• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces?

    2021-03-11 08:32:44YunpingQi祁云平BaoheZhang張寶和JinghuiDing丁京徽TingZhang張婷XiangxianWang王向賢andZaoYi易早
    Chinese Physics B 2021年2期
    關(guān)鍵詞:張婷

    Yunping Qi(祁云平) Baohe Zhang(張寶和), Jinghui Ding(丁京徽), Ting Zhang(張婷),Xiangxian Wang(王向賢), and Zao Yi(易早)

    1College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China

    2School of Science,Lanzhou University of Technology,Lanzhou 730050,China

    3Joint Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology,Mianyang 621900,China

    Keywords: coding metasurface, Pancharatnam–Berry phase, multiple beams, radar cross-section (RCS) reduction,orbital angular momentum

    1. Introduction

    Terahertz (THz) waves, whose frequency range is between 0.1 THz and 10 THz, are on the cutting edge of new technologies and have drawn enormous attention from worldwide academia in recent years,because of their numerous potential applications in biosensing, security imaging, and THz high-speed communications.[1–6]The manipulation of terahertz waves, especially their polarization, phase, and amplitude, is important in terahertz application systems. Unfortunately,most of the conventional materials in nature have great difficulty in achieving effective control of terahertz waves,which limits the development of terahertz technology and applications. Therefore, we need new and innovative ideas to address the lack of natural materials that can be used in the terahertz band.

    A metasurface is a two-dimensional planar structure composed of an array of subwavelength units,which provides unprecedented capabilities for the flexible and effective manipulation of the phase,amplitude,polarization,and various other properties of incident electromagnetic waves.[7–17]The arrival of metasurfaces has made up for the shortage of electromagnetic materials in the terahertz band, has provided an effective way to realize functional devices in the terahertz band,and is expected, in essence, to break through the bottleneck of terahertz technology development. To date, many remarkable achievements based on metasurfaces have been accomplished and demonstrated in the microwave band, including high-gain antennas,[18]polarization conversion,[19–21]beam focusing,[22,23]radar cross-section reduction,[24–26]vortexbeam generation,[27–30]and so on. In comparison with the microwave band, terahertz waves are a new research topic,and related technologies are still in the early stages of exploration. More recently, metasurfaces have been extended to the terahertz region and have played an irreplaceable role in the production of novel functionalities,such as near-perfect absorbers,[31–36]super-lenses,[37]holographic imaging,[38,39]and sensing.[40–43]Unfortunately, so far, most of the new achievements with metasurfaces have had problems due to their complex structure,low operating efficiency,and because they can only afford one specific function within a limited frequency range, which is a key challenge for terahertz technology to be able to achieve multiple functionalities.

    Digital coding metasurfaces are a significant branch of metasurfaces that create a new bridge between the physical world and digital information science.In this study,to the best of our knowledge,this is the first time that the proposed double E-shaped structure has been combined with the PB phase principle to generate a multi-bit coding metasurface, which shows promise for many important applications in the terahertz range. Using a 1-bit coding metasurface with specific distributions of the coding sequences, the reflected terahertz waves can be flexibly and independently manipulated. To realize a low RCS in the terahertz band, we propose a simple and high-performance reflective metasurface based on 2-bit coding elements, which can achieve a >10 dB RCS reduction within a wideband range from 2.1 THz to 5.2 THz. Apart from the useful functionalities described above, we designed two kinds of reflective metasurfaces based on 3-bit coding elements,which were able to realize orbital angular momentum waves with mode numbers of l=1 and l=2. The simulated results prove that the designed scheme has great potential for future practical application in the terahertz frequency range.

    2. Theoretical formulation

    To achieve high-efficiency manipulation of incident electromagnetic waves, it is important to obtain 360?full-phase coverage. In terms of controlling the geometric phase change,the PB phase metasurface exhibits unique advantages,and can simply obtain phase responses,just by a rotation of the metallic pattern’s angle. In what follows,we first theoretically infer the principle of the PB phase. For a double E-shaped unit under the Cartesian coordinate system, when the optical axis is rotated by an angle of θ in the anticlockwise direction,the coefficients of reflection can be characterized by the reflective Jones matrix[44]

    in which the diagonal elements Rxxand Ryydenote the copolarized reflection coefficients under the normal incidence of x- and y-polarization, whereas the off-diagonal elements,Rxyand Ryx, denote the cross-polarized reflection coefficients under the normal incidence of x- and y-polarization. In general, for an anisotropic metasurface at an oblique incidence,Rxy/=Ryx. In the case of normal incidence,i.e.,Rxy=Ryx=0,the reflection matrix has the following relationship in the rectangular coordinate system:

    By substituting Eq. (2)into Eq. (3),the reflection matrix under the excitation of a circularly polarized wave can be derived as

    Our target in this work is to achieve efficient manipulation of terahertz waves,RCS reduction,and OAM generation by appropriate arrangement of the coding sequence. The key step is to achieve a phase shift that covers a broad range of 0?–360?while maintaining constant scattering amplitudes. To accomplish our goal,the rotation angle θ of each coding particle is changed from 0?to 157.5?in steps of 22.5?. The corresponding phases of the eight coding particles are 0?,45?,90?,135?,180?,225?,270?,and 315?,respectively. Because each coding particle has a specific rotational angle,there is an additional degree of freedom for manipulating terahertz waves that offers many novel functionalities.

    3. Design of the unit and theoretical analysis

    In the design of our PB coding metasurface,the basic coding particle unit is a classic sandwich structure,which consists of three parts: a top-layer double E-shaped structure,an intermediate dielectric layer, and a bottom metal layer, as shown in Fig.1(a). The double-E structure and the bottom metallic film are made of copper,whose conductivity and thickness are 5.8×107S/m and 240 nm,respectively. Polyimide is adopted as the intermediate dielectric substrate with a thickness of t =11 μm and the relative dielectric constant and loss tangent are εr=3.0 and tanδ =0.001,respectively. The detailed geometric parameters of the coding particle were optimized by simulation software as follows: a=20 μm, b=15 μm,c=10 μm, w=2.5 μm, g=4 μm. The period of the coding particle is px= py= 36 μm. Unit-cell simulation was performed using the finite element method,in which the master and slave boundary conditions were used in the x and y directions and Floquet port excitation was adopted in the ?z direction.

    Fig.1. (a)Design of the double Eshaped basic coding cell. (b)Simulated co-and cross-polarized reflection coefficients under the normal incidence of LCP and RCP waves. (c)Simulated PCR under LCP wave excitation. (d)Simulated reflected phase and amplitude under the normal incidence of linearly x-and y-polarized waves,respectively.

    By adopting the concept of the PB phase, the required phase can be more conveniently achieved and the scattering patterns of the coding metasurface can be deflected in a specific direction. Figure 2(a) shows the particles of the 1-bit,2-bit,and 3-bit coding metasurfaces and the corresponding relationship between the particle and the rotation angle.For simplicity,the numbers“0”to“7”represent the bit combinations“000”,“001”,“010”,“011”,“100”,“101”,“110”,and“111”,respectively. Figure 2(b) depicts the magnitude of the reflection response for cross-polarization of eight basic coding particles with different rotational angles under the incidence of LCP or RCP waves. One can find that as the rotation angle θ changes from 0?to 157.5?with steps of 22.5?, the amplitude of the cross-polarization reflection coefficient for eight elements is greater than 90%over a broadband frequency range from 2.4 THz to 4.7 THz. Figures 2(c) and 2(d) show the phase responses of eight basic coding elements under the normal incidence of LCP and RCP waves,respectively.It is worth noting that in the frequency range from 2.1 THz to 5.2 THz,the phase difference between adjacent coding elements always remains at about 45?,which not only ensures that our design of PB coding metasurface can work over a wide frequency range but also proves the corresponding relationship between the reflection’s phase difference and unit cell’s rotational angle is±2θ,where“+”corresponds to LCP wave incidence and“?”corresponds to RCP wave incidence.

    Fig.2. (a) The design of the coding elements for 1-, 2-, and 3-bit coding metasurfaces. (b) The corresponding reflected amplitude of crosspolarization with different rotation angles. The simulated reflection phase responses of the basic element with different rotation angles for(c)LCP and(d)RCP incidences.

    By designing appropriate coding sequences, the multibit coding metasurface provides new opportunities for the effective manipulation of terahertz-wave scattering patterns and may offer widespread applications. In the next sections, we will give a few examples to illustrate that multi-bit coding metasurfaces have the ability to achieve highly efficient manipulation of terahertz waves and that they can implement different functions.

    3.1. The 1-bit coding metasurface

    For a 1-bit coding metasurface,the basic coding elements are composed of two digital states,“0”and“1”,and their corresponding reflection phases are 0?and 180?, respectively. It is well known that lots of interesting physical phenomena of electromagnetic regulation mechanisms can be generated by arranging specific coding sequences. In other words, we can control the scattering characteristics of coding metasurfaces by changing the corresponding“0”and“1”coding sequences.As an example,two kinds of 1-bit coding metasurfaces are employed with different coding sequences to verify that the coding metasurface has properties that can control far-field scattering patterns more freely. For the 1-bit coding metasurface M1,the simulated three-dimensional scattering patterns under the normal incidence of an LCP wave at 3 THz are shown in Fig.3(a). It should be noted that when the coding sequences“00001111···” of the metasurface M1are arranged in the xaxis direction, two symmetrical main beams with angles of θr=20.3?are generated. According to a generalization of Snell’s law, the anomalous reflection angle for normal incidence can be predicted by the following equation:[46]

    in which λ is the free-space wavelength of the incident wave at 3 THz and Γ =4×144μm represents the period of the coding sequence. Similarly,we also design the M2coding metasurface with the ”010101···/101010···” coding sequence, as displayed in Fig.3(b). In this case, each lattice consists of 3×3 units of the same”0”or”1”coding elements. It can be observed that the scattered energy for a normally incident LCP wave at 3 THz is equally split into four symmetrical oblique beams with the same elevation angle. The elevation angle θ and the azimuthal angle ? of the four oblique beams can be predicted by the following equations:[47,48]

    in which θ1and θ2are the beam deviation angles corresponding to the two periodic coding sequences that vary along the x and y directions, respectively. Under such conditions, θ1and θ2as calculated by Eq. (5) are both 27.6?, and thus, the new beam deviation angle is calculated to be 40.5?. The azimuthal angles ? of the four oblique beams are 45?, 135?, 225?, and 315?, respectively. The numerical simulation and theoretical calculation are in excellent agreement, which proves the outstanding performance of the proposed schemes. To further verify this interesting phenomenon,the near-field distributions of the two proposed coding metasurfaces are analyzed,as depicted in Figs.3(c)and 3(d). In addition,the two-dimensional scattering patterns are also studied,as illustrated in Figs.3(e)and 3(f). The above research results demonstrate that our designed coding metasurface has good performance when used to manipulate the energy of the main lobe of normally incident terahertz waves,which can be used to realize many interesting applications such as terahertz beam splitters.

    Fig.3. The simulated 3D and 2D far-field scattering patterns of the 1-bit coding metasurface. (a), (c), (e) The far-field scattering pattern and near-field energy distributions of the 00001111··· sequence at 3 THz. (b),(d),(f)The far-field scattering pattern and near-field energy distributions of the 010101···/101010··· sequence at 3 THz.

    3.2. The 2-bit coding metasurface

    Fig.4. Schematic diagram of a 2-bit coding metasurface. (a) 8×8 coding sequences. (b) Ms1 coding array. (c) Simulated 3D scattering patterns of Ms1 under normally incident plane wave excitation at 4 THz. (d) Simulated monostatic RCSs of Ms1 and a metal plate at 4 THz for ? =0. (e) The monostatic RCS reduction curves for Ms1 and the equal-sized metal plate under normally incident x-and y-polarized waves.

    3.3. The 3-bit coding metasurface

    In this section,similarly to the design methods mentioned above for the 1-bit and 2-bit coding metasurfaces, we further introduce a 3-bit coding metasurface,whose basic digital elements are“1”,“2”,“3”,“4”,“5”,“6”,“7”,“8”,corresponding to phase responses of 0?,45?,90?,135?,180?,225?,270?,and 315?, respectively, which can provide more abundant phases to manipulate terahertz waves. To demonstrate the versatility of the 3-bit coding metasurface for terahertz modulation,two different reflective metasurfaces are employed to generate terahertz vortex beams under the illumination of plane terahertz waves at 3 THz. The numerical calculation is performed by the finite-element method. A typical characteristic of a vortex beam is that it has a spatially distributed spiral phase term eil?, where l denotes the designed OAM mode number, also known as the number of topological changes, and ? denotes the azimuthal angle.[50–52]The overall size of the two designed reflective metasurfaces is set to 720×720μm2,and they consist of an array of 20×20 cells. For the OAM mode l=1,the metasurface consists of eight sectors,and the phase gradient increment between adjacent sectors is 45?, as shown in Fig.5(a). For the OAM mode l=2,the metasurface also consists of eight sectors, and the phase gradient increment between adjacent sectors is 90?, as shown in Fig.5(e).Figures 5(b),5(f)and 5(c),5(g)give the simulated results and schematic diagrams of the vortex intensity and phase distribution of l =1 and l =2, respectively. As can be seen from Figs.5(b)and 5(f),the center point of the light field is a dark field, in other words, the intensity at the vortex’s center is zero. As can be seen from the near-field phase distribution of Figs. 5(c) and 5(g), for the l =1 mode, the wave-front’s phase exhibits a single spiral state; for the l =2 mode, the wave-front’s phase exhibits a double spiral state. It is worth noting that the rotational center of the phase distribution of the vortex beam is slightly separated, which is caused by the discontinuity of the array’s arrangement. The simulated 3D far-field scattering patterns of OAM vortex beams with mode numbers l=1 and l=2 are shown in Figs.5(d)and 5(h). In addition, the two-dimensional scattering patterns corresponding to the two modes in the radar coordinate system and the Cartesian coordinate system are shown in Figs. 5(i) and 5(j).The above simulation results reveal that the vortex beam with orbital angular momentum is produced using the proposed reflective metasurface, which proves that our design has great potential for next generation ultra-high-speed wireless communication systems.

    Fig.5. (a),(e)A schematic diagram of the digital phase distribution used to generate OAM vortex beams with topological charges of l=1 and l=2.(b),(f)The simulated amplitude distributions. (c),(g)The simulated near-field phasedistribution diagram. (d),(h)The simulated 3D far-field scattering patterns. (i),(j)The 2D scattering patterns of the two modes l=1 and l=2.

    Finally, although this article is a theoretical and simulative work, and not experimental, the fabrication of coding metasurfaces and experimental demonstration is to be expected: the proposed coding metasurface sample can be manufactured by standard photolithography techniques, electronbeam evaporation equipment,and a lift-off process. The production process is as follows:firstly,a copper film is deposited onto a polyimide film by an electron-beam evaporation coating machine,then a homogenizer is used to evenly apply photoresist to the surface of the sample to be etched. Next,choosing the appropriate temperature and baking time is very important,because the photoresist film can be fully dried after baking the photoresist-spin-coated sample. Secondly,a lift-off process is used to form the metasurface pattern on top of the polyimide layer. Thirdly, the sample is immersed in acetone to remove any excess photoresist. Finally, the sample can be measured by a terahertz time-domain spectroscopic test system.

    4. Conclusions

    In summary, we have successfully proposed 1-bit, 2-bit,and 3-bit reflection coding metasurfaces to manipulate electromagnetic scattering and radiation and to implement different functions,respectively. In our study of the 1-bit coding metasurface,by designing appropriate coding sequences we found that the reflected terahertz wave can be split into two or four main beams, which can be used to realize beam splitting and beam scanning.For RCS-reducing applications,a 2-bit coding metasurface was elaborately designed,which was able to scatter the reflected terahertz energy in more directions. The simulation results showed that the proposed metasurface achieved a>10 dB RCS reduction over a wide frequency band ranging from 2.1 THz to 5.2 THz. In addition, we designed two different kinds of 3-bit coding metasurface for generating multimode OAM beams. The proposed metasurfaces offers new possibilities for terahertz wave control and pave the way for the development of novel functionalities in the future.

    猜你喜歡
    張婷
    《空山雨后》國畫
    《暮歸》國畫
    黨組織參與治理對國有企業(yè)內(nèi)部控制質(zhì)量的影響
    出 走
    自殺式未來,從垃圾快樂上癮開始
    匱乏成災(zāi)
    延河(2019年5期)2019-05-27 02:55:36
    閱讀理解題的解題策略
    鬧亦有道
    更 正
    We never Told Him He Couldn’t Do it我們從不說他做不到
    99久久人妻综合| 国产色视频综合| 18禁裸乳无遮挡动漫免费视频| 亚洲色图综合在线观看| 建设人人有责人人尽责人人享有的| 午夜影院在线不卡| 香蕉丝袜av| 亚洲伊人久久精品综合| 精品少妇久久久久久888优播| 黑人巨大精品欧美一区二区mp4| 无遮挡黄片免费观看| 一个人免费在线观看的高清视频 | 成人三级做爰电影| 一本大道久久a久久精品| 老汉色∧v一级毛片| 欧美老熟妇乱子伦牲交| 亚洲五月婷婷丁香| 91老司机精品| 999久久久国产精品视频| 高清视频免费观看一区二区| 青草久久国产| xxxhd国产人妻xxx| 天天躁夜夜躁狠狠躁躁| 午夜福利在线免费观看网站| 极品人妻少妇av视频| 窝窝影院91人妻| 在线观看www视频免费| 国产av一区二区精品久久| 91av网站免费观看| av网站在线播放免费| 老司机深夜福利视频在线观看 | 伦理电影免费视频| 热re99久久精品国产66热6| 蜜桃在线观看..| 最近最新免费中文字幕在线| 精品一区在线观看国产| 天堂俺去俺来也www色官网| 久久毛片免费看一区二区三区| 交换朋友夫妻互换小说| 正在播放国产对白刺激| 在线观看www视频免费| 久久亚洲国产成人精品v| 这个男人来自地球电影免费观看| 人人澡人人妻人| 国产精品一二三区在线看| 欧美老熟妇乱子伦牲交| 欧美日韩一级在线毛片| 欧美乱码精品一区二区三区| 久久狼人影院| 又大又爽又粗| 久久热在线av| 亚洲全国av大片| 国产亚洲欧美在线一区二区| 一区二区av电影网| 夜夜骑夜夜射夜夜干| 女人高潮潮喷娇喘18禁视频| 男女之事视频高清在线观看| 一本色道久久久久久精品综合| 亚洲欧美清纯卡通| 久久狼人影院| 免费人妻精品一区二区三区视频| 国产av国产精品国产| 少妇粗大呻吟视频| 国产精品av久久久久免费| 日韩一卡2卡3卡4卡2021年| 亚洲中文日韩欧美视频| av在线app专区| 91av网站免费观看| 男女国产视频网站| 热re99久久精品国产66热6| 99精品欧美一区二区三区四区| 久久性视频一级片| 精品国内亚洲2022精品成人 | 免费一级毛片在线播放高清视频 | 久久中文字幕一级| 在线av久久热| 欧美精品啪啪一区二区三区 | 99热网站在线观看| 在线十欧美十亚洲十日本专区| 国产在线观看jvid| 天天操日日干夜夜撸| 国产激情久久老熟女| 久热爱精品视频在线9| 少妇被粗大的猛进出69影院| 亚洲人成电影免费在线| 99久久99久久久精品蜜桃| 精品人妻1区二区| 丝袜美腿诱惑在线| 一级毛片电影观看| 日韩一区二区三区影片| 美女高潮到喷水免费观看| 亚洲欧美成人综合另类久久久| netflix在线观看网站| 丝袜喷水一区| 亚洲av国产av综合av卡| xxxhd国产人妻xxx| 天天躁夜夜躁狠狠躁躁| 99国产精品一区二区蜜桃av | 色综合欧美亚洲国产小说| 五月天丁香电影| 欧美黑人精品巨大| 亚洲熟女精品中文字幕| 亚洲欧美一区二区三区久久| 午夜福利一区二区在线看| 一区二区三区精品91| 色视频在线一区二区三区| 在线亚洲精品国产二区图片欧美| 黄频高清免费视频| 中国国产av一级| 亚洲成人国产一区在线观看| 国产国语露脸激情在线看| 色播在线永久视频| av欧美777| 国产成人影院久久av| 青青草视频在线视频观看| 国产欧美日韩一区二区三区在线| 久久精品人人爽人人爽视色| 国产男女内射视频| 婷婷成人精品国产| 狠狠婷婷综合久久久久久88av| 熟女少妇亚洲综合色aaa.| 国产视频一区二区在线看| 久久av网站| 欧美日韩一级在线毛片| 天天躁日日躁夜夜躁夜夜| 啦啦啦免费观看视频1| 麻豆av在线久日| 国产成人av激情在线播放| 18禁观看日本| 亚洲黑人精品在线| 国产一区二区 视频在线| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产毛片av蜜桃av| 国产一区二区三区av在线| 亚洲中文日韩欧美视频| 国产在线观看jvid| 国产欧美日韩一区二区精品| 色播在线永久视频| 国产av一区二区精品久久| 制服诱惑二区| 色播在线永久视频| kizo精华| 久久久久久亚洲精品国产蜜桃av| 一级黄色大片毛片| 最近中文字幕2019免费版| 亚洲国产中文字幕在线视频| 亚洲 国产 在线| 国产亚洲精品久久久久5区| 一级毛片电影观看| 伊人久久大香线蕉亚洲五| 黄频高清免费视频| 两个人看的免费小视频| 天天躁狠狠躁夜夜躁狠狠躁| 这个男人来自地球电影免费观看| 午夜福利影视在线免费观看| 欧美黑人欧美精品刺激| 国产区一区二久久| 老汉色∧v一级毛片| 亚洲九九香蕉| 黄片播放在线免费| 韩国精品一区二区三区| 天天操日日干夜夜撸| 国产成人av激情在线播放| 女人高潮潮喷娇喘18禁视频| 欧美成狂野欧美在线观看| 丰满少妇做爰视频| 久久天堂一区二区三区四区| 精品国产乱码久久久久久小说| 夜夜骑夜夜射夜夜干| 国产精品国产av在线观看| 69精品国产乱码久久久| 欧美日韩精品网址| 老司机影院毛片| 熟女少妇亚洲综合色aaa.| 久久久久久免费高清国产稀缺| 国产精品自产拍在线观看55亚洲 | 亚洲国产欧美在线一区| 每晚都被弄得嗷嗷叫到高潮| av网站免费在线观看视频| 人人妻人人添人人爽欧美一区卜| av欧美777| 美女主播在线视频| 日韩 亚洲 欧美在线| 在线天堂中文资源库| 各种免费的搞黄视频| 欧美成人午夜精品| 久久国产精品大桥未久av| 亚洲国产中文字幕在线视频| 日本五十路高清| 日韩人妻精品一区2区三区| av在线播放精品| 精品一区二区三卡| 亚洲人成电影免费在线| 一边摸一边做爽爽视频免费| 国产有黄有色有爽视频| 日日夜夜操网爽| 久久国产精品男人的天堂亚洲| 制服诱惑二区| 国产精品1区2区在线观看. | 国产在线观看jvid| 国产成人av教育| 美女国产高潮福利片在线看| 亚洲人成77777在线视频| 男女国产视频网站| 午夜影院在线不卡| 精品熟女少妇八av免费久了| 黑人巨大精品欧美一区二区mp4| 人人妻人人澡人人爽人人夜夜| 夫妻午夜视频| 乱人伦中国视频| 亚洲av国产av综合av卡| www日本在线高清视频| 一二三四社区在线视频社区8| 国产区一区二久久| 狠狠精品人妻久久久久久综合| 高清黄色对白视频在线免费看| 啦啦啦中文免费视频观看日本| 欧美97在线视频| 精品国产乱码久久久久久小说| 水蜜桃什么品种好| 免费观看av网站的网址| 精品少妇内射三级| 日韩,欧美,国产一区二区三区| 午夜激情久久久久久久| 极品少妇高潮喷水抽搐| 免费在线观看黄色视频的| 国产精品一区二区精品视频观看| 精品国产一区二区三区久久久樱花| 精品第一国产精品| h视频一区二区三区| 国产极品粉嫩免费观看在线| 欧美日韩黄片免| 男女免费视频国产| 精品国产国语对白av| 亚洲国产精品999| 成年女人毛片免费观看观看9 | 国产99久久九九免费精品| 美女中出高潮动态图| 18禁黄网站禁片午夜丰满| 亚洲五月色婷婷综合| 最近中文字幕2019免费版| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av香蕉五月 | 国产熟女午夜一区二区三区| 日韩一区二区三区影片| av超薄肉色丝袜交足视频| 亚洲av成人一区二区三| 大香蕉久久网| 黄色怎么调成土黄色| av欧美777| 99热网站在线观看| 成人国产一区最新在线观看| 国产熟女午夜一区二区三区| 精品国产超薄肉色丝袜足j| 亚洲欧美精品自产自拍| 精品久久久精品久久久| 国产精品一区二区在线观看99| 中文字幕最新亚洲高清| 啦啦啦免费观看视频1| 视频区图区小说| 亚洲熟女毛片儿| 国产福利在线免费观看视频| 人成视频在线观看免费观看| 天天躁日日躁夜夜躁夜夜| 在线精品无人区一区二区三| 亚洲国产精品一区三区| 国产免费av片在线观看野外av| 女人精品久久久久毛片| 丝瓜视频免费看黄片| 欧美成狂野欧美在线观看| 女性被躁到高潮视频| 成人亚洲精品一区在线观看| 日日摸夜夜添夜夜添小说| 80岁老熟妇乱子伦牲交| 国产精品免费大片| tube8黄色片| 女警被强在线播放| 老熟妇仑乱视频hdxx| 久久精品成人免费网站| www日本在线高清视频| 成人亚洲精品一区在线观看| 脱女人内裤的视频| 亚洲精品美女久久久久99蜜臀| 久久久精品94久久精品| 成年动漫av网址| 夜夜夜夜夜久久久久| 女人被躁到高潮嗷嗷叫费观| 久9热在线精品视频| 97精品久久久久久久久久精品| 免费观看人在逋| 黄色毛片三级朝国网站| www.999成人在线观看| 国产精品欧美亚洲77777| 丝袜喷水一区| 一本色道久久久久久精品综合| 伊人久久大香线蕉亚洲五| 中文欧美无线码| 97精品久久久久久久久久精品| 狠狠狠狠99中文字幕| 欧美日韩国产mv在线观看视频| 欧美日本中文国产一区发布| 色视频在线一区二区三区| 久久毛片免费看一区二区三区| 亚洲综合色网址| av天堂在线播放| 中文字幕人妻熟女乱码| 飞空精品影院首页| 亚洲熟女精品中文字幕| 美女视频免费永久观看网站| 麻豆国产av国片精品| 一边摸一边做爽爽视频免费| 亚洲人成电影观看| 一区二区三区激情视频| 老鸭窝网址在线观看| 欧美人与性动交α欧美软件| 丝袜美腿诱惑在线| 一本大道久久a久久精品| 国产精品一区二区在线观看99| 一区二区三区四区激情视频| 国产精品九九99| 精品一区二区三区av网在线观看 | 国产免费现黄频在线看| 纯流量卡能插随身wifi吗| 久久精品亚洲av国产电影网| 亚洲中文字幕日韩| 久久精品成人免费网站| 亚洲成人免费电影在线观看| 久久九九热精品免费| 侵犯人妻中文字幕一二三四区| 啪啪无遮挡十八禁网站| av免费在线观看网站| 国产成人精品久久二区二区91| 咕卡用的链子| 美女脱内裤让男人舔精品视频| 国产成人精品久久二区二区免费| 国产一区二区三区在线臀色熟女 | 91av网站免费观看| 99国产精品一区二区三区| 久久中文字幕一级| 超碰成人久久| 69av精品久久久久久 | 欧美在线黄色| 2018国产大陆天天弄谢| 一区二区日韩欧美中文字幕| 夫妻午夜视频| 91麻豆精品激情在线观看国产 | videosex国产| 亚洲欧美一区二区三区久久| 91av网站免费观看| 色婷婷久久久亚洲欧美| 亚洲国产精品一区二区三区在线| 女性被躁到高潮视频| 男女免费视频国产| 欧美日韩精品网址| 又大又爽又粗| 不卡一级毛片| bbb黄色大片| 国产欧美日韩一区二区三区在线| 三级毛片av免费| 自线自在国产av| 国产国语露脸激情在线看| 亚洲全国av大片| 一进一出抽搐动态| 十八禁高潮呻吟视频| 99久久精品国产亚洲精品| 黑人巨大精品欧美一区二区蜜桃| 精品国产一区二区久久| av天堂在线播放| 操美女的视频在线观看| 天天影视国产精品| 国产亚洲午夜精品一区二区久久| 久久久精品免费免费高清| 午夜久久久在线观看| 精品一品国产午夜福利视频| 中文字幕最新亚洲高清| 高清视频免费观看一区二区| 久久久久久久精品精品| av超薄肉色丝袜交足视频| 色播在线永久视频| 欧美黄色片欧美黄色片| 欧美精品人与动牲交sv欧美| 99香蕉大伊视频| 老司机亚洲免费影院| 久久精品人人爽人人爽视色| 中文欧美无线码| a 毛片基地| 叶爱在线成人免费视频播放| 丰满迷人的少妇在线观看| av线在线观看网站| 成人黄色视频免费在线看| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品粉嫩美女一区| 欧美中文综合在线视频| 一个人免费看片子| 99久久精品国产亚洲精品| 飞空精品影院首页| 视频在线观看一区二区三区| 国产精品熟女久久久久浪| 人妻一区二区av| 国产亚洲欧美精品永久| 中文字幕制服av| 最近最新免费中文字幕在线| 天天躁日日躁夜夜躁夜夜| www.999成人在线观看| 国产成人啪精品午夜网站| 日韩欧美国产一区二区入口| 亚洲人成电影观看| 五月天丁香电影| 老司机影院毛片| 精品国产乱子伦一区二区三区 | 欧美精品一区二区免费开放| a级毛片黄视频| 大陆偷拍与自拍| 亚洲欧美日韩高清在线视频 | 亚洲精品美女久久av网站| 欧美国产精品一级二级三级| 国产亚洲av片在线观看秒播厂| 精品国产乱码久久久久久小说| 亚洲熟女毛片儿| 啪啪无遮挡十八禁网站| 亚洲欧美清纯卡通| 久久女婷五月综合色啪小说| av不卡在线播放| 亚洲国产欧美一区二区综合| 蜜桃国产av成人99| 日本撒尿小便嘘嘘汇集6| 国产在线观看jvid| 久久ye,这里只有精品| 十八禁网站免费在线| 国产成人精品久久二区二区免费| 亚洲七黄色美女视频| 九色亚洲精品在线播放| 国产av又大| av线在线观看网站| 高清av免费在线| 亚洲成人国产一区在线观看| 国产一区二区 视频在线| 国产在线视频一区二区| 丰满少妇做爰视频| av网站免费在线观看视频| 黄网站色视频无遮挡免费观看| 美女主播在线视频| 欧美av亚洲av综合av国产av| 亚洲欧洲精品一区二区精品久久久| 欧美黄色片欧美黄色片| 亚洲国产欧美网| 日本a在线网址| 一级a爱视频在线免费观看| 国产精品偷伦视频观看了| 国产欧美日韩一区二区三区在线| 爱豆传媒免费全集在线观看| 久久天堂一区二区三区四区| 真人做人爱边吃奶动态| 男女免费视频国产| 激情视频va一区二区三区| 国产成人一区二区三区免费视频网站| 日韩视频在线欧美| 国产一区二区 视频在线| 国产一区二区激情短视频 | 免费高清在线观看视频在线观看| 99热国产这里只有精品6| 五月天丁香电影| 国产亚洲一区二区精品| 久久这里只有精品19| 啦啦啦免费观看视频1| 搡老乐熟女国产| 成年人免费黄色播放视频| 一本久久精品| 丝袜人妻中文字幕| 韩国精品一区二区三区| 亚洲国产中文字幕在线视频| 日本黄色日本黄色录像| 大片免费播放器 马上看| 中文字幕人妻丝袜制服| 亚洲精品第二区| 国产黄频视频在线观看| 极品少妇高潮喷水抽搐| 久久久久精品国产欧美久久久 | 中国国产av一级| 欧美日韩中文字幕国产精品一区二区三区 | tocl精华| 无遮挡黄片免费观看| 亚洲精品国产色婷婷电影| 国产一区二区三区综合在线观看| 欧美人与性动交α欧美软件| 一区二区三区精品91| 久久人人97超碰香蕉20202| 久久久久国产一级毛片高清牌| 热99久久久久精品小说推荐| 国产成人精品久久二区二区免费| 一级片免费观看大全| 久久久久久久大尺度免费视频| 最新在线观看一区二区三区| 久久中文看片网| netflix在线观看网站| 日韩人妻精品一区2区三区| 国产高清视频在线播放一区 | 亚洲视频免费观看视频| 少妇猛男粗大的猛烈进出视频| 满18在线观看网站| 黄色 视频免费看| 中文字幕色久视频| 午夜福利,免费看| 精品久久久精品久久久| 汤姆久久久久久久影院中文字幕| 久久精品国产a三级三级三级| 欧美中文综合在线视频| 女人久久www免费人成看片| 色婷婷久久久亚洲欧美| 欧美人与性动交α欧美精品济南到| 亚洲国产毛片av蜜桃av| 淫妇啪啪啪对白视频 | 日日摸夜夜添夜夜添小说| 国产福利在线免费观看视频| 老司机靠b影院| 在线av久久热| 高清视频免费观看一区二区| 老司机深夜福利视频在线观看 | 91成人精品电影| 久久影院123| 免费高清在线观看日韩| 一边摸一边做爽爽视频免费| 亚洲av男天堂| 午夜福利,免费看| 日韩免费高清中文字幕av| 丝袜人妻中文字幕| 国产日韩欧美亚洲二区| 丰满迷人的少妇在线观看| 俄罗斯特黄特色一大片| 激情视频va一区二区三区| 日韩大片免费观看网站| 一本一本久久a久久精品综合妖精| 91九色精品人成在线观看| 最新的欧美精品一区二区| 亚洲少妇的诱惑av| 国产精品一区二区在线不卡| 大陆偷拍与自拍| 亚洲中文字幕日韩| 两人在一起打扑克的视频| 宅男免费午夜| 中文字幕精品免费在线观看视频| 成人手机av| 国产日韩欧美在线精品| 脱女人内裤的视频| 交换朋友夫妻互换小说| 韩国精品一区二区三区| 国产高清国产精品国产三级| 91av网站免费观看| 黄色 视频免费看| 亚洲avbb在线观看| 午夜福利免费观看在线| 日韩一区二区三区影片| 十分钟在线观看高清视频www| 高清视频免费观看一区二区| www日本在线高清视频| av福利片在线| 考比视频在线观看| 精品久久久精品久久久| 制服诱惑二区| avwww免费| 亚洲成人手机| 欧美日韩成人在线一区二区| 波多野结衣av一区二区av| 亚洲欧洲精品一区二区精品久久久| 午夜两性在线视频| 久久久国产成人免费| 日韩精品免费视频一区二区三区| 亚洲成人手机| 在线观看免费日韩欧美大片| 啦啦啦免费观看视频1| 国产av国产精品国产| 日韩人妻精品一区2区三区| 亚洲少妇的诱惑av| 精品第一国产精品| 亚洲一码二码三码区别大吗| 午夜视频精品福利| 法律面前人人平等表现在哪些方面 | av福利片在线| 国产精品香港三级国产av潘金莲| 国产免费视频播放在线视频| 最新的欧美精品一区二区| 国产一区有黄有色的免费视频| 日日夜夜操网爽| 中国美女看黄片| 一个人免费看片子| 一级毛片精品| 1024视频免费在线观看| 国产亚洲av片在线观看秒播厂| 久久青草综合色| 久久天躁狠狠躁夜夜2o2o| 午夜福利视频在线观看免费| 一区二区三区四区激情视频| 久久精品成人免费网站| 国产在线观看jvid| 中文字幕高清在线视频| 青草久久国产| 在线观看免费视频网站a站| 9191精品国产免费久久| 后天国语完整版免费观看| 久久久精品免费免费高清| 国产成+人综合+亚洲专区| 一区在线观看完整版| 久久久精品免费免费高清| 亚洲专区字幕在线| 免费在线观看黄色视频的| 亚洲成人国产一区在线观看| 国产老妇伦熟女老妇高清| 性少妇av在线| 99国产精品免费福利视频| 一级a爱视频在线免费观看| 狂野欧美激情性xxxx| 日韩熟女老妇一区二区性免费视频| 建设人人有责人人尽责人人享有的|