譚仕林, 尹順達(dá), 歐陽鋼
尺寸效應(yīng)對MoS2/WSe2范德華異質(zhì)結(jié)構(gòu)層間與俄歇復(fù)合的界面調(diào)控
譚仕林, 尹順達(dá), 歐陽鋼
(湖南師范大學(xué) 物理與電子科學(xué)學(xué)院, 低維量子結(jié)構(gòu)與調(diào)控教育部重點實驗室, 長沙 410081)
為探索界面工程對二維材料范德華異質(zhì)結(jié)構(gòu)中載流子復(fù)合率的影響, 本工作基于界面鍵弛豫理論和費米黃金定則, 建立了范德華異質(zhì)結(jié)俄歇和層間復(fù)合率與各結(jié)構(gòu)組元尺寸之間的理論模型。結(jié)果表明, MoS2/WSe2異質(zhì)結(jié)的俄歇復(fù)合壽命隨著組元尺寸的增大而增加, 且異質(zhì)結(jié)的俄歇復(fù)合率遠(yuǎn)小于相應(yīng)的單組元體系。在MoS2/WSe2雙層異質(zhì)結(jié)中引入薄h-BN插層后, 體系的層間復(fù)合率和俄歇復(fù)合率隨h-BN厚度的增加而分別呈現(xiàn)減小和增大的趨勢; 在組元處于單層MoS2和WSe2情況下, 當(dāng)界面插層h-BN厚度達(dá)到9.1 nm時, 俄歇復(fù)合率將趨于5.3 ns–1。該研究結(jié)果為二維過渡金屬硫族化合物基異質(zhì)結(jié)光電器件的優(yōu)化設(shè)計提供了一種理論依據(jù)。
MoS2; WSe2; 異質(zhì)結(jié); 插層絕緣體; 層間復(fù)合; 俄歇復(fù)合
單層MoS2和WSe2是典型的二維過渡金屬硫族化合物(Transition metal dichalcogenides, TMDs)材料, 由于具有優(yōu)異的光吸收和尺寸可調(diào)的帶隙等性質(zhì)[1-3], 可組裝成具有II型能級排列的MoS2/WSe2雙層范德華異質(zhì)結(jié)構(gòu)。然而, 由于體系中存在較高的層間載流子復(fù)合[4-6], 導(dǎo)致光電轉(zhuǎn)換效率較低(0.1%~2%)[4-6], 不能達(dá)到在光電/光伏器件中的實際應(yīng)用要求。目前研究發(fā)現(xiàn)[7-12], 在異質(zhì)結(jié)中引入界面插層, 可有效提高器件性能。如在雙層異質(zhì)結(jié)中引入半導(dǎo)體插層可提升載流子遷移率; 而引入薄絕緣體插入層, 則可以抑制層間復(fù)合并增強光電轉(zhuǎn)換能力等。
俄歇復(fù)合(Auger recombination, AR)是一種以聲子形式釋放多余能量且與載流子濃度、尺寸和形貌有關(guān)的非輻射復(fù)合過程, 此外雙激子AR是一個三體過程, 可由正俄歇復(fù)合和負(fù)俄歇復(fù)合來描述[13-15]。近年來, 俄歇復(fù)合的研究體系主要是單組元體系材料[16-17]和雙層異質(zhì)結(jié)構(gòu)[18-22], 而雙層范德華異質(zhì)結(jié)的界面調(diào)控研究集中于光譜特性及光電轉(zhuǎn)換方面(包括層間復(fù)合)[8,10-12]。在納米體系中, 由于動量和能量守恒帶來的運動約束及電子與空穴之間庫侖相互作用的增強效應(yīng), 俄歇復(fù)合過程會隨尺寸的減小而增強, 進而影響納米器件的光電性能[15,23]。一方面, 二維體系的雙激子俄歇復(fù)合壽命與厚度或橫截面積有關(guān), 而與體積基本無關(guān)[16]。另一方面, 由于尺度效應(yīng)及能帶偏移導(dǎo)致光生載流子的有效分離, 具有II型能級排列的雙層范德華異質(zhì)結(jié)的雙激子俄歇復(fù)合壽命將隨厚度的增加而變大[18]。此外, 在雙層異質(zhì)結(jié)中引入界面合金層, 可延長雙激子壽命[19]。將高透光率的插層絕緣體h-BN引入MoS2/WSe2范德華異質(zhì)結(jié)中, 則可抑制載流子的分離和層間復(fù)合, 其抑制作用隨著h-BN厚度的增大而明顯增強[8,10]。另外, 單組元體系材料的載流子遷移率可在三層膜體系中得以保持[24]。這些結(jié)果表明異質(zhì)結(jié)的材料尺寸、能級排列類型和界面性質(zhì)會顯著影響體系的層間和俄歇復(fù)合。
此外, 載流子復(fù)合也是影響范德華異質(zhì)結(jié)器件光電性質(zhì)的重要因素之一。如前所述, 高載流子復(fù)合令MoS2/WSe2的光電性能無法明顯提升, 導(dǎo)致其不能實際應(yīng)用于光伏/光電器件。因此, 有效地調(diào)制異質(zhì)結(jié)的層間和俄歇復(fù)合以提升光電性能是目前迫切需要解決的問題之一。雖然在實驗上雙層范德華異質(zhì)結(jié)體系的俄歇和層間復(fù)合已取得很大進展[11,12,18-22], 但仍缺乏基于TMDs的半導(dǎo)體–半導(dǎo)體雙層范德華異質(zhì)結(jié)的界面調(diào)控及其層間和俄歇復(fù)合率的相應(yīng)理論研究。此外, 諸如范德華異質(zhì)結(jié)的非輻射復(fù)合物理機制, 組元尺寸與層間和俄歇復(fù)合之間的理論關(guān)系等一些基本問題還有待闡明和探索。
為此, 為了探索異質(zhì)結(jié)體系的復(fù)合機制, 本研究基于界面鍵馳豫理論[25-28]和費米黃金定則[29], 從原子層次研究了TMDs與插層絕緣體的尺寸對TMDs/TMDs異質(zhì)結(jié)層間和俄歇復(fù)合的影響, 得到了尺寸依賴的帶隙漂移、俄歇復(fù)合率(壽命)和層間復(fù)合率的關(guān)系, 為TMDs基范德華異質(zhì)結(jié)的優(yōu)化設(shè)計提供了一種理論依據(jù)。
由于MoS2、WSe2的強光吸收和h-BN的高透光率等性質(zhì), 以及h-BN不影響MoS2/h-BN/WSe2中TMDs的層內(nèi)激子結(jié)合能[9], 使得該異質(zhì)結(jié)構(gòu)在光電器件中具有廣闊的應(yīng)用前景。本工作首先采用Atomistix Toolkit (ATK)建立了垂直堆垛的MoS2/WSe2和MoS2/h-BN/WSe2范德華異質(zhì)結(jié)模型, 如圖1所示, 其中,1、2和3分別為MoS2、h-BN和WSe2的厚度。
1.2.1 鍵弛豫理論
圖1 (a) MoS2/WSe2和(b) MoS2/h-BN/WSe2兩種不同范德華異質(zhì)結(jié)構(gòu)示意圖
1.2.2 費米黃金定則
各材料帶隙的尺寸效應(yīng)如圖2所示, MoS2、WSe2和h-BN的帶隙寬度隨尺寸的增大而減小, 并迅速趨近于塊體值, 且其相應(yīng)帶隙在小尺寸處變化明顯, 表明表面原子的影響隨厚度的減小而增大。根據(jù)鍵馳豫機理, 表/界面原子的配位缺陷隨體系尺寸的減小而增大, 導(dǎo)致原子鍵收縮, 體系趨近于能量最低的自平衡狀態(tài)[4], 影響能帶的漂移。近年來, 相關(guān)的實驗研究[2]和第一性原理計算[44]也表明, 帶隙隨尺寸的減小而增大。單層MoS2(WSe2)的帶隙為1.88 eV (1.68 eV), 而相應(yīng)塊體則為1.29 eV (1.20 eV)[2,4], 我們的結(jié)果與實驗測量和第一性原理計算的結(jié)果一致。圖2中的插圖為三單層MoS2/h-BN/WSe2異質(zhì)結(jié)的能級排列圖。顯然, h-BN與MoS2之間有較大的電子勢壘, 可以有效地抑制層間復(fù)合, 從而提升光電轉(zhuǎn)換效率[11-12]。此外, 在保持TMDs厚度不變的情況下, h-BN/TMDs異質(zhì)界面處的導(dǎo)帶偏移與價帶偏移都會隨著h-BN厚度的增大而減小, 這是納米體系導(dǎo)帶底能量的減小、價帶頂能量的增大[39], 以及特殊的能級排列類型所導(dǎo)致。
圖2 厚度依賴的MoS2、WSe2和h-BN的帶隙
圖3 不同體系的厚度依賴的負(fù)俄歇復(fù)合壽命()和雙激子俄歇復(fù)合壽命()
圖4 厚度依賴的異質(zhì)結(jié)層間(R)和雙激子俄歇復(fù)合率()
因此, 在低維納米結(jié)構(gòu)中, 增大光活性材料TMDs的尺寸和構(gòu)成異質(zhì)結(jié)是抑制俄歇復(fù)合過程的有效方法。此外, 插層絕緣體有益于提升器件性能; 然而插層絕緣體削弱了光生載流子的分離, 并且增強了異質(zhì)結(jié)中的量子限域效應(yīng), 導(dǎo)致俄歇復(fù)合率增強。值得注意的是, 雖然在計算中假設(shè)低維納米體系具有一個理想的能帶結(jié)構(gòu), 并忽略了異質(zhì)結(jié)界面效應(yīng)的影響, 但本工作的結(jié)果變化趨勢與實驗測量的變化趨勢非常吻合。
[1] LI M Y, CHEN C H, SHI Y,Heterostructures based on two-dimensional layered materials and their potential applications.,2016, 19(6): 322–335.
[2] MAK K F, LEE C, HONE J,Atomically thin MoS2: a new direct-gap semiconductor., 2010, 105(13): 136805.
[3] XIAO M, SUN R Z, LI Y F,Transfer printing of VO2thin films using MoS2/SiO2van der Waals heterojunctions., 2019, 34(11): 1161–1166.
[4] ZHAO Y, YU W, OUYANG G. Size-tunable band alignment and optoelectronic properties of transition metal dichalcogenide van der Waals heterostructures., 2017, 51(1): 015111.
[5] CAO G, SHANG A, ZHANG C,Optoelectronic investigation of monolayer MoS2/WSe2vertical heterojunction photoconversion devices., 2016, 30: 260–266.
[6] FURCHI M M, ZECHMEISTER A A, HOELLER F,. Photovoltaics in van der Waals heterostructures., 2016, 23(1): 106–116.
[7] CHEN Q, LI Q, YANG Y,Effects of AlGaN interlayer on scattering mechanisms in InAlN/AlGaN/GaN heterostructures., 2019, 68(1): 017301.
[8] FANG H, BATTAGLIA C, CARRARO C,. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides., 2014, 111(17): 6198–6202.
[9] LATINI S, WINTHER K T, OLSEN T,. Interlayer excitons and band alignment in MoS2/h-BN/WSe2van der Waals heterostructures., 2017, 17(2): 938–945.
[10] KIM J Y, KIM S G, YOUN J W,Energy and charge transfer effects in two-dimensional van der Waals hybrid nanostructures on periodic gold nanopost array., 2018, 112(19): 193101.
[11] YANG L, YU X, XU M,. Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer., 2014, 2(40): 16877–16883.
[12] [12] MENG J H, LIU X, ZHANG X W,Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer., 2016, 28: 44–50.
[13] SUN W F, LI M C, ZHAO L C. First-principles investigation of carrier Auger lifetime and impact ionization rate in narrow-gap superlattices., 2010, 59(8): 5661–5666.
[14] HE Y, OUYANG G. Geometry-dependent Auger recombination process in semiconductor nanostructures., 2017, 121(42): 23811–23816.
[15] 賀言. 半導(dǎo)體納米結(jié)構(gòu)的表/界面以及光電性質(zhì)的調(diào)控研究. 長沙: 湖南師范大學(xué)博士學(xué)位論文, 2017.
[16] LI Q, LIAN T. Area- and thickness-dependent biexciton Auger recombination in colloidal CdSe nanoplatelets: breaking the “universal volume scaling law”., 2017, 17(5): 3152–3158.
[17] LIU S D, CHENG M T, ZHOU H J,. The effect of biexciton, wetting layer leakage and Auger capture on Rabi oscillation dam-ping in quantum dots., 2006, 55(5): 2122–2127.
[18] DENNIS A M, MANGUM B D, PIRYATINSKI A,Suppressed blinking and Auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots., 2012, 12(11): 5545–5551.
[19] PARK Y S, BAE W K, PADILHA L A,Effect of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy., 2014, 14(2): 396–402.
[20] JAIN A, VOZNYY O, HOOGLAND S,Atomistic design of CdSe/CdS core-shell quantum dots with suppressed Auger recombination., 2016, 16(10): 6491–6496.
[21] VAXENBURG R, RODINA A, LIFSHITZ E,Biexciton Auger recombination in CdSe/CdS core/shell semiconductor nanocry-stals., 2016, 16(4): 2503–2511.
[22] PELTON M, ANDREWS J J, FEDIN I,Nonmonotonic dependence of Auger recombination rate on shell thickness for CdSe/CdS core/shell nanoplatelets., 2017, 17(11): 6900–6906.
[23] BEATTIE A R, LANDSBERG P T. Auger effect in semiconductors., 1959, 249(1256): 16–29.
[24] [24] LU N, GUO H, WANG L,Van der Waals trilayers and superlattices: modification of electronic structures of MoS2by intercalation., 2014, 6(9): 4566–4571.
[25] SUN C Q. Size dependence of nanostructures: impact of bond order deficiency., 2007, 35(1): 1–159.
[26] OUYANG G, WANG C X, YANG G W. Surface energy of nanostructural materials with negative curvature and related size effects., 2009, 109(9): 4221–4247.
[27] ZHANG A, ZHU Z, HE Y,Structure stabilities and transitions in polyhedral metal nanocrystals: an atomic-bond-relaxation approach., 2012, 100(17): 171912.
[28] ZHU Z, ZHANG A, OUYANG G,Edge effect on band gap shift in Si nanowires with polygonal cross-sections., 2011, 98(26): 263112.
[29] CHEPIC D I, EFROS A L, EKIMOV A I,. Auger ionization of semiconductor quantum drops in a glass matrix., 1990, 47(3): 113–127.
[30] [30] OUYANG G, ZHU W G, SUN C Q,Atomistic origin of lattice strain on stiffness of nanoparticles., 2010, 12(7): 1543–1549.
[31] DANOVICH M, ZóLYOMI V, FAL’KO V I,. Auger recombination of dark excitons in WS2and WSe2monolayers., 2016, 3(3): 035011.
[32] JIN C, KIM J, WU K,On optical dipole moment and radiative recombination lifetime of excitons in WSe2., 2017, 27(19): 1601741.
[33] HUR J H, PARK J, JEON S. A theoretical modeling of photocurrent generation and decay in layered MoS2thin-film transistor photosensors., 2017, 50(6): 065105.
[34] GUO N, WEI J, JIA Y,Fabrication of large area hexagonal boron nitride thin films for bendable capacitors., 2013, 6(8): 602–610.
[35] KIRCHARTZ T, MATTHEIS J, RAU U. Detailed balance theory of excitonic and bulk heterojunction solar cells., 2008, 78(23): 235320.
[36] ZEGRYA G G, ANDREEV A D. Mechanism of suppression of Auger recombination processes in type-II heterostructures., 1995, 67(18): 2681–2683.
[37] HE Y, QUAN J, OUYANG G. The atomistic origin of interface confinement and enhanced conversion efficiency in Si nanowire solar cells., 2016, 18(10): 7001–7006.
[38] ZHANG C, FU L, ZHAO S,Controllable Co-segregation synthesis of wafe-scale hexagonal boron nitride thin films.,2014, 26(11): 1776–1781.
[39] KANG J, TONGAY S, ZHOU J,Band offsets and heterostructures of two-dimensional semiconductors., 2013, 102(1): 012111.
[40] WANG J, MA F, LIANG W,Optical, photonic and optoelectronic properties of graphene, h-BN and their hybrid materials., 2017, 6(5): 943–976.
[41] VU Q A, LEE J H, NGUYEN V L,Tuning carrier tunneling in van der Waals heterostructures for ultrahigh detectivity., 2016, 17(1): 453–459.
[42] DAS S, PRAKASH A, SALAZAR R,Towards low-power electronics: tunneling phenomena in transition metal dichalcogenides., 2014, 8(2): 1681–1689.
[43] CHOI M S, LEE G H, YU Y J,Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices., 2013, 4(1): 1624.
[44] YUN W S, HAN S W, HONG S C,. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2semiconductors (M=Mo, W; X=S, Se, Te)., 2012, 85(3): 033305.
[45] GARCíA-SANTAMARíA F, BROVELLI S, VISWANATHA R,Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface., 2011, 11(2): 687–693.
[46] COHN A W, RINEHART J D, SCHIMPF A M,Size dependence of negative trion Auger recombination in photodoped CdSe nanocrystals., 2013, 14(1): 353–358.
[47] HE Y, HU S, HAN T,Suppression of the Auger recombination process in CdSe/CdS core/shell nanocrystals., 2019, 4(5): 9198–9203.
Size Effect on the Interface Modulation of Interlayer and Auger Recombination Rates in MoS2/WSe2van der Waals Heterostructures
TAN Shilin, YIN Shunda, OUYANG Gang
(Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China)
To explore the interface engineering on the carrier recombination in two-dimensional (2D) van der Waals (vdW) heterostructures, we developed a theoretical model to address the size-dependent interlayer and Auger recombination rates in MoS2/WSe2in terms of interface bond relaxation method and Fermi's golden rule. It is found that the Auger recombination lifetime in MoS2/WSe2increases with increasing thickness due to the weakening of Coulomb interaction between holes and electrons, as well as the Auger recombination rate is much smaller than that of MoS2and WSe2units. However, when the thin h-BN layer is introduced into the MoS2/WSe2, the interlayer and Auger recombination rates show opposite trends as the h-BN thickness increases. When the thickness of h-BN reaches 9.1 nm under the condition of 1L MoS2/h-BN/1L WSe2, the Auger recombination rate approaches 5.3 ns–1. These results indicate that the relevant recombination processes can be tuned by interface and dimension. Therefore, our results provide a useful guidance for the optimal design of 2D transition metal dichalcogenides-based optoelectronic nanodevices.
MoS2; WSe2; heterostructure; intercalated insulator; interlayer recombination; Auger recombination
O484
A
1000-324X(2020)06-0682-07
10.15541/jim20190386
2019-07-22;
2019-08-19
國家自然科學(xué)基金(11574080, 91833302)National Natural Science Foundation of China (11574080, 91833302)
譚仕林(1994–), 男, 碩士研究生. E-mail: tanshilin_hnu@126.com
TAN Shilin (1994–), male, Master candidate. E-mail: tanshilin_hnu@126.com
歐陽鋼, 教授. E-mail: gangouy@hunnu.edu.cn
OUYANG Gang, professor. E-mail: gangouy@hunnu.edu.cn