• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel fast-switching LIGBT with P-buried layer and partial SOI?

    2021-03-11 08:33:42HaoranWang王浩然BaoxingDuan段寶興LichengSun孫李誠(chéng)andYintangYang楊銀堂
    Chinese Physics B 2021年2期
    關(guān)鍵詞:寶興

    Haoran Wang(王浩然), Baoxing Duan(段寶興), Licheng Sun(孫李誠(chéng)), and Yintang Yang(楊銀堂)

    Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: P-type buried layer,breakdown voltage,electric field modulation,turn-off time

    1. Introduction

    The lateral insulated gate bipolar transistor(LIGBT)has the advantages of strong conduction ability, high withstand voltage characteristics, and integration. It is widely used in various electronic power systems and is a typical representative of power semiconductor devices.[1–4]With its ideal dielectric isolation (DI) performance, relatively simple dielectric isolation technology and other advantages, Silicon-oninsulator (SOI) technology based LIGBT is widely used in automotive electronics, switching power supplies and other smart power integrated circuits.[5,6]

    Although LIGBT has low forward voltage drop, the existence of a large number of unbalanced carriers in the drift region limits the switching speed, resulting in higher turn-off loss,so reducing turn-off time has always been academia important topic. In order to reduce the turn-off loss and device size, SOI LIGBTs with ideal forward voltage drop (VF) and turn-off time(Toff)are preferred.The dual deep-oxide trenches(DDOT)technology assists in maintaining the electric potential from the collector,has achieved a faster turn-off speed.[7,8]Adding a P-type compensation layer in the drift region of LIGBT is helpful for the rapid recombination of excess carriers, so that the device can obtain lower turn-off losses.[9,10]The proposal of double-RESURF SOI LIGBT with deeptrench-cathode and self-biased PMOS realizes a better tradeoff between VFand Toff.[11]By adjusting the SOI structure,the surface electric field distribution can be optimized by the electric field modulation effect,increasing the breakdown voltage of the device,[12]which is conducive to reducing the size of the device. The influence of the self-heating effect of the SOIbased power device has caused the performance of the device to decline,resulting in serious reliability problems. Therefore,partial-SOI (PSOI) technology is proposed,[13]in which the silicon window under the drain or source helps the device to dissipate heat.

    This paper proposes a novel PSOI LIGBT with a P-type buried layer, called the buried layer PSOI LIGBT (BPSOI LIGBT).The electric field modulation effect generated by the P-type buried layer and the partial-SOI layer result in two new peaks in the surface electric field, which make the surface electric field distribution more uniform. The proposed BPSOI LIGBT improves the breakdown voltage, greatly reduces the drift length which allows the device to store lower carriers in the drift region. When the device is turned off, the reduction in store carriers of drift region decreases the turn-off time. At the same time,BPSOI LIGBT has the characteristics of PSOI structure,which slows down the self-heating effect of the device.

    2. Device structure and description

    Figure 1 is a schematic cross-section of the proposed BPSOI LIGBT. In the substrate of proposed device, the ion implanted P-type buried layer is close to the source end, the P-substrate is located at the middle portion,and the buried SOI layer is close to the drain end. The P-type buried layer, the P-substrate, and the SOI layer each account for one-third of the length of the substrate. In order to meet the RESURF principle,different types of substrates require different optimized concentrations of drift region. The concentration of the P-type buried layer is higher than the concentration of the p-substrate,which means that the optimized drift region concentration is higher. Under the same thickness of the drift region,the isolation substrate requires the optimized drift region concentration to be lower than that of the silicon substrate. Thus, when the substrate is three regions of different types,three drift regions with different optimized concentrations are also required. As seen from Fig.1, it is equivalent to distinguishing the drift region into three regions of the same length with a, b, and c when the concentration of the drift region is constant.The new electric field peaks appear near A and B,causing the bottom of the electric field to rise,so the surface electric field distribution tends to be uniform,which is also the result of the modulation effect of the substrate on the surface electric field. At the same time,due to the appearance of silicon window,the self-heating effect of SOI can be well alleviated.

    Fig.1. The schematic cross-section of the proposed BPSOI LIGBT.

    3. Results and discussion

    Table 1 is the proposed device,conventional PSOI LIGBT and traditional SOI LIGBT simulation parameters. Figure 2 shows the lateral electric field distribution of the three structures. It can be clearly seen that the surface electric field of the BPSOI LIGBT structure has two peaks(near A and B)under the action of the additional electric field generated by the Ptype buried layer charge,which raise the bottom of the electric field and reduces the peak value of the electric field at both ends of the source and drain. Compared with the traditional SOI LIGBT and conventional PSOI LIGBT,electric field distribution of the proposed device is more uniform. The position of the peak is located at the interface between different types of substrates,which improves the lateral withstand voltage of the device.

    Table 1. Device design parameters.

    Fig.2. Lateral electric field distribution of the BPSOI LIGBT,conventional PSOI LIGBT,and traditional SOI LIGBT.

    Figure 3(a)compares the lateral surface potential distribution of the proposed structure with the traditional SOI LIGBT at breakdown. It can be seen that when LD= 5.8 μm, the proposed BPSOI LIGBT can obtain almost the same breakdown voltage (BV = 104 V) as the traditional SOI LIGBT(LD=15 μm), the proposed device makes the device have a smaller size. When LD=15μm,the proposed BPSOI LIGBT obtains a BV of 191 V. It can be concluded that at the same LD, the breakdown voltage of the proposed BPSOI LIGBT is increased by 84%,compared with the traditional SOI LIGBT.This proves that the P-type buried layer and the partial-SOI layer introduced in the proposed device optimizes the surface electric field distribution, makes the electric field distribution more uniform,and obtains a higher breakdown voltage.Therefore, the BPSOI LIGBT obtains narrower LDand higher BV through electric field modulation.

    Figure 3(b)shows the vertical potential distribution at the drain end of three structures, where 0 <y <W is the potential distribution of the device drift region and the buried layer,y>W is the potential distribution of the substrate. The substrate bears a considerable part of the vertical voltage,which is the reason of the BPSOI LIGBT structure has higher withstand voltage than the conventional SOI structure. Lines 1 and 2 indicate the potential difference between the drift area and the buried layer of the conventional PSOI LIGBT and the BPSOI LIGBT.It can be seen that the potential difference between the two structures in this part is similar. However,in the substrate part,the proposed BPSOI LIGBT has a more obvious potential than the conventional PSOI LIGBT.The increase is due to the optimization of the surface electric field by the P buried layer of the BPSOI LIGBT (as shown in Fig.2). In this way, the proposed BPSOI LIGBT improves the lateral withstand voltage by optimizing the surface electric field.

    Fig.3. (a) Lateral surface potential distribution of the proposed structure and traditional SOI IGBT at breakdown. (b)Vertical potential distribution of the drain ends of BPSOI LIGBT, PSOI LIGBT, and SOI LIGBT,point W at y=2.5μm.

    Fig.4. Relationship between the doping concentration of the P-type buried layer and breakdown voltage of the BPSOI LIGBT.

    Figure 4 shows the relationship between the concentration of the P-type buried layer and breakdown voltage of the BPSOI LIGBT. Point A, point B, and point C on the dotted line represent the situation when NP=1×1014cm?3, which are the breakdown voltage of the conventional PSOI LIGBT.It can be seen from the figure that as NPincreases, the effect of the buried layer on the drift region gradually increases,and the surface electric field gradually tends to optimize.The highest peak of the electric field distribution on both sides gradually decreases,and the middle part gradually increases,which makes the breakdown voltage increase gradually. When NPoptimizes the electric field as shown in Fig.2,the breakdown voltage reaches the maximum.At this time,increasing NPwill cause the peak value of the electric field near the source end to be too high,thereby reducing the breakdown voltage. It can be seen from Fig.4 that the breakdown voltage of the BPSOI structure is increased by 26% compared to the conventional PSOI LIGBT.

    Fig.5. Relationship between the thickness of buried layer and breakdown voltage.

    Figure 5 shows the relationship between the thickness of buried layer (Tox) and breakdown voltage of three different devices. As seen from the figure, with the increase in the thickness of the buried layer, the breakdown voltage shows approximately linear growth. The breakdown voltage of the proposed structure is higher than that of conventional PSOI LIGBT and traditional SOI LIGBT, because of the introduction of P-type buried layer to modulate the surface electric field. Among the structural parameters with LD= 15 μm,Ts=1.5μm,NP=2×1016cm?3.

    Fig.6.Simulated forward characteristics of the proposed and traditional SOI LIGBT.

    Figure 6 shows the simulated forward characteristics of the proposed structure (LD= 5.8 μm, Tox= 1 μm, NP=2×1016cm?3, BV = 104 V) and traditional SOI LIGBT(LD=15μm,Tox=1μm,BV =104 V).The proposed device has a shorter LD, and the electrically neutral effect of the Ptype buried layer in the structure increases the optimized concentration of the drift region,so the proposed device has better current capability. The BPSOI LIGBT gains the lower VFof 1.31 V at ICE=1.0 kA/cm2as shown in Fig.6,the curve representing BPSOI LIGBT in the figure is above the traditional SOI LIGBT, and the analysis and simulation results are consistent. The BPSOI LIGBT has good forward characteristics.

    Figure 7 shows the simulated resistive load turn-off characteristics of the proposed structure(LD=5.8μm)and traditional SOI LIGBT (LD=15 μm). The BPSOI LIGBT gains the lower VFof 1.31 V at ICE=1.0 kA/cm2,when T =300 K and VG=10 V,the turn-off BPSOI LIGBT is 15.8 ns and that of SOI LIGBT is 37.5 ns. It can be clearly seen that the turnoff time of BPSOI LIGBT is less than the turn-off time of traditional SOI LIGBT. Due to the electric field modulation effect,the proposed structure has a smaller LD,so that the drift region obtains less storage carriers, and at the same time, the small LDdepletes the drift region quickly and obtains a shorter depletion region length.The shorter length of the depletion region and the smaller number of storage carriers are more conducive to device turn-off. Therefore, the proposed structure has a smaller Toffthan the traditional SOI LIGBT.

    Fig.7. Simulated resistive load turn-off characteristics of the proposed BPSOI LIGBT and traditional SOI LIGBT.T =300 K,VG=10 V.

    Figure 8 compares the tradeoff curves between forward voltage drop and turn off time for the BPSOI LIGBT and the conventional SOI LIGBT. The Toff~VFcurve is obtained by changing the anode P-type doping concentration at T =300 K and current density of 1 kA/cm2. The BPSOI LIGBT curve is below the traditional SOI LIGBT curve,indicating that the proposed structure has a better compromise between Toffand VF. When VF=2.05 V, the Toffof the proposed structure is 71% lower than that of the traditional SOI LIGBT. The proposed structure has low power consumption.

    Fig.8. Tradeoff curves between forward voltage drop(VF)and turn off time(Toff)for the BPSOI LIGBT and the conventional SOI LIGBT.

    The influence of the self-heating effect of the traditional SOI LIGBT is obvious. The self-heating effect seriously affects the reliability of the device, adversely affects the normal operation of the device,and degrades the performance of the device. However, the proposed device has a silicon window and retains the characteristics of the general PSOI LIGBT,the proposed device structure has better heat dissipation performance and alleviates the self-heating effect brought by the SOI structure. Figure 9(a)shows the temperature distribution inside BPSOI LIGBT and SOI LIGBT,and figure 9(b)shows the surface temperature of the two structures. The gate voltage VG=5 V,drain voltage VD=10 V.It can be clearly seen that the working temperature of the proposed BPSOI LIGBT is much lower than that of the SOI LIGBT.The BPSOI LIGBT reduces the heating of the device caused by the self-heating effect.

    Fig.9. (a)Temperature distribution inside BPSOI LIGBT and SOI LIGBT.(b)Surface temperature of the two structures.

    Fig.10. Key process flow of the proposed BPSOI LIGBT.

    In engineering, the BPSOI structure can be realized by silicon wafer direct bonding(SDB),as shown in Fig.10. The difference from the general PSOI structure in the SDB process is that it adds a P-type ion implantation step. First, a part of the buried oxide layer is formed,and at the same time a part of the silicon window of the device is formed, and then etching and chemical polishing techniques are used to etch and polish the oxide layer on the silicon surface. In the third step,ion implantation is performed,and the implanted ions form a part of the p-type buried layer.Finally,it is directly bonded to another silicon wafer without an oxide layer.

    4. Conclusion

    A novel SOI LIGBT with BPSOI structure has been proposed in this paper. Simulation and analysis verified that the proposed BPSOI LIGBT has the advantages of optimizing the surface electric field and alleviating the self-heating effect.The electric field modulation of the P-type buried layer and a partial-SOI layer charge results in tow peaks in the surface electric field, the electric field is more uniformly distributed than the traditional SOI LIGBT,so that the device has a larger BV.Thus,shorter drift region and lower storage carrier are obtained. Compared with traditional SOI LIGBT, the proposed structure has better tradeoff between Toffand VF.

    猜你喜歡
    寶興
    基于改進(jìn)YOLOv3的果樹樹干識(shí)別和定位
    風(fēng)電場(chǎng)集電線路單相接地故障特性分析與保護(hù)
    西藏鳥類分布新紀(jì)錄
    ——寶興鹛雀
    Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
    Novel Si/SiC heterojunction lateral double-diffused metal–oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit?
    中國(guó)寶興漢白玉綠色礦山建設(shè)經(jīng)驗(yàn)——四川雅安正興大理石礦調(diào)研報(bào)告
    石材(2020年11期)2021-01-08 09:21:34
    天降白玉 寶藏興業(yè)——四川寶興漢白玉掠影
    石材(2020年10期)2021-01-08 09:20:02
    杭州(2020年18期)2020-11-09 03:32:10
    四川寶興網(wǎng)絡(luò)招商推出漢白玉產(chǎn)業(yè)
    石材(2020年4期)2020-05-25 07:08:48
    被他人傷害致死,敬老院有否連帶責(zé)任
    長(zhǎng)壽(2019年8期)2019-07-13 03:41:18
    日韩制服骚丝袜av| 香蕉精品网在线| 黄色欧美视频在线观看| 亚洲欧美一区二区三区黑人 | 久久久久国产精品人妻一区二区| 久久久精品免费免费高清| 成人亚洲欧美一区二区av| 亚洲熟女精品中文字幕| 亚洲国产精品专区欧美| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产av蜜桃| 国产一级毛片在线| 人妻系列 视频| 妹子高潮喷水视频| 久热久热在线精品观看| 中文字幕人妻熟人妻熟丝袜美| 青春草视频在线免费观看| 一级爰片在线观看| 亚洲不卡免费看| 中文字幕人妻熟人妻熟丝袜美| 熟妇人妻不卡中文字幕| 久久精品国产亚洲av天美| 中文字幕人妻熟人妻熟丝袜美| 午夜免费观看性视频| 成人午夜精彩视频在线观看| 免费少妇av软件| 日韩视频在线欧美| 久久久精品免费免费高清| 久久亚洲国产成人精品v| 国产毛片在线视频| 大香蕉久久网| 亚洲欧美成人综合另类久久久| 久久久久久久精品精品| 蜜桃久久精品国产亚洲av| 国产欧美亚洲国产| 国产精品秋霞免费鲁丝片| 久久青草综合色| 婷婷色av中文字幕| 国产精品99久久久久久久久| 日产精品乱码卡一卡2卡三| 久久久精品94久久精品| 熟女人妻精品中文字幕| 久久狼人影院| 亚洲国产精品一区二区三区在线| 丰满人妻一区二区三区视频av| 王馨瑶露胸无遮挡在线观看| 内地一区二区视频在线| 国产在线免费精品| 欧美bdsm另类| 国产av国产精品国产| 国产精品伦人一区二区| 国产伦理片在线播放av一区| 亚洲精品,欧美精品| 久久ye,这里只有精品| 欧美xxxx性猛交bbbb| 亚洲丝袜综合中文字幕| 三级国产精品欧美在线观看| 777米奇影视久久| 国内精品宾馆在线| 精品久久久噜噜| 日本黄大片高清| 中文精品一卡2卡3卡4更新| 国产亚洲精品久久久com| 久久久久久久亚洲中文字幕| av.在线天堂| 亚洲自偷自拍三级| 国产精品久久久久成人av| 久久久a久久爽久久v久久| 日本免费在线观看一区| 爱豆传媒免费全集在线观看| 久久国内精品自在自线图片| 一个人免费看片子| 亚洲欧美精品自产自拍| 自拍欧美九色日韩亚洲蝌蚪91 | 成年人免费黄色播放视频 | 狂野欧美白嫩少妇大欣赏| 日韩一区二区视频免费看| 一级,二级,三级黄色视频| 噜噜噜噜噜久久久久久91| 天堂俺去俺来也www色官网| 麻豆成人av视频| 国产一区二区三区av在线| 久久久久久久精品精品| 特大巨黑吊av在线直播| av又黄又爽大尺度在线免费看| 六月丁香七月| 99久久人妻综合| 99精国产麻豆久久婷婷| 一本色道久久久久久精品综合| 99久久精品国产国产毛片| 午夜影院在线不卡| 欧美精品一区二区大全| 一级毛片电影观看| 一级黄片播放器| 国产伦理片在线播放av一区| 免费观看a级毛片全部| 中文字幕av电影在线播放| 免费黄网站久久成人精品| 免费av不卡在线播放| 18禁裸乳无遮挡动漫免费视频| 国产老妇伦熟女老妇高清| 成人午夜精彩视频在线观看| 蜜臀久久99精品久久宅男| 午夜免费鲁丝| 熟妇人妻不卡中文字幕| 人体艺术视频欧美日本| 日韩中文字幕视频在线看片| 丝袜脚勾引网站| 国产成人午夜福利电影在线观看| 久久99精品国语久久久| 色视频在线一区二区三区| 熟妇人妻不卡中文字幕| 夜夜看夜夜爽夜夜摸| 大片电影免费在线观看免费| 免费黄色在线免费观看| 久久av网站| 国产一区二区在线观看日韩| 国产精品久久久久久av不卡| 国产乱人偷精品视频| 成年美女黄网站色视频大全免费 | 人妻少妇偷人精品九色| 欧美高清成人免费视频www| 如日韩欧美国产精品一区二区三区 | 亚洲国产av新网站| 婷婷色综合www| 精品一区二区三卡| 亚洲av国产av综合av卡| 嫩草影院新地址| 99久久人妻综合| 寂寞人妻少妇视频99o| 男女边吃奶边做爰视频| 欧美丝袜亚洲另类| 黄色一级大片看看| 美女国产视频在线观看| 热99国产精品久久久久久7| av视频免费观看在线观看| 91aial.com中文字幕在线观看| 国产免费视频播放在线视频| 老女人水多毛片| 边亲边吃奶的免费视频| 国产精品一区二区在线不卡| 欧美成人精品欧美一级黄| 亚洲经典国产精华液单| 国产一区亚洲一区在线观看| 国产成人aa在线观看| 99re6热这里在线精品视频| 国产一区二区在线观看av| 五月天丁香电影| 蜜桃在线观看..| 少妇被粗大猛烈的视频| 性色avwww在线观看| 国产欧美日韩精品一区二区| 国产精品国产三级专区第一集| 亚洲色图综合在线观看| 涩涩av久久男人的天堂| 男的添女的下面高潮视频| 人人澡人人妻人| 久久精品国产亚洲av天美| 三级国产精品欧美在线观看| 国产日韩一区二区三区精品不卡 | 男女无遮挡免费网站观看| 免费高清在线观看视频在线观看| 久久久精品94久久精品| 嫩草影院入口| 美女视频免费永久观看网站| 人妻一区二区av| 久久女婷五月综合色啪小说| 人妻少妇偷人精品九色| 亚洲精品456在线播放app| 国产精品伦人一区二区| 亚洲av成人精品一区久久| 99re6热这里在线精品视频| 大香蕉久久网| 国产精品福利在线免费观看| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品一区三区| 99久久精品国产国产毛片| 99热这里只有精品一区| 国产又色又爽无遮挡免| 日本免费在线观看一区| 人人妻人人澡人人看| 少妇裸体淫交视频免费看高清| 少妇人妻精品综合一区二区| 内地一区二区视频在线| 看免费成人av毛片| 精华霜和精华液先用哪个| 一本久久精品| 久久久欧美国产精品| 亚洲美女视频黄频| 欧美精品亚洲一区二区| 欧美日本中文国产一区发布| 亚州av有码| 免费看av在线观看网站| 夜夜看夜夜爽夜夜摸| 久久影院123| 又爽又黄a免费视频| 22中文网久久字幕| 久久国产亚洲av麻豆专区| 99热这里只有是精品50| 国产真实伦视频高清在线观看| 最后的刺客免费高清国语| 秋霞伦理黄片| av福利片在线| 久久久久精品性色| 看免费成人av毛片| 免费久久久久久久精品成人欧美视频 | 欧美成人午夜免费资源| 人人妻人人澡人人爽人人夜夜| 精品久久久久久久久av| 18禁动态无遮挡网站| 成年美女黄网站色视频大全免费 | 欧美日韩亚洲高清精品| 国产成人精品久久久久久| 校园人妻丝袜中文字幕| 日韩视频在线欧美| 精华霜和精华液先用哪个| 女性被躁到高潮视频| 日韩,欧美,国产一区二区三区| 久久久久久久久大av| 少妇 在线观看| 久久久国产精品麻豆| 欧美国产精品一级二级三级 | 我的女老师完整版在线观看| 麻豆精品久久久久久蜜桃| 欧美区成人在线视频| 久久综合国产亚洲精品| 99久久人妻综合| 亚洲av欧美aⅴ国产| 欧美精品国产亚洲| 性色av一级| 欧美激情极品国产一区二区三区 | 最新的欧美精品一区二区| av卡一久久| 少妇被粗大的猛进出69影院 | 在线天堂最新版资源| 美女xxoo啪啪120秒动态图| 观看免费一级毛片| 国产一区二区三区av在线| 国产老妇伦熟女老妇高清| 女性生殖器流出的白浆| 欧美国产精品一级二级三级 | 国产亚洲最大av| 涩涩av久久男人的天堂| 午夜av观看不卡| 女性被躁到高潮视频| 国产精品.久久久| a级毛片免费高清观看在线播放| 高清在线视频一区二区三区| 如日韩欧美国产精品一区二区三区 | 一区二区三区四区激情视频| 国产伦精品一区二区三区四那| www.色视频.com| 建设人人有责人人尽责人人享有的| 夜夜看夜夜爽夜夜摸| 一区二区三区四区激情视频| 赤兔流量卡办理| 色吧在线观看| 丝袜在线中文字幕| 天堂中文最新版在线下载| 黄色毛片三级朝国网站 | 卡戴珊不雅视频在线播放| 18+在线观看网站| 成人国产av品久久久| 欧美高清成人免费视频www| 丰满人妻一区二区三区视频av| 欧美成人精品欧美一级黄| 久久久亚洲精品成人影院| 欧美日韩国产mv在线观看视频| 色5月婷婷丁香| 啦啦啦在线观看免费高清www| 久久精品国产亚洲av天美| 91aial.com中文字幕在线观看| 国产精品嫩草影院av在线观看| 国产一区二区三区综合在线观看 | 五月玫瑰六月丁香| 狠狠精品人妻久久久久久综合| 亚洲激情五月婷婷啪啪| 春色校园在线视频观看| 欧美日本中文国产一区发布| 成人影院久久| 国产日韩欧美在线精品| 亚洲怡红院男人天堂| 国产乱来视频区| 欧美xxⅹ黑人| 久久午夜福利片| 一个人看视频在线观看www免费| 97在线视频观看| 久久久久久久亚洲中文字幕| 日韩制服骚丝袜av| 欧美 日韩 精品 国产| 久久久午夜欧美精品| 老司机亚洲免费影院| 亚洲av二区三区四区| 日韩成人av中文字幕在线观看| 久久这里有精品视频免费| 久久久久久久久大av| 国产欧美日韩一区二区三区在线 | 天美传媒精品一区二区| 赤兔流量卡办理| 国产亚洲91精品色在线| 国产在线一区二区三区精| 哪个播放器可以免费观看大片| 亚洲精品第二区| 国产免费一级a男人的天堂| 亚洲成人手机| 一个人看视频在线观看www免费| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品乱码久久久v下载方式| 黄片无遮挡物在线观看| 国产中年淑女户外野战色| 夜夜看夜夜爽夜夜摸| 日韩强制内射视频| 妹子高潮喷水视频| 亚洲电影在线观看av| 免费久久久久久久精品成人欧美视频 | 多毛熟女@视频| 一级爰片在线观看| 十分钟在线观看高清视频www | 中文欧美无线码| 97精品久久久久久久久久精品| 天堂中文最新版在线下载| 最后的刺客免费高清国语| 久久久久久久久久久免费av| 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| √禁漫天堂资源中文www| 成人美女网站在线观看视频| 一级毛片 在线播放| 丝瓜视频免费看黄片| 日本色播在线视频| 欧美3d第一页| 一区二区三区精品91| 成年人午夜在线观看视频| 成年美女黄网站色视频大全免费 | 精品人妻熟女av久视频| 寂寞人妻少妇视频99o| 高清欧美精品videossex| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产色婷婷电影| 99热这里只有是精品50| 搡女人真爽免费视频火全软件| 亚洲精品456在线播放app| 久久99蜜桃精品久久| 麻豆精品久久久久久蜜桃| 这个男人来自地球电影免费观看 | 在线播放无遮挡| 精品一区在线观看国产| 国产av一区二区精品久久| 2018国产大陆天天弄谢| 午夜影院在线不卡| 大码成人一级视频| 一个人免费看片子| 爱豆传媒免费全集在线观看| av在线老鸭窝| 亚州av有码| 国产一区有黄有色的免费视频| 十分钟在线观看高清视频www | 国内揄拍国产精品人妻在线| 亚洲人成网站在线播| 欧美bdsm另类| 国产91av在线免费观看| 日韩中字成人| 中文字幕亚洲精品专区| 久久精品国产自在天天线| 免费人成在线观看视频色| 在线观看三级黄色| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 久久精品熟女亚洲av麻豆精品| 国产亚洲欧美精品永久| 久久婷婷青草| 国产精品欧美亚洲77777| 十八禁高潮呻吟视频 | av视频免费观看在线观看| 97在线视频观看| 亚洲人成网站在线观看播放| 噜噜噜噜噜久久久久久91| 97超碰精品成人国产| 亚洲av电影在线观看一区二区三区| 另类亚洲欧美激情| 国产视频首页在线观看| 日韩成人伦理影院| 9色porny在线观看| 美女中出高潮动态图| 又粗又硬又长又爽又黄的视频| 日韩视频在线欧美| 国产亚洲午夜精品一区二区久久| 国产av一区二区精品久久| 国产亚洲最大av| 尾随美女入室| 嫩草影院新地址| 国产在线免费精品| 美女内射精品一级片tv| 久久久久久久久久人人人人人人| 欧美日韩国产mv在线观看视频| 欧美区成人在线视频| 大香蕉97超碰在线| 在线看a的网站| 欧美日韩av久久| 亚洲精品视频女| 日韩一区二区三区影片| 亚洲欧美精品专区久久| 女的被弄到高潮叫床怎么办| 草草在线视频免费看| av黄色大香蕉| 中文精品一卡2卡3卡4更新| 国产欧美日韩精品一区二区| 亚洲欧洲精品一区二区精品久久久 | 日韩精品免费视频一区二区三区 | 街头女战士在线观看网站| 丝袜在线中文字幕| 国产精品秋霞免费鲁丝片| 老女人水多毛片| 午夜激情久久久久久久| 久久毛片免费看一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 天堂中文最新版在线下载| 麻豆成人午夜福利视频| 男人舔奶头视频| 性色av一级| 久久精品国产自在天天线| 亚洲av在线观看美女高潮| 一本—道久久a久久精品蜜桃钙片| 亚洲第一av免费看| a级毛片免费高清观看在线播放| 亚洲国产精品999| 精品少妇久久久久久888优播| 伦理电影大哥的女人| 成人无遮挡网站| 国产成人精品久久久久久| 日韩 亚洲 欧美在线| 免费人妻精品一区二区三区视频| 亚洲国产成人一精品久久久| 日日撸夜夜添| 一级毛片aaaaaa免费看小| 久久午夜综合久久蜜桃| 不卡视频在线观看欧美| 精品国产国语对白av| 亚洲欧美一区二区三区黑人 | 日本wwww免费看| videos熟女内射| 桃花免费在线播放| 亚洲第一av免费看| 欧美另类一区| 亚洲久久久国产精品| 天堂8中文在线网| 国产成人freesex在线| 亚洲高清免费不卡视频| 日本-黄色视频高清免费观看| 青春草国产在线视频| 久久99蜜桃精品久久| 成年av动漫网址| 十分钟在线观看高清视频www | 日日撸夜夜添| a级一级毛片免费在线观看| 少妇裸体淫交视频免费看高清| 国产黄片美女视频| 男人爽女人下面视频在线观看| 亚洲精品视频女| 晚上一个人看的免费电影| 国产成人免费观看mmmm| 国产av一区二区精品久久| 黄色怎么调成土黄色| 黄色日韩在线| 国产 精品1| 午夜av观看不卡| 又爽又黄a免费视频| 精品久久国产蜜桃| 人妻制服诱惑在线中文字幕| 性色avwww在线观看| 美女大奶头黄色视频| 亚洲成人一二三区av| 国产成人91sexporn| 男人添女人高潮全过程视频| 少妇裸体淫交视频免费看高清| 欧美最新免费一区二区三区| 欧美精品亚洲一区二区| 看非洲黑人一级黄片| 99热这里只有是精品50| 国产日韩一区二区三区精品不卡 | 在线观看av片永久免费下载| 女的被弄到高潮叫床怎么办| xxx大片免费视频| 人人妻人人看人人澡| 91久久精品国产一区二区成人| 午夜福利在线观看免费完整高清在| 亚洲精品成人av观看孕妇| 久久久久精品久久久久真实原创| 亚洲三级黄色毛片| 丰满乱子伦码专区| 午夜免费男女啪啪视频观看| 一级毛片电影观看| 国产伦精品一区二区三区四那| 大码成人一级视频| 十八禁高潮呻吟视频 | 国产精品久久久久久久久免| 交换朋友夫妻互换小说| 女性被躁到高潮视频| 国产黄频视频在线观看| 丁香六月天网| 国产日韩一区二区三区精品不卡 | 一级,二级,三级黄色视频| 18禁动态无遮挡网站| 国产精品人妻久久久影院| kizo精华| 一级毛片我不卡| 亚洲精品视频女| 自线自在国产av| 一级a做视频免费观看| 人妻制服诱惑在线中文字幕| 国产老妇伦熟女老妇高清| 少妇人妻一区二区三区视频| 欧美精品高潮呻吟av久久| 欧美性感艳星| 欧美日韩一区二区视频在线观看视频在线| 久久99热6这里只有精品| 日日撸夜夜添| 日日摸夜夜添夜夜添av毛片| 午夜91福利影院| 亚洲一区二区三区欧美精品| 乱人伦中国视频| 免费av中文字幕在线| 性高湖久久久久久久久免费观看| 国产 精品1| 成人国产麻豆网| 人妻 亚洲 视频| 国产成人a∨麻豆精品| 国产永久视频网站| 久久精品国产亚洲av天美| 丰满乱子伦码专区| av天堂中文字幕网| 午夜激情福利司机影院| 少妇人妻 视频| 国产av一区二区精品久久| 男男h啪啪无遮挡| 亚洲激情五月婷婷啪啪| 亚洲国产精品国产精品| 国产高清国产精品国产三级| 插逼视频在线观看| 啦啦啦啦在线视频资源| 各种免费的搞黄视频| 亚洲,欧美,日韩| 日本欧美国产在线视频| 哪个播放器可以免费观看大片| 夜夜爽夜夜爽视频| 国精品久久久久久国模美| 男的添女的下面高潮视频| 内地一区二区视频在线| 亚洲精品国产成人久久av| 成人亚洲欧美一区二区av| 麻豆精品久久久久久蜜桃| 日韩大片免费观看网站| 一个人看视频在线观看www免费| 老司机影院成人| 99热国产这里只有精品6| 午夜免费观看性视频| 亚洲成人手机| 免费高清在线观看视频在线观看| tube8黄色片| 久久精品久久精品一区二区三区| av网站免费在线观看视频| 九九爱精品视频在线观看| 精品久久国产蜜桃| 久久久久久久久久久免费av| 少妇熟女欧美另类| 精品久久久久久电影网| 另类亚洲欧美激情| 婷婷色综合www| 日本午夜av视频| 国产伦精品一区二区三区四那| 日韩欧美精品免费久久| 国产精品成人在线| 99热这里只有是精品50| 高清不卡的av网站| 欧美精品人与动牲交sv欧美| 亚洲av在线观看美女高潮| 丰满迷人的少妇在线观看| 天堂中文最新版在线下载| 亚洲av不卡在线观看| 精品久久国产蜜桃| 黄色日韩在线| 少妇熟女欧美另类| 国产一区亚洲一区在线观看| 国产一区二区三区综合在线观看 | 一本一本综合久久| 婷婷色综合大香蕉| 欧美变态另类bdsm刘玥| 亚洲欧美清纯卡通| 最黄视频免费看| av视频免费观看在线观看| 亚洲va在线va天堂va国产| 日本色播在线视频| 赤兔流量卡办理| 我要看黄色一级片免费的| 日韩伦理黄色片| 少妇的逼水好多| 午夜91福利影院| av免费观看日本| 乱码一卡2卡4卡精品| 18禁在线播放成人免费| 亚洲精品aⅴ在线观看| 十八禁高潮呻吟视频 | 国产黄片美女视频| 天堂俺去俺来也www色官网| 大片电影免费在线观看免费| av天堂中文字幕网| 免费看日本二区| a级毛片免费高清观看在线播放| 高清午夜精品一区二区三区| 亚洲国产成人一精品久久久| 国产精品一区二区在线不卡| 在线看a的网站| 亚洲精品一区蜜桃| 观看美女的网站| 亚洲激情五月婷婷啪啪|