服丝袜| 国产一区有黄有色的免费视频| 午夜精品久久久久久毛片777| 丰满饥渴人妻一区二区三| 久久久久国内视频| 韩国高清视频一区二区三区| 国产av又大| 亚洲熟女毛片儿| 免费看十八禁软件| 国产精品国产三级国产专区5o| 1024视频免费在线观看| 久久人人爽人人片av| 男女边摸边吃奶| 国产精品99久久99久久久不卡| 99国产精品一区二区蜜桃av | 夜夜骑夜夜射夜夜干| 日韩视频一区二区在线观看| 一本久久精品| 精品国产乱码久久久久久男人| 国产免费一区二区三区四区乱码| 久久国产精品大桥未久av| 中文字幕高清在线视频| 91成年电影在线观看| 国产免费视频播放在线视频| 老司机影院毛片| 日日爽夜夜爽网站| 老司机影院毛片| 国产免费一区二区三区四区乱码| 精品国产乱码久久久久久男人| 一本综合久久免费| 最近最新中文字幕大全免费视频| 777久久人妻少妇嫩草av网站| 永久免费av网站大全| 色婷婷久久久亚洲欧美| 国产精品 国内视频| 国产精品一区二区精品视频观看| 亚洲一区二区三区欧美精品| 亚洲三区欧美一区| 男人操女人黄网站| 成人国产一区最新在线观看| 日韩制服骚丝袜av| 欧美精品高潮呻吟av久久| 精品久久蜜臀av无| 人妻 亚洲 视频| 亚洲国产中文字幕在线视频| 欧美午夜高清在线| 人人妻人人添人人爽欧美一区卜| 国产三级黄色录像| netflix在线观看网站| 精品久久久久久久毛片微露脸 | 啦啦啦 在线观看视频| 中文字幕av电影在线播放| 国产欧美亚洲国产| 午夜日韩欧美国产| 久久人妻熟女aⅴ| 老司机影院成人| 大型av网站在线播放| a级毛片黄视频| av超薄肉色丝袜交足视频| 国产精品99久久99久久久不卡| 一级,二级,三级黄色视频| 麻豆乱淫一区二区| 亚洲色图 男人天堂 中文字幕| 悠悠久久av| 18禁黄网站禁片午夜丰满| 99久久人妻综合| 十分钟在线观看高清视频www| 无遮挡黄片免费观看| 91麻豆av在线| 久热这里只有精品99| 中文字幕最新亚洲高清| 亚洲国产日韩一区二区| 少妇猛男粗大的猛烈进出视频| 人人妻人人澡人人爽人人夜夜| 女人爽到高潮嗷嗷叫在线视频| 免费观看人在逋| 欧美激情久久久久久爽电影 | 成人三级做爰电影| 精品人妻一区二区三区麻豆| e午夜精品久久久久久久| 在线观看人妻少妇| 国产亚洲午夜精品一区二区久久| 美女高潮喷水抽搐中文字幕| 国产1区2区3区精品| 人人妻人人澡人人爽人人夜夜| 中文字幕高清在线视频| 国产在线视频一区二区| 日日爽夜夜爽网站| 日韩欧美免费精品| 午夜激情av网站| 桃红色精品国产亚洲av| 中文字幕制服av| 精品久久久久久电影网| 搡老岳熟女国产| 日本vs欧美在线观看视频| 12—13女人毛片做爰片一| 国产色视频综合| 亚洲午夜精品一区,二区,三区| 免费观看人在逋| 曰老女人黄片| 欧美日韩成人在线一区二区| 在线亚洲精品国产二区图片欧美| 日韩大片免费观看网站| 国产免费av片在线观看野外av| 国产精品一区二区免费欧美 | 精品亚洲成国产av| 亚洲av男天堂| 在线观看免费视频网站a站| 91大片在线观看| 在线精品无人区一区二区三| 色播在线永久视频| 亚洲七黄色美女视频| 又紧又爽又黄一区二区| 欧美日韩一级在线毛片| 欧美av亚洲av综合av国产av| 久久久久精品国产欧美久久久 | 正在播放国产对白刺激| 黄色视频不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 精品高清国产在线一区| 满18在线观看网站| 欧美 亚洲 国产 日韩一| 国产老妇伦熟女老妇高清| 成年美女黄网站色视频大全免费| 久久久久国产精品人妻一区二区| av福利片在线| 搡老岳熟女国产| 伦理电影免费视频| 国产三级黄色录像| 老司机亚洲免费影院| a在线观看视频网站| 国产欧美日韩一区二区三区在线| 亚洲第一欧美日韩一区二区三区 | 十八禁高潮呻吟视频| 久久这里只有精品19| 天天躁狠狠躁夜夜躁狠狠躁| 欧美国产精品一级二级三级| 19禁男女啪啪无遮挡网站| 一本大道久久a久久精品| av网站免费在线观看视频| 国产无遮挡羞羞视频在线观看| 亚洲欧美成人综合另类久久久| 日本欧美视频一区| 成人18禁高潮啪啪吃奶动态图| 日韩熟女老妇一区二区性免费视频| 亚洲自偷自拍图片 自拍| 一级,二级,三级黄色视频| 免费在线观看影片大全网站| 国产成人欧美在线观看 | 久久国产精品男人的天堂亚洲| av天堂久久9| 久久久国产精品麻豆| 岛国在线观看网站| 男人操女人黄网站| 国产成人系列免费观看| 亚洲情色 制服丝袜| 国产一区二区三区在线臀色熟女 | 中文字幕人妻熟女乱码| 国产成人系列免费观看| 亚洲情色 制服丝袜| 亚洲人成77777在线视频| 下体分泌物呈黄色| av福利片在线| 男人舔女人的私密视频| 国产成人一区二区三区免费视频网站| 国产精品香港三级国产av潘金莲| 国产精品一区二区免费欧美 | 又紧又爽又黄一区二区| 精品国产一区二区久久| 在线观看免费视频网站a站| 久久99热这里只频精品6学生| 香蕉丝袜av| 欧美成人午夜精品| 99热网站在线观看| 日韩视频一区二区在线观看| 日韩 亚洲 欧美在线| 操出白浆在线播放| 国产淫语在线视频| 免费在线观看日本一区| 美女脱内裤让男人舔精品视频| 色播在线永久视频| 国产精品av久久久久免费| 啦啦啦中文免费视频观看日本| 欧美日韩国产mv在线观看视频| 久久久国产精品麻豆| 中文字幕高清在线视频| 久久人妻熟女aⅴ| 亚洲精品一卡2卡三卡4卡5卡 | 9色porny在线观看| 久久久水蜜桃国产精品网| 亚洲av片天天在线观看| 天堂中文最新版在线下载| 亚洲午夜精品一区,二区,三区| 嫁个100分男人电影在线观看| 黄色 视频免费看| 亚洲伊人久久精品综合| 国产精品麻豆人妻色哟哟久久| av又黄又爽大尺度在线免费看| 久久精品aⅴ一区二区三区四区| 国产精品欧美亚洲77777| 亚洲成人国产一区在线观看| 黄色a级毛片大全视频| 19禁男女啪啪无遮挡网站| 中文字幕高清在线视频| 91av网站免费观看| 又紧又爽又黄一区二区| 99香蕉大伊视频| 老熟女久久久| 视频区图区小说| 日韩视频在线欧美| 欧美久久黑人一区二区| 亚洲中文av在线| 又黄又粗又硬又大视频| 天堂中文最新版在线下载| 亚洲专区国产一区二区| 一区在线观看完整版| 新久久久久国产一级毛片| 国产成人啪精品午夜网站| 高清视频免费观看一区二区| 免费一级毛片在线播放高清视频 | 日韩视频一区二区在线观看| 五月天丁香电影| 超色免费av| 久久久久视频综合| 天天影视国产精品| 亚洲精品国产一区二区精华液| a级片在线免费高清观看视频| 中文字幕av电影在线播放| 免费观看av网站的网址| 老司机在亚洲福利影院| 久久精品亚洲av国产电影网| 日韩欧美国产一区二区入口| 色综合欧美亚洲国产小说| 18禁国产床啪视频网站| 精品国内亚洲2022精品成人 | 脱女人内裤的视频| 国产精品自产拍在线观看55亚洲 | 精品久久久久久电影网| 亚洲第一av免费看| 国产成人啪精品午夜网站| 亚洲av美国av| 精品少妇内射三级| 日本a在线网址| 国产精品免费视频内射| 成年人黄色毛片网站| 欧美+亚洲+日韩+国产| 久久久久国产一级毛片高清牌| 久久久欧美国产精品| 精品少妇久久久久久888优播| 国产精品一区二区在线观看99| 岛国在线观看网站| 两性夫妻黄色片| av线在线观看网站| 婷婷丁香在线五月| 精品乱码久久久久久99久播| 久久国产亚洲av麻豆专区| 久久人妻熟女aⅴ| 亚洲精品第二区| 一区在线观看完整版| 国产日韩欧美亚洲二区| www.精华液| 国产在线视频一区二区| 国产亚洲精品一区二区www | 久久国产精品男人的天堂亚洲| 成人影院久久| 女性生殖器流出的白浆| 色婷婷久久久亚洲欧美| 在线观看免费日韩欧美大片| 久久精品国产a三级三级三级| av网站在线播放免费| 国产精品二区激情视频| 咕卡用的链子| 色精品久久人妻99蜜桃| 999久久久国产精品视频| 青春草亚洲视频在线观看| 国产成人精品久久二区二区91| 国产在线一区二区三区精| 高潮久久久久久久久久久不卡| a级毛片在线看网站| 亚洲国产毛片av蜜桃av| 99国产精品99久久久久| 国产色视频综合|