• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation

    2021-12-22 06:40:42ZongLiYang楊宗立DongLiang梁棟DaWeiDing丁大為
    Chinese Physics B 2021年12期
    關(guān)鍵詞:李浩

    Zong-Li Yang(楊宗立) Dong Liang(梁棟) Da-Wei Ding(丁大為)

    Yong-Bing Hu(胡永兵)1, and Hao Li(李浩)3

    1School of Electronics and Information Engineering,Anhui University,Hefei 230601,China

    2National Engineering Research Center for Agro-Ecological Big Data Analysis&Application,Anhui University,Hefei 230601,China

    3State Grid Lu’an Electric Power Supply Company,Lu’an 237006,China

    Keywords: fractional calculus,bi-stable locally-active memristor,transient transition behaviors,ARM implementation

    1. Introduction

    Chua has predicted that there is the fourth fundamental circuit element called memristor, which describes the relation between chargeqand magnetic fluxφ.[1]In 2008, HP(Hewlett Packard)Laboratory first fabricated a practical memristor physical device.[2]From then on, the research of the memristor received widespread attention in many fields of academia and industry. Due to its nonlinear and nonvolatile characteristics, memristors can be applied in many scenarios,such as neural networks,[3–5]memory storage,[6–8]chaotic circuit design[9–11]and secure communications.[12–14]

    Researches show that the memristor has many types,and current popular memristors contain the HP memristors,[15–17]piecewise nonlinear memristors,[18–20]continuous nonlinear function memristors,[21–23]locally-active memristors,[24–26]and so on. Recently, the research of locally-active memristors has attracted wide attention because it has the capability of a nonlinear dynamical system to amplify infinitesimal energy fluctuations.[27–29]According to the principle of energy conservation, if a nonlinear dynamical system can produce and maintain oscillations, a locally-active element is essential. Oscillations occur only in locally-active regions.[30]As a novel memory device, the locally-active memristor is first proposed by Chua,[31]and it is considered to be the origin of complexity.[32]Chua proposed a corsage memristor with one pinched hysteresis loop and locally-active ranges, which was analyzed from complex frequency domain.[33]Oscillation of the circuit on the corsage memristor was analyzed via an application of the theory of local activity, edge of chaos and the Hopf-bifurcation.[34]A novel bi-stable nonvolatile locallyactive memristor model was introduced,and the dynamics and periodic oscillation were analyzed using the theory of local activity, pole-zero analysis of admittance functions, Hopf bifurcation and the edge of chaos.[35]Jinet al. proposed a novel locally-active memristor based on a voltage-controlled generic memristor, analyzed its characteristics and illustrated the concept of local activity via the DCV–Iloci of the memristor and nonvolatile memory via the power-off plot of the memristor.[36]Yinget al. proposed a nonvolatile locallyactive memristor, and the edge of chaos was observed using the method of the small-signal equivalent circuit.[37]Wanget al. proposed a locally-active memristor with two pinched hysteresis loops and four locally-active regions,and the effect of locally-active memristors on the complexity of systems was discussed.[38]

    Fractional calculus is a generalization of the integer-order calculus,and it has the same historical memory characteristic as memristor with respect to time, therefore memristor and memristive system can be extended to fractional-order. Ivo Petr′aˇset al. firstly proposed the conception of the fractionalorder memristor.[39]Yuet al. demonstrated that fractionalorder system can describe memory effect better than integer order system in frequency domain.[40]Foudaet al. discussed the response of the fractional-order memristor under the DC and periodic signals.[41]A fractional-order HP TiO2memristor model was proposed, and the fingerprint analysis of the new model under periodic external excitation was made.[42]Wanget al. studied the properties of a fractional-order memristor, and the influences of parameters were analyzed and compared. Then the current–voltage characteristics of a simple series circuit that is composed of a fractional-order memristor and a capacitor were studied.[43]

    Nowadays, there are many researches on locally-active memristor.[44–47]Fractional-order locally-active systems can generate more complex dynamic behaviors.However,there are few researches on the nonlinear characteristics of fractional-order locally-active memristor. Our objective is to propose a novel fractional-order continuous nonlinear bistable locally-active memristor model,and study its nonlinear characteristics and conclude that the fractional-order memristor is a bi-stable locally-active memristor in certain conditions.Then, we analyze the features of the fractional-order locallyactive memristor by time domain waveforms and pinched hysteresis loop at different frequencies, different amplitudes and different orders. In order to verify that the fractional-order memristor is locally-active, we design a fractional-order simplest circuit system using the designed memristor, a linear passive inductor and a linear passive capacitor in series. It is observed that the circuit can produce oscillation and its dynamical behavior is abundant. Particularly, the fractionalorder simplest nonlinear circuit using bi-stable locally-active memristor exhibits discontinuous coexisting phenomenon and rich transient transition phenomenon. Moreover, in order to verify the correctness of the theoretical analysis and numerical simulation, the fractional-order simplest chaotic system is implemented by ARM-based MCU. The contributions of this paper are listed as follows: (1) We design and analyze a fractional-order bi-stable locally-active memristor. (2) We build a fractional-order chaotic system based on the proposed memristor and discover its discontinuous coexisting dynamical behaviors and transient transition behaviors. (3)The proposed memristor and chaotic system are implemented digitally by ARM-based hardware.

    The structure of this paper is organized as follows: Section 2 introduces the mathematical model of the fractionalorder bi-stable locally-active memristor and the power-off plot(POP)and DCV–Iloci are used to verify the nonvolatile and the locally-active characteristics. In Section 3, a fractionalorder nonlinear circuit using the proposed memristor is established, and the stability of the system is discussed. In Section 4,the nonlinear dynamics and transient transition behaviors of this system are revealed numerically using bifurcation diagrams, Lyapunov exponent spectrum, and phase portraits and so on. In Section 5,the circuit implement is carried out by ARM-based MCU in order to verify the validity of the numerical simulation results. Finally, some concluding remarks are given in the last short section.

    2. Preliminaries

    In this section,the mathematical definition of the Caputo fractional derivatives and Adomian decoposition method are introduced.

    2.1. Fractional calculus

    Definition 1[48]The Caputo fractional derivation definition of fractional-orderαis

    2.2. Adomian decomposition method

    For a fractional-order chaotic systemDαt0x(t) =f(x(t)) +g(t), herex(t) = [x1(t),x2(t),...,xn(t)]Tare the state variables of the given function, andg(t) =[g1,g2,...,gn]Tare the constants for the autonomous system,and the functionfcan be divided into linear and nonlinear termsk

    3. Bi-stable locally-active memristor

    3.1. Memristor model

    Based on Chua’s unfolding theorem,[50]a generic current-controlled memristor can be described by

    wherevandiare the input and output of the memristor,respectively,xis the state variable, andg(·) andG(·) are functions related to a specific memristor.

    A novel generic memristor model is proposed as follows:

    Based on Eqs. (12) and (13), when the unfolding parameters are set asa=4,b=?1,the POP of Eq.(13)with the arrowheads is shown in Fig. 1. Observing the trajectory of motion of the state variablex, we find that there are three intersections with thex-axis located atx1=?2,x2=0,x3=2. The dynamic route identifies that the equilibrium points?E1andE1are asymptotically stable, whereas the equilibrium pointE0is unstable, and the attraction domains of?E1andE1are(?∞,0)and(0,∞),respectively.

    Fig.1. Power-off plot(POP)of Eq.(13).

    3.2. Pinched hysteresis loops

    A sinusoidal signal source with amplitudeAand frequenciesωis designed to drive the memristor. The dynamical trajectory displays one monostable or bi-stable pinched hysteresis loop as the amplitudeAand frequencyωof the sinusoidal signal source take different values.

    Let the amplitudeA=4 V,α=0.9, and the frequencyωis changed. Whenω> 3.5 rad/s, the dynamical trajectory displays double coexisting pinched hysteresis loops as many initial valuesx0are situated on two sides of the origin.Letx0=1 andx0=?1,double coexisting pinched hysteresis loops can be obtained as shown in Figs. 2(a)–2(c). It can be found from Fig.2 that the double coexisting pinched hysteresis loops of the memristor are located in at least three quadrants.Forω>35 rad/s, although the dynamical trajectory displays double coexisting pinched hysteresis loops, the memristor is non-active.

    Let the frequencyω=6 rad/s,α=0.9, and the amplitudeAis changed. WhenA<6.4 V,the dynamical trajectory displays one bi-stable pinched hysteresis loop as many initial valuesx0are situated on two sides of the origin. Letx0=1 andx0=?1, double coexisting pinched hysteresis loops can be obtained as shown in Figs.2(d)–2(f). The same conclusion can be obtained as above.

    Let the amplitudeA=5 V,α=0.9,and the frequencyωis changed. When 1.4 rad/s≤ω<3.5 rad/s,the pinched hysteresis loops have a pinch-off point. When 0 ≤ω<1.4 rad/s,the pinched hysteresis loops have two pinch-off points,and all of the pinched hysteresis loops are symmetric abouti=0,the memristor is monostable memristor. The pinched hysteresis loops and corresponding time domain diagram are shown in Figs.3(a)–3(d).

    Fig. 2. Double coexisting pinched hysteresis loops when α =0.9, where red curves indicate initial value is x0 =1, blue curves indicate the initial value is x0=?1: (a)A=4 V,ω =4 rad/s,(b)A=4 V,ω =7 rad/s,(c)A=4 V,ω =10 rad/s,(d)A=3 V,ω =6 rad/s,(e)A=4.5 V,ω =6 rad/s,(f)A=5.5 V,ω =6 rad/s.

    Fig.3. The time-domain wave and pinched hysteresis loops of monostable memristor: (a)the time-domain diagram when A=5 V,ω =2.1 rad/s,(b)the pinched hysteresis loops when A=5 V,ω =2.1 rad/s,(c)the time-domain diagram when A=5 V,ω =1.5 rad/s,(d)the pinched hysteresis loops when A=5 V, ω =1.5 rad/s, (e) the time-domain diagram when A=6.7 V, ω =3 rad/s, (f) the pinched hysteresis loops when A=6.7 V,ω =3 rad/s,(g)the time-domain diagram when A=8 V,ω =3 rad/s,(h)the pinched hysteresis loops when A=8 V,ω =3 rad/s.

    In the same way, let the frequencyω=5 rad/s, and the amplitudeAis changed. WhenA>6 V,the pinched hysteresis loops have one pinch-off point. When 6.85 V≤A<10.5 V,the pinched hysteresis loop has two pinch-off points, and all of the pinched hysteresis loops are symmetric abouti=0,the memristor is monostable memristor. The pinched hysteresis loops and corresponding time domain diagram are shown in Figs.3(e)–3(h).

    Let the amplitudeA=4 V,ω=5 rad/s, and the orderαis changed. When 0.787 ≤α<1, the pinched hysteresis loop has two pinch-off points. With the orderαincreasing,the non-origin pinch-off point moves from left to right until it disappears. Whenα<0.787,the pinched hysteresis loop has a pinch-off point of the origin,and it is symmetric abouti=0.The pinched hysteresis loops are shown in Fig.4.

    Fig. 4. The pinched hysteresis loops when A=4, ω =5, where red curve indicates the order of α =0.9,green curve indicates the order of α =0.8,blue curve indicates the order of α =0.7.

    3.3. DC V–I plots

    DCV–Iplot is the Ohm’s law of the memristor, which can clearly show the intrinsic features of the memristor. Letx=X, dx/dt|x=X=0,Eq.(13)can be described as follow:

    Solving Eq. (14) for the equilibrium point (X,I), a function between the stateXand the applied DC currentIcan be derived,and we have

    Fig.5. DC X–I and V–I loci. (a)The equilibrium state curve on the X–I plane for the DC current on interval ?6 A

    Then settingk=1 and substituting Eq.(15)into Eq.(12),the DC voltageVcan be calculated as

    Based on Eqs. (15) and (16), when the parametercis set as 0.4, the DCX–IandV–Iplots of the memristor can be obtained, as shown in Figs. 5(a) and 5(b), respectively. When the parametercis set as different values,the DCV–Iplots are drawn as shown in Figs. 5(c) and 5(d). It can be seen from Fig.5 that the slopes of three parts of the DCV–Icurves are negative,hence the designed memristor is locally active.

    4. Fractional-order bi-stable memristive system

    The well-known simplest chaotic system was presented by Chua.[51]The system contains three circuit elements,a resistance, an inductance and a memristor. When the memristor is replaced by a bi-stable locally-active memristor,a novel 3D autonomous fractional-order memristive chaotic system is given by

    The parameter values areC=1,L=1,a=4,b=?1.The state variables in terms of circuit variables arex(t)=vC(t)(voltage across capacitorC),y(t)=iL(t)(current through inductorL)andz(t)is the internal state of the bi-stable locallyactive memristor.

    From basic circuit theory,it is not possible to have an oscillation with three independent state variables if we use the non-active memristor. However,if we use a bi-stable locallyactive memristor in the circuit, the autonomous system can generate oscillation.

    4.1. The stability of the equilibria

    To evaluate the equilibrium points,let

    The asymptotically stable regions and unstable regions in thek–cplane are separated by the curves ofk(2z??cz?3)=2 andk(2z??cz?3)=?2,which are shown as the red curves and blue curves in Fig.6,respectively.

    Fig.6. Asymptotically stable and unstable regions of the system(16)in the k–c plane.

    4.2. Solution of the fractional-order bi-stable simplest memristive system

    According to Eqs. (32)–(37), we can obtain the solutions of the proposed system,then analyze the dynamical characteristics of the system.

    4.3. Analysis of complex dynamical behaviors

    Coexisting phase diagrams, coexisting bifurcation diagrams,basins of attractor and coexisting Lyapunov exponents are applied to analyze the dynamical behaviors of system(17).

    4.3.1. Bifurcation analysis and Lyapunov exponents

    4.3.1.1. Two-parameter bifurcation

    In order to show parameter-related dynamical behaviors of the proposed system, a two-parameter bifurcation diagram should first be computed. We know that there is a fractionalorder bi-stable memristor used in system (17), whena=4,c=0.5,α=0.8,two examples of two-parameter bifurcation diagrams for different initial conditions (x0,y0,z0)=(1,1,1)and (x0,y0,z0) = (?1,?1,?1) are shown in Figs. 7(a) and 7(b), respectively. The regions marked with different colors represent different attractor types and the navy blue regions imply the orbit tending to infinite. In addition, for different parameters, many classes of attractors cannot be completely distinguished, such as limit cycles with different periodicity and chaotic attractors with different topologies. The twoparameter bifurcation diagrams show rich dynamical behaviors and coexisting phenomenon in our system.

    Fig.7. Two-parameter bifurcation diagrams(a)in k–b plane for initial value(1, 1, 1), (b)in k–b plane for initial value(?1, ?1, ?1), (c)in α–b plane for initial value(1,1,1),(d)in α ?k plane for initial value(1,1,1).

    In Fig.7(a),there are many regions marked with different colors,corresponding to the four different attractor types(navy blue region indicates the attractor tending to infinite),namely,cyan area, light area and yellow area indicate point attractor,limit cycle and chaos,respectively. Comparing Fig.7(b)with Fig. 7(a), it is easily seen that the two-parameter bifurcation diagram from system(17)is almost completely asymmetric.

    As shown in Fig. 7(c), there are three different attractor types,which are marked by three different colors,namely,the blue area indicates point attractors, light blue area indicates period attractors and the yellow area indicates chaotic attractors. In contrast, the period attractors have very small area marked by light blue,and the point attractors have biggest area marked by blue. In Fig. 7(d), there are three regions marked with different colors, corresponding to the three different attractor types. The blue area indicates point attractors,the light blue area indicates period attractors,and the yellow area indicates chaotic attractors.From Fig.7,stable point,periodic and chaotic areas can be easily identified.

    4.3.1.2. Coexisting bifurcation

    Lyapunov exponents are considered as one of the most useful diagnostic tools for analyzing dynamical behaviors of nonlinear system,and coexisting bifurcation analysis can compare the characteristics of a nonlinear system in different initial values. The method of Ref.[54]is used to solve the Lyapunov exponents in this paper. Based on the two-parameter bifurcation diagram,we can trace the dynamics to compute a single-parameter bifurcation diagram, i.e.,b=1.5,b=?1.5 andk=0.5,k=?0.5. We choose two sets of different initial values (1, 1, 1) and (?1,?1,?1), and plot coexisting bifurcation diagrams ofxversusb,xversuskandzversusα. The corresponding bifurcation diagrams and Lyapunov exponents are shown in Figs.8–10,respectively.

    Fig.8. Bifurcation diagrams with respect to x and Lyapunov exponents.(a) k=0.5, xmax excited by two sets of initial value (1,1,1) (red) and initial value(?1,?1,?1)(blue),(b)k=0.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(c)k=0.5,Lyapunov exponents corresponding to(a),(d)k=0.5,coexisting Lyapunov exponents corresponding to(b), (e)k=?0.5, xmax excited by two sets of initial value(1,1,1)(red)and initial value(?1,?1, ?1)(blue), (f)k=?0.5, coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(g)k=?0.5,Lyapunov exponents corresponding to(e),(h)k=?0.5,coexisting Lyapunov exponents corresponding to(f).

    It is found from Fig.8 that system(17)occurs alternately the phenomenon of period and chaos with the increase of parameter. Whenk=0.5,b ∈[?8.2,?2.33], system (17) produces chaotic oscillation and period oscillation only in initial value (1, 1, 1). Whenk= 0.5,b ∈[?2.34,1.59], system (17) undergoes coexisting chaos and period-1 states, coexisting point attractor and period-1 states,coexisting point attractor and chaos states. Whenk=0.5,b ∈[1.6,13],the coexisting oscillation disappears and system(17)alternately occurs period and chaos oscillation only in initial value(?1,?1,?1).Whenk=?0.5,b ∈[?8.2,13],system(17)undergoes almost the same process ask=0.5, shown in Figs. 8(a), 8(b), 8(e),and 8(f). Symmetry reflects the beauty of harmony and unity.In general, if a system manifests a symmetric transformationT:(x,y,z)→(?x,?y,?z),it can be found that the system is invariant underT,and emerges dynamic behaviors in pairs. In contrast, our system does not satisfy the condition of a symmetric transformationT,we still find that the bifurcation plots are not perfectly symmetrical with respect tob-axis,xmax-axis and center. This indicates that system(17)with the proposed bi-stable locally-active memristor possesses the unique characteristics.The corresponding Lyapunov exponents are shown in Figs.8(c),8(d),8(g),and 8(h).

    Fig.9. Coexisting bifurcation diagrams with respect to x and Lyapunov exponents. (a)b=1.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(b)b=?1.5,coexisting bifurcation of xmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(c)b=1.5,Lyapunov exponents corresponding to(a),(d)b=?1.5,coexisting Lyapunov exponents corresponding to(b).

    It is found from Fig.9 that with the increase of parameterk, system (17) alternately occurs the phenomenon of periods and chaos. Whenb= 1.5,k ∈[?4,?0.5329], system (17)produces a stable point attractor only in initial value (1,1,1).Whenb=1.5,k ∈[?0.5328,?0.3], system (17) undergoes coexisting chaos and point attractor states,coexisting period-1 and point attractor states,whenk ∈[?0.3,0.3],the coexisting phenomenon disappears and system (17) undergoes chaos to period to chaos. Whenk ∈[0.3,0.5328], the coexisting phenomenon appears again, and system (17) undergoes a symmetrical process withk ∈[?0.5328,?0.3]. Whenb= 1.5,k ∈[0.5329,4], system (17) produces stable point attractor only in initial value (?1,?1,?1). Whenb=?1.5,k ∈[?0.5328,0.5328], system (17) undergoes coexisting chaos and point attractor states. Whenk ∈[?4,?0.5328]∪k ∈[0.5328,4], the coexisting phenomenon disappears and system (17) only appears stable point attractor. We find that the bifurcation plots are not perfectly symmetrical with respect tok-axis,xmax-axis and center. The corresponding Lyapunov exponents are shown in Figs.9(c)and 9(d).

    It is found from Fig. 10(a) that with the increase of parameterα,system(17)alternately occurs the phenomenon of stable point, periods and chaos. Whenb=?1.5,k= 0.5,α ∈[0.5,0.63], system (17) produces stable point attractor in all values. Whenb=?1.5,k= 0.5,α ∈(0.63,0.78],system (17) produces chaos oscillation in all values. Whenb=?1.5,k=0.5,α ∈(0.78,1],system(17)undergoes coexisting chaos and period states. The corresponding Lyapunov exponents are shown in Fig.10(b).

    Fig.10. Coexisting bifurcation diagrams with respect to z versus α and Lyapunov exponents. (a) k=0.5, b=?1.5, coexisting bifurcation of zmax for initial value(1,1,1)(red)and initial value(?1,?1,?1)(blue),(b)k=0.5,b=?1.5,Lyapunov exponents corresponding to(a).

    4.3.2. Coexisting attractors and attraction basins

    If a nonlinear system with bi-stable memristor can produce oscillation, it must have coexisting attractors. Based on bifurcation plots in Figs. 7–10, we set parametersa=4,c=0.5,α=0.8,h=0.001 and change parametersbandk,then,we can draw phase diagrams as shown in Fig.11.We find that there are two kinds of chaotic attractors and two kinds of period-I cycles in the system,and called chaotic attractor I and chaotic attractor II, cycle I and cycle II. Figure 11(a) shows the coexistence of cycle I and chaotic attractor I.Figures 11(b)and 11(c)only show cycle I and attractor I,respectively. Figure 11(d) shows the coexistence of attractor I and pointer attractor. Figure 11(e)shows the coexistence of two pointer attractors in the system. Figure 11(f) shows the coexistence of chaotic attractor II and pointer attractor. Figure 11(g) shows the coexistence of cycle II and pointer attractor. Figure 11(h)shows the coexistence of cycle II and pointer attractor. From Fig. 11, we also can see the coexisting phenomenon of system(17)is intermittent.

    The different types of attractors coexist stably in the proposed simple chaotic system, their basins of attraction represent the states of the attractors in the initial state space.When we set parametersa=4,c=0.5,α=0.8,h=0.001 and change parametersb, we can draw basins of attraction as shown in Fig. 12. In Fig. 12, the basins of attraction of the point and chaos attractors of system(17)are indicated by blue and yellow, respectively. The light blue region indicates the attractor tending to infinite. Comparing Fig. 12(b) with Fig. 12(a), it is easily seen that the basins of attraction from system(17)have similar area shapes when the parameterbis set as 1 and?1.

    Fig. 11. Coexisting attractor, red curves indicate initial value of (1, 1,1), blue curves indicate the initial value of (?1, ?1, ?1); (a) k=0.5,b=?2.33, (b) k=0.5, b=?2, (c) k=0.5, b=?1.3, (d) k=0.5,b=?0.8,(e)k=0.5,b=0.4,(f)k=0.5,b=0.6,(g)k=0.5,b=1.2,(h)k=?1.5,b=1.15.

    Fig.12. Attractor basins for(a)b=1,(b)b=?1.

    4.4. Transient transition

    Transient chaos and transient period are unique phenomenon in nonlinear systems with locally-active memristor.[55,56]This section will focus on the transient transition behaviors of the proposed system,and study the transient transition phenomena with changing parameters of the system and initial value.

    4.4.1. Transient transition when parameter k changes

    To research the rich transient behaviors when the parameterkchanges, we firstly fix the parametersα=0.8,a=4,c=0.5,b=1.5 and initial value (1, 1, 1), then choose the parameterk ∈(0.01,0.51).

    Settingk= 0.06, the simulation timet ∈(0,300), the time-domain wave and phase diagram of the state variablezare shown in Figs. 13(a) and 12(b). Whent ∈(0,140), the time-domain wave is shown in the blue domain of Fig.13(a),in this time,LE1=0.0220,LE2=0.0073,LE3=?10.6775,so the system is chaos. Whent ∈(141,165),the time-domain wave is shown in the green domain of Fig. 13(a), the system displays an unstable chaotic state. Whent ∈(166,300), the system displays a period state, which is shown in the red domain of Fig.13(a).The corresponding phase diagram is shown in Fig. 13(b). Whenk= 0.13,t ∈(0,150), the system is chaotic state,which is shown in the blue domain of Fig.13(c),thent ∈(150,200), the system jumps from a chaotic state to another chaotic state, which is shown in the green domain of Fig.13(c). In this time,LE1=0.051,LE2=0.0062,LE3=?0.035,LE1+LE2+LE3>0,the system is an unstable chaotic state. Whent ∈(200,600),the system displays a clear three periods,which is shown in the red domain of Fig.13(c).The corresponding phase diagram is shown in Fig.13(d).With the parameterkincreasing, whenk=0.47,t ∈(0,220), the system is a single period state,which is shown in the blue domain of Fig. 13(e). Thent ∈(220,600), the system jumps from chaos I to chaos II state, which is shown in green and red domains of Fig.13(e). The corresponding phase diagram is shown in Fig.13(f).

    Fig. 13. The time-domain waveform and phase diagram of variable z, (a) k =0.06 time-domain waveform, (b) k =0.06 phase diagram,(c) k=0.15 time-domain waveform, (d) k=0.15 phase diagram, (e)k=0.47 time-domain waveform,(f)k=0.47 phase diagram.

    4.4.2. Transient transition when parameter b changes

    When the parameterbchanges,we firstly fix the parametersα=0.8,a=4,c=0.5,k=0.5 and initial value(1,1,1),then vary the parameterb ∈(?8,1.59).

    Settingb=?5.4, the simulation timet ∈(0,600), the time-domain wave and phase diagram of the state variablezare shown in Figs.14(a)and 14(b).Whent ∈(0,60),the timedomain wave is shown in the blue domain of Fig.14(a),which indicates that the system is in cycle state,and the range of amplitude is(?1.5,1.5).

    Fig. 14. The time-domain waveform and phase diagram of variable z,(a)b=?5.4 time-domain waveform,(b)b=?5.4 phase diagram,(c)b=?0.73 time-domain waveform, (d) b=?0.73 phase diagram, (e)b=0.556 time-domain waveform,(f)b=0.556 phase diagram.

    Whent ∈(60,180), the time-domain wave is shown in the green domain of Fig.14(a),the system is in chaotic state.Whent ∈(180,600), the time-domain wave is shown in the red domain of Fig. 14(a). The corresponding phase diagram is shown in Fig. 14(b). Whenb=?0.73, the time-domain wave int ∈(0,50)is shown in the blue domain of Fig.14(c),and the system is in cycle state,the rang of amplitude is(1.1,1.5). Thent ∈(50,250), the time-domain wave is shown in the green domain of Fig. 14(c), the system is chaotic state.Whent ∈(250,600), the time-domain wave is shown in the red domain of Fig.14(c),which shows the system jumps from one chaotic state to another chaotic state. The corresponding phase diagram is shown in Fig.14(d).With the parameterbincreasing,whenb=0.556,t ∈(0,150),the time-domain wave is in a single period state,which is shown in the blue domain of Fig.14(e),thent ∈(150,450),the system jumps from one period to chaos I state,which is shown in the green domain of Fig.14(e). Whent ∈(450,600),the system changes from one chaotic state to another chaotic state, which is shown in the red domain of Fig.14(e). The corresponding phase diagram is shown in Fig.14(f).

    4.4.3. Transient transition when parameter α changes

    To study the rich transient behavior when the parameterαchanges,we firstly fix the parametersa=4,c=0.5,k=0.5,b=1.5 and initial value(1,1,1),then choose the parametersα ∈(0.5,1).

    Fig. 15. The time-domain waveform and phase diagram of variable z, (a) α = 0.6 time-domain waveform, (b) α = 0.6 phase diagram,(c)α =0.77 time-domain waveform, (d)α =0.77 phase diagram, (e)α =0.79 time-domain waveform,(f)α =0.79 phase diagram.

    Settingα= 0.6, the simulation timet ∈(0,150), the time-domain wave and phase diagram of the state variablezare shown in Figs. 15(a) and 15(b). Whent ∈(0,5), the time-domain wave is shown in the blue domain of Fig.15(a),which indicates that the system is in a chaotic state. Whent ∈(5,25), the time-domain wave is shown in the green domain of Fig.15(a),and the system is in second type of chaotic state. Whent ∈(25,110),the time-domain wave is shown in the red domain of Fig. 15(a), the system is in third type of chaotic state. Whent ∈(110,150), the time-domain wave is shown in the pink domain of Fig. 15(a), and the system converges to a point. The corresponding phase diagram is shown in Fig.15(b). Whenα=0.77,att ∈(0,20),the time-domain wave is shown in the blue domain of Fig.15(c),and the system is in a single period state. Whent ∈(20,70),the time-domain wave is shown in the green domain of Fig.15(c),and the system is in a chaotic state. Thent ∈(70,150),the time-domain wave is shown in the red domain of Fig.15(c),and the system is in another chaotic state. The corresponding phase diagram is shown in Fig.15(d). With the parameterαincreasing,whenα=0.79,t ∈(0,150),the time-domain wave is shown in the blue domain of Fig.15(e),and the system is in a single period state. Whent ∈(150,320),the time-domain wave is shown in the green domain of Fig.15(e),and the system is in a chaotic state. Thent ∈(320,500), the time-domain wave is shown in the red domain of Fig. 15(e), and the system is in another chaotic state. The corresponding phase diagram is shown in Fig.15(f).

    It can be seen that system(17)transits from a state to another state, and finally stabilizes under the above parameters.There are two, three or four states from the beginning to the stable state,which is different from the transient transition behaviors reported in the literature.

    5. Implementation on ARM

    We implement the fractional-order bi-stable memristive simplest chaotic system on ARM platform. For hardware design, the block diagram of the working principle is shown in Fig. 16. In the experiments, the ARM-based MCU STM32F750 is employed. STM32F750 is a 32-bit ARMbased MCU running at 216 MHz with floating-point calculation unit. The processor comes with a 12-bit/8-bit dual channels digital-to-analog converter(DAC).Phase portraits of the system are captured randomly by an analog oscilloscope. The platform to implement the chaotic system (17) is shown in Fig.17.

    Fig.16. Block diagram for ARM implementation of a fractional-order chaotic system.

    Fig.17. Platform to implement a fractional-order chaotic system.

    The operational procedure of software design is shown in Fig. 18. After initializing ARM, we set the initial values(x0,y0,z0),parametersh,αand iteration number. Before iterative computation, we calculate all Γ(·) andhnα. Finally, all the data is transferred to DAC and shown in oscilloscope.

    Fig. 18. Flow chart for ARM implementation of a fractional-order chaotic system.

    Fig.19. Phase diagrams realized by ARM platform and recorded by the oscilloscope in x–z plane: (a)k=0.1,(b)k=0.15,(c)k=0.2,(d)k=0.45.

    We seta=4,c=0.5,b=1.5,α=0.8,h=0.01, initial values(x0,y0,z0)=(1,1,1), and change the parameterk.Phase portraits of the system are captured by the oscilloscope as shown in Fig.19. The experimental results qualify the simulation analysis. It indicates that the fractional-order bi-stable memristive simplest chaotic system is realized successfully on ARM platform.

    6. Conclusion

    In this paper,a bi-stable locally-active memristor is firstly proposed, which has double coexisting pinched hysteresis loops and locally-active regions. Then, a fractional-order chaotic system based on the bi-stable locally-active memristor is explored, and the stability of equilibrium points of the system is analyzed. It is found that oscillations occur only within the locally-active region. By bifurcation analysis and Lyapunov exponent spectrum analysis, we find that the system has extremely rich dynamics, such as transient transition behaviors. Finally, the circuit simulation of the fractionalorder bi-stable locally-active memristive chaotic system is implemented on ARM-based MCU to verify the validity of the numerical simulation results.

    猜你喜歡
    李浩
    “算兩次”法在數(shù)學(xué)解題中的應(yīng)用
    Quantum estimation of rotational speed in optomechanics
    Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles?
    李浩:防治新冠肺炎,科學(xué)利用藥膳
    李浩作品
    國畫家(2017年5期)2017-10-16 06:26:25
    李浩:總有那么一股勁兒——走進(jìn)空軍某試驗訓(xùn)練基地?zé)o人機飛行員李浩
    那個叫李浩的兄弟
    這個李浩
    楊班侯大功架四十二式太極拳(四)
    少林與太極(2016年4期)2016-06-16 00:47:47
    《二次根式的乘除》測試題
    日本黄色片子视频| 亚洲高清免费不卡视频| 久久综合国产亚洲精品| 国产亚洲最大av| 亚洲18禁久久av| 亚州av有码| 国产高清国产精品国产三级 | 精品99又大又爽又粗少妇毛片| 九色成人免费人妻av| 成人亚洲精品一区在线观看 | 欧美极品一区二区三区四区| 3wmmmm亚洲av在线观看| a级一级毛片免费在线观看| 国产人妻一区二区三区在| 亚洲精品乱久久久久久| 国产一区二区三区综合在线观看 | 人妻系列 视频| 观看美女的网站| 人体艺术视频欧美日本| 夜夜爽夜夜爽视频| 婷婷色综合www| 综合色av麻豆| 少妇丰满av| 国产精品久久久久久久电影| 一级毛片aaaaaa免费看小| 国产69精品久久久久777片| 美女xxoo啪啪120秒动态图| 日本wwww免费看| 国产免费一级a男人的天堂| 国产伦理片在线播放av一区| 免费黄频网站在线观看国产| 三级毛片av免费| 我要看日韩黄色一级片| av国产免费在线观看| 精品酒店卫生间| 国产一区有黄有色的免费视频 | 晚上一个人看的免费电影| 午夜老司机福利剧场| 亚洲最大成人av| 亚洲欧美成人综合另类久久久| 国产熟女欧美一区二区| 久久亚洲国产成人精品v| 精品人妻一区二区三区麻豆| 人妻系列 视频| 欧美成人一区二区免费高清观看| 国产成人福利小说| 3wmmmm亚洲av在线观看| 日韩一本色道免费dvd| 国产黄片美女视频| 午夜免费观看性视频| 久久久久性生活片| 少妇猛男粗大的猛烈进出视频 | 国产精品人妻久久久影院| 国产不卡一卡二| 国产成人精品久久久久久| 一个人看视频在线观看www免费| 欧美潮喷喷水| 午夜爱爱视频在线播放| 久久综合国产亚洲精品| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲5aaaaa淫片| 国产av码专区亚洲av| 久久鲁丝午夜福利片| 亚洲av成人精品一区久久| 国产精品一二三区在线看| 99久久精品国产国产毛片| 少妇裸体淫交视频免费看高清| 国产男人的电影天堂91| 亚洲熟女精品中文字幕| 亚洲激情五月婷婷啪啪| 99视频精品全部免费 在线| 高清视频免费观看一区二区 | 亚洲国产精品专区欧美| 欧美不卡视频在线免费观看| 国产精品不卡视频一区二区| 日韩在线高清观看一区二区三区| 熟妇人妻不卡中文字幕| av女优亚洲男人天堂| 性色avwww在线观看| 乱人视频在线观看| 一级a做视频免费观看| 国产成人福利小说| 草草在线视频免费看| 午夜福利高清视频| 内射极品少妇av片p| 久久这里有精品视频免费| 老师上课跳d突然被开到最大视频| 成人二区视频| 水蜜桃什么品种好| 在线观看免费高清a一片| av在线播放精品| 黑人高潮一二区| 久久久久精品久久久久真实原创| 国产三级在线视频| 色综合色国产| 尾随美女入室| 国产色婷婷99| 日日啪夜夜爽| 成人亚洲精品av一区二区| 麻豆精品久久久久久蜜桃| 亚洲国产精品成人久久小说| 婷婷色综合www| 欧美zozozo另类| 久久久久久久久久黄片| 黄片wwwwww| 91av网一区二区| 国产成人精品久久久久久| 伊人久久精品亚洲午夜| 亚洲精品456在线播放app| 国产精品一区www在线观看| 天天躁日日操中文字幕| 在线观看免费高清a一片| 最近视频中文字幕2019在线8| 丰满人妻一区二区三区视频av| 久久精品久久久久久噜噜老黄| 久久国产乱子免费精品| 成年女人看的毛片在线观看| 国产有黄有色有爽视频| 欧美激情久久久久久爽电影| 国产伦理片在线播放av一区| 亚洲三级黄色毛片| 国产91av在线免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲av免费高清在线观看| 精品一区二区三区视频在线| 最近手机中文字幕大全| videossex国产| 91久久精品国产一区二区成人| 日日摸夜夜添夜夜爱| 听说在线观看完整版免费高清| 一级毛片电影观看| 天堂√8在线中文| 床上黄色一级片| 爱豆传媒免费全集在线观看| 日韩精品有码人妻一区| 国产精品久久久久久久电影| 久久久欧美国产精品| 国产午夜精品一二区理论片| 波多野结衣巨乳人妻| 十八禁国产超污无遮挡网站| 啦啦啦韩国在线观看视频| 91狼人影院| 国产精品综合久久久久久久免费| 日本与韩国留学比较| 精品国产露脸久久av麻豆 | 精品人妻偷拍中文字幕| 亚洲av日韩在线播放| 我的老师免费观看完整版| 国产一级毛片七仙女欲春2| 国产 一区精品| 亚洲成人一二三区av| 2018国产大陆天天弄谢| 亚洲最大成人av| 一夜夜www| 色播亚洲综合网| 国产成人a∨麻豆精品| 日韩欧美精品免费久久| 亚洲国产最新在线播放| 2021少妇久久久久久久久久久| 一区二区三区免费毛片| 午夜福利视频1000在线观看| 在线观看免费高清a一片| xxx大片免费视频| 一级毛片 在线播放| 久久久久久久午夜电影| 2018国产大陆天天弄谢| 综合色av麻豆| 欧美zozozo另类| 超碰97精品在线观看| 超碰97精品在线观看| 亚洲久久久久久中文字幕| 亚洲人成网站高清观看| 亚洲在线观看片| 国产高清三级在线| 国产精品不卡视频一区二区| 亚洲在久久综合| 插逼视频在线观看| 日日啪夜夜撸| 99久久精品热视频| 亚洲国产欧美在线一区| 国产视频首页在线观看| 欧美日韩国产mv在线观看视频 | 免费av不卡在线播放| 一区二区三区高清视频在线| 午夜福利在线在线| 美女国产视频在线观看| 男女边吃奶边做爰视频| 久久综合国产亚洲精品| 午夜福利在线观看吧| 秋霞在线观看毛片| 亚洲精品456在线播放app| 亚洲天堂国产精品一区在线| 亚洲人成网站在线观看播放| 欧美人与善性xxx| 国产熟女欧美一区二区| av天堂中文字幕网| 看黄色毛片网站| 老司机影院毛片| 2021天堂中文幕一二区在线观| 日韩精品有码人妻一区| 一级片'在线观看视频| 最近视频中文字幕2019在线8| 国内精品宾馆在线| 国产v大片淫在线免费观看| 青春草视频在线免费观看| 国产毛片a区久久久久| 免费观看av网站的网址| 国产精品福利在线免费观看| 亚洲av免费在线观看| 免费观看性生交大片5| 五月天丁香电影| 亚洲av在线观看美女高潮| 小蜜桃在线观看免费完整版高清| 精品熟女少妇av免费看| 街头女战士在线观看网站| 美女黄网站色视频| 亚洲精品久久午夜乱码| 99热6这里只有精品| 丝袜喷水一区| 91狼人影院| 国内精品美女久久久久久| 国产av在哪里看| 中文精品一卡2卡3卡4更新| 97热精品久久久久久| 国产成人aa在线观看| 真实男女啪啪啪动态图| 久久久久久久久久久免费av| 成人亚洲精品一区在线观看 | 国产成人aa在线观看| 国产精品国产三级专区第一集| 草草在线视频免费看| 亚洲国产欧美人成| 91久久精品国产一区二区成人| 午夜精品在线福利| 国产精品伦人一区二区| 成人美女网站在线观看视频| 特级一级黄色大片| 午夜日本视频在线| 一级毛片 在线播放| 毛片一级片免费看久久久久| 国产成人aa在线观看| av线在线观看网站| 特级一级黄色大片| 亚洲av日韩在线播放| 婷婷六月久久综合丁香| 国产黄片视频在线免费观看| 国产精品一二三区在线看| 夜夜爽夜夜爽视频| 亚洲成人av在线免费| 久久国产乱子免费精品| 国产成年人精品一区二区| 亚洲婷婷狠狠爱综合网| 超碰97精品在线观看| 中文字幕av在线有码专区| 纵有疾风起免费观看全集完整版 | 床上黄色一级片| 一区二区三区免费毛片| 亚洲人成网站在线播| 天堂网av新在线| 三级经典国产精品| 国产真实伦视频高清在线观看| 亚洲av福利一区| 婷婷色综合www| 午夜久久久久精精品| 岛国毛片在线播放| 人人妻人人澡欧美一区二区| av又黄又爽大尺度在线免费看| 国产精品久久视频播放| 亚洲av电影不卡..在线观看| 国产伦一二天堂av在线观看| 国产黄色免费在线视频| 欧美一区二区亚洲| 午夜福利在线观看吧| 亚洲av在线观看美女高潮| 国产一区二区三区综合在线观看 | 久久久久精品久久久久真实原创| 美女xxoo啪啪120秒动态图| 国产黄色视频一区二区在线观看| 国产 一区 欧美 日韩| 成人亚洲精品一区在线观看 | 日本爱情动作片www.在线观看| 非洲黑人性xxxx精品又粗又长| 黄色欧美视频在线观看| .国产精品久久| 91av网一区二区| 综合色丁香网| 亚洲一区高清亚洲精品| 18+在线观看网站| 91午夜精品亚洲一区二区三区| 国产成人精品婷婷| 午夜亚洲福利在线播放| 中国国产av一级| 国产一级毛片七仙女欲春2| 97热精品久久久久久| 亚洲精华国产精华液的使用体验| 搡女人真爽免费视频火全软件| 综合色av麻豆| 免费黄色在线免费观看| 精品久久久久久久久久久久久| 九草在线视频观看| 免费看a级黄色片| 噜噜噜噜噜久久久久久91| 国产人妻一区二区三区在| 日韩电影二区| 欧美日韩一区二区视频在线观看视频在线 | 日韩精品青青久久久久久| 国产国拍精品亚洲av在线观看| 国产精品熟女久久久久浪| 国产高清三级在线| 国产av码专区亚洲av| 亚洲一级一片aⅴ在线观看| 午夜精品在线福利| 亚洲av成人精品一区久久| 寂寞人妻少妇视频99o| 色吧在线观看| 国产老妇伦熟女老妇高清| 成人一区二区视频在线观看| 全区人妻精品视频| 美女国产视频在线观看| 一本久久精品| 国产免费又黄又爽又色| 99视频精品全部免费 在线| 久久久久久久久大av| 最后的刺客免费高清国语| 伊人久久国产一区二区| 波野结衣二区三区在线| 色吧在线观看| 乱系列少妇在线播放| 天堂影院成人在线观看| 日本免费在线观看一区| 国产成年人精品一区二区| 大香蕉97超碰在线| 免费黄频网站在线观看国产| 精品国产露脸久久av麻豆 | 好男人视频免费观看在线| 国产乱人偷精品视频| 国产有黄有色有爽视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲成人久久爱视频| 久久久精品免费免费高清| 国产黄频视频在线观看| 日本猛色少妇xxxxx猛交久久| 一级黄片播放器| 91精品一卡2卡3卡4卡| 日本与韩国留学比较| 国产黄色小视频在线观看| 久久精品国产亚洲av天美| 成人亚洲欧美一区二区av| 亚洲av免费在线观看| 最近的中文字幕免费完整| 欧美高清成人免费视频www| 亚洲精品成人久久久久久| 在线观看免费高清a一片| av在线老鸭窝| ponron亚洲| 日韩强制内射视频| 亚洲精品中文字幕在线视频 | 高清在线视频一区二区三区| 精品国产一区二区三区久久久樱花 | 我的女老师完整版在线观看| 日本一二三区视频观看| 国产色婷婷99| 2022亚洲国产成人精品| 69人妻影院| 十八禁国产超污无遮挡网站| 91午夜精品亚洲一区二区三区| 免费观看无遮挡的男女| 精品亚洲乱码少妇综合久久| 久久久久久久久久久免费av| 美女国产视频在线观看| 毛片女人毛片| 欧美潮喷喷水| 国产精品福利在线免费观看| 国产高清有码在线观看视频| 在线观看人妻少妇| 亚洲精品亚洲一区二区| 天美传媒精品一区二区| 亚洲精品一区蜜桃| 1000部很黄的大片| 久久精品综合一区二区三区| 久久99热6这里只有精品| h日本视频在线播放| 我的女老师完整版在线观看| 日韩 亚洲 欧美在线| 国产精品99久久久久久久久| 国产精品av视频在线免费观看| 最后的刺客免费高清国语| 秋霞伦理黄片| 欧美日韩精品成人综合77777| 午夜免费激情av| 日本一本二区三区精品| 日日啪夜夜撸| 国产综合精华液| 午夜久久久久精精品| 1000部很黄的大片| 国产黄色小视频在线观看| 日日啪夜夜爽| 日韩一本色道免费dvd| 搡老乐熟女国产| 在线a可以看的网站| 97超视频在线观看视频| 久久人人爽人人片av| 女人久久www免费人成看片| 国产成年人精品一区二区| 97精品久久久久久久久久精品| 少妇熟女aⅴ在线视频| 午夜激情久久久久久久| 欧美丝袜亚洲另类| 亚洲,欧美,日韩| 免费电影在线观看免费观看| 一级毛片久久久久久久久女| 九九久久精品国产亚洲av麻豆| 成人av在线播放网站| 国产探花极品一区二区| 美女黄网站色视频| 国产精品伦人一区二区| 精品熟女少妇av免费看| 狂野欧美激情性xxxx在线观看| 免费黄网站久久成人精品| 国产高潮美女av| 日日摸夜夜添夜夜爱| 国产激情偷乱视频一区二区| 26uuu在线亚洲综合色| 国产精品一区www在线观看| 欧美不卡视频在线免费观看| 黑人高潮一二区| 亚洲精品456在线播放app| 三级国产精品欧美在线观看| 啦啦啦中文免费视频观看日本| 天堂网av新在线| 亚洲成人中文字幕在线播放| 免费观看的影片在线观看| 尾随美女入室| xxx大片免费视频| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 亚洲婷婷狠狠爱综合网| 欧美日本视频| 婷婷六月久久综合丁香| 在线免费观看不下载黄p国产| www.av在线官网国产| 亚洲国产欧美在线一区| 国产单亲对白刺激| 两个人的视频大全免费| 日韩强制内射视频| 国产亚洲av片在线观看秒播厂 | 美女大奶头视频| 日韩 亚洲 欧美在线| 色网站视频免费| 日韩强制内射视频| 人妻系列 视频| 久久精品熟女亚洲av麻豆精品 | 亚洲精品成人av观看孕妇| 有码 亚洲区| 精品久久久精品久久久| 亚洲久久久久久中文字幕| 人妻夜夜爽99麻豆av| 国产av国产精品国产| 成人午夜精彩视频在线观看| 热99在线观看视频| 51国产日韩欧美| 免费观看在线日韩| 少妇裸体淫交视频免费看高清| 午夜精品一区二区三区免费看| 久久国产乱子免费精品| 国产片特级美女逼逼视频| 精品酒店卫生间| 狂野欧美激情性xxxx在线观看| 国产色婷婷99| 国产精品国产三级国产av玫瑰| 国产一级毛片在线| 亚洲精品久久久久久婷婷小说| 午夜老司机福利剧场| 国产伦在线观看视频一区| 高清av免费在线| 久久精品国产亚洲av天美| 亚洲成人精品中文字幕电影| 在线免费十八禁| 国产白丝娇喘喷水9色精品| 欧美性感艳星| 精品国内亚洲2022精品成人| 国产精品久久久久久精品电影| 超碰97精品在线观看| 久久久久久九九精品二区国产| 婷婷色综合www| 免费av不卡在线播放| 午夜亚洲福利在线播放| 国产激情偷乱视频一区二区| 高清日韩中文字幕在线| 日本黄色片子视频| 人妻夜夜爽99麻豆av| 一区二区三区免费毛片| 亚洲欧美日韩东京热| 国产视频首页在线观看| 亚洲av成人精品一区久久| www.色视频.com| 国产精品一二三区在线看| 国内少妇人妻偷人精品xxx网站| 免费观看的影片在线观看| 欧美最新免费一区二区三区| av在线播放精品| 亚洲精品一二三| 久久久国产一区二区| 国产 一区 欧美 日韩| 少妇被粗大猛烈的视频| 久久人人爽人人片av| 国产永久视频网站| 性色avwww在线观看| 亚洲成色77777| 丝袜美腿在线中文| 内射极品少妇av片p| 九色成人免费人妻av| 国产在视频线在精品| 热99在线观看视频| 久久久久久久大尺度免费视频| 亚洲av国产av综合av卡| 精品一区二区三区视频在线| 精品国产露脸久久av麻豆 | 成年免费大片在线观看| 国产女主播在线喷水免费视频网站 | 三级国产精品片| 亚洲av日韩在线播放| 亚洲综合精品二区| 国产老妇女一区| 亚洲婷婷狠狠爱综合网| 不卡视频在线观看欧美| 成人漫画全彩无遮挡| 成人午夜精彩视频在线观看| 国产av不卡久久| 久99久视频精品免费| 欧美性猛交╳xxx乱大交人| 秋霞伦理黄片| 亚洲av免费在线观看| 又爽又黄a免费视频| 草草在线视频免费看| 女人被狂操c到高潮| 只有这里有精品99| 99热6这里只有精品| 日韩av不卡免费在线播放| 亚洲人与动物交配视频| 人妻夜夜爽99麻豆av| 久久久色成人| 国产一级毛片七仙女欲春2| 亚洲综合精品二区| 九九在线视频观看精品| 18禁在线无遮挡免费观看视频| 国产毛片a区久久久久| 国产高清有码在线观看视频| 精品少妇黑人巨大在线播放| 国国产精品蜜臀av免费| 精品国内亚洲2022精品成人| av又黄又爽大尺度在线免费看| 丝袜喷水一区| 国产精品久久久久久精品电影| 亚洲av电影不卡..在线观看| 五月伊人婷婷丁香| 亚洲成人一二三区av| 黄片无遮挡物在线观看| 熟女人妻精品中文字幕| 亚洲欧美精品自产自拍| 亚洲国产精品成人综合色| 伊人久久精品亚洲午夜| 日本爱情动作片www.在线观看| 不卡视频在线观看欧美| 国产黄色小视频在线观看| 中文资源天堂在线| 久久久精品欧美日韩精品| 99久久精品一区二区三区| 色哟哟·www| a级一级毛片免费在线观看| 久久久精品94久久精品| 波多野结衣巨乳人妻| 国产成人福利小说| 久久久精品免费免费高清| 色综合站精品国产| 99久久精品一区二区三区| 日韩强制内射视频| 内射极品少妇av片p| 在线观看免费高清a一片| 秋霞伦理黄片| 久久久久久久午夜电影| 午夜视频国产福利| 午夜激情久久久久久久| 日韩一区二区视频免费看| 爱豆传媒免费全集在线观看| 国产乱人偷精品视频| 久久久成人免费电影| 伊人久久国产一区二区| 亚洲伊人久久精品综合| 精品久久久久久久久久久久久| 97超视频在线观看视频| 免费少妇av软件| av又黄又爽大尺度在线免费看| 免费少妇av软件| 麻豆国产97在线/欧美| 国产午夜精品一二区理论片| 成人漫画全彩无遮挡| 精品少妇黑人巨大在线播放| 国产黄色小视频在线观看| 久久久久国产网址| 日日摸夜夜添夜夜爱| 人人妻人人澡人人爽人人夜夜 | 国产黄片视频在线免费观看| 久久精品国产亚洲av涩爱| 69av精品久久久久久| 国产精品.久久久| 91在线精品国自产拍蜜月| 国产精品一区二区三区四区免费观看| 亚洲高清免费不卡视频| av福利片在线观看| 春色校园在线视频观看| 永久免费av网站大全| 亚洲成人久久爱视频| 亚洲自拍偷在线| 欧美极品一区二区三区四区|