• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation

    2021-12-22 06:40:42ZongLiYang楊宗立DongLiang梁棟DaWeiDing丁大為
    Chinese Physics B 2021年12期
    關(guān)鍵詞:李浩

    Zong-Li Yang(楊宗立) Dong Liang(梁棟) Da-Wei Ding(丁大為)

    Yong-Bing Hu(胡永兵)1, and Hao Li(李浩)3

    1School of Electronics and Information Engineering,Anhui University,Hefei 230601,China

    2National Engineering Research Center for Agro-Ecological Big Data Analysis&Application,Anhui University,Hefei 230601,China

    3State Grid Lu’an Electric Power Supply Company,Lu’an 237006,China

    Keywords: fractional calculus,bi-stable locally-active memristor,transient transition behaviors,ARM implementation

    1. Introduction

    Chua has predicted that there is the fourth fundamental circuit element called memristor, which describes the relation between chargeqand magnetic fluxφ.[1]In 2008, HP(Hewlett Packard)Laboratory first fabricated a practical memristor physical device.[2]From then on, the research of the memristor received widespread attention in many fields of academia and industry. Due to its nonlinear and nonvolatile characteristics, memristors can be applied in many scenarios,such as neural networks,[3–5]memory storage,[6–8]chaotic circuit design[9–11]and secure communications.[12–14]

    Researches show that the memristor has many types,and current popular memristors contain the HP memristors,[15–17]piecewise nonlinear memristors,[18–20]continuous nonlinear function memristors,[21–23]locally-active memristors,[24–26]and so on. Recently, the research of locally-active memristors has attracted wide attention because it has the capability of a nonlinear dynamical system to amplify infinitesimal energy fluctuations.[27–29]According to the principle of energy conservation, if a nonlinear dynamical system can produce and maintain oscillations, a locally-active element is essential. Oscillations occur only in locally-active regions.[30]As a novel memory device, the locally-active memristor is first proposed by Chua,[31]and it is considered to be the origin of complexity.[32]Chua proposed a corsage memristor with one pinched hysteresis loop and locally-active ranges, which was analyzed from complex frequency domain.[33]Oscillation of the circuit on the corsage memristor was analyzed via an application of the theory of local activity, edge of chaos and the Hopf-bifurcation.[34]A novel bi-stable nonvolatile locallyactive memristor model was introduced,and the dynamics and periodic oscillation were analyzed using the theory of local activity, pole-zero analysis of admittance functions, Hopf bifurcation and the edge of chaos.[35]Jinet al. proposed a novel locally-active memristor based on a voltage-controlled generic memristor, analyzed its characteristics and illustrated the concept of local activity via the DCV–Iloci of the memristor and nonvolatile memory via the power-off plot of the memristor.[36]Yinget al. proposed a nonvolatile locallyactive memristor, and the edge of chaos was observed using the method of the small-signal equivalent circuit.[37]Wanget al. proposed a locally-active memristor with two pinched hysteresis loops and four locally-active regions,and the effect of locally-active memristors on the complexity of systems was discussed.[38]

    Fractional calculus is a generalization of the integer-order calculus,and it has the same historical memory characteristic as memristor with respect to time, therefore memristor and memristive system can be extended to fractional-order. Ivo Petr′aˇset al. firstly proposed the conception of the fractionalorder memristor.[39]Yuet al. demonstrated that fractionalorder system can describe memory effect better than integer order system in frequency domain.[40]Foudaet al. discussed the response of the fractional-order memristor under the DC and periodic signals.[41]A fractional-order HP TiO2memristor model was proposed, and the fingerprint analysis of the new model under periodic external excitation was made.[42]Wanget al. studied the properties of a fractional-order memristor, and the influences of parameters were analyzed and compared. Then the current–voltage characteristics of a simple series circuit that is composed of a fractional-order memristor and a capacitor were studied.[43]

    Nowadays, there are many researches on locally-active memristor.[44–47]Fractional-order locally-active systems can generate more complex dynamic behaviors.However,there are few researches on the nonlinear characteristics of fractional-order locally-active memristor. Our objective is to propose a novel fractional-order continuous nonlinear bistable locally-active memristor model,and study its nonlinear characteristics and conclude that the fractional-order memristor is a bi-stable locally-active memristor in certain conditions.Then, we analyze the features of the fractional-order locallyactive memristor by time domain waveforms and pinched hysteresis loop at different frequencies, different amplitudes and different orders. In order to verify that the fractional-order memristor is locally-active, we design a fractional-order simplest circuit system using the designed memristor, a linear passive inductor and a linear passive capacitor in series. It is observed that the circuit can produce oscillation and its dynamical behavior is abundant. Particularly, the fractionalorder simplest nonlinear circuit using bi-stable locally-active memristor exhibits discontinuous coexisting phenomenon and rich transient transition phenomenon. Moreover, in order to verify the correctness of the theoretical analysis and numerical simulation, the fractional-order simplest chaotic system is implemented by ARM-based MCU. The contributions of this paper are listed as follows: (1) We design and analyze a fractional-order bi-stable locally-active memristor. (2) We build a fractional-order chaotic system based on the proposed memristor and discover its discontinuous coexisting dynamical behaviors and transient transition behaviors. (3)The proposed memristor and chaotic system are implemented digitally by ARM-based hardware.

    The structure of this paper is organized as follows: Section 2 introduces the mathematical model of the fractionalorder bi-stable locally-active memristor and the power-off plot(POP)and DCV–Iloci are used to verify the nonvolatile and the locally-active characteristics. In Section 3, a fractionalorder nonlinear circuit using the proposed memristor is established, and the stability of the system is discussed. In Section 4,the nonlinear dynamics and transient transition behaviors of this system are revealed numerically using bifurcation diagrams, Lyapunov exponent spectrum, and phase portraits and so on. In Section 5,the circuit implement is carried out by ARM-based MCU in order to verify the validity of the numerical simulation results. Finally, some concluding remarks are given in the last short section.

    2. Preliminaries

    In this section,the mathematical definition of the Caputo fractional derivatives and Adomian decoposition method are introduced.

    2.1. Fractional calculus

    Definition 1[48]The Caputo fractional derivation definition of fractional-orderαis

    2.2. Adomian decomposition method

    For a fractional-order chaotic systemDαt0x(t) =f(x(t)) +g(t), herex(t) = [x1(t),x2(t),...,xn(t)]Tare the state variables of the given function, andg(t) =[g1,g2,...,gn]Tare the constants for the autonomous system,and the functionfcan be divided into linear and nonlinear termsk

    3. Bi-stable locally-active memristor

    3.1. Memristor model

    Based on Chua’s unfolding theorem,[50]a generic current-controlled memristor can be described by

    wherevandiare the input and output of the memristor,respectively,xis the state variable, andg(·) andG(·) are functions related to a specific memristor.

    A novel generic memristor model is proposed as follows:

    Based on Eqs. (12) and (13), when the unfolding parameters are set asa=4,b=?1,the POP of Eq.(13)with the arrowheads is shown in Fig. 1. Observing the trajectory of motion of the state variablex, we find that there are three intersections with thex-axis located atx1=?2,x2=0,x3=2. The dynamic route identifies that the equilibrium points?E1andE1are asymptotically stable, whereas the equilibrium pointE0is unstable, and the attraction domains of?E1andE1are(?∞,0)and(0,∞),respectively.

    Fig.1. Power-off plot(POP)of Eq.(13).

    3.2. Pinched hysteresis loops

    A sinusoidal signal source with amplitudeAand frequenciesωis designed to drive the memristor. The dynamical trajectory displays one monostable or bi-stable pinched hysteresis loop as the amplitudeAand frequencyωof the sinusoidal signal source take different values.

    Let the amplitudeA=4 V,α=0.9, and the frequencyωis changed. Whenω> 3.5 rad/s, the dynamical trajectory displays double coexisting pinched hysteresis loops as many initial valuesx0are situated on two sides of the origin.Letx0=1 andx0=?1,double coexisting pinched hysteresis loops can be obtained as shown in Figs. 2(a)–2(c). It can be found from Fig.2 that the double coexisting pinched hysteresis loops of the memristor are located in at least three quadrants.Forω>35 rad/s, although the dynamical trajectory displays double coexisting pinched hysteresis loops, the memristor is non-active.

    Let the frequencyω=6 rad/s,α=0.9, and the amplitudeAis changed. WhenA<6.4 V,the dynamical trajectory displays one bi-stable pinched hysteresis loop as many initial valuesx0are situated on two sides of the origin. Letx0=1 andx0=?1, double coexisting pinched hysteresis loops can be obtained as shown in Figs.2(d)–2(f). The same conclusion can be obtained as above.

    Let the amplitudeA=5 V,α=0.9,and the frequencyωis changed. When 1.4 rad/s≤ω<3.5 rad/s,the pinched hysteresis loops have a pinch-off point. When 0 ≤ω<1.4 rad/s,the pinched hysteresis loops have two pinch-off points,and all of the pinched hysteresis loops are symmetric abouti=0,the memristor is monostable memristor. The pinched hysteresis loops and corresponding time domain diagram are shown in Figs.3(a)–3(d).

    Fig. 2. Double coexisting pinched hysteresis loops when α =0.9, where red curves indicate initial value is x0 =1, blue curves indicate the initial value is x0=?1: (a)A=4 V,ω =4 rad/s,(b)A=4 V,ω =7 rad/s,(c)A=4 V,ω =10 rad/s,(d)A=3 V,ω =6 rad/s,(e)A=4.5 V,ω =6 rad/s,(f)A=5.5 V,ω =6 rad/s.

    Fig.3. The time-domain wave and pinched hysteresis loops of monostable memristor: (a)the time-domain diagram when A=5 V,ω =2.1 rad/s,(b)the pinched hysteresis loops when A=5 V,ω =2.1 rad/s,(c)the time-domain diagram when A=5 V,ω =1.5 rad/s,(d)the pinched hysteresis loops when A=5 V, ω =1.5 rad/s, (e) the time-domain diagram when A=6.7 V, ω =3 rad/s, (f) the pinched hysteresis loops when A=6.7 V,ω =3 rad/s,(g)the time-domain diagram when A=8 V,ω =3 rad/s,(h)the pinched hysteresis loops when A=8 V,ω =3 rad/s.

    In the same way, let the frequencyω=5 rad/s, and the amplitudeAis changed. WhenA>6 V,the pinched hysteresis loops have one pinch-off point. When 6.85 V≤A<10.5 V,the pinched hysteresis loop has two pinch-off points, and all of the pinched hysteresis loops are symmetric abouti=0,the memristor is monostable memristor. The pinched hysteresis loops and corresponding time domain diagram are shown in Figs.3(e)–3(h).

    Let the amplitudeA=4 V,ω=5 rad/s, and the orderαis changed. When 0.787 ≤α<1, the pinched hysteresis loop has two pinch-off points. With the orderαincreasing,the non-origin pinch-off point moves from left to right until it disappears. Whenα<0.787,the pinched hysteresis loop has a pinch-off point of the origin,and it is symmetric abouti=0.The pinched hysteresis loops are shown in Fig.4.

    Fig. 4. The pinched hysteresis loops when A=4, ω =5, where red curve indicates the order of α =0.9,green curve indicates the order of α =0.8,blue curve indicates the order of α =0.7.

    3.3. DC V–I plots

    DCV–Iplot is the Ohm’s law of the memristor, which can clearly show the intrinsic features of the memristor. Letx=X, dx/dt|x=X=0,Eq.(13)can be described as follow:

    Solving Eq. (14) for the equilibrium point (X,I), a function between the stateXand the applied DC currentIcan be derived,and we have

    Fig.5. DC X–I and V–I loci. (a)The equilibrium state curve on the X–I plane for the DC current on interval ?6 A

    Then settingk=1 and substituting Eq.(15)into Eq.(12),the DC voltageVcan be calculated as

    Based on Eqs. (15) and (16), when the parametercis set as 0.4, the DCX–IandV–Iplots of the memristor can be obtained, as shown in Figs. 5(a) and 5(b), respectively. When the parametercis set as different values,the DCV–Iplots are drawn as shown in Figs. 5(c) and 5(d). It can be seen from Fig.5 that the slopes of three parts of the DCV–Icurves are negative,hence the designed memristor is locally active.

    4. Fractional-order bi-stable memristive system

    The well-known simplest chaotic system was presented by Chua.[51]The system contains three circuit elements,a resistance, an inductance and a memristor. When the memristor is replaced by a bi-stable locally-active memristor,a novel 3D autonomous fractional-order memristive chaotic system is given by

    The parameter values areC=1,L=1,a=4,b=?1.The state variables in terms of circuit variables arex(t)=vC(t)(voltage across capacitorC),y(t)=iL(t)(current through inductorL)andz(t)is the internal state of the bi-stable locallyactive memristor.

    From basic circuit theory,it is not possible to have an oscillation with three independent state variables if we use the non-active memristor. However,if we use a bi-stable locallyactive memristor in the circuit, the autonomous system can generate oscillation.

    4.1. The stability of the equilibria

    To evaluate the equilibrium points,let

    The asymptotically stable regions and unstable regions in thek–cplane are separated by the curves ofk(2z??cz?3)=2 andk(2z??cz?3)=?2,which are shown as the red curves and blue curves in Fig.6,respectively.

    Fig.6. Asymptotically stable and unstable regions of the system(16)in the k–c plane.

    4.2. Solution of the fractional-order bi-stable simplest memristive system

    According to Eqs. (32)–(37), we can obtain the solutions of the proposed system,then analyze the dynamical characteristics of the system.

    4.3. Analysis of complex dynamical behaviors

    Coexisting phase diagrams, coexisting bifurcation diagrams,basins of attractor and coexisting Lyapunov exponents are applied to analyze the dynamical behaviors of system(17).

    4.3.1. Bifurcation analysis and Lyapunov exponents

    4.3.1.1. Two-parameter bifurcation

    In order to show parameter-related dynamical behaviors of the proposed system, a two-parameter bifurcation diagram should first be computed. We know that there is a fractionalorder bi-stable memristor used in system (17), whena=4,c=0.5,α=0.8,two examples of two-parameter bifurcation diagrams for different initial conditions (x0,y0,z0)=(1,1,1)and (x0,y0,z0) = (?1,?1,?1) are shown in Figs. 7(a) and 7(b), respectively. The regions marked with different colors represent different attractor types and the navy blue regions imply the orbit tending to infinite. In addition, for different parameters, many classes of attractors cannot be completely distinguished, such as limit cycles with different periodicity and chaotic attractors with different topologies. The twoparameter bifurcation diagrams show rich dynamical behaviors and coexisting phenomenon in our system.

    Fig.7. Two-parameter bifurcation diagrams(a)in k–b plane for initial value(1, 1, 1), (b)in k–b plane for initial value(?1, ?1, ?1), (c)in α–b plane for initial value(1,1,1),(d)in α ?k plane for initial value(1,1,1).

    In Fig.7(a),there are many regions marked with different colors,corresponding to the four different attractor types(navy blue region indicates the attractor tending to infinite),namely,cyan area, light area and yellow area indicate point attractor,limit cycle and chaos,respectively. Comparing Fig.7(b)with Fig. 7(a), it is easily seen that the two-parameter bifurcation diagram from system(17)is almost completely asymmetric.

    As shown in Fig. 7(c), there are three different attractor types,which are marked by three different colors,namely,the blue area indicates point attractors, light blue area indicates period attractors and the yellow area indicates chaotic attractors. In contrast, the period attractors have very small area marked by light blue,and the point attractors have biggest area marked by blue. In Fig. 7(d), there are three regions marked with different colors, corresponding to the three different attractor types. The blue area indicates point attractors,the light blue area indicates period attractors,and the yellow area indicates chaotic attractors.From Fig.7,stable point,periodic and chaotic areas can be easily identified.

    4.3.1.2. Coexisting bifurcation

    Lyapunov exponents are considered as one of the most useful diagnostic tools for analyzing dynamical behaviors of nonlinear system,and coexisting bifurcation analysis can compare the characteristics of a nonlinear system in different initial values. The method of Ref.[54]is used to solve the Lyapunov exponents in this paper. Based on the two-parameter bifurcation diagram,we can trace the dynamics to compute a single-parameter bifurcation diagram, i.e.,b=1.5,b=?1.5 andk=0.5,k=?0.5. We choose two sets of different initial values (1, 1, 1) and (?1,?1,?1), and plot coexisting bifurcation diagrams ofxversusb,xversuskandzversusα. The corresponding bifurcation diagrams and Lyapunov exponents are shown in Figs.8–10,respectively.

    Fig.8. Bifurcation diagrams with respect to x and Lyapunov exponents.(a) k=0.5, xmax excited by two sets of initial value (1,1,1) (red) and initial value(?1,?1,?1)(blue),(b)k=0.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(c)k=0.5,Lyapunov exponents corresponding to(a),(d)k=0.5,coexisting Lyapunov exponents corresponding to(b), (e)k=?0.5, xmax excited by two sets of initial value(1,1,1)(red)and initial value(?1,?1, ?1)(blue), (f)k=?0.5, coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(g)k=?0.5,Lyapunov exponents corresponding to(e),(h)k=?0.5,coexisting Lyapunov exponents corresponding to(f).

    It is found from Fig.8 that system(17)occurs alternately the phenomenon of period and chaos with the increase of parameter. Whenk=0.5,b ∈[?8.2,?2.33], system (17) produces chaotic oscillation and period oscillation only in initial value (1, 1, 1). Whenk= 0.5,b ∈[?2.34,1.59], system (17) undergoes coexisting chaos and period-1 states, coexisting point attractor and period-1 states,coexisting point attractor and chaos states. Whenk=0.5,b ∈[1.6,13],the coexisting oscillation disappears and system(17)alternately occurs period and chaos oscillation only in initial value(?1,?1,?1).Whenk=?0.5,b ∈[?8.2,13],system(17)undergoes almost the same process ask=0.5, shown in Figs. 8(a), 8(b), 8(e),and 8(f). Symmetry reflects the beauty of harmony and unity.In general, if a system manifests a symmetric transformationT:(x,y,z)→(?x,?y,?z),it can be found that the system is invariant underT,and emerges dynamic behaviors in pairs. In contrast, our system does not satisfy the condition of a symmetric transformationT,we still find that the bifurcation plots are not perfectly symmetrical with respect tob-axis,xmax-axis and center. This indicates that system(17)with the proposed bi-stable locally-active memristor possesses the unique characteristics.The corresponding Lyapunov exponents are shown in Figs.8(c),8(d),8(g),and 8(h).

    Fig.9. Coexisting bifurcation diagrams with respect to x and Lyapunov exponents. (a)b=1.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(b)b=?1.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(c)b=1.5,Lyapunov exponents corresponding to(a),(d)b=?1.5,coexisting Lyapunov exponents corresponding to(b).

    It is found from Fig.9 that with the increase of parameterk, system (17) alternately occurs the phenomenon of periods and chaos. Whenb= 1.5,k ∈[?4,?0.5329], system (17)produces a stable point attractor only in initial value (1,1,1).Whenb=1.5,k ∈[?0.5328,?0.3], system (17) undergoes coexisting chaos and point attractor states,coexisting period-1 and point attractor states,whenk ∈[?0.3,0.3],the coexisting phenomenon disappears and system (17) undergoes chaos to period to chaos. Whenk ∈[0.3,0.5328], the coexisting phenomenon appears again, and system (17) undergoes a symmetrical process withk ∈[?0.5328,?0.3]. Whenb= 1.5,k ∈[0.5329,4], system (17) produces stable point attractor only in initial value (?1,?1,?1). Whenb=?1.5,k ∈[?0.5328,0.5328], system (17) undergoes coexisting chaos and point attractor states. Whenk ∈[?4,?0.5328]∪k ∈[0.5328,4], the coexisting phenomenon disappears and system (17) only appears stable point attractor. We find that the bifurcation plots are not perfectly symmetrical with respect tok-axis,xmax-axis and center. The corresponding Lyapunov exponents are shown in Figs.9(c)and 9(d).

    It is found from Fig. 10(a) that with the increase of parameterα,system(17)alternately occurs the phenomenon of stable point, periods and chaos. Whenb=?1.5,k= 0.5,α ∈[0.5,0.63], system (17) produces stable point attractor in all values. Whenb=?1.5,k= 0.5,α ∈(0.63,0.78],system (17) produces chaos oscillation in all values. Whenb=?1.5,k=0.5,α ∈(0.78,1],system(17)undergoes coexisting chaos and period states. The corresponding Lyapunov exponents are shown in Fig.10(b).

    Fig.10. Coexisting bifurcation diagrams with respect to z versus α and Lyapunov exponents. (a) k=0.5, b=?1.5, coexisting bifurcation of zmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(b)k=0.5,b=?1.5,Lyapunov exponents corresponding to(a).

    4.3.2. Coexisting attractors and attraction basins

    If a nonlinear system with bi-stable memristor can produce oscillation, it must have coexisting attractors. Based on bifurcation plots in Figs. 7–10, we set parametersa=4,c=0.5,α=0.8,h=0.001 and change parametersbandk,then,we can draw phase diagrams as shown in Fig.11.We find that there are two kinds of chaotic attractors and two kinds of period-I cycles in the system,and called chaotic attractor I and chaotic attractor II, cycle I and cycle II. Figure 11(a) shows the coexistence of cycle I and chaotic attractor I.Figures 11(b)and 11(c)only show cycle I and attractor I,respectively. Figure 11(d) shows the coexistence of attractor I and pointer attractor. Figure 11(e)shows the coexistence of two pointer attractors in the system. Figure 11(f) shows the coexistence of chaotic attractor II and pointer attractor. Figure 11(g) shows the coexistence of cycle II and pointer attractor. Figure 11(h)shows the coexistence of cycle II and pointer attractor. From Fig. 11, we also can see the coexisting phenomenon of system(17)is intermittent.

    The different types of attractors coexist stably in the proposed simple chaotic system, their basins of attraction represent the states of the attractors in the initial state space.When we set parametersa=4,c=0.5,α=0.8,h=0.001 and change parametersb, we can draw basins of attraction as shown in Fig. 12. In Fig. 12, the basins of attraction of the point and chaos attractors of system(17)are indicated by blue and yellow, respectively. The light blue region indicates the attractor tending to infinite. Comparing Fig. 12(b) with Fig. 12(a), it is easily seen that the basins of attraction from system(17)have similar area shapes when the parameterbis set as 1 and?1.

    Fig. 11. Coexisting attractor, red curves indicate initial value of (1, 1,1), blue curves indicate the initial value of (?1, ?1, ?1); (a) k=0.5,b=?2.33, (b) k=0.5, b=?2, (c) k=0.5, b=?1.3, (d) k=0.5,b=?0.8,(e)k=0.5,b=0.4,(f)k=0.5,b=0.6,(g)k=0.5,b=1.2,(h)k=?1.5,b=1.15.

    Fig.12. Attractor basins for(a)b=1,(b)b=?1.

    4.4. Transient transition

    Transient chaos and transient period are unique phenomenon in nonlinear systems with locally-active memristor.[55,56]This section will focus on the transient transition behaviors of the proposed system,and study the transient transition phenomena with changing parameters of the system and initial value.

    4.4.1. Transient transition when parameter k changes

    To research the rich transient behaviors when the parameterkchanges, we firstly fix the parametersα=0.8,a=4,c=0.5,b=1.5 and initial value (1, 1, 1), then choose the parameterk ∈(0.01,0.51).

    Settingk= 0.06, the simulation timet ∈(0,300), the time-domain wave and phase diagram of the state variablezare shown in Figs. 13(a) and 12(b). Whent ∈(0,140), the time-domain wave is shown in the blue domain of Fig.13(a),in this time,LE1=0.0220,LE2=0.0073,LE3=?10.6775,so the system is chaos. Whent ∈(141,165),the time-domain wave is shown in the green domain of Fig. 13(a), the system displays an unstable chaotic state. Whent ∈(166,300), the system displays a period state, which is shown in the red domain of Fig.13(a).The corresponding phase diagram is shown in Fig. 13(b). Whenk= 0.13,t ∈(0,150), the system is chaotic state,which is shown in the blue domain of Fig.13(c),thent ∈(150,200), the system jumps from a chaotic state to another chaotic state, which is shown in the green domain of Fig.13(c). In this time,LE1=0.051,LE2=0.0062,LE3=?0.035,LE1+LE2+LE3>0,the system is an unstable chaotic state. Whent ∈(200,600),the system displays a clear three periods,which is shown in the red domain of Fig.13(c).The corresponding phase diagram is shown in Fig.13(d).With the parameterkincreasing, whenk=0.47,t ∈(0,220), the system is a single period state,which is shown in the blue domain of Fig. 13(e). Thent ∈(220,600), the system jumps from chaos I to chaos II state, which is shown in green and red domains of Fig.13(e). The corresponding phase diagram is shown in Fig.13(f).

    Fig. 13. The time-domain waveform and phase diagram of variable z, (a) k =0.06 time-domain waveform, (b) k =0.06 phase diagram,(c) k=0.15 time-domain waveform, (d) k=0.15 phase diagram, (e)k=0.47 time-domain waveform,(f)k=0.47 phase diagram.

    4.4.2. Transient transition when parameter b changes

    When the parameterbchanges,we firstly fix the parametersα=0.8,a=4,c=0.5,k=0.5 and initial value(1,1,1),then vary the parameterb ∈(?8,1.59).

    Settingb=?5.4, the simulation timet ∈(0,600), the time-domain wave and phase diagram of the state variablezare shown in Figs.14(a)and 14(b).Whent ∈(0,60),the timedomain wave is shown in the blue domain of Fig.14(a),which indicates that the system is in cycle state,and the range of amplitude is(?1.5,1.5).

    Fig. 14. The time-domain waveform and phase diagram of variable z,(a)b=?5.4 time-domain waveform,(b)b=?5.4 phase diagram,(c)b=?0.73 time-domain waveform, (d) b=?0.73 phase diagram, (e)b=0.556 time-domain waveform,(f)b=0.556 phase diagram.

    Whent ∈(60,180), the time-domain wave is shown in the green domain of Fig.14(a),the system is in chaotic state.Whent ∈(180,600), the time-domain wave is shown in the red domain of Fig. 14(a). The corresponding phase diagram is shown in Fig. 14(b). Whenb=?0.73, the time-domain wave int ∈(0,50)is shown in the blue domain of Fig.14(c),and the system is in cycle state,the rang of amplitude is(1.1,1.5). Thent ∈(50,250), the time-domain wave is shown in the green domain of Fig. 14(c), the system is chaotic state.Whent ∈(250,600), the time-domain wave is shown in the red domain of Fig.14(c),which shows the system jumps from one chaotic state to another chaotic state. The corresponding phase diagram is shown in Fig.14(d).With the parameterbincreasing,whenb=0.556,t ∈(0,150),the time-domain wave is in a single period state,which is shown in the blue domain of Fig.14(e),thent ∈(150,450),the system jumps from one period to chaos I state,which is shown in the green domain of Fig.14(e). Whent ∈(450,600),the system changes from one chaotic state to another chaotic state, which is shown in the red domain of Fig.14(e). The corresponding phase diagram is shown in Fig.14(f).

    4.4.3. Transient transition when parameter α changes

    To study the rich transient behavior when the parameterαchanges,we firstly fix the parametersa=4,c=0.5,k=0.5,b=1.5 and initial value(1,1,1),then choose the parametersα ∈(0.5,1).

    Fig. 15. The time-domain waveform and phase diagram of variable z, (a) α = 0.6 time-domain waveform, (b) α = 0.6 phase diagram,(c)α =0.77 time-domain waveform, (d)α =0.77 phase diagram, (e)α =0.79 time-domain waveform,(f)α =0.79 phase diagram.

    Settingα= 0.6, the simulation timet ∈(0,150), the time-domain wave and phase diagram of the state variablezare shown in Figs. 15(a) and 15(b). Whent ∈(0,5), the time-domain wave is shown in the blue domain of Fig.15(a),which indicates that the system is in a chaotic state. Whent ∈(5,25), the time-domain wave is shown in the green domain of Fig.15(a),and the system is in second type of chaotic state. Whent ∈(25,110),the time-domain wave is shown in the red domain of Fig. 15(a), the system is in third type of chaotic state. Whent ∈(110,150), the time-domain wave is shown in the pink domain of Fig. 15(a), and the system converges to a point. The corresponding phase diagram is shown in Fig.15(b). Whenα=0.77,att ∈(0,20),the time-domain wave is shown in the blue domain of Fig.15(c),and the system is in a single period state. Whent ∈(20,70),the time-domain wave is shown in the green domain of Fig.15(c),and the system is in a chaotic state. Thent ∈(70,150),the time-domain wave is shown in the red domain of Fig.15(c),and the system is in another chaotic state. The corresponding phase diagram is shown in Fig.15(d). With the parameterαincreasing,whenα=0.79,t ∈(0,150),the time-domain wave is shown in the blue domain of Fig.15(e),and the system is in a single period state. Whent ∈(150,320),the time-domain wave is shown in the green domain of Fig.15(e),and the system is in a chaotic state. Thent ∈(320,500), the time-domain wave is shown in the red domain of Fig. 15(e), and the system is in another chaotic state. The corresponding phase diagram is shown in Fig.15(f).

    It can be seen that system(17)transits from a state to another state, and finally stabilizes under the above parameters.There are two, three or four states from the beginning to the stable state,which is different from the transient transition behaviors reported in the literature.

    5. Implementation on ARM

    We implement the fractional-order bi-stable memristive simplest chaotic system on ARM platform. For hardware design, the block diagram of the working principle is shown in Fig. 16. In the experiments, the ARM-based MCU STM32F750 is employed. STM32F750 is a 32-bit ARMbased MCU running at 216 MHz with floating-point calculation unit. The processor comes with a 12-bit/8-bit dual channels digital-to-analog converter(DAC).Phase portraits of the system are captured randomly by an analog oscilloscope. The platform to implement the chaotic system (17) is shown in Fig.17.

    Fig.16. Block diagram for ARM implementation of a fractional-order chaotic system.

    Fig.17. Platform to implement a fractional-order chaotic system.

    The operational procedure of software design is shown in Fig. 18. After initializing ARM, we set the initial values(x0,y0,z0),parametersh,αand iteration number. Before iterative computation, we calculate all Γ(·) andhnα. Finally, all the data is transferred to DAC and shown in oscilloscope.

    Fig. 18. Flow chart for ARM implementation of a fractional-order chaotic system.

    Fig.19. Phase diagrams realized by ARM platform and recorded by the oscilloscope in x–z plane: (a)k=0.1,(b)k=0.15,(c)k=0.2,(d)k=0.45.

    We seta=4,c=0.5,b=1.5,α=0.8,h=0.01, initial values(x0,y0,z0)=(1,1,1), and change the parameterk.Phase portraits of the system are captured by the oscilloscope as shown in Fig.19. The experimental results qualify the simulation analysis. It indicates that the fractional-order bi-stable memristive simplest chaotic system is realized successfully on ARM platform.

    6. Conclusion

    In this paper,a bi-stable locally-active memristor is firstly proposed, which has double coexisting pinched hysteresis loops and locally-active regions. Then, a fractional-order chaotic system based on the bi-stable locally-active memristor is explored, and the stability of equilibrium points of the system is analyzed. It is found that oscillations occur only within the locally-active region. By bifurcation analysis and Lyapunov exponent spectrum analysis, we find that the system has extremely rich dynamics, such as transient transition behaviors. Finally, the circuit simulation of the fractionalorder bi-stable locally-active memristive chaotic system is implemented on ARM-based MCU to verify the validity of the numerical simulation results.

    猜你喜歡
    李浩
    “算兩次”法在數(shù)學(xué)解題中的應(yīng)用
    Quantum estimation of rotational speed in optomechanics
    Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles?
    李浩:防治新冠肺炎,科學(xué)利用藥膳
    李浩作品
    國畫家(2017年5期)2017-10-16 06:26:25
    李浩:總有那么一股勁兒——走進(jìn)空軍某試驗訓(xùn)練基地?zé)o人機飛行員李浩
    那個叫李浩的兄弟
    這個李浩
    楊班侯大功架四十二式太極拳(四)
    少林與太極(2016年4期)2016-06-16 00:47:47
    《二次根式的乘除》測試題
    三级毛片av免费| 一区福利在线观看| 叶爱在线成人免费视频播放| 一区二区av电影网| 午夜免费鲁丝| 天堂俺去俺来也www色官网| 青春草视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 18在线观看网站| 亚洲国产中文字幕在线视频| 国产精品99久久99久久久不卡| av天堂在线播放| 岛国毛片在线播放| 69精品国产乱码久久久| 国产1区2区3区精品| 国产视频一区二区在线看| 国产精品麻豆人妻色哟哟久久| 午夜福利免费观看在线| av片东京热男人的天堂| 热re99久久国产66热| 黄色 视频免费看| 亚洲第一青青草原| 亚洲黑人精品在线| 成年人黄色毛片网站| 国产精品秋霞免费鲁丝片| 国产精品 欧美亚洲| 岛国在线观看网站| 一区二区日韩欧美中文字幕| 久久精品成人免费网站| 亚洲国产精品一区三区| 老汉色∧v一级毛片| 久久亚洲国产成人精品v| 最近最新免费中文字幕在线| 久久午夜综合久久蜜桃| 超碰97精品在线观看| a级片在线免费高清观看视频| 中亚洲国语对白在线视频| 777米奇影视久久| 日韩免费高清中文字幕av| 国产精品影院久久| 丝袜美腿诱惑在线| 国产精品偷伦视频观看了| 国产精品成人在线| 欧美亚洲日本最大视频资源| 悠悠久久av| 亚洲伊人色综图| www.自偷自拍.com| av欧美777| 国产在线视频一区二区| 久久人妻熟女aⅴ| 大陆偷拍与自拍| 亚洲激情五月婷婷啪啪| 日韩有码中文字幕| 午夜激情久久久久久久| 色视频在线一区二区三区| 青春草亚洲视频在线观看| 久久99热这里只频精品6学生| 91精品伊人久久大香线蕉| 下体分泌物呈黄色| 国产又爽黄色视频| 精品国产一区二区三区久久久樱花| 男女边摸边吃奶| 欧美日韩一级在线毛片| 一本—道久久a久久精品蜜桃钙片| 少妇的丰满在线观看| 国产精品欧美亚洲77777| 免费在线观看日本一区| 超碰成人久久| 免费在线观看影片大全网站| a级片在线免费高清观看视频| a在线观看视频网站| av天堂久久9| 国产精品久久久久久精品电影小说| 十八禁高潮呻吟视频| 日韩电影二区| 国产在线免费精品| 国产免费福利视频在线观看| 男人操女人黄网站| 法律面前人人平等表现在哪些方面 | 在线观看舔阴道视频| av天堂在线播放| 国产精品av久久久久免费| 亚洲av欧美aⅴ国产| 19禁男女啪啪无遮挡网站| 欧美xxⅹ黑人| 又大又爽又粗| av片东京热男人的天堂| netflix在线观看网站| 亚洲少妇的诱惑av| 美女大奶头黄色视频| 国产精品 欧美亚洲| 亚洲一区中文字幕在线| 国产野战对白在线观看| 国产精品二区激情视频| 久久久国产精品麻豆| 十八禁人妻一区二区| 两人在一起打扑克的视频| 国产亚洲欧美精品永久| 国产高清国产精品国产三级| 脱女人内裤的视频| 手机成人av网站| 久久精品国产a三级三级三级| 日韩欧美一区二区三区在线观看 | 91麻豆av在线| 精品国产乱子伦一区二区三区 | 男女下面插进去视频免费观看| 亚洲一区二区三区欧美精品| 成人国语在线视频| 久久国产亚洲av麻豆专区| 亚洲国产精品成人久久小说| 热re99久久精品国产66热6| 国产精品香港三级国产av潘金莲| 电影成人av| 亚洲欧洲精品一区二区精品久久久| 亚洲中文字幕日韩| 国产免费现黄频在线看| 亚洲成国产人片在线观看| 美女国产高潮福利片在线看| 亚洲成av片中文字幕在线观看| 免费观看a级毛片全部| 91精品国产国语对白视频| 亚洲精品一区蜜桃| 亚洲激情五月婷婷啪啪| 亚洲精品国产色婷婷电影| 免费日韩欧美在线观看| 欧美日韩亚洲高清精品| 午夜福利乱码中文字幕| 亚洲国产欧美一区二区综合| 亚洲综合色网址| 一本综合久久免费| 97精品久久久久久久久久精品| www.自偷自拍.com| 19禁男女啪啪无遮挡网站| 久久精品久久久久久噜噜老黄| 欧美乱码精品一区二区三区| 蜜桃在线观看..| 久久精品亚洲av国产电影网| 亚洲精品av麻豆狂野| 午夜免费成人在线视频| 国产黄色免费在线视频| 亚洲av片天天在线观看| 亚洲精品一二三| 69精品国产乱码久久久| 美女国产高潮福利片在线看| 亚洲精品国产精品久久久不卡| 操美女的视频在线观看| 国产精品一二三区在线看| 成人免费观看视频高清| 男女国产视频网站| 人人妻,人人澡人人爽秒播| 亚洲欧美精品自产自拍| 黄色a级毛片大全视频| 韩国精品一区二区三区| 纵有疾风起免费观看全集完整版| 高潮久久久久久久久久久不卡| 亚洲av成人不卡在线观看播放网 | 久久人人爽人人片av| 老汉色av国产亚洲站长工具| 大码成人一级视频| 老汉色∧v一级毛片| 成在线人永久免费视频| 国产高清国产精品国产三级| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲美女黄色视频免费看| 亚洲中文日韩欧美视频| 久久毛片免费看一区二区三区| 亚洲色图 男人天堂 中文字幕| 大片免费播放器 马上看| 巨乳人妻的诱惑在线观看| 国产黄色免费在线视频| 99国产精品99久久久久| 久热这里只有精品99| 如日韩欧美国产精品一区二区三区| 99久久综合免费| 欧美97在线视频| 久久性视频一级片| 免费日韩欧美在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 美女大奶头黄色视频| 91老司机精品| 男女无遮挡免费网站观看| 国产色视频综合| 黄色毛片三级朝国网站| 91字幕亚洲| 午夜福利免费观看在线| 精品国产乱码久久久久久小说| 久久99热这里只频精品6学生| 国产精品免费视频内射| 91成人精品电影| 国产成人精品在线电影| 欧美日韩福利视频一区二区| 免费在线观看视频国产中文字幕亚洲 | 菩萨蛮人人尽说江南好唐韦庄| 久久久久网色| 人妻 亚洲 视频| 国产男女超爽视频在线观看| 国产精品偷伦视频观看了| 制服人妻中文乱码| 侵犯人妻中文字幕一二三四区| 午夜福利乱码中文字幕| 狠狠狠狠99中文字幕| 国产精品免费大片| 老司机亚洲免费影院| 久久久久久人人人人人| 午夜福利,免费看| 波多野结衣一区麻豆| 中文字幕最新亚洲高清| 欧美日韩精品网址| 亚洲精品一二三| 桃红色精品国产亚洲av| 一级片'在线观看视频| 国产精品久久久久久精品电影小说| 后天国语完整版免费观看| 久久久久久久久免费视频了| 热re99久久精品国产66热6| 考比视频在线观看| 精品免费久久久久久久清纯 | 在线观看免费视频网站a站| 欧美精品一区二区大全| 爱豆传媒免费全集在线观看| 亚洲欧美一区二区三区久久| 午夜影院在线不卡| 成年美女黄网站色视频大全免费| 亚洲,欧美精品.| 国产成人系列免费观看| 日本精品一区二区三区蜜桃| 免费观看av网站的网址| 视频区图区小说| 国产成人免费无遮挡视频| 久久狼人影院| 国产欧美日韩一区二区精品| 中文字幕高清在线视频| 乱人伦中国视频| a级片在线免费高清观看视频| 狂野欧美激情性bbbbbb| 亚洲 国产 在线| 人妻一区二区av| 视频在线观看一区二区三区| 欧美少妇被猛烈插入视频| 97人妻天天添夜夜摸| 久久精品国产亚洲av香蕉五月 | 18禁国产床啪视频网站| 一进一出抽搐动态| 亚洲av片天天在线观看| 亚洲精品国产av蜜桃| 亚洲国产精品999| 国产av又大| 美女福利国产在线| 黄网站色视频无遮挡免费观看| 午夜免费鲁丝| 美女视频免费永久观看网站| 亚洲国产毛片av蜜桃av| 狠狠狠狠99中文字幕| 色综合欧美亚洲国产小说| 亚洲精品国产区一区二| 中亚洲国语对白在线视频| 欧美乱码精品一区二区三区| 成人免费观看视频高清| 久久人人爽av亚洲精品天堂| 久热这里只有精品99| 日本vs欧美在线观看视频| 国产精品国产三级国产专区5o| 日韩欧美免费精品| 久久精品国产综合久久久| 亚洲久久久国产精品| 日韩中文字幕视频在线看片| 精品人妻1区二区| 国产精品成人在线| 热99国产精品久久久久久7| 他把我摸到了高潮在线观看 | 亚洲成av片中文字幕在线观看| 久久九九热精品免费| 色视频在线一区二区三区| 男女无遮挡免费网站观看| 国产精品秋霞免费鲁丝片| 啦啦啦啦在线视频资源| 又大又爽又粗| 少妇 在线观看| 国内毛片毛片毛片毛片毛片| 啦啦啦视频在线资源免费观看| 日韩欧美一区二区三区在线观看 | 国产亚洲精品久久久久5区| 久久青草综合色| 考比视频在线观看| √禁漫天堂资源中文www| 国产亚洲精品第一综合不卡| 性少妇av在线| 91字幕亚洲| 中国美女看黄片| av国产精品久久久久影院| 午夜福利在线观看吧| 日本一区二区免费在线视频| 黑人操中国人逼视频| 少妇精品久久久久久久| 亚洲国产精品一区二区三区在线| 久久影院123| 亚洲 国产 在线| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 黑人操中国人逼视频| av天堂在线播放| 精品国产一区二区三区久久久樱花| 一进一出抽搐动态| 亚洲色图综合在线观看| 亚洲成人免费av在线播放| 中亚洲国语对白在线视频| 高清欧美精品videossex| av有码第一页| 国产成人免费无遮挡视频| 人人妻人人爽人人添夜夜欢视频| 亚洲avbb在线观看| 无遮挡黄片免费观看| 一进一出抽搐动态| 悠悠久久av| 两性夫妻黄色片| 侵犯人妻中文字幕一二三四区| 国产福利在线免费观看视频| 99国产精品一区二区三区| 久久久国产精品麻豆| 啦啦啦中文免费视频观看日本| 亚洲,欧美精品.| 国产精品 欧美亚洲| 精品国产一区二区三区四区第35| 国产亚洲欧美精品永久| 少妇精品久久久久久久| 亚洲第一欧美日韩一区二区三区 | 国产精品久久久久久精品古装| 麻豆av在线久日| 免费日韩欧美在线观看| 精品国产乱码久久久久久男人| 国产免费视频播放在线视频| 色94色欧美一区二区| 啦啦啦中文免费视频观看日本| 免费在线观看完整版高清| 伦理电影免费视频| 欧美激情 高清一区二区三区| 亚洲精品国产色婷婷电影| 午夜福利乱码中文字幕| 亚洲avbb在线观看| 两个人免费观看高清视频| 免费久久久久久久精品成人欧美视频| 日韩 欧美 亚洲 中文字幕| 中文字幕色久视频| 亚洲成人免费av在线播放| 日韩一卡2卡3卡4卡2021年| 99热全是精品| 黑丝袜美女国产一区| 各种免费的搞黄视频| 汤姆久久久久久久影院中文字幕| 美女福利国产在线| 欧美日韩黄片免| 黄频高清免费视频| 久久精品国产亚洲av高清一级| 精品一区二区三区av网在线观看 | 91九色精品人成在线观看| 午夜福利,免费看| 女警被强在线播放| 丝袜脚勾引网站| 女性生殖器流出的白浆| 国产av国产精品国产| 久久久久精品人妻al黑| 国产成人免费无遮挡视频| 国产在线免费精品| 9191精品国产免费久久| 国产有黄有色有爽视频| 色婷婷久久久亚洲欧美| 欧美精品一区二区大全| 精品福利观看| 日韩大码丰满熟妇| 97精品久久久久久久久久精品| 亚洲激情五月婷婷啪啪| 在线观看www视频免费| 国产黄频视频在线观看| 婷婷成人精品国产| 国产欧美日韩综合在线一区二区| 丝瓜视频免费看黄片| 亚洲欧美成人综合另类久久久| 免费在线观看影片大全网站| 人人妻人人澡人人看| 日韩制服丝袜自拍偷拍| 夜夜夜夜夜久久久久| 精品亚洲成a人片在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美在线黄色| 男女国产视频网站| 99re6热这里在线精品视频| 91老司机精品| 性高湖久久久久久久久免费观看| 女人爽到高潮嗷嗷叫在线视频| 久久人妻福利社区极品人妻图片| av不卡在线播放| 国产成人精品久久二区二区91| 美女国产高潮福利片在线看| 亚洲精品久久久久久婷婷小说| 国产精品一二三区在线看| 国产一区二区三区av在线| 欧美 日韩 精品 国产| 日本一区二区免费在线视频| 丁香六月天网| 国产精品免费大片| 久久av网站| 亚洲精品久久午夜乱码| 亚洲人成77777在线视频| 9191精品国产免费久久| 亚洲欧美一区二区三区黑人| 国产精品免费视频内射| 国产一区二区三区av在线| 欧美日韩亚洲高清精品| 国产成人免费观看mmmm| 精品国产一区二区三区四区第35| 久久ye,这里只有精品| 欧美老熟妇乱子伦牲交| 日日夜夜操网爽| 亚洲av日韩精品久久久久久密| 精品卡一卡二卡四卡免费| 91av网站免费观看| 亚洲国产精品成人久久小说| 欧美日韩成人在线一区二区| 999久久久国产精品视频| 精品久久久久久电影网| 日韩视频在线欧美| 成人影院久久| 大香蕉久久网| 无限看片的www在线观看| 99精国产麻豆久久婷婷| 中文字幕av电影在线播放| 老汉色av国产亚洲站长工具| 色视频在线一区二区三区| 男女床上黄色一级片免费看| 久久综合国产亚洲精品| 午夜福利一区二区在线看| 少妇人妻久久综合中文| 另类精品久久| 又大又爽又粗| 国产精品久久久久久精品电影小说| 99精国产麻豆久久婷婷| 中文字幕av电影在线播放| 美女高潮喷水抽搐中文字幕| 国产亚洲午夜精品一区二区久久| 日本91视频免费播放| 一级片'在线观看视频| 蜜桃在线观看..| 久久99热这里只频精品6学生| 91成年电影在线观看| 欧美人与性动交α欧美软件| a级毛片在线看网站| 999久久久精品免费观看国产| 视频区图区小说| 国产精品麻豆人妻色哟哟久久| √禁漫天堂资源中文www| 午夜福利,免费看| 真人做人爱边吃奶动态| 亚洲五月婷婷丁香| 欧美日韩亚洲高清精品| 亚洲精品乱久久久久久| 亚洲视频免费观看视频| 丁香六月欧美| 亚洲欧美一区二区三区黑人| 日韩中文字幕欧美一区二区| 国产成人一区二区三区免费视频网站| 国产xxxxx性猛交| 亚洲精品国产色婷婷电影| 日本黄色日本黄色录像| 搡老熟女国产l中国老女人| 国产成人精品久久二区二区91| 欧美成人午夜精品| 女警被强在线播放| 日韩 欧美 亚洲 中文字幕| 91大片在线观看| 在线天堂中文资源库| av电影中文网址| a级毛片在线看网站| 老司机靠b影院| 亚洲免费av在线视频| 国产主播在线观看一区二区| 亚洲 欧美一区二区三区| 国内毛片毛片毛片毛片毛片| 黑人巨大精品欧美一区二区mp4| 中文字幕人妻熟女乱码| 国产又爽黄色视频| 青青草视频在线视频观看| 免费高清在线观看日韩| 日韩 亚洲 欧美在线| 午夜精品久久久久久毛片777| 国产亚洲av片在线观看秒播厂| 国产精品 欧美亚洲| 国产一区二区三区综合在线观看| 国产精品久久久久成人av| 最近最新免费中文字幕在线| 中文字幕制服av| 一本色道久久久久久精品综合| 国产又色又爽无遮挡免| 91精品国产国语对白视频| 满18在线观看网站| 999精品在线视频| e午夜精品久久久久久久| 青春草视频在线免费观看| 人人妻人人添人人爽欧美一区卜| 欧美激情高清一区二区三区| 亚洲三区欧美一区| 亚洲国产av影院在线观看| 亚洲国产看品久久| xxxhd国产人妻xxx| 国产免费福利视频在线观看| 欧美日韩黄片免| 久久久久久亚洲精品国产蜜桃av| 亚洲精品一二三| 国产免费一区二区三区四区乱码| 日韩人妻精品一区2区三区| 国产成人欧美| 中文字幕色久视频| 99精品欧美一区二区三区四区| 国产免费一区二区三区四区乱码| 亚洲一区二区三区欧美精品| 99久久人妻综合| 欧美少妇被猛烈插入视频| 国产精品.久久久| 亚洲国产精品成人久久小说| 亚洲人成电影免费在线| 美女中出高潮动态图| 看免费av毛片| 国产福利在线免费观看视频| 少妇粗大呻吟视频| 91麻豆av在线| 日韩三级视频一区二区三区| 免费日韩欧美在线观看| 免费观看a级毛片全部| 巨乳人妻的诱惑在线观看| 高潮久久久久久久久久久不卡| 黄频高清免费视频| 欧美亚洲日本最大视频资源| 中文精品一卡2卡3卡4更新| 国产欧美日韩精品亚洲av| 一本大道久久a久久精品| 成人手机av| 国产一区有黄有色的免费视频| 久久人人爽av亚洲精品天堂| 免费女性裸体啪啪无遮挡网站| 久久久久久免费高清国产稀缺| 一本色道久久久久久精品综合| 亚洲男人天堂网一区| 一本综合久久免费| 欧美成狂野欧美在线观看| 欧美av亚洲av综合av国产av| 91老司机精品| 最近最新中文字幕大全免费视频| 国产高清视频在线播放一区 | 亚洲久久久国产精品| 99国产精品一区二区三区| 麻豆国产av国片精品| 美女中出高潮动态图| 日日摸夜夜添夜夜添小说| 亚洲一码二码三码区别大吗| 国产一级毛片在线| 婷婷丁香在线五月| 欧美日本中文国产一区发布| 下体分泌物呈黄色| 精品一区二区三区四区五区乱码| 蜜桃在线观看..| 午夜福利影视在线免费观看| 香蕉国产在线看| 日韩 欧美 亚洲 中文字幕| 一级毛片精品| 1024视频免费在线观看| 狠狠婷婷综合久久久久久88av| 日韩中文字幕欧美一区二区| 可以免费在线观看a视频的电影网站| 亚洲精品美女久久久久99蜜臀| 国产老妇伦熟女老妇高清| 国产欧美日韩综合在线一区二区| 国产av一区二区精品久久| 咕卡用的链子| 亚洲色图 男人天堂 中文字幕| 男人添女人高潮全过程视频| 午夜福利视频精品| 亚洲一区二区三区欧美精品| 亚洲 国产 在线| 国产高清国产精品国产三级| 性色av乱码一区二区三区2| 黄色 视频免费看| 亚洲欧洲日产国产| 俄罗斯特黄特色一大片| 国产一级毛片在线| √禁漫天堂资源中文www| 亚洲性夜色夜夜综合| 999久久久精品免费观看国产| av网站在线播放免费| 90打野战视频偷拍视频| 欧美日韩精品网址| 菩萨蛮人人尽说江南好唐韦庄| 国产伦理片在线播放av一区| 欧美激情久久久久久爽电影 | 精品国产乱子伦一区二区三区 | 亚洲国产欧美日韩在线播放| 午夜成年电影在线免费观看| 叶爱在线成人免费视频播放| 国产成人欧美| 一级毛片电影观看| 狠狠婷婷综合久久久久久88av| 老熟妇仑乱视频hdxx| 久久ye,这里只有精品| 男女之事视频高清在线观看| 午夜视频精品福利| 欧美精品av麻豆av| 免费女性裸体啪啪无遮挡网站| 久久久久久久国产电影| 丰满人妻熟妇乱又伦精品不卡| 中文字幕另类日韩欧美亚洲嫩草| 老熟妇仑乱视频hdxx| 久久午夜综合久久蜜桃| 国产福利在线免费观看视频| 亚洲精品一区蜜桃| 精品少妇久久久久久888优播| 男女边摸边吃奶| 国产日韩欧美在线精品|