• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Si/SiC heterojunction lateral double-diffused metal–oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit?

    2021-05-06 08:55:44BaoxingDuan段寶興XinHuang黃鑫HaitaoSong宋海濤YandongWang王彥東andYintangYang楊銀堂
    Chinese Physics B 2021年4期
    關(guān)鍵詞:寶興海濤

    Baoxing Duan(段寶興), Xin Huang(黃鑫), Haitao Song(宋海濤),Yandong Wang(王彥東), and Yintang Yang(楊銀堂)

    Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: Si/SiC heterojunction,LDMOS,breakdown voltage,specific on-resistance

    1. Introduction

    Lateral double-diffused metal–oxide semiconductor fieldeffect transistor (LDMOS) is easy to integrate with other devices and peripheral circuits. It is widely used in the smart power integrated circuits and high-voltage integrated circuits,which has attracted the attention of people in related fields.[1–5]The conventional silicon(Si)LDMOS has encountered obstacles in the application of the high power due to the mutually restrictive relationship between the specific onresistance (Ron,sp) and the breakdown voltage (BV).[6,7]Silicon carbide(SiC)material has the characteristics of the wide band gap and high BV, so it is used in the field of the highvoltage power devices.[8]However, the development of SiC power devices is limited by gate oxide because SiC has a higher density of dangling Si and C bonds at the SiC/SiO2interface.[9]The emergence of Si/SiC substrate makes it possible to solve the above problems.[10–14]

    A novel Si/SiC heterojunction LDMOS with p-type buried layer (PBL Si/SiC LDMOS) is proposed in this paper for the first time. PBL Si/SiC LDMOS takes full advantages of the Si/SiC substrate by preparing the electrodes on the epitaxial layer of Si, and the drain region of the device is deep into the SiC substrate,avoiding the reliability problems of SiC gate oxide, while also taking advantage of the high critical electric field of the SiC. The drain region penetrates into the SiC substrate,that is,the breakdown point transfer(BPT)terminal technology, which modulates the vertical electric field of the device.[9,15]Meanwhile, a p-type buried layer is introduced at the Si/SiC interface to optimize the surface lateral electric field of PBL Si/SiC LDMOS.The combination of the two technologies improve the BV of the device. The structure of PBL Si/SiC LDMOS achieves a breakthrough in the limit of Si. Under the same drift region length,the novel device has higher BV and lower Rsp,oncompared to the conventional Si LDMOS and Si/SiC LDMOS with deep drain region.[16]

    2. Device structure and description

    The cross section of PBL Si/SiC LDMOS in Fig.1. Different from the conventional Si LDMOS,the proposed device uses p-type lightly doped SiC as the substrate,the active region of the device is prepared in the Si epitaxial layer,the drain region is deep into the SiC substrate,and a p-type buried layer is introduced at the interface between Si and SiC.SiC substrate plays three roles: first, p-doped SiC participates in depletion of n-type drift region,or the reduced surface field(RESURF)technology.[17,18]Second,it participates in modulation of vertical electric field,and deep drain region makes vertical breakdown point transfer from the edge of drain to heterojunction.Third, SiC material has high thermal conductivity, which can be used for heat dissipation of power devices. The p-type buried layer modulates the surface lateral electric field of the device to make its distribution more uniform,which increases the BV of the device.

    In order to study the characteristics of PBL Si/SiC LDMOS,ISE-TCAD is used to simulate the proposed device,and the proposed device is compared with the conventional Si LDMOS and Si/SiC LDMOS with deep drain region. In this simulation,the p-type SiC substrate potential is always zero voltage. When the forward conduction characteristic is simulated,the positive gate voltage is applied to make the channel open;The gate voltage is zero when the breakdown characteristics are simulated. The standard of reverse breakdown of the device is that the drain current density exceeds 1×10?7A/μm,and the 4H–SiC parameters are used for the sic material.The physical models used in this simulation include mobility(DopingDep HighFieldsat Enormal), effective intrinsic density(OldSlotboom),and recombination(Shockley–Read–Hall(DopingDep) auger avalanche (Eparal)). The important parameters of the three devices are shown in Table 1.

    The key processes of fabricating PBL Si/SiC LDMOS are presented in Fig.2. The p-type buried layer is located inside the device,so the doping process of p-type buried layer should be completed before the wafer-bonding. The formation of the Si/SiC substrate can be realized by the method in Ref.[10]and the simplified wafer-bonding processes are as follows: (a)initial SiC wafer and epitaxial growth of the Si substrate,(b)ion implantation to form the drain region in the SiC substrate and form the p-type buried layer in the Si epitaxial layer,(c)wafer bonding and wafer splitting. The remaining key processes are similar to those of the conventional Si LDMOS,which can be summarized as follows: (d) ion implantation to form the pwell and N-drift, (e) ion implantation to form the other part of the drain,(f)gate oxide and field oxide growth and ion implantation to form the source.

    Fig.1. Cross section of PBL Si/SiC LDMOS.

    Table 1. Important parameters used in device simulation.

    Fig.2. Simplified key processes of fabricating PBL Si/SiC LDMOS.

    3. Result and discussion

    In this paper,the lateral and vertical electric fields of LDMOS are optimized to improve the device performances. The proposed device introduces a p-type doped buried layer at the boundary between the drift region and the substrate, and the new buried layer will be depleted with the drift region and generate an additional electric field in the drift region. The additional electric field optimizes the surface lateral electric field of the device.[19]The drain region of the device is deep into the SiC substrate, the peak value of the vertical electric field of the device is transferred from Si to SiC. The critical electric field of SiC is larger than that of Si,thereby achieving an increase in the vertical BV.

    Fig.3. The influence p-type buried layer on the surface lateral electric field distribution of BPL Si/SiC LDMOS: (a) Surface electric field distributions at different TP values of the novel structure: LP=8μm. (b)Surface electric field distributions at different LP values of the novel structure: TP=1.5μm.

    The effect of the size of the p-type buried layer on the lateral electric field of the device is studied. The relationship between the lateral electric field distribution of the proposed device and the p-type buried layer is shown in Fig.3.In particular,when the p-type buried layer thickness(TP)equals 0μm,the proposed device degenerates to Si/SiC LDMOS with deep drain region.Compared with the U-shaped lateral electric field of the conventional(Cov.) Si LDMOS,it is found that the ptype buried layer introduces a new electric field peak in the middle of the surface lateral electric field of the device. Figure 3(a)shows the effect of TPon the new peak in the middle of the surface lateral electric field. When TPchanges from 0.5 μm to 1.5 μm, the new peak electric field gradually increases. The peak of the electric field is caused by the PN junction formed at the interface between the right end of the p-type buried layer and the drift region. The thicker the buried layer,the stronger the peak of the electric field. When the device works in withstand voltage mode, the interface electric field of the reverse biased PN junction and the lateral electric field of Si/SiC LDMOS with deep drain region constitute the lateral electric field of PBL Si/SiC LDMOS. The BV is the integration of the electric field along the path, and the flatter lateral electric field leads to the increase of BV.

    Figure 3(b)shows the relationship between the lateral position of the new peak electric field and p-type buried layer length(LP). The location of the peak of the new electric field coincides with the end position of the p-type buried layer.That is, the location of the peak of the new electric field is determined by the LP. In order to obtain a uniform lateral electric field distribution curve,the peak position of the electric field is expected to appear at the valley of the U-shaped later electric field,so the LPshould not be set too long or too short. In this simulation,when the LPis 8μm,the maximum BV can reach 440 V.

    Fig.4. Vertical field distributions at different TD values of BPL Si/SiC LDMOS:LP=8μm,TP=1.5μm.

    The influence of the drain region depth(TD)on the vertical electric field distribution of the proposed device has also been studied. Figure 4 shows the relationship between the vertical electric field and the TD. Compared with the conventional Si LDMOS,PBL Si/SiC LDMOS has a higher vertical peak electric field,because the bottom of the drain end of the proposed device is located on the SiC substrate with a higher critical electric field. With the increase of the TD, the position of the vertical electric field peak is farther away from the device surface(the device surface ordinate y=0). A PN junction is formed on the contact surface of the drain region and the substrate, and the vertical electric field peak is located at the interface of the PN junction. The change of the TDcauses the position of the drain liner PN junction interface to change.This is the reason why the vertical peak electric field changes with TD. The doping distribution of drain is Gaussian doping profiles, and the doping concentration decreases with the increase of diffusion depth. Therefore, with the increase of the drain region depth (TD), the doping concentration in the bottom area of the drain becomes lower, which leads to the decrease of the drain-substrate PN junction interface electric field peak. In addition, figure 4 also shows the change of the BV of the proposed device with the TDunder the given p-type buried layer parameters. When TD=6μm, the proposed device has the largest BV. When TDincreases to 8 μm, the BV of the proposed device decreases,so the drain depth should be set reasonably.

    The p-type buried layer of PBL Si/SiC LDMOS will assist the depletion of the n-type drift region. When the size of the p-type buried layer changes, in order to fully deplete the n-type drift region, the concentration of the p-type buried layer and the concentration of the n-type drift region need to be readjusted,which leads the each point in Fig.5 has different ptype buried layer concentration and N drift concentration with other devices.The BV and FOM of the device change with the LPas shown in Fig.5. In the variation range of the thickness and length of the p-type buried layer shown in Fig.5, when LP=20 μm, no matter how the TPchanges, the BV of PBL Si/SiC LDMOS is higher than that of Si/SiC LDMOS with deep drain region. Under different p-type buried layer thicknesses,the maximum BV of PBL Si/SiC LDMOS corresponds to different p-type buried layer lengths. When LP=8 μm,TP=1.5 μm, PBL Si/SiC LDMOS with a drift zone length of 20 μm has a maximum BV =440 V. In this case, the surface lateral electric field of the proposed device is maximized optimization. Moreover,when LP=10μm,TP=1μm,PBL Si/SiC LDMOS with a drift zone length of 20μm has a maximum FOM=6.86 MW/cm2. In this case,the concentration of the drift region and the concentration of the p-type buried layer cause Ron,spof the proposed device to be smaller than that corresponding to the maximum BV, and the surface lateral electric field of the device is also optimized.

    Fig.5. The relationship between FOM and BV of PBL Si/SiC LDMOS with LP.

    The effect of the drift region length(LD)on BV,Ron,spand FOM of different devices is shown in Fig.6. Compared with Si/SiC LDMOS with deep drain region and the conventional Si LDMOS, PBL Si/SiC LDMOS has larger BV at the same LD. For Si/SiC LDMOS with deep drain region and the conventional Si LDMOS,the growth rate of BV decreases rapidly with LD;And PBL Si/SiC LDMOS has a steeper slope of BV compared with Si/SiC LDMOS with deep drain region and the conventional Si LDMOS. In addition, when LDis greater than 25 μm, PBL Si/SiC LDMOS has a smaller Ron,spthan Si/SiC LDMOS with deep drain region and the conventional Si LDMOS under the same LD. The growth rate of Ron,spof PBL Si/SiC LDMOS is slower than that of Si/SiC LDMOS with deep drain region and the conventional Si LDMOS.PBL Si/SiC LDMOS optimizes the surface lateral electric field and vertical electric field, which leads to an increase in BV and a reduction in Ron,sp. In addition,it can be seen from Fig.6 that when LD=20 μm, PBL Si/SiC LDMOS can take the maximum FOM value.

    Fig.6. BV, Ron,sp, and FOM as a function of LD. Ron,sp is achieved@Vgs=10 V,Vds=20 V.

    Fig.7. Forward I–V characteristics and reverse I–V characteristics of PBL Si/SiC LDMOS with different concentrations of interfacial charges.

    According to the experimental results of literature,[20,21]the Si/SiC interface charges are introduced into the substrate fabrication process.[20,21]Therefore,this simulation considers the influence of acceptor-like traps in the interface on the performance of the novel device. As shown in Fig.7, the interface charges have little effect on the forward I–V characteristics of the device. It can be seen from Fig.7 that the specific on-resistance (Ron,sp) of the device changes very little under the three interface charges concentrations in this simulation.When the acceptor-like traps concentration(Nit)is lower than 1×1011cm?2,it has little effect on the BV of the device;when the Nitis higher than 1×1012cm?2,the device breaks down in advance. The BV is reduced from 440 V to 370 V, and the drain current increases rapidly,which fails to meet our design requirements. Therefore, improving the substrate fabrication process to reduce the acceptor-like traps density is the next step work.

    Figure 8 shows the relationship between BV, Ron,sp, and ideal silicon limit for different devices. In the conventional LDMOS which satisfied the RESURF technology, the relationship between BV and Ron,spis Ron,sp∝BV2.[22]New structure breaks silicon limit at multiple drift zone lengths. The p-type buried layer makes the lateral electric field distribution of the device more uniform,resulting in an increase in the BV of the proposed device. At the same time, the p-type buried layer participates in the depletion of the drift region, so that the concentration of the drift region increases,which leads to a reduction in the Ron,spof the proposed device. Although the interface charges reduce the BV of the proposed device,when the Nitdoes not exceed 5×1011cm?2, PBL Si/SiC LDMOS still breaks the silicon limit.

    Fig.8. Ron,sp versus BV with the ideal silicon limit line. Ron,sp is achieved@Vgs=10 V,Vds=20 V.

    4. Conclusion

    In this paper,a novel Si/SiC LDMOS with a p-type buried layer has been proposed,which combines the electric field optimization technology of the p-type buried layer and the BPT terminal technology to increase the BV of the device and reduce the Ron.spof the device.The BV is significantly increased from 249 V of the conventional Si LDMOS to 440 V of the proposed structure with a drift length of 20 μm, while Ron.spis slightly increased. And the BV is increased from 384 V of Si/SiC LDMOS to 440 V of the proposed structure with a drift length of 20μm,and Ron.spreduces from 34.6 m?·cm2to 30.4 m?·cm2. The silicon limit is broken by PBL Si/SiC LDMOS.The influence of the p-type buried layer on the surface lateral electric field of the device and the influence of the drain region depth on the vertical electric field are studied. The high concentration of acceptor-like traps makes the BV drop. Reducing the acceptor-like traps density at the Si/SiC interface or eliminating the effect of the acceptor-like traps is the focus of future research.

    猜你喜歡
    寶興海濤
    基于改進(jìn)YOLOv3的果樹(shù)樹(shù)干識(shí)別和定位
    羅海濤作品
    Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
    Novel fast-switching LIGBT with P-buried layer and partial SOI?
    天降白玉 寶藏興業(yè)——四川寶興漢白玉掠影
    石材(2020年10期)2021-01-08 09:20:02
    四川寶興網(wǎng)絡(luò)招商推出漢白玉產(chǎn)業(yè)
    石材(2020年4期)2020-05-25 07:08:48
    圓圓的世界
    感受肌理
    Resurrection of the Genus Leptomantis, with Description of a New Genus to the Family Rhacophoridae (Amphibia: Anura)
    通過(guò)反思尋求最優(yōu)解
    精品一品国产午夜福利视频| 国产一区二区三区视频了| 汤姆久久久久久久影院中文字幕| 亚洲avbb在线观看| 香蕉丝袜av| 中文字幕人妻丝袜一区二区| 国产又爽黄色视频| 久久狼人影院| 亚洲精品美女久久av网站| 亚洲av日韩精品久久久久久密| 国产在线免费精品| 亚洲性夜色夜夜综合| 亚洲精品中文字幕一二三四区 | 国产极品粉嫩免费观看在线| 桃红色精品国产亚洲av| 亚洲av第一区精品v没综合| 狠狠精品人妻久久久久久综合| 亚洲avbb在线观看| av又黄又爽大尺度在线免费看| 后天国语完整版免费观看| 欧美乱妇无乱码| 亚洲伊人久久精品综合| e午夜精品久久久久久久| 国产成人一区二区三区免费视频网站| 热99re8久久精品国产| 亚洲人成伊人成综合网2020| 免费人妻精品一区二区三区视频| 丝袜美腿诱惑在线| 日韩 欧美 亚洲 中文字幕| avwww免费| 国产精品二区激情视频| 如日韩欧美国产精品一区二区三区| 一级片'在线观看视频| 国产亚洲精品一区二区www | 欧美在线黄色| 母亲3免费完整高清在线观看| 老司机午夜十八禁免费视频| 国产成+人综合+亚洲专区| 亚洲精品在线观看二区| 免费女性裸体啪啪无遮挡网站| 99香蕉大伊视频| 色视频在线一区二区三区| 国产精品亚洲一级av第二区| 亚洲成av片中文字幕在线观看| 亚洲精品自拍成人| 青青草视频在线视频观看| 中文亚洲av片在线观看爽 | 久久精品国产亚洲av高清一级| 国产精品秋霞免费鲁丝片| 窝窝影院91人妻| 亚洲国产欧美日韩在线播放| 五月开心婷婷网| 69精品国产乱码久久久| 高潮久久久久久久久久久不卡| av免费在线观看网站| 日韩欧美一区视频在线观看| 国产色视频综合| 久久久久久久久免费视频了| 999久久久国产精品视频| 啦啦啦 在线观看视频| 国产欧美日韩一区二区精品| xxxhd国产人妻xxx| 亚洲精品在线观看二区| 黄频高清免费视频| 亚洲欧洲精品一区二区精品久久久| 老司机亚洲免费影院| 国产日韩欧美在线精品| 这个男人来自地球电影免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区中文字幕在线| 成年动漫av网址| 久久亚洲真实| 国产精品美女特级片免费视频播放器 | 亚洲色图av天堂| 少妇 在线观看| 美女视频免费永久观看网站| 国产一区有黄有色的免费视频| 亚洲精品久久成人aⅴ小说| 女性生殖器流出的白浆| 久久99一区二区三区| 久久性视频一级片| 操美女的视频在线观看| 多毛熟女@视频| 99精品在免费线老司机午夜| 精品人妻1区二区| 精品国产乱码久久久久久男人| 久久久精品国产亚洲av高清涩受| av电影中文网址| 丝袜喷水一区| 亚洲精品自拍成人| 淫妇啪啪啪对白视频| 丝袜在线中文字幕| 俄罗斯特黄特色一大片| 国产区一区二久久| 精品久久久久久电影网| 国产欧美日韩一区二区三区在线| 久久精品亚洲熟妇少妇任你| 欧美精品亚洲一区二区| 欧美午夜高清在线| 国产成人av教育| 精品卡一卡二卡四卡免费| 国产男靠女视频免费网站| 亚洲av第一区精品v没综合| 欧美另类亚洲清纯唯美| 欧美 日韩 精品 国产| 成人免费观看视频高清| 美女扒开内裤让男人捅视频| 不卡一级毛片| 欧美日韩亚洲综合一区二区三区_| 一区二区av电影网| 亚洲一区中文字幕在线| 久久久久精品人妻al黑| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品一区二区www | 宅男免费午夜| 美女主播在线视频| 国产亚洲精品一区二区www | 母亲3免费完整高清在线观看| 精品午夜福利视频在线观看一区 | 国产亚洲欧美在线一区二区| 亚洲第一欧美日韩一区二区三区 | 亚洲精品美女久久av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区在线观看av| 国产熟女午夜一区二区三区| 国产在线观看jvid| 国产xxxxx性猛交| 男男h啪啪无遮挡| 久久精品国产综合久久久| 亚洲精品在线美女| 啦啦啦免费观看视频1| 岛国毛片在线播放| 色精品久久人妻99蜜桃| 操美女的视频在线观看| 久久青草综合色| 黄色成人免费大全| 男女午夜视频在线观看| 黄片小视频在线播放| 亚洲国产精品一区二区三区在线| 欧美激情高清一区二区三区| 高清黄色对白视频在线免费看| 亚洲人成电影观看| 久久性视频一级片| 一本综合久久免费| 深夜精品福利| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美网| 亚洲欧美色中文字幕在线| a级毛片在线看网站| 久久久久久久久免费视频了| 久久精品国产a三级三级三级| 99精国产麻豆久久婷婷| 一本色道久久久久久精品综合| 美女福利国产在线| 国产不卡一卡二| 国产精品偷伦视频观看了| 亚洲avbb在线观看| 欧美久久黑人一区二区| 人妻一区二区av| 国产精品成人在线| 波多野结衣一区麻豆| 成人18禁在线播放| 成人精品一区二区免费| 亚洲欧美激情在线| 亚洲伊人色综图| 在线观看一区二区三区激情| 精品少妇一区二区三区视频日本电影| 天天躁夜夜躁狠狠躁躁| 19禁男女啪啪无遮挡网站| 午夜福利在线观看吧| svipshipincom国产片| 一本久久精品| 久久久久久免费高清国产稀缺| 91字幕亚洲| 十八禁网站免费在线| 国产一区二区在线观看av| 成年版毛片免费区| 亚洲熟妇熟女久久| 一级毛片电影观看| 亚洲全国av大片| 亚洲精品中文字幕一二三四区 | 国产成人系列免费观看| 欧美人与性动交α欧美精品济南到| 在线观看免费高清a一片| 欧美在线黄色| 国产成人一区二区三区免费视频网站| 国产精品亚洲av一区麻豆| 国产欧美日韩综合在线一区二区| 国产淫语在线视频| 深夜精品福利| 极品教师在线免费播放| 国产色视频综合| 丰满迷人的少妇在线观看| 精品少妇一区二区三区视频日本电影| 丁香欧美五月| 中文字幕人妻丝袜制服| 极品人妻少妇av视频| 99精品在免费线老司机午夜| 12—13女人毛片做爰片一| 午夜福利,免费看| 久久性视频一级片| 天堂8中文在线网| 国产无遮挡羞羞视频在线观看| 考比视频在线观看| 中国美女看黄片| 国产男女内射视频| 少妇 在线观看| 免费在线观看完整版高清| 最新的欧美精品一区二区| 色尼玛亚洲综合影院| 好男人电影高清在线观看| 欧美精品人与动牲交sv欧美| 久久精品亚洲精品国产色婷小说| 欧美激情 高清一区二区三区| 91国产中文字幕| 国产成人啪精品午夜网站| 免费女性裸体啪啪无遮挡网站| 久久久久精品人妻al黑| 母亲3免费完整高清在线观看| 国产在线精品亚洲第一网站| 日韩欧美一区视频在线观看| 首页视频小说图片口味搜索| 婷婷成人精品国产| 亚洲一区二区三区欧美精品| 丰满少妇做爰视频| 国产午夜精品久久久久久| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 一边摸一边抽搐一进一小说 | 欧美 亚洲 国产 日韩一| 久久av网站| 国产单亲对白刺激| 亚洲精品在线观看二区| 国产熟女午夜一区二区三区| 午夜两性在线视频| 少妇裸体淫交视频免费看高清 | 高清黄色对白视频在线免费看| 国产精品一区二区免费欧美| 丁香欧美五月| e午夜精品久久久久久久| 精品一区二区三区视频在线观看免费 | 精品卡一卡二卡四卡免费| 蜜桃在线观看..| 日韩大片免费观看网站| 亚洲 国产 在线| 久久精品91无色码中文字幕| 在线十欧美十亚洲十日本专区| 精品乱码久久久久久99久播| 成人18禁在线播放| 国产不卡一卡二| 久久久精品国产亚洲av高清涩受| 日本黄色视频三级网站网址 | 色综合婷婷激情| 日韩欧美国产一区二区入口| 欧美日韩一级在线毛片| 成人特级黄色片久久久久久久 | 国产精品电影一区二区三区 | 久久人妻福利社区极品人妻图片| 免费在线观看日本一区| 亚洲,欧美精品.| 自拍欧美九色日韩亚洲蝌蚪91| 动漫黄色视频在线观看| 18在线观看网站| 中文字幕精品免费在线观看视频| 99精品欧美一区二区三区四区| 一本色道久久久久久精品综合| 成人特级黄色片久久久久久久 | 国精品久久久久久国模美| 考比视频在线观看| 欧美中文综合在线视频| 丁香欧美五月| 日韩大片免费观看网站| 国产男靠女视频免费网站| 亚洲熟女精品中文字幕| 日韩一区二区三区影片| 亚洲国产欧美一区二区综合| 在线十欧美十亚洲十日本专区| 成年人免费黄色播放视频| 亚洲精品国产色婷婷电影| 丝袜喷水一区| 国产成人免费观看mmmm| 乱人伦中国视频| 亚洲天堂av无毛| 国产精品一区二区精品视频观看| 国产亚洲精品久久久久5区| 黄色毛片三级朝国网站| 精品乱码久久久久久99久播| 国产高清国产精品国产三级| 午夜福利乱码中文字幕| 大片电影免费在线观看免费| 新久久久久国产一级毛片| 波多野结衣一区麻豆| 国产精品99久久99久久久不卡| 亚洲人成77777在线视频| 久久人妻av系列| 久久精品aⅴ一区二区三区四区| 亚洲国产av新网站| 国产欧美日韩一区二区三区在线| 青草久久国产| 建设人人有责人人尽责人人享有的| 免费女性裸体啪啪无遮挡网站| 怎么达到女性高潮| 亚洲久久久国产精品| 免费av中文字幕在线| 国产日韩欧美在线精品| 91麻豆av在线| 日韩 欧美 亚洲 中文字幕| 夜夜夜夜夜久久久久| 亚洲 国产 在线| 男人操女人黄网站| 在线观看www视频免费| 国产成人精品久久二区二区91| 国精品久久久久久国模美| 久久中文看片网| 午夜成年电影在线免费观看| 日韩精品免费视频一区二区三区| 一本色道久久久久久精品综合| 女人被躁到高潮嗷嗷叫费观| 久久久国产成人免费| 亚洲三区欧美一区| 1024视频免费在线观看| 亚洲欧美精品综合一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产av国产精品国产| 国产伦理片在线播放av一区| 精品第一国产精品| 日韩欧美一区二区三区在线观看 | 久久久久精品国产欧美久久久| 国产亚洲精品第一综合不卡| 欧美黄色淫秽网站| 亚洲欧美色中文字幕在线| 国产成人免费观看mmmm| 精品亚洲成国产av| 日韩大片免费观看网站| 在线亚洲精品国产二区图片欧美| 国产有黄有色有爽视频| 亚洲人成伊人成综合网2020| 最新的欧美精品一区二区| 国产精品一区二区在线不卡| 丰满饥渴人妻一区二区三| 十八禁网站免费在线| 首页视频小说图片口味搜索| 在线观看免费视频日本深夜| 91成年电影在线观看| 亚洲国产中文字幕在线视频| 18禁观看日本| 亚洲av第一区精品v没综合| 青青草视频在线视频观看| 在线观看人妻少妇| 国产成人影院久久av| 精品卡一卡二卡四卡免费| 少妇被粗大的猛进出69影院| 国产精品美女特级片免费视频播放器 | 欧美日韩亚洲综合一区二区三区_| av网站在线播放免费| 大型黄色视频在线免费观看| 日本一区二区免费在线视频| 亚洲精品在线观看二区| 首页视频小说图片口味搜索| 日韩视频在线欧美| 法律面前人人平等表现在哪些方面| 免费看a级黄色片| 国产麻豆69| 国产在线一区二区三区精| 日本一区二区免费在线视频| 在线 av 中文字幕| 视频区欧美日本亚洲| 国产精品久久久久久精品古装| 亚洲欧美色中文字幕在线| 亚洲av日韩精品久久久久久密| 色婷婷av一区二区三区视频| av不卡在线播放| 国产精品二区激情视频| 18禁裸乳无遮挡动漫免费视频| av免费在线观看网站| 午夜福利在线免费观看网站| 中文字幕最新亚洲高清| 丁香六月天网| 成年人黄色毛片网站| 欧美激情久久久久久爽电影 | 90打野战视频偷拍视频| 搡老乐熟女国产| 国产日韩欧美亚洲二区| 香蕉国产在线看| 黄色视频在线播放观看不卡| 国产亚洲欧美在线一区二区| 高清在线国产一区| 91麻豆精品激情在线观看国产 | av又黄又爽大尺度在线免费看| 极品少妇高潮喷水抽搐| 久久精品国产99精品国产亚洲性色 | 日本黄色日本黄色录像| 国产精品电影一区二区三区 | 最黄视频免费看| 欧美日韩亚洲高清精品| 国产麻豆69| 涩涩av久久男人的天堂| 久久久国产一区二区| 久久亚洲精品不卡| 久久人妻av系列| 99re6热这里在线精品视频| av国产精品久久久久影院| 亚洲精品粉嫩美女一区| 亚洲国产欧美网| 精品国产乱码久久久久久男人| 久久精品国产综合久久久| 国产精品偷伦视频观看了| 亚洲精品成人av观看孕妇| 国产精品偷伦视频观看了| 黄色 视频免费看| 免费在线观看黄色视频的| 成人国产一区最新在线观看| 国产成人欧美在线观看 | 国产有黄有色有爽视频| 久久精品国产综合久久久| 中文字幕另类日韩欧美亚洲嫩草| 无限看片的www在线观看| 亚洲国产精品一区二区三区在线| 亚洲午夜精品一区,二区,三区| 满18在线观看网站| 一边摸一边做爽爽视频免费| 99精品久久久久人妻精品| 日韩欧美国产一区二区入口| 亚洲国产欧美在线一区| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 啦啦啦 在线观看视频| 脱女人内裤的视频| 精品国产一区二区三区久久久樱花| 午夜91福利影院| 91av网站免费观看| 黄色成人免费大全| 妹子高潮喷水视频| 一夜夜www| 欧美日韩av久久| 十八禁人妻一区二区| 黄色 视频免费看| 国产成人一区二区三区免费视频网站| 新久久久久国产一级毛片| 亚洲国产欧美在线一区| 两个人免费观看高清视频| 国产成人欧美在线观看 | 一二三四社区在线视频社区8| 可以免费在线观看a视频的电影网站| 国产高清视频在线播放一区| 免费不卡黄色视频| 精品国产一区二区三区四区第35| 免费av中文字幕在线| 人妻一区二区av| 久久国产亚洲av麻豆专区| 99国产综合亚洲精品| 免费日韩欧美在线观看| 一边摸一边抽搐一进一小说 | 亚洲久久久国产精品| 久久国产亚洲av麻豆专区| 精品国产乱码久久久久久男人| 热99国产精品久久久久久7| 日韩人妻精品一区2区三区| 建设人人有责人人尽责人人享有的| 欧美成狂野欧美在线观看| 日韩制服丝袜自拍偷拍| 大码成人一级视频| 久久中文看片网| 国产成人免费无遮挡视频| 精品国产乱码久久久久久男人| 欧美国产精品va在线观看不卡| 亚洲av日韩在线播放| 亚洲专区国产一区二区| 操出白浆在线播放| 国产精品久久久av美女十八| 久久影院123| 岛国毛片在线播放| 免费日韩欧美在线观看| 成人手机av| 国产在线一区二区三区精| 久久久国产一区二区| 午夜福利,免费看| 丝袜美足系列| 老鸭窝网址在线观看| 动漫黄色视频在线观看| 精品一区二区三区四区五区乱码| 天天影视国产精品| 成人18禁高潮啪啪吃奶动态图| 日本精品一区二区三区蜜桃| 国产亚洲精品一区二区www | 午夜久久久在线观看| 少妇被粗大的猛进出69影院| 黑人猛操日本美女一级片| 精品人妻在线不人妻| 人人妻人人澡人人爽人人夜夜| 精品国产一区二区三区久久久樱花| 正在播放国产对白刺激| 国产又色又爽无遮挡免费看| 午夜激情久久久久久久| 欧美精品高潮呻吟av久久| 国产成人欧美在线观看 | 中文字幕制服av| 国产熟女午夜一区二区三区| 91大片在线观看| 国产高清激情床上av| av天堂久久9| 亚洲第一青青草原| bbb黄色大片| 亚洲精品国产区一区二| 亚洲精华国产精华精| 下体分泌物呈黄色| 午夜福利在线免费观看网站| 亚洲中文日韩欧美视频| 中文字幕人妻丝袜一区二区| 国产一区二区在线观看av| 国产欧美日韩一区二区三区在线| 又大又爽又粗| 国产一区二区三区视频了| 一区二区三区精品91| 黑人操中国人逼视频| 人人妻人人澡人人爽人人夜夜| 啦啦啦中文免费视频观看日本| 欧美午夜高清在线| 久久久久精品国产欧美久久久| 国产精品免费一区二区三区在线 | 国产成人影院久久av| 欧美激情久久久久久爽电影 | 欧美日韩一级在线毛片| 12—13女人毛片做爰片一| 电影成人av| 亚洲av片天天在线观看| 午夜福利在线免费观看网站| 丰满少妇做爰视频| 免费观看av网站的网址| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品在线电影| 一级毛片精品| 亚洲精品美女久久av网站| 法律面前人人平等表现在哪些方面| 国产高清激情床上av| 成人18禁高潮啪啪吃奶动态图| 国产免费av片在线观看野外av| 国产精品免费大片| 欧美老熟妇乱子伦牲交| 欧美精品av麻豆av| 日韩成人在线观看一区二区三区| 男人操女人黄网站| 老司机靠b影院| 最黄视频免费看| 精品亚洲乱码少妇综合久久| 首页视频小说图片口味搜索| 极品少妇高潮喷水抽搐| 成人三级做爰电影| 国产xxxxx性猛交| 搡老乐熟女国产| 人人妻人人爽人人添夜夜欢视频| 97人妻天天添夜夜摸| 精品国产乱码久久久久久男人| 日日摸夜夜添夜夜添小说| 久久久欧美国产精品| 国产aⅴ精品一区二区三区波| 国产91精品成人一区二区三区 | 亚洲国产欧美日韩在线播放| 一区二区av电影网| 免费看a级黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 男女无遮挡免费网站观看| 黑人猛操日本美女一级片| 久久av网站| 男男h啪啪无遮挡| 国内毛片毛片毛片毛片毛片| 五月天丁香电影| 亚洲人成电影观看| 亚洲精品国产区一区二| 99香蕉大伊视频| 999精品在线视频| 热99re8久久精品国产| 久久国产精品男人的天堂亚洲| 国产精品免费大片| 高清视频免费观看一区二区| 亚洲成人手机| 男女下面插进去视频免费观看| 变态另类成人亚洲欧美熟女 | 淫妇啪啪啪对白视频| 午夜福利免费观看在线| 国产老妇伦熟女老妇高清| 嫁个100分男人电影在线观看| 久久久精品区二区三区| 国产麻豆69| 国产高清激情床上av| 亚洲精品久久午夜乱码| 99精国产麻豆久久婷婷| 激情在线观看视频在线高清 | 一区二区av电影网| 免费少妇av软件| 丰满迷人的少妇在线观看| videosex国产| 一边摸一边抽搐一进一出视频| 久久免费观看电影| 老汉色∧v一级毛片| 日韩大片免费观看网站| 国产精品久久久人人做人人爽| 国产aⅴ精品一区二区三区波| 欧美日本中文国产一区发布| 搡老熟女国产l中国老女人| 中国美女看黄片| www.自偷自拍.com| 老司机福利观看| 99re6热这里在线精品视频| 成人精品一区二区免费| 国产欧美亚洲国产| 热re99久久国产66热| 日韩欧美免费精品| 亚洲一区中文字幕在线| 最新的欧美精品一区二区| 国产成人欧美| 免费观看a级毛片全部| 精品亚洲乱码少妇综合久久| 老司机午夜福利在线观看视频 | 免费观看人在逋|