• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel fast-switching LIGBT with P-buried layer and partial SOI?

    2021-03-11 08:33:42HaoranWang王浩然BaoxingDuan段寶興LichengSun孫李誠(chéng)andYintangYang楊銀堂
    Chinese Physics B 2021年2期
    關(guān)鍵詞:寶興

    Haoran Wang(王浩然), Baoxing Duan(段寶興), Licheng Sun(孫李誠(chéng)), and Yintang Yang(楊銀堂)

    Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: P-type buried layer,breakdown voltage,electric field modulation,turn-off time

    1. Introduction

    The lateral insulated gate bipolar transistor(LIGBT)has the advantages of strong conduction ability, high withstand voltage characteristics, and integration. It is widely used in various electronic power systems and is a typical representative of power semiconductor devices.[1–4]With its ideal dielectric isolation (DI) performance, relatively simple dielectric isolation technology and other advantages, Silicon-oninsulator (SOI) technology based LIGBT is widely used in automotive electronics, switching power supplies and other smart power integrated circuits.[5,6]

    Although LIGBT has low forward voltage drop, the existence of a large number of unbalanced carriers in the drift region limits the switching speed, resulting in higher turn-off loss,so reducing turn-off time has always been academia important topic. In order to reduce the turn-off loss and device size, SOI LIGBTs with ideal forward voltage drop (VF) and turn-off time(Toff)are preferred.The dual deep-oxide trenches(DDOT)technology assists in maintaining the electric potential from the collector,has achieved a faster turn-off speed.[7,8]Adding a P-type compensation layer in the drift region of LIGBT is helpful for the rapid recombination of excess carriers, so that the device can obtain lower turn-off losses.[9,10]The proposal of double-RESURF SOI LIGBT with deeptrench-cathode and self-biased PMOS realizes a better tradeoff between VFand Toff.[11]By adjusting the SOI structure,the surface electric field distribution can be optimized by the electric field modulation effect,increasing the breakdown voltage of the device,[12]which is conducive to reducing the size of the device. The influence of the self-heating effect of the SOIbased power device has caused the performance of the device to decline,resulting in serious reliability problems. Therefore,partial-SOI (PSOI) technology is proposed,[13]in which the silicon window under the drain or source helps the device to dissipate heat.

    This paper proposes a novel PSOI LIGBT with a P-type buried layer, called the buried layer PSOI LIGBT (BPSOI LIGBT).The electric field modulation effect generated by the P-type buried layer and the partial-SOI layer result in two new peaks in the surface electric field, which make the surface electric field distribution more uniform. The proposed BPSOI LIGBT improves the breakdown voltage, greatly reduces the drift length which allows the device to store lower carriers in the drift region. When the device is turned off, the reduction in store carriers of drift region decreases the turn-off time. At the same time,BPSOI LIGBT has the characteristics of PSOI structure,which slows down the self-heating effect of the device.

    2. Device structure and description

    Figure 1 is a schematic cross-section of the proposed BPSOI LIGBT. In the substrate of proposed device, the ion implanted P-type buried layer is close to the source end, the P-substrate is located at the middle portion,and the buried SOI layer is close to the drain end. The P-type buried layer, the P-substrate, and the SOI layer each account for one-third of the length of the substrate. In order to meet the RESURF principle,different types of substrates require different optimized concentrations of drift region. The concentration of the P-type buried layer is higher than the concentration of the p-substrate,which means that the optimized drift region concentration is higher. Under the same thickness of the drift region,the isolation substrate requires the optimized drift region concentration to be lower than that of the silicon substrate. Thus, when the substrate is three regions of different types,three drift regions with different optimized concentrations are also required. As seen from Fig.1, it is equivalent to distinguishing the drift region into three regions of the same length with a, b, and c when the concentration of the drift region is constant.The new electric field peaks appear near A and B,causing the bottom of the electric field to rise,so the surface electric field distribution tends to be uniform,which is also the result of the modulation effect of the substrate on the surface electric field. At the same time,due to the appearance of silicon window,the self-heating effect of SOI can be well alleviated.

    Fig.1. The schematic cross-section of the proposed BPSOI LIGBT.

    3. Results and discussion

    Table 1 is the proposed device,conventional PSOI LIGBT and traditional SOI LIGBT simulation parameters. Figure 2 shows the lateral electric field distribution of the three structures. It can be clearly seen that the surface electric field of the BPSOI LIGBT structure has two peaks(near A and B)under the action of the additional electric field generated by the Ptype buried layer charge,which raise the bottom of the electric field and reduces the peak value of the electric field at both ends of the source and drain. Compared with the traditional SOI LIGBT and conventional PSOI LIGBT,electric field distribution of the proposed device is more uniform. The position of the peak is located at the interface between different types of substrates,which improves the lateral withstand voltage of the device.

    Table 1. Device design parameters.

    Fig.2. Lateral electric field distribution of the BPSOI LIGBT,conventional PSOI LIGBT,and traditional SOI LIGBT.

    Figure 3(a)compares the lateral surface potential distribution of the proposed structure with the traditional SOI LIGBT at breakdown. It can be seen that when LD= 5.8 μm, the proposed BPSOI LIGBT can obtain almost the same breakdown voltage (BV = 104 V) as the traditional SOI LIGBT(LD=15 μm), the proposed device makes the device have a smaller size. When LD=15μm,the proposed BPSOI LIGBT obtains a BV of 191 V. It can be concluded that at the same LD, the breakdown voltage of the proposed BPSOI LIGBT is increased by 84%,compared with the traditional SOI LIGBT.This proves that the P-type buried layer and the partial-SOI layer introduced in the proposed device optimizes the surface electric field distribution, makes the electric field distribution more uniform,and obtains a higher breakdown voltage.Therefore, the BPSOI LIGBT obtains narrower LDand higher BV through electric field modulation.

    Figure 3(b)shows the vertical potential distribution at the drain end of three structures, where 0 <y <W is the potential distribution of the device drift region and the buried layer,y>W is the potential distribution of the substrate. The substrate bears a considerable part of the vertical voltage,which is the reason of the BPSOI LIGBT structure has higher withstand voltage than the conventional SOI structure. Lines 1 and 2 indicate the potential difference between the drift area and the buried layer of the conventional PSOI LIGBT and the BPSOI LIGBT.It can be seen that the potential difference between the two structures in this part is similar. However,in the substrate part,the proposed BPSOI LIGBT has a more obvious potential than the conventional PSOI LIGBT.The increase is due to the optimization of the surface electric field by the P buried layer of the BPSOI LIGBT (as shown in Fig.2). In this way, the proposed BPSOI LIGBT improves the lateral withstand voltage by optimizing the surface electric field.

    Fig.3. (a) Lateral surface potential distribution of the proposed structure and traditional SOI IGBT at breakdown. (b)Vertical potential distribution of the drain ends of BPSOI LIGBT, PSOI LIGBT, and SOI LIGBT,point W at y=2.5μm.

    Fig.4. Relationship between the doping concentration of the P-type buried layer and breakdown voltage of the BPSOI LIGBT.

    Figure 4 shows the relationship between the concentration of the P-type buried layer and breakdown voltage of the BPSOI LIGBT. Point A, point B, and point C on the dotted line represent the situation when NP=1×1014cm?3, which are the breakdown voltage of the conventional PSOI LIGBT.It can be seen from the figure that as NPincreases, the effect of the buried layer on the drift region gradually increases,and the surface electric field gradually tends to optimize.The highest peak of the electric field distribution on both sides gradually decreases,and the middle part gradually increases,which makes the breakdown voltage increase gradually. When NPoptimizes the electric field as shown in Fig.2,the breakdown voltage reaches the maximum.At this time,increasing NPwill cause the peak value of the electric field near the source end to be too high,thereby reducing the breakdown voltage. It can be seen from Fig.4 that the breakdown voltage of the BPSOI structure is increased by 26% compared to the conventional PSOI LIGBT.

    Fig.5. Relationship between the thickness of buried layer and breakdown voltage.

    Figure 5 shows the relationship between the thickness of buried layer (Tox) and breakdown voltage of three different devices. As seen from the figure, with the increase in the thickness of the buried layer, the breakdown voltage shows approximately linear growth. The breakdown voltage of the proposed structure is higher than that of conventional PSOI LIGBT and traditional SOI LIGBT, because of the introduction of P-type buried layer to modulate the surface electric field. Among the structural parameters with LD= 15 μm,Ts=1.5μm,NP=2×1016cm?3.

    Fig.6.Simulated forward characteristics of the proposed and traditional SOI LIGBT.

    Figure 6 shows the simulated forward characteristics of the proposed structure (LD= 5.8 μm, Tox= 1 μm, NP=2×1016cm?3, BV = 104 V) and traditional SOI LIGBT(LD=15μm,Tox=1μm,BV =104 V).The proposed device has a shorter LD, and the electrically neutral effect of the Ptype buried layer in the structure increases the optimized concentration of the drift region,so the proposed device has better current capability. The BPSOI LIGBT gains the lower VFof 1.31 V at ICE=1.0 kA/cm2as shown in Fig.6,the curve representing BPSOI LIGBT in the figure is above the traditional SOI LIGBT, and the analysis and simulation results are consistent. The BPSOI LIGBT has good forward characteristics.

    Figure 7 shows the simulated resistive load turn-off characteristics of the proposed structure(LD=5.8μm)and traditional SOI LIGBT (LD=15 μm). The BPSOI LIGBT gains the lower VFof 1.31 V at ICE=1.0 kA/cm2,when T =300 K and VG=10 V,the turn-off BPSOI LIGBT is 15.8 ns and that of SOI LIGBT is 37.5 ns. It can be clearly seen that the turnoff time of BPSOI LIGBT is less than the turn-off time of traditional SOI LIGBT. Due to the electric field modulation effect,the proposed structure has a smaller LD,so that the drift region obtains less storage carriers, and at the same time, the small LDdepletes the drift region quickly and obtains a shorter depletion region length.The shorter length of the depletion region and the smaller number of storage carriers are more conducive to device turn-off. Therefore, the proposed structure has a smaller Toffthan the traditional SOI LIGBT.

    Fig.7. Simulated resistive load turn-off characteristics of the proposed BPSOI LIGBT and traditional SOI LIGBT.T =300 K,VG=10 V.

    Figure 8 compares the tradeoff curves between forward voltage drop and turn off time for the BPSOI LIGBT and the conventional SOI LIGBT. The Toff~VFcurve is obtained by changing the anode P-type doping concentration at T =300 K and current density of 1 kA/cm2. The BPSOI LIGBT curve is below the traditional SOI LIGBT curve,indicating that the proposed structure has a better compromise between Toffand VF. When VF=2.05 V, the Toffof the proposed structure is 71% lower than that of the traditional SOI LIGBT. The proposed structure has low power consumption.

    Fig.8. Tradeoff curves between forward voltage drop(VF)and turn off time(Toff)for the BPSOI LIGBT and the conventional SOI LIGBT.

    The influence of the self-heating effect of the traditional SOI LIGBT is obvious. The self-heating effect seriously affects the reliability of the device, adversely affects the normal operation of the device,and degrades the performance of the device. However, the proposed device has a silicon window and retains the characteristics of the general PSOI LIGBT,the proposed device structure has better heat dissipation performance and alleviates the self-heating effect brought by the SOI structure. Figure 9(a)shows the temperature distribution inside BPSOI LIGBT and SOI LIGBT,and figure 9(b)shows the surface temperature of the two structures. The gate voltage VG=5 V,drain voltage VD=10 V.It can be clearly seen that the working temperature of the proposed BPSOI LIGBT is much lower than that of the SOI LIGBT.The BPSOI LIGBT reduces the heating of the device caused by the self-heating effect.

    Fig.9. (a)Temperature distribution inside BPSOI LIGBT and SOI LIGBT.(b)Surface temperature of the two structures.

    Fig.10. Key process flow of the proposed BPSOI LIGBT.

    In engineering, the BPSOI structure can be realized by silicon wafer direct bonding(SDB),as shown in Fig.10. The difference from the general PSOI structure in the SDB process is that it adds a P-type ion implantation step. First, a part of the buried oxide layer is formed,and at the same time a part of the silicon window of the device is formed, and then etching and chemical polishing techniques are used to etch and polish the oxide layer on the silicon surface. In the third step,ion implantation is performed,and the implanted ions form a part of the p-type buried layer.Finally,it is directly bonded to another silicon wafer without an oxide layer.

    4. Conclusion

    A novel SOI LIGBT with BPSOI structure has been proposed in this paper. Simulation and analysis verified that the proposed BPSOI LIGBT has the advantages of optimizing the surface electric field and alleviating the self-heating effect.The electric field modulation of the P-type buried layer and a partial-SOI layer charge results in tow peaks in the surface electric field, the electric field is more uniformly distributed than the traditional SOI LIGBT,so that the device has a larger BV.Thus,shorter drift region and lower storage carrier are obtained. Compared with traditional SOI LIGBT, the proposed structure has better tradeoff between Toffand VF.

    猜你喜歡
    寶興
    基于改進(jìn)YOLOv3的果樹樹干識(shí)別和定位
    風(fēng)電場(chǎng)集電線路單相接地故障特性分析與保護(hù)
    西藏鳥類分布新紀(jì)錄
    ——寶興鹛雀
    Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
    Novel Si/SiC heterojunction lateral double-diffused metal–oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit?
    中國(guó)寶興漢白玉綠色礦山建設(shè)經(jīng)驗(yàn)——四川雅安正興大理石礦調(diào)研報(bào)告
    石材(2020年11期)2021-01-08 09:21:34
    天降白玉 寶藏興業(yè)——四川寶興漢白玉掠影
    石材(2020年10期)2021-01-08 09:20:02
    杭州(2020年18期)2020-11-09 03:32:10
    四川寶興網(wǎng)絡(luò)招商推出漢白玉產(chǎn)業(yè)
    石材(2020年4期)2020-05-25 07:08:48
    被他人傷害致死,敬老院有否連帶責(zé)任
    長(zhǎng)壽(2019年8期)2019-07-13 03:41:18
    国产精品免费视频内射| 欧美亚洲 丝袜 人妻 在线| 久久亚洲精品不卡| 下体分泌物呈黄色| 国产亚洲欧美精品永久| 黄频高清免费视频| 搡老岳熟女国产| 亚洲一区中文字幕在线| 成人影院久久| 在线观看免费午夜福利视频| 国产午夜精品久久久久久| 亚洲少妇的诱惑av| 美女国产高潮福利片在线看| 国产精品一区二区在线不卡| 欧美人与性动交α欧美精品济南到| 91成年电影在线观看| 在线观看一区二区三区激情| 女性被躁到高潮视频| 久久午夜综合久久蜜桃| 99香蕉大伊视频| 91av网站免费观看| 欧美变态另类bdsm刘玥| 免费在线观看影片大全网站| 黑人操中国人逼视频| 欧美另类亚洲清纯唯美| 一区二区三区精品91| 国产精品.久久久| 丝袜喷水一区| 亚洲专区国产一区二区| 久久99热这里只频精品6学生| 亚洲人成伊人成综合网2020| 久久久久久久精品吃奶| 亚洲男人天堂网一区| 成人国产一区最新在线观看| 欧美国产精品va在线观看不卡| 黄色丝袜av网址大全| 69精品国产乱码久久久| 大陆偷拍与自拍| 国产一区有黄有色的免费视频| 国产精品1区2区在线观看. | 久久精品国产亚洲av香蕉五月 | 老熟妇乱子伦视频在线观看| 国产aⅴ精品一区二区三区波| 在线观看免费午夜福利视频| 日本a在线网址| 亚洲第一青青草原| 黑人巨大精品欧美一区二区蜜桃| 女性被躁到高潮视频| 50天的宝宝边吃奶边哭怎么回事| 日韩一卡2卡3卡4卡2021年| 亚洲一码二码三码区别大吗| 男女床上黄色一级片免费看| 国产日韩欧美亚洲二区| 国产精品免费视频内射| 亚洲中文日韩欧美视频| 国产精品欧美亚洲77777| 99精品久久久久人妻精品| 满18在线观看网站| 99国产精品免费福利视频| 欧美精品高潮呻吟av久久| 久久久精品区二区三区| 在线观看舔阴道视频| 这个男人来自地球电影免费观看| 欧美日本中文国产一区发布| tube8黄色片| 在线观看www视频免费| av电影中文网址| 9色porny在线观看| 狂野欧美激情性xxxx| 久久性视频一级片| 中文字幕人妻丝袜制服| 亚洲成av片中文字幕在线观看| 国产亚洲精品第一综合不卡| 麻豆成人av在线观看| 亚洲av成人一区二区三| av一本久久久久| 欧美日韩福利视频一区二区| 男女下面插进去视频免费观看| 日韩三级视频一区二区三区| 亚洲美女黄片视频| 蜜桃国产av成人99| www日本在线高清视频| xxxhd国产人妻xxx| 欧美成人免费av一区二区三区 | 1024香蕉在线观看| 亚洲成人免费av在线播放| 久久婷婷成人综合色麻豆| 激情在线观看视频在线高清 | 久久久久久久久免费视频了| 国产人伦9x9x在线观看| 一区二区av电影网| 午夜视频精品福利| 色老头精品视频在线观看| 真人做人爱边吃奶动态| 欧美大码av| av又黄又爽大尺度在线免费看| av福利片在线| 国产免费福利视频在线观看| 99国产精品免费福利视频| 久久精品国产亚洲av香蕉五月 | 另类精品久久| 超碰成人久久| 亚洲中文日韩欧美视频| 最新美女视频免费是黄的| 色综合欧美亚洲国产小说| 欧美日韩福利视频一区二区| 日韩人妻精品一区2区三区| 老司机影院毛片| 99精品欧美一区二区三区四区| 少妇精品久久久久久久| 久久久久久久国产电影| 色视频在线一区二区三区| 午夜激情久久久久久久| 国产一区二区在线观看av| 成人黄色视频免费在线看| 一边摸一边抽搐一进一小说 | 久久国产精品大桥未久av| 精品少妇黑人巨大在线播放| 成年动漫av网址| 精品亚洲成a人片在线观看| 好男人电影高清在线观看| 热re99久久精品国产66热6| 黄色视频在线播放观看不卡| 亚洲专区字幕在线| 午夜日韩欧美国产| 日日夜夜操网爽| 国产在线精品亚洲第一网站| 伦理电影免费视频| 国产激情久久老熟女| 久久精品国产99精品国产亚洲性色 | 大片免费播放器 马上看| 国产成人啪精品午夜网站| 少妇的丰满在线观看| av片东京热男人的天堂| 国产欧美日韩综合在线一区二区| 91国产中文字幕| 又大又爽又粗| 久久亚洲真实| 一夜夜www| 亚洲性夜色夜夜综合| 日韩熟女老妇一区二区性免费视频| 亚洲男人天堂网一区| 宅男免费午夜| 国产真人三级小视频在线观看| 丁香六月天网| 三上悠亚av全集在线观看| 国产精品久久久久久精品古装| 中文字幕另类日韩欧美亚洲嫩草| 久久中文看片网| 91麻豆精品激情在线观看国产 | av又黄又爽大尺度在线免费看| 一区在线观看完整版| 午夜福利免费观看在线| 亚洲精品一二三| 国产男靠女视频免费网站| 欧美 亚洲 国产 日韩一| 国产单亲对白刺激| 18禁黄网站禁片午夜丰满| 中文字幕人妻熟女乱码| 一区在线观看完整版| 如日韩欧美国产精品一区二区三区| 又大又爽又粗| 18在线观看网站| 1024视频免费在线观看| 欧美精品人与动牲交sv欧美| 亚洲av日韩在线播放| 久久人妻熟女aⅴ| 国产精品自产拍在线观看55亚洲 | 亚洲成av片中文字幕在线观看| 18禁国产床啪视频网站| 亚洲精品一二三| 精品乱码久久久久久99久播| 亚洲,欧美精品.| 国产伦理片在线播放av一区| 亚洲成人国产一区在线观看| 国产91精品成人一区二区三区 | 色综合欧美亚洲国产小说| 欧美成人免费av一区二区三区 | 久久中文字幕一级| 国产一区二区三区在线臀色熟女 | 亚洲精品久久午夜乱码| 人人澡人人妻人| 高潮久久久久久久久久久不卡| 午夜免费鲁丝| 窝窝影院91人妻| 免费一级毛片在线播放高清视频 | 精品少妇久久久久久888优播| 黄色怎么调成土黄色| 啦啦啦中文免费视频观看日本| 窝窝影院91人妻| 国产成人精品久久二区二区免费| 精品少妇内射三级| 丝袜美足系列| 国产亚洲精品一区二区www | 91精品国产国语对白视频| 精品少妇内射三级| 色老头精品视频在线观看| 久久久久视频综合| av又黄又爽大尺度在线免费看| 婷婷丁香在线五月| 亚洲精品国产一区二区精华液| 夫妻午夜视频| 久久人妻av系列| 美女福利国产在线| 99九九在线精品视频| 丰满少妇做爰视频| 老司机亚洲免费影院| www日本在线高清视频| 国产精品国产高清国产av | 午夜福利影视在线免费观看| 免费在线观看视频国产中文字幕亚洲| 欧美精品啪啪一区二区三区| 女性被躁到高潮视频| 一二三四在线观看免费中文在| 亚洲五月色婷婷综合| 亚洲精品中文字幕在线视频| 纯流量卡能插随身wifi吗| www.自偷自拍.com| 久久久国产欧美日韩av| 国产又爽黄色视频| 热99久久久久精品小说推荐| 亚洲男人天堂网一区| 成人免费观看视频高清| 91av网站免费观看| 亚洲国产欧美一区二区综合| 在线观看免费日韩欧美大片| 69精品国产乱码久久久| 午夜老司机福利片| 老司机午夜福利在线观看视频 | 免费在线观看视频国产中文字幕亚洲| 一边摸一边抽搐一进一出视频| 国产精品久久久久久精品电影小说| 一级黄色大片毛片| 少妇猛男粗大的猛烈进出视频| 一区二区三区乱码不卡18| 亚洲一区中文字幕在线| 日本黄色视频三级网站网址 | 久久影院123| 啦啦啦中文免费视频观看日本| 亚洲欧美一区二区三区久久| 热99国产精品久久久久久7| 侵犯人妻中文字幕一二三四区| 国产精品久久久久久精品古装| 国产精品影院久久| av在线播放免费不卡| 美女高潮喷水抽搐中文字幕| 国产免费现黄频在线看| 狠狠狠狠99中文字幕| 超色免费av| 精品一区二区三区四区五区乱码| 欧美另类亚洲清纯唯美| 50天的宝宝边吃奶边哭怎么回事| 亚洲av成人一区二区三| 欧美日韩精品网址| 久久久久久久大尺度免费视频| 国产在线观看jvid| a级片在线免费高清观看视频| 19禁男女啪啪无遮挡网站| 天堂中文最新版在线下载| 久久精品成人免费网站| 99久久国产精品久久久| 成人三级做爰电影| 黑人欧美特级aaaaaa片| 99九九在线精品视频| 侵犯人妻中文字幕一二三四区| 亚洲 国产 在线| 国产又色又爽无遮挡免费看| 一二三四社区在线视频社区8| 国产亚洲精品久久久久5区| 亚洲五月婷婷丁香| 女人精品久久久久毛片| 搡老乐熟女国产| 天天躁日日躁夜夜躁夜夜| 一边摸一边做爽爽视频免费| 99久久人妻综合| 日韩欧美一区视频在线观看| av有码第一页| a级毛片在线看网站| 18禁黄网站禁片午夜丰满| 欧美中文综合在线视频| 久久 成人 亚洲| 九色亚洲精品在线播放| 日韩欧美国产一区二区入口| 午夜福利乱码中文字幕| 国产免费现黄频在线看| 亚洲一区二区三区欧美精品| 日本vs欧美在线观看视频| 最近最新中文字幕大全电影3 | 午夜福利视频在线观看免费| 午夜福利,免费看| 亚洲七黄色美女视频| 免费观看a级毛片全部| 大片电影免费在线观看免费| 91精品国产国语对白视频| 九色亚洲精品在线播放| 99国产极品粉嫩在线观看| 亚洲第一青青草原| 国产免费福利视频在线观看| 欧美日韩一级在线毛片| 黑人猛操日本美女一级片| 欧美日韩国产mv在线观看视频| 久久久精品区二区三区| 久久国产精品男人的天堂亚洲| av有码第一页| a在线观看视频网站| 可以免费在线观看a视频的电影网站| 久久青草综合色| 黄色成人免费大全| 人人妻,人人澡人人爽秒播| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美一区二区三区黑人| 操出白浆在线播放| 免费av中文字幕在线| 国产亚洲精品一区二区www | 麻豆乱淫一区二区| 日本欧美视频一区| 午夜福利免费观看在线| 国产精品成人在线| 亚洲avbb在线观看| 丰满少妇做爰视频| 女同久久另类99精品国产91| 国产成人系列免费观看| 女人久久www免费人成看片| 超色免费av| 国产激情久久老熟女| 一区二区三区乱码不卡18| 久久久久久人人人人人| 国产精品免费一区二区三区在线 | 亚洲伊人色综图| 99在线人妻在线中文字幕 | 亚洲黑人精品在线| 一本—道久久a久久精品蜜桃钙片| 99精品在免费线老司机午夜| 日韩一区二区三区影片| 日韩精品免费视频一区二区三区| 欧美日韩亚洲综合一区二区三区_| aaaaa片日本免费| 亚洲欧洲日产国产| 99精品在免费线老司机午夜| 天堂俺去俺来也www色官网| 午夜福利一区二区在线看| 国产成人精品无人区| 高清av免费在线| 757午夜福利合集在线观看| 在线观看一区二区三区激情| 久久人妻熟女aⅴ| 久久青草综合色| 成人特级黄色片久久久久久久 | 69av精品久久久久久 | 欧美av亚洲av综合av国产av| 国产精品av久久久久免费| 夜夜夜夜夜久久久久| 香蕉久久夜色| 国产精品麻豆人妻色哟哟久久| 精品国产一区二区三区久久久樱花| 精品一区二区三区四区五区乱码| 精品高清国产在线一区| 日韩免费av在线播放| 国产三级黄色录像| 国产精品美女特级片免费视频播放器 | 涩涩av久久男人的天堂| 丝袜美腿诱惑在线| 国产成人欧美在线观看 | 我要看黄色一级片免费的| 欧美av亚洲av综合av国产av| 亚洲国产精品一区二区三区在线| 老司机午夜福利在线观看视频 | videos熟女内射| 久久人妻福利社区极品人妻图片| 两人在一起打扑克的视频| 欧美乱码精品一区二区三区| 国产男靠女视频免费网站| 亚洲人成77777在线视频| 日本vs欧美在线观看视频| 咕卡用的链子| 国产精品久久久av美女十八| 日本a在线网址| 免费久久久久久久精品成人欧美视频| 老司机在亚洲福利影院| 国产91精品成人一区二区三区 | 久久国产精品影院| 欧美激情 高清一区二区三区| 欧美乱妇无乱码| 国精品久久久久久国模美| 成人国产一区最新在线观看| 99国产综合亚洲精品| 久久久久国产一级毛片高清牌| 欧美日韩av久久| 久久天堂一区二区三区四区| a在线观看视频网站| 怎么达到女性高潮| 日韩制服丝袜自拍偷拍| 午夜福利免费观看在线| 国产区一区二久久| 下体分泌物呈黄色| 国产一卡二卡三卡精品| 后天国语完整版免费观看| 国产免费视频播放在线视频| 国产男靠女视频免费网站| 男女之事视频高清在线观看| 亚洲国产中文字幕在线视频| 一边摸一边做爽爽视频免费| 亚洲精品美女久久久久99蜜臀| 日本一区二区免费在线视频| 美国免费a级毛片| 久久精品熟女亚洲av麻豆精品| 99riav亚洲国产免费| 亚洲精品av麻豆狂野| 亚洲少妇的诱惑av| 亚洲黑人精品在线| 91老司机精品| av天堂在线播放| 99国产精品一区二区蜜桃av | 91大片在线观看| 男人舔女人的私密视频| 一夜夜www| 久久影院123| 国产深夜福利视频在线观看| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| 亚洲精品中文字幕在线视频| 国产男女超爽视频在线观看| 2018国产大陆天天弄谢| 久久久久久免费高清国产稀缺| 国产成人精品在线电影| 精品午夜福利视频在线观看一区 | 午夜福利乱码中文字幕| 欧美精品一区二区免费开放| 精品卡一卡二卡四卡免费| 亚洲国产看品久久| 欧美成狂野欧美在线观看| 91九色精品人成在线观看| 久久精品aⅴ一区二区三区四区| 欧美日韩视频精品一区| 一本久久精品| 1024香蕉在线观看| 国产一区二区在线观看av| 黄色视频在线播放观看不卡| 成年人免费黄色播放视频| 亚洲专区字幕在线| 精品人妻1区二区| 电影成人av| 一级毛片精品| 国产真人三级小视频在线观看| 嫁个100分男人电影在线观看| 少妇猛男粗大的猛烈进出视频| 久久国产精品男人的天堂亚洲| 一区二区三区精品91| 国产成人精品久久二区二区免费| avwww免费| 欧美日韩一级在线毛片| 欧美精品啪啪一区二区三区| 高清视频免费观看一区二区| 十分钟在线观看高清视频www| 国产亚洲av高清不卡| 精品久久久久久久毛片微露脸| 午夜成年电影在线免费观看| 老司机靠b影院| 久久99一区二区三区| 精品少妇久久久久久888优播| 丝袜喷水一区| 国产黄频视频在线观看| 久久精品亚洲精品国产色婷小说| 两性夫妻黄色片| 丰满少妇做爰视频| 欧美激情 高清一区二区三区| 亚洲成a人片在线一区二区| 亚洲五月色婷婷综合| 日韩视频一区二区在线观看| 久久ye,这里只有精品| 精品人妻1区二区| 超色免费av| 欧美人与性动交α欧美软件| 高清视频免费观看一区二区| 狂野欧美激情性xxxx| 国产成人欧美| 久久久久久久久久久久大奶| 丁香六月欧美| 久热这里只有精品99| 极品人妻少妇av视频| 亚洲熟女毛片儿| 免费观看av网站的网址| xxxhd国产人妻xxx| 男女免费视频国产| 久久久久久亚洲精品国产蜜桃av| 一区二区三区激情视频| 精品国产乱码久久久久久男人| 精品一区二区三区av网在线观看 | 天天添夜夜摸| 久久久久久久久免费视频了| 天天影视国产精品| 99香蕉大伊视频| 亚洲专区国产一区二区| 精品国产一区二区三区久久久樱花| 制服人妻中文乱码| 91成人精品电影| 美女主播在线视频| 国产精品99久久99久久久不卡| 视频区欧美日本亚洲| 国产aⅴ精品一区二区三区波| 人人妻,人人澡人人爽秒播| 99riav亚洲国产免费| 黄片播放在线免费| 亚洲成人免费电影在线观看| 汤姆久久久久久久影院中文字幕| 亚洲成人手机| 亚洲人成77777在线视频| 亚洲午夜理论影院| 久久精品国产亚洲av高清一级| 久热爱精品视频在线9| 一区在线观看完整版| 国产日韩欧美亚洲二区| 国产成人啪精品午夜网站| 日韩欧美三级三区| 亚洲成人手机| 日韩人妻精品一区2区三区| 老司机靠b影院| 国产精品美女特级片免费视频播放器 | 国产精品九九99| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利视频在线观看免费| 国产激情久久老熟女| 亚洲精品美女久久久久99蜜臀| netflix在线观看网站| 国产成人精品久久二区二区91| 丰满饥渴人妻一区二区三| 99久久国产精品久久久| av欧美777| 脱女人内裤的视频| 亚洲欧美一区二区三区黑人| 动漫黄色视频在线观看| 桃花免费在线播放| 国产免费av片在线观看野外av| 日日爽夜夜爽网站| 大型av网站在线播放| 蜜桃国产av成人99| 久久久久视频综合| 人人妻人人爽人人添夜夜欢视频| 香蕉久久夜色| 超色免费av| av天堂在线播放| 国产亚洲午夜精品一区二区久久| 亚洲精品粉嫩美女一区| a级毛片黄视频| 一区在线观看完整版| 搡老岳熟女国产| 久久久久久久久免费视频了| 国产av精品麻豆| 在线观看免费视频日本深夜| 亚洲国产av新网站| 日韩欧美一区二区三区在线观看 | 午夜福利影视在线免费观看| 最新的欧美精品一区二区| 亚洲av成人不卡在线观看播放网| 多毛熟女@视频| 国产亚洲欧美在线一区二区| 国产精品一区二区精品视频观看| 国产欧美日韩综合在线一区二区| 久久狼人影院| 国产精品电影一区二区三区 | 超碰成人久久| 欧美日韩成人在线一区二区| 新久久久久国产一级毛片| av一本久久久久| 亚洲人成77777在线视频| 亚洲欧美日韩另类电影网站| 热99re8久久精品国产| 一区二区日韩欧美中文字幕| 99国产精品99久久久久| 一级片免费观看大全| 另类精品久久| 波多野结衣一区麻豆| 999久久久国产精品视频| 婷婷丁香在线五月| 国产一区二区三区综合在线观看| 欧美 亚洲 国产 日韩一| 桃红色精品国产亚洲av| 亚洲美女黄片视频| 国产精品免费大片| 他把我摸到了高潮在线观看 | 天天添夜夜摸| 777久久人妻少妇嫩草av网站| 免费看十八禁软件| 国产无遮挡羞羞视频在线观看| 亚洲人成伊人成综合网2020| 久久天堂一区二区三区四区| netflix在线观看网站| 亚洲人成电影观看| 精品亚洲成国产av| 久久久久久久久免费视频了| 精品免费久久久久久久清纯 | 十八禁网站免费在线| 国产精品久久久久成人av| 女性生殖器流出的白浆| 成人三级做爰电影| 国产精品99久久99久久久不卡| 老司机靠b影院| 亚洲精品美女久久久久99蜜臀| 国产高清国产精品国产三级| 国产真人三级小视频在线观看| 99热国产这里只有精品6| 国产老妇伦熟女老妇高清| 亚洲成人国产一区在线观看| 亚洲精品乱久久久久久| videos熟女内射| 老司机午夜十八禁免费视频| 少妇粗大呻吟视频| 欧美乱妇无乱码| 亚洲精品成人av观看孕妇| 天堂中文最新版在线下载| 91老司机精品| 精品人妻在线不人妻| 欧美日韩亚洲国产一区二区在线观看 | 人妻一区二区av| 成人影院久久|