• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Si/SiC heterojunction lateral double-diffused metal–oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit?

    2021-05-06 08:55:44BaoxingDuan段寶興XinHuang黃鑫HaitaoSong宋海濤YandongWang王彥東andYintangYang楊銀堂
    Chinese Physics B 2021年4期
    關(guān)鍵詞:寶興海濤

    Baoxing Duan(段寶興), Xin Huang(黃鑫), Haitao Song(宋海濤),Yandong Wang(王彥東), and Yintang Yang(楊銀堂)

    Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: Si/SiC heterojunction,LDMOS,breakdown voltage,specific on-resistance

    1. Introduction

    Lateral double-diffused metal–oxide semiconductor fieldeffect transistor (LDMOS) is easy to integrate with other devices and peripheral circuits. It is widely used in the smart power integrated circuits and high-voltage integrated circuits,which has attracted the attention of people in related fields.[1–5]The conventional silicon(Si)LDMOS has encountered obstacles in the application of the high power due to the mutually restrictive relationship between the specific onresistance (Ron,sp) and the breakdown voltage (BV).[6,7]Silicon carbide(SiC)material has the characteristics of the wide band gap and high BV, so it is used in the field of the highvoltage power devices.[8]However, the development of SiC power devices is limited by gate oxide because SiC has a higher density of dangling Si and C bonds at the SiC/SiO2interface.[9]The emergence of Si/SiC substrate makes it possible to solve the above problems.[10–14]

    A novel Si/SiC heterojunction LDMOS with p-type buried layer (PBL Si/SiC LDMOS) is proposed in this paper for the first time. PBL Si/SiC LDMOS takes full advantages of the Si/SiC substrate by preparing the electrodes on the epitaxial layer of Si, and the drain region of the device is deep into the SiC substrate,avoiding the reliability problems of SiC gate oxide, while also taking advantage of the high critical electric field of the SiC. The drain region penetrates into the SiC substrate,that is,the breakdown point transfer(BPT)terminal technology, which modulates the vertical electric field of the device.[9,15]Meanwhile, a p-type buried layer is introduced at the Si/SiC interface to optimize the surface lateral electric field of PBL Si/SiC LDMOS.The combination of the two technologies improve the BV of the device. The structure of PBL Si/SiC LDMOS achieves a breakthrough in the limit of Si. Under the same drift region length,the novel device has higher BV and lower Rsp,oncompared to the conventional Si LDMOS and Si/SiC LDMOS with deep drain region.[16]

    2. Device structure and description

    The cross section of PBL Si/SiC LDMOS in Fig.1. Different from the conventional Si LDMOS,the proposed device uses p-type lightly doped SiC as the substrate,the active region of the device is prepared in the Si epitaxial layer,the drain region is deep into the SiC substrate,and a p-type buried layer is introduced at the interface between Si and SiC.SiC substrate plays three roles: first, p-doped SiC participates in depletion of n-type drift region,or the reduced surface field(RESURF)technology.[17,18]Second,it participates in modulation of vertical electric field,and deep drain region makes vertical breakdown point transfer from the edge of drain to heterojunction.Third, SiC material has high thermal conductivity, which can be used for heat dissipation of power devices. The p-type buried layer modulates the surface lateral electric field of the device to make its distribution more uniform,which increases the BV of the device.

    In order to study the characteristics of PBL Si/SiC LDMOS,ISE-TCAD is used to simulate the proposed device,and the proposed device is compared with the conventional Si LDMOS and Si/SiC LDMOS with deep drain region. In this simulation,the p-type SiC substrate potential is always zero voltage. When the forward conduction characteristic is simulated,the positive gate voltage is applied to make the channel open;The gate voltage is zero when the breakdown characteristics are simulated. The standard of reverse breakdown of the device is that the drain current density exceeds 1×10?7A/μm,and the 4H–SiC parameters are used for the sic material.The physical models used in this simulation include mobility(DopingDep HighFieldsat Enormal), effective intrinsic density(OldSlotboom),and recombination(Shockley–Read–Hall(DopingDep) auger avalanche (Eparal)). The important parameters of the three devices are shown in Table 1.

    The key processes of fabricating PBL Si/SiC LDMOS are presented in Fig.2. The p-type buried layer is located inside the device,so the doping process of p-type buried layer should be completed before the wafer-bonding. The formation of the Si/SiC substrate can be realized by the method in Ref.[10]and the simplified wafer-bonding processes are as follows: (a)initial SiC wafer and epitaxial growth of the Si substrate,(b)ion implantation to form the drain region in the SiC substrate and form the p-type buried layer in the Si epitaxial layer,(c)wafer bonding and wafer splitting. The remaining key processes are similar to those of the conventional Si LDMOS,which can be summarized as follows: (d) ion implantation to form the pwell and N-drift, (e) ion implantation to form the other part of the drain,(f)gate oxide and field oxide growth and ion implantation to form the source.

    Fig.1. Cross section of PBL Si/SiC LDMOS.

    Table 1. Important parameters used in device simulation.

    Fig.2. Simplified key processes of fabricating PBL Si/SiC LDMOS.

    3. Result and discussion

    In this paper,the lateral and vertical electric fields of LDMOS are optimized to improve the device performances. The proposed device introduces a p-type doped buried layer at the boundary between the drift region and the substrate, and the new buried layer will be depleted with the drift region and generate an additional electric field in the drift region. The additional electric field optimizes the surface lateral electric field of the device.[19]The drain region of the device is deep into the SiC substrate, the peak value of the vertical electric field of the device is transferred from Si to SiC. The critical electric field of SiC is larger than that of Si,thereby achieving an increase in the vertical BV.

    Fig.3. The influence p-type buried layer on the surface lateral electric field distribution of BPL Si/SiC LDMOS: (a) Surface electric field distributions at different TP values of the novel structure: LP=8μm. (b)Surface electric field distributions at different LP values of the novel structure: TP=1.5μm.

    The effect of the size of the p-type buried layer on the lateral electric field of the device is studied. The relationship between the lateral electric field distribution of the proposed device and the p-type buried layer is shown in Fig.3.In particular,when the p-type buried layer thickness(TP)equals 0μm,the proposed device degenerates to Si/SiC LDMOS with deep drain region.Compared with the U-shaped lateral electric field of the conventional(Cov.) Si LDMOS,it is found that the ptype buried layer introduces a new electric field peak in the middle of the surface lateral electric field of the device. Figure 3(a)shows the effect of TPon the new peak in the middle of the surface lateral electric field. When TPchanges from 0.5 μm to 1.5 μm, the new peak electric field gradually increases. The peak of the electric field is caused by the PN junction formed at the interface between the right end of the p-type buried layer and the drift region. The thicker the buried layer,the stronger the peak of the electric field. When the device works in withstand voltage mode, the interface electric field of the reverse biased PN junction and the lateral electric field of Si/SiC LDMOS with deep drain region constitute the lateral electric field of PBL Si/SiC LDMOS. The BV is the integration of the electric field along the path, and the flatter lateral electric field leads to the increase of BV.

    Figure 3(b)shows the relationship between the lateral position of the new peak electric field and p-type buried layer length(LP). The location of the peak of the new electric field coincides with the end position of the p-type buried layer.That is, the location of the peak of the new electric field is determined by the LP. In order to obtain a uniform lateral electric field distribution curve,the peak position of the electric field is expected to appear at the valley of the U-shaped later electric field,so the LPshould not be set too long or too short. In this simulation,when the LPis 8μm,the maximum BV can reach 440 V.

    Fig.4. Vertical field distributions at different TD values of BPL Si/SiC LDMOS:LP=8μm,TP=1.5μm.

    The influence of the drain region depth(TD)on the vertical electric field distribution of the proposed device has also been studied. Figure 4 shows the relationship between the vertical electric field and the TD. Compared with the conventional Si LDMOS,PBL Si/SiC LDMOS has a higher vertical peak electric field,because the bottom of the drain end of the proposed device is located on the SiC substrate with a higher critical electric field. With the increase of the TD, the position of the vertical electric field peak is farther away from the device surface(the device surface ordinate y=0). A PN junction is formed on the contact surface of the drain region and the substrate, and the vertical electric field peak is located at the interface of the PN junction. The change of the TDcauses the position of the drain liner PN junction interface to change.This is the reason why the vertical peak electric field changes with TD. The doping distribution of drain is Gaussian doping profiles, and the doping concentration decreases with the increase of diffusion depth. Therefore, with the increase of the drain region depth (TD), the doping concentration in the bottom area of the drain becomes lower, which leads to the decrease of the drain-substrate PN junction interface electric field peak. In addition, figure 4 also shows the change of the BV of the proposed device with the TDunder the given p-type buried layer parameters. When TD=6μm, the proposed device has the largest BV. When TDincreases to 8 μm, the BV of the proposed device decreases,so the drain depth should be set reasonably.

    The p-type buried layer of PBL Si/SiC LDMOS will assist the depletion of the n-type drift region. When the size of the p-type buried layer changes, in order to fully deplete the n-type drift region, the concentration of the p-type buried layer and the concentration of the n-type drift region need to be readjusted,which leads the each point in Fig.5 has different ptype buried layer concentration and N drift concentration with other devices.The BV and FOM of the device change with the LPas shown in Fig.5. In the variation range of the thickness and length of the p-type buried layer shown in Fig.5, when LP=20 μm, no matter how the TPchanges, the BV of PBL Si/SiC LDMOS is higher than that of Si/SiC LDMOS with deep drain region. Under different p-type buried layer thicknesses,the maximum BV of PBL Si/SiC LDMOS corresponds to different p-type buried layer lengths. When LP=8 μm,TP=1.5 μm, PBL Si/SiC LDMOS with a drift zone length of 20 μm has a maximum BV =440 V. In this case, the surface lateral electric field of the proposed device is maximized optimization. Moreover,when LP=10μm,TP=1μm,PBL Si/SiC LDMOS with a drift zone length of 20μm has a maximum FOM=6.86 MW/cm2. In this case,the concentration of the drift region and the concentration of the p-type buried layer cause Ron,spof the proposed device to be smaller than that corresponding to the maximum BV, and the surface lateral electric field of the device is also optimized.

    Fig.5. The relationship between FOM and BV of PBL Si/SiC LDMOS with LP.

    The effect of the drift region length(LD)on BV,Ron,spand FOM of different devices is shown in Fig.6. Compared with Si/SiC LDMOS with deep drain region and the conventional Si LDMOS, PBL Si/SiC LDMOS has larger BV at the same LD. For Si/SiC LDMOS with deep drain region and the conventional Si LDMOS,the growth rate of BV decreases rapidly with LD;And PBL Si/SiC LDMOS has a steeper slope of BV compared with Si/SiC LDMOS with deep drain region and the conventional Si LDMOS. In addition, when LDis greater than 25 μm, PBL Si/SiC LDMOS has a smaller Ron,spthan Si/SiC LDMOS with deep drain region and the conventional Si LDMOS under the same LD. The growth rate of Ron,spof PBL Si/SiC LDMOS is slower than that of Si/SiC LDMOS with deep drain region and the conventional Si LDMOS.PBL Si/SiC LDMOS optimizes the surface lateral electric field and vertical electric field, which leads to an increase in BV and a reduction in Ron,sp. In addition,it can be seen from Fig.6 that when LD=20 μm, PBL Si/SiC LDMOS can take the maximum FOM value.

    Fig.6. BV, Ron,sp, and FOM as a function of LD. Ron,sp is achieved@Vgs=10 V,Vds=20 V.

    Fig.7. Forward I–V characteristics and reverse I–V characteristics of PBL Si/SiC LDMOS with different concentrations of interfacial charges.

    According to the experimental results of literature,[20,21]the Si/SiC interface charges are introduced into the substrate fabrication process.[20,21]Therefore,this simulation considers the influence of acceptor-like traps in the interface on the performance of the novel device. As shown in Fig.7, the interface charges have little effect on the forward I–V characteristics of the device. It can be seen from Fig.7 that the specific on-resistance (Ron,sp) of the device changes very little under the three interface charges concentrations in this simulation.When the acceptor-like traps concentration(Nit)is lower than 1×1011cm?2,it has little effect on the BV of the device;when the Nitis higher than 1×1012cm?2,the device breaks down in advance. The BV is reduced from 440 V to 370 V, and the drain current increases rapidly,which fails to meet our design requirements. Therefore, improving the substrate fabrication process to reduce the acceptor-like traps density is the next step work.

    Figure 8 shows the relationship between BV, Ron,sp, and ideal silicon limit for different devices. In the conventional LDMOS which satisfied the RESURF technology, the relationship between BV and Ron,spis Ron,sp∝BV2.[22]New structure breaks silicon limit at multiple drift zone lengths. The p-type buried layer makes the lateral electric field distribution of the device more uniform,resulting in an increase in the BV of the proposed device. At the same time, the p-type buried layer participates in the depletion of the drift region, so that the concentration of the drift region increases,which leads to a reduction in the Ron,spof the proposed device. Although the interface charges reduce the BV of the proposed device,when the Nitdoes not exceed 5×1011cm?2, PBL Si/SiC LDMOS still breaks the silicon limit.

    Fig.8. Ron,sp versus BV with the ideal silicon limit line. Ron,sp is achieved@Vgs=10 V,Vds=20 V.

    4. Conclusion

    In this paper,a novel Si/SiC LDMOS with a p-type buried layer has been proposed,which combines the electric field optimization technology of the p-type buried layer and the BPT terminal technology to increase the BV of the device and reduce the Ron.spof the device.The BV is significantly increased from 249 V of the conventional Si LDMOS to 440 V of the proposed structure with a drift length of 20 μm, while Ron.spis slightly increased. And the BV is increased from 384 V of Si/SiC LDMOS to 440 V of the proposed structure with a drift length of 20μm,and Ron.spreduces from 34.6 m?·cm2to 30.4 m?·cm2. The silicon limit is broken by PBL Si/SiC LDMOS.The influence of the p-type buried layer on the surface lateral electric field of the device and the influence of the drain region depth on the vertical electric field are studied. The high concentration of acceptor-like traps makes the BV drop. Reducing the acceptor-like traps density at the Si/SiC interface or eliminating the effect of the acceptor-like traps is the focus of future research.

    猜你喜歡
    寶興海濤
    基于改進(jìn)YOLOv3的果樹(shù)樹(shù)干識(shí)別和定位
    羅海濤作品
    Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
    Novel fast-switching LIGBT with P-buried layer and partial SOI?
    天降白玉 寶藏興業(yè)——四川寶興漢白玉掠影
    石材(2020年10期)2021-01-08 09:20:02
    四川寶興網(wǎng)絡(luò)招商推出漢白玉產(chǎn)業(yè)
    石材(2020年4期)2020-05-25 07:08:48
    圓圓的世界
    感受肌理
    Resurrection of the Genus Leptomantis, with Description of a New Genus to the Family Rhacophoridae (Amphibia: Anura)
    通過(guò)反思尋求最優(yōu)解
    不卡一级毛片| 不卡av一区二区三区| 高潮久久久久久久久久久不卡| 99国产精品一区二区三区| 日本免费一区二区三区高清不卡 | 午夜福利,免费看| 国内毛片毛片毛片毛片毛片| 日本wwww免费看| 欧美大码av| 色老头精品视频在线观看| 999精品在线视频| 少妇被粗大的猛进出69影院| cao死你这个sao货| 国产97色在线日韩免费| 午夜日韩欧美国产| 12—13女人毛片做爰片一| 精品乱码久久久久久99久播| 亚洲一区二区三区欧美精品| 成人影院久久| 久久香蕉精品热| 日本欧美视频一区| 男女下面插进去视频免费观看| 成人国语在线视频| 精品久久久精品久久久| 欧美av亚洲av综合av国产av| 欧美成人性av电影在线观看| 亚洲精品国产一区二区精华液| 日韩免费高清中文字幕av| 日韩精品青青久久久久久| 亚洲中文av在线| 午夜精品在线福利| 窝窝影院91人妻| 麻豆久久精品国产亚洲av | 丝袜美足系列| 涩涩av久久男人的天堂| 在线看a的网站| 欧美黄色淫秽网站| 色婷婷久久久亚洲欧美| 巨乳人妻的诱惑在线观看| 午夜福利免费观看在线| 桃色一区二区三区在线观看| 一级毛片高清免费大全| 涩涩av久久男人的天堂| 国产成人精品久久二区二区91| 少妇的丰满在线观看| 亚洲欧美一区二区三区久久| 美女大奶头视频| 国产精品av久久久久免费| 热99re8久久精品国产| 久久 成人 亚洲| 一进一出抽搐gif免费好疼 | 曰老女人黄片| 国产高清激情床上av| 交换朋友夫妻互换小说| 天堂影院成人在线观看| 亚洲国产欧美日韩在线播放| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| av电影中文网址| 午夜影院日韩av| 香蕉丝袜av| 桃色一区二区三区在线观看| 欧美日韩av久久| 久久狼人影院| 一级片免费观看大全| 精品久久久久久成人av| 亚洲精品成人av观看孕妇| 婷婷六月久久综合丁香| 国产色视频综合| 国产精品一区二区免费欧美| 激情视频va一区二区三区| 国产91精品成人一区二区三区| 午夜福利在线观看吧| 在线播放国产精品三级| 亚洲熟女毛片儿| 91麻豆精品激情在线观看国产 | 91字幕亚洲| 国产三级黄色录像| 国产精品秋霞免费鲁丝片| 一区二区三区国产精品乱码| 欧美日韩亚洲高清精品| 国产高清激情床上av| 老鸭窝网址在线观看| 欧美中文综合在线视频| 精品一区二区三区视频在线观看免费 | 亚洲九九香蕉| 国产精品久久电影中文字幕| 激情在线观看视频在线高清| 99热只有精品国产| 国产欧美日韩一区二区精品| 欧美日韩国产mv在线观看视频| 无遮挡黄片免费观看| 国内毛片毛片毛片毛片毛片| 亚洲精品国产色婷婷电影| 亚洲精品成人av观看孕妇| 在线免费观看的www视频| 在线观看免费日韩欧美大片| 咕卡用的链子| 精品久久久久久,| 久久精品国产亚洲av高清一级| 精品久久蜜臀av无| 黄网站色视频无遮挡免费观看| 宅男免费午夜| 亚洲欧美激情综合另类| 久热爱精品视频在线9| 18禁国产床啪视频网站| 久久香蕉激情| 欧美日韩瑟瑟在线播放| 亚洲成av片中文字幕在线观看| 一区在线观看完整版| 可以在线观看毛片的网站| 嫩草影视91久久| 成在线人永久免费视频| 国产成人啪精品午夜网站| 一二三四在线观看免费中文在| 宅男免费午夜| e午夜精品久久久久久久| 咕卡用的链子| 丰满饥渴人妻一区二区三| 亚洲熟妇中文字幕五十中出 | 神马国产精品三级电影在线观看 | 亚洲色图av天堂| 日韩欧美一区二区三区在线观看| 在线观看免费午夜福利视频| 一级毛片高清免费大全| 国产成人系列免费观看| 高清毛片免费观看视频网站 | av欧美777| 免费看十八禁软件| 一级毛片高清免费大全| 80岁老熟妇乱子伦牲交| 麻豆国产av国片精品| 美女福利国产在线| 久久久国产欧美日韩av| 又大又爽又粗| 色综合婷婷激情| 久久人人精品亚洲av| 亚洲七黄色美女视频| 日本三级黄在线观看| 亚洲 欧美 日韩 在线 免费| 一个人免费在线观看的高清视频| www.熟女人妻精品国产| 亚洲 国产 在线| 日韩欧美免费精品| 国产aⅴ精品一区二区三区波| 亚洲熟女毛片儿| 亚洲精品粉嫩美女一区| 女人被狂操c到高潮| 岛国在线观看网站| 免费高清视频大片| 国产成人欧美在线观看| 一级黄色大片毛片| 天堂√8在线中文| 99精品久久久久人妻精品| 国产高清国产精品国产三级| 国产激情欧美一区二区| 久久精品国产综合久久久| 国产乱人伦免费视频| 午夜精品国产一区二区电影| 新久久久久国产一级毛片| 国产一区二区激情短视频| 亚洲精华国产精华精| 91国产中文字幕| 久久久久久亚洲精品国产蜜桃av| 多毛熟女@视频| 成熟少妇高潮喷水视频| 成人亚洲精品一区在线观看| 淫秽高清视频在线观看| 国产精品 国内视频| 精品无人区乱码1区二区| 淫妇啪啪啪对白视频| 亚洲午夜精品一区,二区,三区| 国产99白浆流出| 少妇被粗大的猛进出69影院| 国内毛片毛片毛片毛片毛片| 亚洲色图 男人天堂 中文字幕| av片东京热男人的天堂| 国产日韩一区二区三区精品不卡| 又黄又爽又免费观看的视频| 亚洲美女黄片视频| 亚洲中文av在线| 国产成人av教育| 亚洲欧美日韩高清在线视频| 亚洲伊人色综图| 日韩av在线大香蕉| 热re99久久国产66热| 国产在线观看jvid| 中文字幕人妻熟女乱码| 欧美精品亚洲一区二区| 丝袜美腿诱惑在线| 夜夜躁狠狠躁天天躁| 日本五十路高清| 亚洲一区二区三区欧美精品| 欧美 亚洲 国产 日韩一| 亚洲激情在线av| 精品一区二区三区四区五区乱码| 一级a爱视频在线免费观看| 国产黄a三级三级三级人| 女人被狂操c到高潮| 女同久久另类99精品国产91| 欧美激情高清一区二区三区| 一级毛片女人18水好多| 精品国产美女av久久久久小说| 美女 人体艺术 gogo| 美女国产高潮福利片在线看| 视频区欧美日本亚洲| 久久久国产一区二区| 妹子高潮喷水视频| 高清黄色对白视频在线免费看| xxxhd国产人妻xxx| 男女做爰动态图高潮gif福利片 | 国产激情久久老熟女| 国产高清视频在线播放一区| a级毛片在线看网站| 丝袜美足系列| 日本黄色日本黄色录像| 黑人猛操日本美女一级片| 亚洲专区中文字幕在线| av超薄肉色丝袜交足视频| 国产精品野战在线观看 | 免费观看精品视频网站| 男女做爰动态图高潮gif福利片 | 免费av中文字幕在线| 午夜精品国产一区二区电影| 91国产中文字幕| 欧美 亚洲 国产 日韩一| 亚洲精品美女久久久久99蜜臀| 久久久国产成人精品二区 | 老司机午夜十八禁免费视频| 国产亚洲av高清不卡| 国产精品爽爽va在线观看网站 | 日韩大码丰满熟妇| 热99国产精品久久久久久7| 99在线人妻在线中文字幕| 精品午夜福利视频在线观看一区| 97碰自拍视频| 如日韩欧美国产精品一区二区三区| 国产成+人综合+亚洲专区| 深夜精品福利| 成人影院久久| 国产高清激情床上av| 亚洲人成伊人成综合网2020| 欧美亚洲日本最大视频资源| 啪啪无遮挡十八禁网站| 午夜福利影视在线免费观看| 亚洲中文av在线| 伦理电影免费视频| 欧美在线黄色| 性少妇av在线| ponron亚洲| 国产精品 国内视频| 91在线观看av| 色综合站精品国产| 黄色a级毛片大全视频| 啦啦啦免费观看视频1| 国产极品粉嫩免费观看在线| 琪琪午夜伦伦电影理论片6080| 美女扒开内裤让男人捅视频| 国产精品久久久av美女十八| 精品久久久久久电影网| 悠悠久久av| a级毛片在线看网站| 精品久久久久久,| 亚洲aⅴ乱码一区二区在线播放 | 久久精品91无色码中文字幕| 99国产精品一区二区三区| 国产午夜精品久久久久久| √禁漫天堂资源中文www| 波多野结衣高清无吗| 高清毛片免费观看视频网站 | 欧美黑人欧美精品刺激| 午夜成年电影在线免费观看| 久久狼人影院| 亚洲免费av在线视频| 少妇粗大呻吟视频| 大香蕉久久成人网| 一级a爱视频在线免费观看| 欧美激情高清一区二区三区| 韩国av一区二区三区四区| 中文字幕人妻丝袜一区二区| xxx96com| 日韩 欧美 亚洲 中文字幕| 99久久国产精品久久久| 老熟妇仑乱视频hdxx| 午夜免费激情av| 岛国在线观看网站| 狠狠狠狠99中文字幕| 在线观看免费高清a一片| 亚洲精品一二三| 婷婷丁香在线五月| 亚洲国产精品999在线| 在线观看免费午夜福利视频| 成人av一区二区三区在线看| 欧美日韩视频精品一区| 高清欧美精品videossex| 欧美黑人精品巨大| 亚洲精品中文字幕一二三四区| 一区二区三区精品91| 成人国语在线视频| 国产乱人伦免费视频| 亚洲熟妇熟女久久| 亚洲欧美精品综合久久99| 777久久人妻少妇嫩草av网站| 88av欧美| 夜夜夜夜夜久久久久| 激情在线观看视频在线高清| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩综合在线一区二区| 国产亚洲精品一区二区www| 婷婷六月久久综合丁香| 欧美日韩一级在线毛片| 成年女人毛片免费观看观看9| 亚洲精品一卡2卡三卡4卡5卡| 国产精品免费一区二区三区在线| 制服诱惑二区| 成人18禁高潮啪啪吃奶动态图| 国产精品亚洲一级av第二区| 欧美黄色片欧美黄色片| 99香蕉大伊视频| 久久国产亚洲av麻豆专区| 亚洲成人免费av在线播放| 日本a在线网址| 性欧美人与动物交配| 亚洲自偷自拍图片 自拍| 国产精品免费一区二区三区在线| 麻豆国产av国片精品| 久久精品亚洲精品国产色婷小说| 一个人免费在线观看的高清视频| 看片在线看免费视频| 久久精品国产清高在天天线| 国产成人欧美在线观看| 天天躁夜夜躁狠狠躁躁| 久9热在线精品视频| 亚洲熟女毛片儿| 国产精品久久视频播放| 国产亚洲精品一区二区www| 90打野战视频偷拍视频| 一区二区三区国产精品乱码| 午夜福利在线免费观看网站| 在线观看舔阴道视频| 淫秽高清视频在线观看| 韩国av一区二区三区四区| 91成年电影在线观看| 脱女人内裤的视频| 日韩三级视频一区二区三区| 国产1区2区3区精品| 天堂动漫精品| 亚洲色图综合在线观看| 国产午夜精品久久久久久| 看免费av毛片| 日韩三级视频一区二区三区| 一级毛片精品| 久久久国产精品麻豆| 免费一级毛片在线播放高清视频 | 成年人黄色毛片网站| 动漫黄色视频在线观看| 一区在线观看完整版| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 中文亚洲av片在线观看爽| 一级,二级,三级黄色视频| 水蜜桃什么品种好| 国产精品久久久久久人妻精品电影| 欧美日韩瑟瑟在线播放| 在线看a的网站| 无限看片的www在线观看| 最近最新中文字幕大全免费视频| 黄色毛片三级朝国网站| 午夜福利免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 国内毛片毛片毛片毛片毛片| 高清欧美精品videossex| 日本免费a在线| 99国产精品一区二区三区| а√天堂www在线а√下载| 国产成+人综合+亚洲专区| 成人亚洲精品一区在线观看| 男男h啪啪无遮挡| 91成年电影在线观看| 午夜日韩欧美国产| 大陆偷拍与自拍| 9191精品国产免费久久| 欧美日韩亚洲综合一区二区三区_| 麻豆一二三区av精品| 国产一区二区激情短视频| 日日爽夜夜爽网站| 在线天堂中文资源库| 精品国内亚洲2022精品成人| av有码第一页| 国产激情欧美一区二区| 久久精品人人爽人人爽视色| netflix在线观看网站| 一个人免费在线观看的高清视频| 国产成+人综合+亚洲专区| 18禁美女被吸乳视频| 又黄又爽又免费观看的视频| 国产黄色免费在线视频| 精品国产超薄肉色丝袜足j| 中文欧美无线码| 热re99久久精品国产66热6| 91国产中文字幕| 久久婷婷成人综合色麻豆| 精品熟女少妇八av免费久了| 新久久久久国产一级毛片| 久久久国产成人精品二区 | 搡老乐熟女国产| 国产精品免费一区二区三区在线| 亚洲 欧美一区二区三区| 国产午夜精品久久久久久| 一区二区三区国产精品乱码| 日本免费a在线| 又黄又爽又免费观看的视频| www.www免费av| 夜夜看夜夜爽夜夜摸 | 欧美性长视频在线观看| 亚洲七黄色美女视频| 亚洲自偷自拍图片 自拍| 精品国产乱码久久久久久男人| 无限看片的www在线观看| 亚洲一码二码三码区别大吗| av免费在线观看网站| 久久久久久久精品吃奶| 一级a爱视频在线免费观看| 欧美在线一区亚洲| 国产亚洲av高清不卡| 后天国语完整版免费观看| 日韩成人在线观看一区二区三区| 亚洲欧美精品综合久久99| 日韩欧美一区视频在线观看| 国产成人av激情在线播放| 亚洲精品美女久久av网站| 久久 成人 亚洲| 99国产综合亚洲精品| 免费在线观看视频国产中文字幕亚洲| 最近最新免费中文字幕在线| 国产亚洲av高清不卡| 欧美精品一区二区免费开放| 中文亚洲av片在线观看爽| 一级作爱视频免费观看| 精品人妻1区二区| 亚洲一区高清亚洲精品| 国产蜜桃级精品一区二区三区| 国产人伦9x9x在线观看| 天堂动漫精品| 午夜日韩欧美国产| 久久精品国产亚洲av高清一级| 咕卡用的链子| 女性生殖器流出的白浆| 在线国产一区二区在线| 18禁美女被吸乳视频| 变态另类成人亚洲欧美熟女 | 黄色a级毛片大全视频| 国产午夜精品久久久久久| 搡老熟女国产l中国老女人| 国产成人精品无人区| 亚洲五月色婷婷综合| 香蕉国产在线看| 波多野结衣高清无吗| 精品欧美一区二区三区在线| 欧美激情 高清一区二区三区| 亚洲精品av麻豆狂野| 久久人妻福利社区极品人妻图片| 久热爱精品视频在线9| 国产熟女午夜一区二区三区| 无遮挡黄片免费观看| 成人18禁在线播放| av有码第一页| 又黄又爽又免费观看的视频| 中文欧美无线码| 国产精品影院久久| 成人亚洲精品av一区二区 | 欧美日韩国产mv在线观看视频| 久久99一区二区三区| 成人特级黄色片久久久久久久| 一进一出抽搐动态| 搡老岳熟女国产| 国产aⅴ精品一区二区三区波| 女生性感内裤真人,穿戴方法视频| 日韩免费高清中文字幕av| 久久精品91无色码中文字幕| 精品电影一区二区在线| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 国产精品野战在线观看 | 日本黄色视频三级网站网址| 老司机午夜十八禁免费视频| 日本 av在线| xxxhd国产人妻xxx| 18禁美女被吸乳视频| 亚洲成人免费电影在线观看| 老司机午夜十八禁免费视频| 国产蜜桃级精品一区二区三区| 国产99久久九九免费精品| 国产av精品麻豆| 9热在线视频观看99| 青草久久国产| 色在线成人网| xxx96com| 丝袜美腿诱惑在线| 亚洲熟女毛片儿| 精品久久久久久电影网| 婷婷六月久久综合丁香| 国产成人免费无遮挡视频| 性色av乱码一区二区三区2| 一级黄色大片毛片| x7x7x7水蜜桃| 另类亚洲欧美激情| 午夜日韩欧美国产| 麻豆av在线久日| 欧美+亚洲+日韩+国产| 亚洲欧美精品综合久久99| 88av欧美| 超碰成人久久| 男人操女人黄网站| 久久国产精品男人的天堂亚洲| 最新美女视频免费是黄的| 亚洲狠狠婷婷综合久久图片| 变态另类成人亚洲欧美熟女 | 国产亚洲精品综合一区在线观看 | 午夜视频精品福利| 成年女人毛片免费观看观看9| 日韩欧美三级三区| 无限看片的www在线观看| 嫁个100分男人电影在线观看| av中文乱码字幕在线| 级片在线观看| 嫩草影院精品99| 黑人巨大精品欧美一区二区mp4| 无人区码免费观看不卡| 国产高清激情床上av| 麻豆一二三区av精品| 电影成人av| 久久人人97超碰香蕉20202| www.精华液| 国产午夜精品久久久久久| 日韩精品中文字幕看吧| 麻豆国产av国片精品| 欧美在线黄色| 一级毛片精品| av超薄肉色丝袜交足视频| 自线自在国产av| 国内久久婷婷六月综合欲色啪| 美女高潮到喷水免费观看| 精品福利观看| 精品一区二区三区四区五区乱码| 另类亚洲欧美激情| 女人爽到高潮嗷嗷叫在线视频| 嫁个100分男人电影在线观看| 久久人人精品亚洲av| 黄片播放在线免费| 日日干狠狠操夜夜爽| 亚洲精品国产区一区二| 人妻久久中文字幕网| 一二三四社区在线视频社区8| 亚洲专区字幕在线| 成年人黄色毛片网站| 久久国产精品男人的天堂亚洲| 99精品在免费线老司机午夜| av网站免费在线观看视频| 日韩精品青青久久久久久| 国产人伦9x9x在线观看| 日韩欧美免费精品| 亚洲精品在线美女| 亚洲免费av在线视频| 国产精品二区激情视频| 免费日韩欧美在线观看| 国产黄色免费在线视频| 成人av一区二区三区在线看| 在线av久久热| 日本精品一区二区三区蜜桃| 无限看片的www在线观看| 亚洲五月天丁香| 丰满饥渴人妻一区二区三| 日本vs欧美在线观看视频| 1024香蕉在线观看| 国产亚洲精品一区二区www| 国产av又大| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美网| 国产成人影院久久av| 亚洲欧美日韩无卡精品| 亚洲色图综合在线观看| 18美女黄网站色大片免费观看| 亚洲美女黄片视频| 脱女人内裤的视频| 一级,二级,三级黄色视频| 亚洲美女黄片视频| 日日夜夜操网爽| 久久亚洲真实| 男女午夜视频在线观看| 午夜免费鲁丝| 亚洲精华国产精华精| 91成人精品电影| 精品一区二区三区av网在线观看| 亚洲欧美一区二区三区黑人| 少妇粗大呻吟视频| 国产片内射在线| 天堂中文最新版在线下载| 亚洲专区中文字幕在线| 天堂影院成人在线观看| 日本a在线网址| 日本免费一区二区三区高清不卡 | 一区二区三区激情视频| 一级片'在线观看视频| 久久久精品欧美日韩精品| 久久久久久免费高清国产稀缺| 欧美成人免费av一区二区三区| 国产一区二区激情短视频| 亚洲欧美激情在线| 老司机福利观看| videosex国产| 热re99久久精品国产66热6| 亚洲国产中文字幕在线视频|