• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural origin for composition-dependent nearest atomic distance in Cu–Zr metallic glass

    2023-12-02 09:29:14ChiZhang張馳HuaShanLiu劉華山andHaiLongPeng彭海龍
    Chinese Physics B 2023年11期
    關(guān)鍵詞:張馳海龍華山

    Chi Zhang(張馳), Hua-Shan Liu(劉華山), and Hai-Long Peng(彭海龍)

    School of Materials Science and Engineering,Central South University,Changsha 410083,China

    Keywords: metallic glass,structure,molecular dynamics

    1.Introduction

    Disorder nature for the structure of metallic glass endows it with outstanding mechanical and physical properties compared with the crystalline counterpart.[1–4]Understanding the atomic-level structure is not only meaningful for unveiling the mystery of atomic packing in physics, but also important for tailoring the properties of metallic glasses via tuning the structure in materials science.Structural model for the disordered material can be traced back to 1960s, which is known as the dense-random-packed model for the structure of liquids.[5,6]It is soon applied to monoatomic metallic glass,[7]since both the liquid and glass show a similar structural profile in pair correlation function.This model essentially only concerns the packing in geometry by assigning a hard-spherelike diameter to atoms.Thus,the structure of metallic glass of multicomponent can be simplified into the densely packed hard spheres with different diameters, among which the binary metallic glass can been well resolved.[8,9]

    However,the hard-spherelike model neglects the fact that atoms may form some kinds of clusters or aggregates that are locally denser and energetically stable.[10,11]One of the well-known clusters is the icosahedral polyhedron.Icosahedral clusters were firstly proposed as the stable local structures,explaining the undercooling capability of metallic liquids.[12]It is commonly reported in metallic glass,and found to play an important role in forming glass.[13–15]The icosahedral clusters have been recognized as one of most important topological short-range orders(SROs).

    As metallic glass is usually compounded with different elements, the distribution of different atomic species in local environment can induce the so-called chemical short-range order(CSRO),which comes on the top of the topological SRO.CSRO characterizes how the local chemical concentration deviates from the random mixing, resulting from the strong chemical interaction between different atomic species.A peculiar phenomenon dictating the nontrivial effect of the chemical interaction on SRO is the shift of the first peak positions in pair distribution functions (PDFs), or the average nearest atomic distance,with composition.For instance,the effective nearest atomic distance deviates from the one in pure elements in Zr–Cu–Al glass,[16]Ni–Zr glass,[17]and Co–Sn alloy.[18]A composition-dependent nearest atomic distance has also been reported in Au–Al and Zr–Ni–Al melts.[19,20]This finding is strongly in contrast to the hard-spherelike model, as atoms cannot be treated as hard spheres with constant diameters.

    Since long-range packing is built on the basis of shortrange order, resolving the concentration-dependent nearest atomic distance is crucial to unveil the structure of metallic glass containing components of chemical interaction.However, so far the detailed knowledge about the effect of local packing on it is still lacking.

    In this study, we perform classical molecular-dynamics(MD)simulations on Cu–Zr metallic glass(MG).CuZr MG is a prototype of metallic glass that has been widely investigated both experimentally and numerically.[10,15,21–23]The structure of the metallic glass is studied systematically by changing the compositions, i.e., the Cu molar fraction increasing from 0.24 to 0.85.We observe the composition-dependent nearest atomic distance for Zr atoms, which monotonically increases with Cu concentration increasing.We rationalize this as the consequence of a composition-dependent chemical environment, which leads to the change of the population of local polytetrahedral packings, i.e., the quadrilateral, pentagonal,hexagonal,and heptagonal bipyramids,with Cu concentration.

    2.Simulation details

    MD simulations were performed by using the software large-scale atomic/molecular massively parallel simulator(LAMMPS)package.[24]We conducted MD simulations in a cubic box containing 5000 atoms with the embedded atom method(EAM)type of Cu–Zr interatomic potential developed by Mendelev.[25]The molar fraction of Cu atoms in the mixtures was defined as the concentrationcCu,with eight compositions studied here, i.e.,cCu=0.24, 0.33, 0.41, 0.50, 0.59,0.67,0.76,and 0.85.Computer simulations started at 2200 K in a random configuration for the positions of atoms.After a short-time equilibrium,samples were cooled down to 300 K at 19 K/ps in NPT ensemble (which has constant particle number,zero pressure,and linearly scaled temperature with time)under periodic boundary conditions applied to all the dimensions.At 300 K,the box length was set to the value that gives zero pressure.Finally,we switched to the canonical ensemble(NVT)to collect data.The time step was set to 1 fs in all the simulations.

    3.Results and discussion

    The microscopic information of the liquids can be given by the partial pair distribution functions (PDFs),gαβ(r),which measures the probability of finding an atom of typeβaround the central atom of typeαat a distancerin statistics.It can be calculated from

    whereNrepresents the number of atoms,Vthe volume of the cubic model,andnαβ(r)the number of atoms of speciesβin the sphere range fromrtor+?raround the atom of speciesα.Figure 1 shows the total PDF,g(r)=∑αβ cαcβgαβ(r),the partial PDFs,gCuCu(r),gCuZr(r),gZrZr(r), and the first peak positionrmaxing(r)s for different compositions.In the Cu–Zr system,the typical feature of amorphous structure appears,that is, the second peak is cleaved.[20,26,27]Panet al.found that the splitting of the second peak is related to the imbalance between the cluster connection mode and cluster compaction mode by analyzing the nearest neighbor clusters.[28]

    With the increase ofcCu, a systematic shift towards smaller distance is found forg(r) at the first peak positions for all pairs, with a significant split occurring atcCur<0.50.These are caused by the difference in atomic size between Zr atom and Cu atom (the atomic diameter ratio about 1.25 according to the Goldschmidt radii,R(CN12)).[29]When the smaller Cu atoms gradually substitute for the larger Zr atoms,the interatomic distance transits from the diameter of Zr atoms to the one of Cu atoms,inducing a sudden jump for the average nearest atomic distance for all pairs(pentagon symbols in Fig.1(b)).This effect,however,should disappear if one concerns the first peak position of the partial PDFs in the hardsphere approximation.This is verified as the first peak positions ingCuCu(r) and thegCuZr(r) are insensitive to the concentration (Fig.1(b)).These peak positions of thegCuCu(r)and thegCuZr(r)are similar and compatible with empirical covalent radii,rmax,CuCu≈RCu+RCu,rmax,CuZr≈RCu+RZr, if one adopts the Goldschmidt radii,[29]RCu≈1.276 ?A,RZr≈1.597 ?A.They are almost unaffected bycCu.In contrast, a remarkable systematic change is seen in thegZrZr(r): upon increasingcCu, the nearest-neighbor peak shifts to large distance.A similar phenomenon has been reported in systems of strong chemical interactions, to that in Zr–Ni melt[30]and in the Al–Au melt.[19]

    A similar assignment of the covalent radius to Zr atoms fails: at Cu-rich compositions,the first peak distance is larger than the one expected from the covalent radius.Explicitly, atcCu>0.5,rmax,ZrZr>RZr+RZr.The dependence of the first peak position of thegZrZr(r)on composition highlights that the Zr–Zr nearest neighbor pairs are sensitive to chemical environment.Indeed,the first peak ofgZrZr(r)is related to the nearest neighbor atoms,corresponding to the short-range order(SRO).The inecrease at the first peak position and the decrease in the first peak amplitude reflect the increase in the SRO.[31]

    To demonstrate the chemical effect,we calculate the partial coordination number,Zαβ.It measures the average number of neighbors of speciesβaround a central atoms of speciesα

    whereρis the average number density,cβis the concentration of atoms of typeβ,andrcis the distance of the first minimum in the partial radial distribution function.The total coordination number for the centralαatoms isZα=∑β Zαβ.In the case of random mixing, the neighbors around a central atom are randomly chosen according to the species concentration.This givesZαβ/Zα-cβ=0.

    Figure 1(c)shows the calculated results ofZαβ/Zα-cβin the mixtures.Interestingly, it is found that the chemical concentration around Zr atoms is composition-dependent: the distribution probability of Zr neighbors is higher than the random mixing at Zr-rich compositions, while it is lower at Curich compositions.As a compensation,Cu atoms have a lower coordinating propensity at Zr-rich side, while have a higher propensity at Cu-rich side.The change of chemical environment can be related to the change of the Zr–Zr nereast distance, as the strong affiliating tendency of the smaller Cu atoms can,to some extent,squeeze the bigger neighboring Zr atoms outwards around the central Zr atoms.

    To unveil the detailed microscopic structural changes that lead to the increase of the nearest distance between Zr atom and Zr atom,we decompose the first peak ofgαβ(r)according to the Voronoi tessellation:[32]gfirst(r)represents the contribution of two atoms nearest connected(i.e.,their atomic distance is less thanrc)togαβ(r).This follows the analysis of the connections between clusters.[28]Thegsi(r)is the contribution of the two connected central atoms sharingi-number common neighbors togfirst(r).Figures 2(a)–2(d) illustrate the atomic structures for the 4-, 5-, 6-, and 7-number sharing neighbors.Figures 2(e), 2(j), and 2(r)demonstrate the decomposition ofgCuCu(r),gCuZr(r), andgZrZr(r) with standard deviation for amorphous alloy Cu50Zr50.Thegfirst(r) reproduces the first peak ofgαβ(r) well.It can be seen that the main contribution ofgCuCu(r) comes fromgs5(r)[33]andgs6(r) (as whose amplitudes are much larger than that ofgs7(r)andgs4(r)).

    Thegsi(r)curves can be described by Gaussian function.Among themgs4(r) has two main peaks, e.g., with one located at 2.7 ?A and the other at 3.7 ?A for Cu–Cu pairs.Obviously, the latter is not a close-packed structure for two nearest neighbors,as its position is around the first minimum distance that separates the first neighbor shell from the second neighbor shell.Multi-peaks also emerge for Cu–Zr and Zr–Zr pairs ings4(r), indicating the 4-number sharing structure can be loosely packed.By contrast,the peaks can be predominantly reproduced by a single Gaussian function for 5-,6-,and 7-number sharing situations in all the atomic pairs.

    Packing efficiencies for different kinds of number-sharing structures can be characterized by the average distance for the two connected central atoms.The positions of the Gaussian peak,rp,contributing to the first peak forg(r)in Cu–Cu pair,Cu–Zr pair, and Zr–Zr pair are shown in Fig.3.As the number of shared atoms increases, the distance between the two central atoms decreases,indicating more closely packed structures.When the number of shared atoms is small (like 4-number shearing structures), the distance between the neighboring central atoms is much larger than the expected radius based on the Goldschmidt radii[29]for all the atomic pairs.As the number of shared atoms increases, the discrepancy gradually disappears.This implies that the local density increases gradually, and the clusters are more closely connected withiincreasing.It turns out that there is a significant drop inrpfor Cu–Zr pair when the number of shared atoms increases from 4 to 5.This may be due to the distortion of clusters for the connected Cu–Zr pair.

    Figures 4(a)–4(d)show the populations of different connecting structures.It can be found that the 4-, 5-, and 6-number sharing atoms are of large population, indicating the main connecting structure for two nearest neighbors.WithcCuincreasing, the population of 4-number sharing polyhedrons decreases, while those of 5- and 6-number sharing ones increase.Especially, the population of 5-number sharing structure for Cu–Cu pair drastically increases from the maximum about 50%to 67%in the composition range investigated.This would be due to the increase of the icosahedral clusters with the increase ofcCu, which are rich in five-fold symmetry and are known to center around Cu atoms in Cu–Zr metallic glass.[15]

    After accomplishing the composition-dependent population, we find that the atomic distance in the structure sharing different numbers also depends on concentration.Figures 4(e)–4(h) display the changes ofrpwithcCu.Interestingly,rpremarkably increases withcCuincreasing in all these connecting structures for Zr–Zr pairs.Expect for the value of Cu–Zr pairs ings5,rpis almost independent of chemical composition.The expansions ofrpfor Zr–Zr,especially in the pentagonal and hexagonal bipyramid structures(for which the populations are the highest), can lead to the increase of the nearest atomic distance,upon mixing Cu atoms.

    4.Conclusions

    Classic molecular-dynamics simulations performed to investigate the variations of structure of Cu–Zr metallic glass at room temperature with Cu concentration systematically.The glass structure is measured by pair distribution function,which exhibits a concentration-dependent phenomenon for the Zr–Zr nearest atomic distance, in contrast to the hard-spherelike model.This non-entropic mixing effect is also found in the composition-dependent chemical environment,where the connecting propensity of Cu atoms with Zr atoms monotonically increases with Cu addition increasing.The affiliating tendency of the smaller Cu atoms can, somehow, squeeze the bigger neighboring Zr atoms outwards around the central Zr atoms, which is verified by decomposing the connection of the nearest neighbors into four different polyhedral structures,i.e., the quadrilateral, pentagonal, hexagonal, and heptagonal bipyramids.With the increase of common sharing neighbors,the distance from the central atom decreases,indicating more closely packed structure.While the population of hexagonal,and heptagonal bipyramids increases,we find a remarkably increase of the connecting distance for all these local structures.This leads to the expansion of Zr–Zr nearest atomic distance with Cu concentration increasing, and demonstrates that the interplay between chemical interaction and geometrical packing can affect the atomic structure in Cu–Zr metallic glass.

    Acknowledgements

    The authors thank the High Performance Computing Cluster (HPC) of Central South University for providing the computer resources.

    Project supported by the Open Research Fund of Songshan Lake Materials Laboratory, China (Grant No.2022SLABFN14).

    猜你喜歡
    張馳海龍華山
    Fast and perfect state transfer in superconducting circuit with tunable coupler
    詠華山
    封面人物
    天工(2021年2期)2021-03-03 07:29:16
    隨王履登華山
    崢嶸歲月:毛澤東在東華山
    文史春秋(2020年1期)2020-03-16 13:13:32
    松弛
    葉海龍,你別裝啦
    好人張馳
    張馳
    黃河之聲(2016年24期)2016-04-22 02:39:44
    華山歷“險(xiǎn)”記
    久久亚洲真实| 自拍偷自拍亚洲精品老妇| 999久久久精品免费观看国产| 欧美日韩综合久久久久久 | 搡老岳熟女国产| 久久中文看片网| 国产精品国产三级国产av玫瑰| 日本精品一区二区三区蜜桃| 香蕉av资源在线| 99久久精品热视频| 欧美日韩精品成人综合77777| 日韩欧美精品v在线| 男人舔奶头视频| 日韩一本色道免费dvd| 精品一区二区三区视频在线观看免费| 婷婷亚洲欧美| 伦精品一区二区三区| 日日摸夜夜添夜夜添小说| 乱码一卡2卡4卡精品| 精品人妻一区二区三区麻豆 | 午夜爱爱视频在线播放| 国产v大片淫在线免费观看| 女的被弄到高潮叫床怎么办 | 日日撸夜夜添| 高清毛片免费观看视频网站| 欧美极品一区二区三区四区| 成人永久免费在线观看视频| 97碰自拍视频| 日韩人妻高清精品专区| 成人永久免费在线观看视频| 精品一区二区三区av网在线观看| 午夜日韩欧美国产| .国产精品久久| 老熟妇仑乱视频hdxx| 亚洲精品一区av在线观看| 一级a爱片免费观看的视频| 婷婷六月久久综合丁香| 97超视频在线观看视频| 国产男人的电影天堂91| a级毛片免费高清观看在线播放| 国产一区二区在线av高清观看| 狂野欧美激情性xxxx在线观看| 一级毛片久久久久久久久女| 搡老妇女老女人老熟妇| 91久久精品国产一区二区成人| 夜夜爽天天搞| 男人和女人高潮做爰伦理| 亚洲国产色片| 亚洲欧美激情综合另类| 欧美成人免费av一区二区三区| 欧美国产日韩亚洲一区| 人妻丰满熟妇av一区二区三区| 欧美人与善性xxx| 动漫黄色视频在线观看| 久久热精品热| 黄色女人牲交| 色综合站精品国产| 夜夜爽天天搞| 亚洲aⅴ乱码一区二区在线播放| 欧美中文日本在线观看视频| 成人永久免费在线观看视频| 搡老岳熟女国产| 午夜亚洲福利在线播放| 精品人妻熟女av久视频| 亚洲性久久影院| 日本与韩国留学比较| 黄色视频,在线免费观看| 三级毛片av免费| 波多野结衣巨乳人妻| 97碰自拍视频| 一区二区三区四区激情视频 | 久久久久久伊人网av| 国产男人的电影天堂91| 99久久九九国产精品国产免费| 国产亚洲精品久久久久久毛片| 亚洲人成网站在线播放欧美日韩| 亚洲av中文av极速乱 | 日本一二三区视频观看| 日韩欧美在线二视频| 日韩国内少妇激情av| 欧美日本亚洲视频在线播放| 乱人视频在线观看| 免费观看的影片在线观看| 麻豆精品久久久久久蜜桃| 日本在线视频免费播放| 亚洲av中文字字幕乱码综合| 亚洲va日本ⅴa欧美va伊人久久| 不卡视频在线观看欧美| 免费av不卡在线播放| 国产午夜福利久久久久久| 亚洲精品亚洲一区二区| 2021天堂中文幕一二区在线观| 国产高清激情床上av| 亚洲熟妇熟女久久| 他把我摸到了高潮在线观看| 88av欧美| 九九久久精品国产亚洲av麻豆| 免费高清视频大片| 91在线精品国自产拍蜜月| 真人一进一出gif抽搐免费| 亚洲美女搞黄在线观看 | 国产午夜精品久久久久久一区二区三区 | 日韩,欧美,国产一区二区三区 | 嫁个100分男人电影在线观看| 亚洲成人久久爱视频| 精品久久久噜噜| 老司机深夜福利视频在线观看| 亚洲成人精品中文字幕电影| 久久午夜福利片| 欧洲精品卡2卡3卡4卡5卡区| 身体一侧抽搐| 成年女人永久免费观看视频| 国产成人aa在线观看| 99精品在免费线老司机午夜| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 成年人黄色毛片网站| 国产精品永久免费网站| 免费观看在线日韩| 亚洲精品粉嫩美女一区| 一级黄片播放器| 欧美日本视频| 美女免费视频网站| 亚洲精品影视一区二区三区av| 日韩欧美国产在线观看| 亚洲精品一卡2卡三卡4卡5卡| 搡女人真爽免费视频火全软件 | 亚洲av美国av| www.www免费av| 精品99又大又爽又粗少妇毛片 | 动漫黄色视频在线观看| 国产私拍福利视频在线观看| 一个人观看的视频www高清免费观看| 男人狂女人下面高潮的视频| 欧美人与善性xxx| 亚洲欧美日韩无卡精品| 18禁在线播放成人免费| 亚洲成a人片在线一区二区| 少妇熟女aⅴ在线视频| 无遮挡黄片免费观看| 观看美女的网站| 麻豆av噜噜一区二区三区| 18+在线观看网站| 亚洲精品在线观看二区| 在线观看美女被高潮喷水网站| 成年女人毛片免费观看观看9| 欧美日韩国产亚洲二区| 国产主播在线观看一区二区| 男插女下体视频免费在线播放| 欧美中文日本在线观看视频| 日日摸夜夜添夜夜添av毛片 | 日韩欧美精品免费久久| 最近最新中文字幕大全电影3| 亚洲成人免费电影在线观看| 天堂动漫精品| 国产精品一区www在线观看 | 国产精品,欧美在线| 春色校园在线视频观看| 成人欧美大片| 91午夜精品亚洲一区二区三区 | 大又大粗又爽又黄少妇毛片口| 国产午夜福利久久久久久| 丰满人妻一区二区三区视频av| 高清毛片免费观看视频网站| 国产大屁股一区二区在线视频| 亚洲国产高清在线一区二区三| 深夜精品福利| 麻豆国产av国片精品| 欧美潮喷喷水| 免费看a级黄色片| 亚洲av美国av| 很黄的视频免费| 尾随美女入室| 一级a爱片免费观看的视频| 日韩av在线大香蕉| 久久人妻av系列| 全区人妻精品视频| 丰满乱子伦码专区| 极品教师在线视频| 国产白丝娇喘喷水9色精品| 黄片wwwwww| 午夜福利在线观看吧| 亚洲人成网站高清观看| 久久欧美精品欧美久久欧美| 日韩欧美免费精品| 黄色丝袜av网址大全| 全区人妻精品视频| 麻豆国产97在线/欧美| 免费观看的影片在线观看| 国产精品不卡视频一区二区| 亚洲成人中文字幕在线播放| 美女cb高潮喷水在线观看| 天堂网av新在线| 亚洲成人久久性| 国产一区二区亚洲精品在线观看| 女人被狂操c到高潮| 欧美人与善性xxx| 国产三级中文精品| 毛片一级片免费看久久久久 | 国产高清不卡午夜福利| 免费高清视频大片| 如何舔出高潮| 91久久精品电影网| 亚洲av熟女| 久久久久精品国产欧美久久久| 亚洲一区二区三区色噜噜| 亚洲av日韩精品久久久久久密| 国产69精品久久久久777片| 一个人看视频在线观看www免费| 久久精品久久久久久噜噜老黄 | 国产亚洲精品综合一区在线观看| 日本免费一区二区三区高清不卡| 天天躁日日操中文字幕| 国产欧美日韩精品一区二区| 五月伊人婷婷丁香| 亚洲精华国产精华精| 亚洲欧美日韩高清在线视频| 中文字幕av成人在线电影| 69av精品久久久久久| 九色国产91popny在线| 在线观看av片永久免费下载| 久久久精品欧美日韩精品| 干丝袜人妻中文字幕| 精品福利观看| 精品久久国产蜜桃| 欧美中文日本在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 乱人视频在线观看| 亚洲久久久久久中文字幕| 999久久久精品免费观看国产| 在线免费观看的www视频| 熟女人妻精品中文字幕| 成人国产综合亚洲| 88av欧美| 国产v大片淫在线免费观看| 九九在线视频观看精品| 俄罗斯特黄特色一大片| 老女人水多毛片| 日本免费一区二区三区高清不卡| 日韩av在线大香蕉| 天堂av国产一区二区熟女人妻| 成人三级黄色视频| 国产亚洲av嫩草精品影院| 大又大粗又爽又黄少妇毛片口| 国产不卡一卡二| 免费观看的影片在线观看| 国产精品不卡视频一区二区| 99热只有精品国产| 亚洲不卡免费看| 人妻夜夜爽99麻豆av| 国产精品人妻久久久影院| 国产亚洲精品久久久com| 亚洲男人的天堂狠狠| 不卡视频在线观看欧美| 91av网一区二区| 日本免费a在线| 18禁黄网站禁片午夜丰满| 大又大粗又爽又黄少妇毛片口| 欧美日韩综合久久久久久 | 久久婷婷人人爽人人干人人爱| 久久久精品欧美日韩精品| 高清毛片免费观看视频网站| 人妻久久中文字幕网| 欧美bdsm另类| 一级毛片久久久久久久久女| 精品日产1卡2卡| 中文字幕高清在线视频| 久久热精品热| 亚洲无线在线观看| 国产精品一区www在线观看 | 国产不卡一卡二| 久久亚洲真实| 成人精品一区二区免费| 国产91精品成人一区二区三区| 免费看av在线观看网站| 国产精品不卡视频一区二区| 熟妇人妻久久中文字幕3abv| 最新在线观看一区二区三区| 天堂网av新在线| 欧美最新免费一区二区三区| 成人av一区二区三区在线看| 老熟妇仑乱视频hdxx| 在线免费观看的www视频| 欧美性感艳星| 国内精品宾馆在线| 欧美xxxx性猛交bbbb| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产亚洲av天美| 91精品国产九色| 窝窝影院91人妻| 亚洲色图av天堂| 久久热精品热| 床上黄色一级片| 99riav亚洲国产免费| 成人二区视频| 中文字幕久久专区| 国产精品亚洲一级av第二区| 久久欧美精品欧美久久欧美| www日本黄色视频网| 在线免费观看的www视频| 69人妻影院| 嫁个100分男人电影在线观看| 韩国av在线不卡| 观看免费一级毛片| 99精品在免费线老司机午夜| 国产精品久久久久久久电影| 99久久精品热视频| 亚洲五月天丁香| 黄色丝袜av网址大全| 欧美激情国产日韩精品一区| 此物有八面人人有两片| 精品午夜福利在线看| 91久久精品国产一区二区三区| 夜夜爽天天搞| 国产精品久久久久久久久免| 日韩在线高清观看一区二区三区 | 中出人妻视频一区二区| 日日夜夜操网爽| 小说图片视频综合网站| 国产三级中文精品| 热99在线观看视频| 日韩欧美免费精品| 久99久视频精品免费| 可以在线观看的亚洲视频| 免费观看精品视频网站| 亚洲国产日韩欧美精品在线观看| 亚洲经典国产精华液单| 少妇丰满av| 有码 亚洲区| 免费观看的影片在线观看| 级片在线观看| 小蜜桃在线观看免费完整版高清| 欧美日韩黄片免| 亚洲欧美日韩无卡精品| 超碰av人人做人人爽久久| 啦啦啦啦在线视频资源| 久久久久久久久中文| 国产精品久久久久久久电影| 日日撸夜夜添| 丝袜美腿在线中文| 久久精品国产亚洲av天美| 国产黄片美女视频| eeuss影院久久| 极品教师在线免费播放| 夜夜爽天天搞| 国产亚洲欧美98| 免费在线观看日本一区| 国产在线精品亚洲第一网站| 成人特级av手机在线观看| 国产精品女同一区二区软件 | 中出人妻视频一区二区| 国产伦在线观看视频一区| 在线观看av片永久免费下载| 深夜精品福利| a级毛片免费高清观看在线播放| 午夜激情欧美在线| 国产精品一区二区免费欧美| 亚洲国产精品合色在线| 久久婷婷人人爽人人干人人爱| 亚洲精华国产精华精| 联通29元200g的流量卡| 麻豆成人av在线观看| 亚洲自偷自拍三级| 别揉我奶头~嗯~啊~动态视频| 国产大屁股一区二区在线视频| av福利片在线观看| 亚洲综合色惰| 国产淫片久久久久久久久| 一个人看视频在线观看www免费| 久久亚洲精品不卡| 一个人免费在线观看电影| bbb黄色大片| 中文字幕久久专区| 欧美区成人在线视频| 成人国产麻豆网| 日本 欧美在线| 国产在线精品亚洲第一网站| 身体一侧抽搐| 精品乱码久久久久久99久播| 春色校园在线视频观看| 久久国产精品人妻蜜桃| 一区福利在线观看| a级毛片a级免费在线| 麻豆国产av国片精品| 少妇的逼水好多| 日本色播在线视频| 日韩欧美免费精品| 51国产日韩欧美| 国产精品人妻久久久久久| 在线观看av片永久免费下载| 麻豆国产97在线/欧美| 日韩高清综合在线| 久久久久精品国产欧美久久久| 国产黄片美女视频| 色吧在线观看| 中国美女看黄片| 人妻丰满熟妇av一区二区三区| 国产乱人伦免费视频| 国产主播在线观看一区二区| 两个人视频免费观看高清| 一卡2卡三卡四卡精品乱码亚洲| 亚洲经典国产精华液单| 亚洲av免费在线观看| 俺也久久电影网| 中文字幕久久专区| 国产视频一区二区在线看| 精品久久久久久,| 乱人视频在线观看| 国产亚洲欧美98| 免费av观看视频| 欧美三级亚洲精品| 99在线人妻在线中文字幕| 亚洲国产色片| 国产av麻豆久久久久久久| 亚洲精品亚洲一区二区| 美女xxoo啪啪120秒动态图| 女人被狂操c到高潮| 婷婷亚洲欧美| 免费高清视频大片| 久9热在线精品视频| 国产综合懂色| 国产免费一级a男人的天堂| 五月伊人婷婷丁香| а√天堂www在线а√下载| 欧美日韩亚洲国产一区二区在线观看| 欧美人与善性xxx| 久久欧美精品欧美久久欧美| 欧美黑人欧美精品刺激| av女优亚洲男人天堂| 成人欧美大片| 我的老师免费观看完整版| avwww免费| 亚洲黑人精品在线| 亚洲av不卡在线观看| 国产午夜精品论理片| 日韩欧美国产一区二区入口| 亚洲最大成人av| 内地一区二区视频在线| 国产免费男女视频| 村上凉子中文字幕在线| 99国产精品一区二区蜜桃av| 日本黄色片子视频| 国产精品不卡视频一区二区| 在线观看一区二区三区| 国产欧美日韩一区二区精品| 在线观看舔阴道视频| 在线观看一区二区三区| 噜噜噜噜噜久久久久久91| 俺也久久电影网| a级一级毛片免费在线观看| 国产真实伦视频高清在线观看 | 在线免费观看的www视频| 国产高清有码在线观看视频| 天天一区二区日本电影三级| 观看美女的网站| 国产精品99久久久久久久久| 最近中文字幕高清免费大全6 | 黄色女人牲交| 尤物成人国产欧美一区二区三区| 美女黄网站色视频| 亚洲在线自拍视频| www日本黄色视频网| 乱系列少妇在线播放| 一级黄色大片毛片| 国产精品女同一区二区软件 | 成人特级黄色片久久久久久久| a级毛片a级免费在线| 久久精品国产亚洲av天美| 国产乱人视频| 日日干狠狠操夜夜爽| 久久人妻av系列| 午夜福利高清视频| 搡老妇女老女人老熟妇| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩高清在线视频| 人人妻人人澡欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 日韩大尺度精品在线看网址| 久久人人精品亚洲av| 亚洲黑人精品在线| 成人一区二区视频在线观看| 国产一区二区在线观看日韩| 性插视频无遮挡在线免费观看| 国产午夜精品论理片| 国产男人的电影天堂91| 国产精品电影一区二区三区| 露出奶头的视频| 国产精品不卡视频一区二区| 日本爱情动作片www.在线观看 | 99国产极品粉嫩在线观看| 久久久久性生活片| 在线观看av片永久免费下载| 久久久久性生活片| 五月伊人婷婷丁香| 直男gayav资源| 美女黄网站色视频| 99久久精品一区二区三区| 国产av不卡久久| 观看免费一级毛片| 久久中文看片网| 99精品在免费线老司机午夜| 俄罗斯特黄特色一大片| 国产精品99久久久久久久久| 欧美成人a在线观看| 国产精品久久久久久久电影| 久久午夜亚洲精品久久| 精品人妻偷拍中文字幕| 午夜精品在线福利| 色哟哟哟哟哟哟| 最新在线观看一区二区三区| 日本与韩国留学比较| 欧美中文日本在线观看视频| 日本 av在线| 国产高清三级在线| 有码 亚洲区| 麻豆一二三区av精品| 国产国拍精品亚洲av在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜免费激情av| 免费看a级黄色片| 国产在视频线在精品| or卡值多少钱| 九九在线视频观看精品| 日本黄色片子视频| 亚州av有码| 成人永久免费在线观看视频| 国产亚洲精品久久久com| 精品人妻1区二区| 国产在视频线在精品| 我要看日韩黄色一级片| 国产亚洲精品久久久久久毛片| 午夜激情欧美在线| 99热网站在线观看| 91狼人影院| 亚洲av第一区精品v没综合| 日韩精品中文字幕看吧| 日本 欧美在线| 伦理电影大哥的女人| 听说在线观看完整版免费高清| 亚洲在线观看片| 热99在线观看视频| 亚洲欧美精品综合久久99| 一级黄色大片毛片| 国产一区二区在线av高清观看| 国产精品一区二区免费欧美| 久久99热这里只有精品18| 久久草成人影院| 人人妻,人人澡人人爽秒播| 禁无遮挡网站| 日本成人三级电影网站| 天美传媒精品一区二区| 淫妇啪啪啪对白视频| 亚洲av.av天堂| 国产精品永久免费网站| 日本与韩国留学比较| 国产精品一区www在线观看 | 日韩中文字幕欧美一区二区| 色播亚洲综合网| 91狼人影院| 中文字幕熟女人妻在线| 中文字幕av在线有码专区| 精品午夜福利在线看| 中文字幕免费在线视频6| 村上凉子中文字幕在线| 国产成人av教育| 日本黄大片高清| 18禁裸乳无遮挡免费网站照片| 网址你懂的国产日韩在线| 日本爱情动作片www.在线观看 | 亚洲av一区综合| 国产精品人妻久久久久久| 亚洲18禁久久av| 一本精品99久久精品77| 一a级毛片在线观看| 老司机福利观看| 久久国产乱子免费精品| 久久精品国产亚洲网站| 国产高潮美女av| 久久久久久久精品吃奶| 大又大粗又爽又黄少妇毛片口| 男女做爰动态图高潮gif福利片| 女人被狂操c到高潮| 婷婷精品国产亚洲av在线| 一进一出抽搐动态| 午夜福利欧美成人| 亚洲天堂国产精品一区在线| a级毛片a级免费在线| 亚洲av五月六月丁香网| 国产亚洲av嫩草精品影院| 国产三级中文精品| 精品99又大又爽又粗少妇毛片 | 国内精品宾馆在线| 国产精品乱码一区二三区的特点| 国产高清三级在线| 精品国产三级普通话版| 99热这里只有是精品在线观看| 国内精品美女久久久久久| 1024手机看黄色片| 亚洲成人免费电影在线观看| 性插视频无遮挡在线免费观看| 搞女人的毛片| 我要搜黄色片| 搞女人的毛片| 国产伦人伦偷精品视频| 亚洲午夜理论影院| 俄罗斯特黄特色一大片| 国产欧美日韩精品一区二区| www.色视频.com| 人妻久久中文字幕网| 亚洲专区中文字幕在线| 午夜免费激情av| 搞女人的毛片| 一夜夜www| 在线观看舔阴道视频| 欧美精品国产亚洲|