• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-purity Ti2AlC Powder: Preparation and Application in Ag-based Electrical Contact Materials

    2020-07-04 08:40:50DINGJianxiangHUANGPeiyanZHAYuhuiWANGDandanZHANGPeigenTIANWubianSUNZhengming
    無機(jī)材料學(xué)報(bào) 2020年6期
    關(guān)鍵詞:材料科學(xué)潤(rùn)濕性導(dǎo)電性

    DING Jianxiang, HUANG Peiyan, ZHA Yuhui, WANG Dandan, ZHANG Peigen, TIAN Wubian, SUN Zhengming

    High-purity Ti2AlC Powder: Preparation and Application in Ag-based Electrical Contact Materials

    DING Jianxiang1, HUANG Peiyan1, ZHA Yuhui1, WANG Dandan2, ZHANG Peigen2, TIAN Wubian2, SUN Zhengming2

    (1. Key Laboratory of Green Fabrieation and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243002, China; 2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China)

    Ag-based electrical contact is the "heart" of low-voltage switch, and the Cd toxicity has long been a haunting problem. It is the research focus of the low-voltage switch to find new environment-friendly electrical contact materials. Starting from the design of reinforcement for Ag-based electrical contact in this work, the high-purity Ti2AlC powder (99.2%) was synthesized by a simple and fast pressureless technique. Ag/Ti2AlC composite electrical contact material was also prepared with homogeneous structure, good bonding between Ag and Ti2AlC particles, high relative density (95.7%), moderate hardness (96HV), satisfactory electrical conductivity (low resistivity of 79.5nΩ·m), and favorable arc erosion resistance (mass loss of 4.4% after 5610 arc discharging cycles). These excellent structure and properties of Ag/Ti2AlC composite are mainly attributed to the good thermal and electrical conductivity of Ti2AlC and the good wettability between Ag and Ti2AlC. This composite is expected to replace the conventional electrical contact materials in the future.

    Ti2AlC; electrical contact; metal-ceramic composite; conductivity; wettability; arc erosion resistance

    As a core component, Ag-based electrical contact is widely used in the low-voltage switching devices, such as contactors, circuit breakers, and relays[1]. Contact material is exposed to the extremely high temperature and oxygen-enriched environment during the making and breaking of circuit, thus its performance directly determines the life of electrical appliances. In the process of contacting, contact is subjected to various working conditions with different current, voltage, temperature, humidity,. Consequently, properties such as high electrical and thermal conductivity, low contact resistance, moderate hardness, good machinability, high resistance to oxidation and arc erosion are the prerequisites for electrical contact materials[2]. Ag/CdO has been the preferred material for the electrical contacts since the early 20thcentury, but the toxicity of Cd brings a series of serious problems[3-4]. Current Cd-free contact materials (Ag/SnO2[5]、Ag/ZnO2[6]、Ag/CuO[7]、Ag/C、Ag/W[8]、Ag/Ni[9],.) cannot replace Ag/CdO completely due to their various drawbacks in the aspects of structure and property. Thus, finding the adequate environment- friendly reinforcement to replace Ag/CdO is urgent.

    Recently, MAX phase materials (chemical formula of M+1AX, where M is early transition metal, A is mainly group A element, X is C or N), with combined properties of both metal and ceramic, received great attention from academia and industry[10-11]. Ti2AlC is one member of thisMAX phase family with typically lamellar structure, light weight (4.11 g/cm3), high electrical conductivity (resistivity of 0.36μΩ·m), thermal conductivity (46 W·m–1·K–1), and excellent machinability like metals, good resistance to high-temperature and oxidation like ceramics[11]. Ti2AlC is considered as a potential reinforcement material, whose properties meet the requirement of Ag-based electrical contact materials. Over the past few years, Sun and Liu,successfully prepared Ag-based composites with the reinforcements of Ti3SiC2[12], Ti3AlC2[13-16], and Ti2SnC[17-18], and systematically studied their phase, microstructure, and properties. Besides the basic properties of MAX phase family, Ti2AlC has the outstanding resistance to oxidation. Hence, Ag/Ti2AlC (Ag/TAC) composite is expected to be the potential substitute to Ag/CdO.

    There are two key points need to be paid attention in the studying of Ag/TAC composites. First, the impure phases affect the density, structure, interface, and properties of the composites. Thus, preparing high-purity Ti2AlC powder is particularly important before studying the Ag/TAC composite electrical contact materials. The synthesis of Ti2AlC bulk and powder by using hot pressing (HP)[19], hot isostatic pressing (HIP)[20], spark plasma discharging (SPS)[21], and self-propagated sintering (SHS)[22]has been reported. These techniques, however, cost highly with complex process, and produce Ti2AlC with many impure phases such as TiC, Ti-Al compounds, and Ti3AlC2. In contrast, the pressureless sintering technique (PLS) is simple, efficient, and low-cost[23], which is more meaningful for the practical application. In addition, the preparation, microstructure, interface bonding, and electrical contacting property of composite can be largely affected by the wettability between reinforcement and Ag matrix. Therefore, the wetting behavior of Ag and Ti2AlC is a key issue for the research and application of Ag/TAC composites.

    The purpose of this work is to synthesize the high-purity Ti2AlC powder by using pressureless technique, and study the effect of process parameters on the purity and microstructure of Ti2AlC. Then the wettability, microstructure, mechanical properties, electrical properties, and arc erosion resistance of Ag/TAC composites were studied, and its application potential were also discussed.

    1 Experimental

    1.1 Synthesis of Ti2AlC powder

    Powders of TiC (~5 μm, 99.0%), Ti (~50 μm, 99.99%), and Al (~50 μm, 99.7%) were weighed according to stoichiometric ratio and then were totally homogenized in the three-dimensional mixer (Turbula T2F, WAB, Switzerland) for 24 h. Mixture powders were directly heated to the setting temperature for 1 h at a heating rate of 10 ℃/min under the protection of flowing Ar gas (99.999% purity).

    1.2 Wetting test of Ag/Ti2AlC

    Ti2AlC bulk (a relative density of 99.6%) was prepared by using SPS (heated to 1300 ℃ at a heating rate of 50 ℃/min and held for 20 min with a applied pressure of 50 MPa). The prepared composite bulk was cut into small disc (10 mm diameter) with a polished surface. Ag rod (99.99% purity, 2 mm in diameter, 2 mm in length) was placed with the disc into the high temperature contact instrument (OCA25HTV, Dataphysics, Germany), then was heated to 1120 ℃ for 10 min at a heating rate of 8 ℃/min. The wetting angle data of molten Ag on the surface of Ti2AlC were recorded by the software (SCA20).

    1.3 Preparation of Ag/Ti2AlC composite

    Powders of Ag (~10 μm, 99.99%) and Ti2AlC (~20 μm, 99.2%) were weighed with a mass ratio of 9:1. Mixture powders were wet ball milled for 0.5 h with the medium of alcohol. Dried mixture were cold-pressed at 800 MPa into green body (15 mm in diameter, 3 mm in thickness). Samples were heated to 800 ℃ for 2 h in a tube furnace with a heating rate of 5 ℃/min.

    1.4 Arc erosion experiment

    Ag/TAC bulk was cut into the contacts (1.5 mm in thickness, 7 mm in diameter), then these contacts were welded with copper bases, finally were installed into a commercial contactor (CJX-50, China). The electric arc discharging experiment was carried out at the low voltage electrical apparatus test center of Shanghai Electrical Research Institute. The arc erosion resistance of Ag/TAC contacts were tested with the following experimental parameter (set according to the national standard GB14048.4-2010): AC-3 inductive load, 400 V voltage, 100 A circuit, 50 Hz coil frequency, 600 cycles/h operation frequency.

    1.5 Characterizations

    The phases were characterized by X-ray diffraction (XRD) (Bruker-AXS D8, Germany) with a scan rate of 10 (°)/min. The morphologies of Ti2AlC powder and Ag/10TAC composites were obtained by a field-emission scanning electron microscopy (FE-SEM) (Sirion 200, FEI/Fhilips, Netherlands), and their chemical component were tested and analyzed by the energy dispersed X-ray spectrometer (EDS) (AZtes X-MAX 80, Germany). The density of Ag/10TAC bulk was directly tested with the densimeter (DH-300, China, 0.001 g/cm3accuracy). The hardness of Ag/10TAC composite was measured by the Vickers microhardness tester (FM-700, Japan, 1 kg pressure, holding time of 5 s). The resistance of Ag/10TAC bulk was obtained by using the instrument (METRAHIT 27 I, Germany, 0.001 mΩ accuracy), and then its resistivity was calculated according to the four probe principle. Mass loss of the Ag/TAC contact after arc erosion was obtained by using the electronic balance (BT25S, Sartorius, Germany, 0.01 mg accuracy). Area loss of the contact after arc erosion was calculated with the metallographic microscope analysis software (LAS V4.8, Leica, Germany).

    2 Results and discussion

    2.1 High-purity Ti2AlC powders

    During the preparation of Ti2AlC, Al first melts due to its low melting point and provides a liquid environment for the subsequent reactions. Vaporization of Al at high temperature leads to the loss of Al in the raw materials. Therefore, appropriate increase of Al content is the premise to ensure the chemical reaction according to the stoichiometric ratio of raw powder. In Table 1, the content of TiC and Ti in the raw materials remains unchanged, excessive Al are added to the raw materials to study the effect of Al content on the purity of Ti2AlC powder.

    X-ray diffraction was carried out to identify the phase composition of the as-prepared Ti2AlC powder. As shown in Fig. 1, peaks of Ti2AlC were detected in all four samples, however, some impure phases like Ti3AlC2and TiC were also detected in the final sample. Diffraction peak of the impure phase increases with the increase of the Al content in the raw materials. The purity of Ti2AlC in the four samples are calculated according to the integral area of the main peak of the main phase[24], as shown in Table 1. The result shows that the highest purity of Ti2AlC powder reaches 77.5% (Sample S1) when the molar ratio of Al is 1.05 in the starting raw material.

    Based on the Sample S1, the contents of Ti and Al in theraw materials remain unchanged, while the content of C reduces gradually. Four samples (Table 2) were designed to study the effect of C-deficiency in the raw material on the purity of Ti2AlC powder. As shown in Fig. 2, XRD result shows that Ti3AlC2and TiC phases are hardly detected in Sample S5, and the purity of Ti2AlC powder was calculated as 99.2% (Table 2), indicating that the C-deficiency in the raw materials facilitates the generation of more Ti2AlC phase. However, the further increase of C content in the raw material in turn leads to the decomposition of Ti2AlC into TiC and Ti-Al compound (Sample S6, S7). In addition, little Ti3AlC2is also detected in the final samples. The purities of both Sample 6 and Sample 7 are less than 93%, which indicates that the severe shortage of C in the raw material deteriorates the purity of Ti2AlC powder.

    Table 1 Molar ratio of raw material powder TiC/Ti/xAl

    Table 2 Molar ratio of raw material powder(2–x)TiC/xTi/1.05Al

    Fig. 2 XRD patterns of samples with different C contents

    The morphologies of samples with different C contents are displayed in Fig. 3. The powders of Sample S1, S6 and S7 exhibit irregular shape and their surfaces were covered by many adherent particles with a small size of 0.2–0.8 μm (Fig. 3(a-b, e-h). It is reported that the existence of two M layers in every two A layers leads to the formation of layered crystal structure of 211MAX phase[11]. But the more C and excessive Al in raw material powders generate the impurity phase (TiC, Ti-Al compounds,.) in addition to the main phase Ti2AlC , thus leading to the destruction of the crystal structure of Ti2AlC and its poor morphology with nonstandard layered structure. In contrast, powder of Sample S5 shows standard lamellar structure of MAX without any adherent particles (Fig. 3(c, d)), indicating that the Ti2AlC powder in Sample S5 have superior purity. This result presents that the slightly deficient C and a little more Al in raw materials do not produce impurity phase and the prepared Ti2AlC have complete crystal structure, which is consistent with that of XRD result in Fig. 2.

    Sintering temperature is another important factor for the phase transition and morphology evolution of the Ti2AlC powder during the synthesizing process. Raw powder with the composition of 0.95TiC/1.05Ti/1.05Al is heated to different temperatures, as shown in Table 3. XRD result shows that the final powder contains a large amount of TiC and Ti-Al compounds due to the insufficient reaction when synthestic temperature is below 1400 ℃ (Fig. 4). Once the temperature exceeds 1500 ℃, the synthesized Ti2AlC phase largely decomposes into TiC and Ti-Al compounds, and merely produces little Ti3AlC2. At 1400 ℃, the high-purity Ti2AlC is stable, and no impure phase is detected.

    Fig. 3 SEM images of samples with different C contents (a, b) S1; (c, d) S5; (e, f) S6; (g, h) S7

    In summary, appropriate increase of Al and slight reduction of C in the raw material facilitate the generation of Ti2AlC phase in the final powder. But excessively low and high temperature hinder the purity improvement of Ti2AlC powder. In order to obtain high-purity Ti2AlC powder, the optimal synthesis process parameters is concluded as: a raw powder with composition of 0.95TiC/1.05Ti/1.05Al, sintered at 1400 ℃ for 1 h under pressureless condition.

    Table 3 Preparation of Ti2AlC powder from 0.95TiC/1.05Ti/1.05Al at different temperatures

    Fig. 4 XRD patterns of 0.95TiC/1.05Ti/1.05Al sintered at different temperatures

    2.2 Wetting behavior of Ag/Ti2AlC

    In the process of heating, the contact angles and optical images of molten Ag on the Ti2AlC substrate are simultaneously recorded, as shown in Fig. 5. The poor wettability of Ag and Ti2AlC is observed at ~990 ℃ (a large contact angle of 154.6°). As temperature increases, Al atoms in Ti2AlC outward diffuse into Ag matrix, leading to the reactive wetting and hence the decrease of contact angle. When temperature rises to 1130 ℃, the contact angle stabilized at 14.1°, indicating that Ag well wets Ti2AlC. In the preparation of Ag/Ti2AlC composite, good wettability is beneficial to enhance the interface bonding between Ag and Ti2AlC, and reduce the aggregation of Ti2AlC particles. Good wettability also facilitates the viscosity improvement of the molten pool and the increases the resistance to splash of liquid Ag during the electric arc discharging.

    2.3 Ag/Ti2AlC composite

    XRD result of Ag/10wt%Ti2AlC (Ag/10TAC) composite is shown in Fig. 6. Except Ag and Ti2AlC, no other impure phase were detected. The SEM image of Ag/10TAC (Fig. 6(b)) shows the uniform microstructure of the composite, and the good bonding of the Ti2AlC with Ag matrix (Fig. 6(c)), which is attributed to the good wettability between the Ag and the Ti2AlC. The basic properties(density, relative density, hardness, resistivity) of Ag/10TAC composite are listed in Table 4. High relative density (~95.7%) and moderate hardness (96HV) provide good strength and machinability of the Ag/10TAC composite. Low resistivity (79.5 nΩ·m) facilitates the electric conducting of current and thus reduces contact resistivity and temperature rise of the Ag/10TAC contact.

    Fig. 5 Contact angles and optical images of Ag/Ti2AlC in the process of heating

    2.4 Arc erosion resistance of Ag/10TAC

    Arc erosion resistance is an important index to evaluate the application potential of an electrical contact material. As shown in Fig. 7, after 5610 electric arc discharging cycles, the shape of Ag/10TAC contact remains well (inset of Fig. 7(a)). The erosion area of eroded contact surface accounts for 88.6% of the total contact area,but the mass loss is only 4.4wt%, indicating that Ag/10TAC has strong resistance to arc erosion. Fine thermal and low resistivity of Ti2AlC, good wettability between molten Ag and Ti2AlC, and the interdiffusion between Ag and Ti2AlC are responsible for the good contacting properties of the Ag/10TAC composite. After arc erosion, a few cracks, holes, and Ag spheres were observed on the surface of Ag/10TAC contact (Fig. 7(b)). The Ag matrix inside molten pool mainly exhibits cauliflower-shaped after arc erosion, as shown in inset of Fig. 7(c). In addition, some dark areas were observed on the contact surface (Fig. 7(b, d)), which mainly contains Ti, O, C, and little Al by EDS. The formation of these dark areas is attributed to the aggregation of the eroded Ti2AlC, which has been partially destroyed by high-temperature oxidation during electric arc discharging.

    Fig. 6 XRD pattern of Ag/10TAC composite with insets showing (a) picture of the bulk, (b) microstructure of composite, and (c) the magnified SEM image

    Table 4 Basic properties of Ag/Ti2AlC composite

    Fig. 7 (a) Optical image of the Ag/10TAC contact after 5610 arc discharging cycles, with magnified SEM image in the inset; (b) SEM image of the contact surface morphology; (c) Morphology of the Ag molten pool, with magnified SEM image of cauliflower-shaped Ag particles in the inset; (d) Magnified SEM image of the aggregated eroded Ti2AlC (dark area in (b))

    3 Conclusions

    Pressureless synthesis was employed to study the effect of composition and sintering temperature on the purity and morphology of Ti2AlC powder. The structure and properties of the Ag/10TAC composite electrical contact material are investigated. Main conclusions are drawn as follows:

    1) High-purity Ti2AlC powder (99.2%) is synthesized at 1400 ℃/h by using the raw powder with the starting composition of 0.95TiC/1.05Ti/1.05Al.

    2) Contact angle decreases with temperature increasing, due to the reactive wetting between molten Ag and Ti2AlC. Small contact angle (14°) is obtained at 1130 ℃. Good wettability facilitates the preparation and improves the arc erosion resistance of Ag/Ti2AlC.

    3) Ag/10TAC composite exhibits uniform structure, high density, moderate hardness, low resistivity, and favorable arc erosion resistance.

    4) Ti2AlC has been proven experimentally to be a promising reinforcement for Ag-based electric contact material.

    [1] WINDRED G. Electrical contact resistance., 1941, 231(6): 547–585.

    [2] HOLM R, HOLM E. Electric Contacts Handbook. Berlin: Springer, 1958.

    [3] COSOVIC V, COSOVIC A, TALIJAN N,State of the art and challenges in development of electrical contact materials in the light of the RoHS directive., 2012, 44(2): 245–253.

    [4] SLADE P G. Effect of high temperature on the release of heavy metals from AgCdO and AgSnO2contacts., 1989, 12(1): 5–15.

    [5] SCHRODER K H. Silver-metal oxides as contact materials., 1987, 10(1): 127–134.

    [6] WU C P, YI D Q, LI J,Investigation on microstructure and performance of Ag/ZnO contact material., 2008, 457(1/2): 565–570.

    [7] ZHOU X L, CAO J C, CHEN J C,Micro-superplastic behavior of copper oxide in AgCuO composites., 2013, 42(11): 2242–2244.

    [8] WOJCIK-GRZYBEK D, FRYDMAN K, BORKOWSKI P. The influence of the microstructure on the switching properties of Ag C, Ag-WC-C and Ag-WC contact materials., 2013, 58(4): 1059–1065.

    [9] WU C P, YI D Q, WENG W,Arc erosion behavior of Ag/Ni electrical contact materials., 2015, 85: 511–519.

    [10] BARSOUM M W. The M+1AXphases: a new class of solids; thermodynamically stable nanolaminates., 2000, 28(1-4): 201–281.

    [11] SUN Z M. Progress in research and development on MAX phases: a family of layered ternary compounds., 2011, 56(3): 143–166.

    [12] ZHANG M, TIAN W B, ZHANG P G,Microstructure and properties of Ag-Ti3SiC2contact materials prepared by pressureless sintering., 2018, 25(7): 810–816.

    [13] DING J X, TIAN W B, ZHANG P G,Arc erosion behavior of Ag/Ti3AlC2electrical contact materials., 2018, 740: 669–676.

    [14] DING J X, TIAN W B, WANG D D,Corrosion and degradation mechanism of Ag/Ti3AlC2composites under dynamic electric arc discharging., 2019, 156: 147–160.

    [15] WANG D D, TIAN W B, MA A B,Anisotropic properties of Ag/Ti3AlC2electrical contact materials prepared by equal channel angular pressing., 2019, 784: 431–438.

    [16] LIU M M, CHEN J L, CUI H,Ag/Ti3AlC2composites with high hardness, high strength and high conductivity., 2018, 213: 269–273.

    [17] DING J X, TIAN W B, ZHANG P G,Preparation and arc erosion properties of Ag/Ti2SnC composites under electric arc discharging., 2019, 8(1): 90–101.

    [18] DING J X, TIAN W B, WANG D D,Microstructure evolution, oxidation behavior and corrosion mechanism of Ag/Ti2SnC composite during dynamic electric arc discharging., 2019, 785: 1086–1096.

    [19] ZHU J F, GAO J Q, YANG J F,Synthesis and microstructure of layered-ternary Ti2AlC ceramic by high energy milling and hot pressing., 2008, 490(1/2): 62–65.

    [20] BAI Y L, ZHANG H X, HE X D,Growth morphology and microstructural characterization of nonstoichiometric Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing., 2014, 45: 58–63.

    [21] ZHOU W B, MEI B C, ZHU J Q,Rapid synthesis of Ti2AlC by spark plasma sintering technique., 2005, 59(1): 131–134.

    [22] LIANG B Y, WANG M Z, LI X P,Synthesis of Ti2AlC by laser- induced self-propagating high-temperature sintering., 2010, 501(1): L1–L3.

    [23] LIU W, BO T Z, XIE Z P,Fabrication of injection moulded translucent alumina ceramicspressureless sintering., 2011, 110(4): 251–254.

    [24] YEH C L, SHEN Y G. Combustion synthesis of Ti3AlC2from Ti/Al/C/TiC powder compacts., 2008, 466: 308–313.

    高純Ti2AlC粉末的無壓制備及其在Ag基電觸頭材料的應(yīng)用

    丁健翔1, 黃培艷1, 查余輝1, 汪丹丹2, 張培根2, 田無邊2, 孫正明2

    (1. 安徽工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院, 先進(jìn)金屬材料綠色制備與表面技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室, 馬鞍山 243002; 2. 東南大學(xué) 材料科學(xué)與工程學(xué)院, 南京 211189)

    Ag基電觸頭是低壓開關(guān)的“心臟”, 觸頭無Cd化一直困擾著人們, 尋找新型環(huán)保電觸頭材料是目前低壓開關(guān)領(lǐng)域研究的重點(diǎn)。本研究從Ag基電觸頭增強(qiáng)相材料設(shè)計(jì)入手, 利用簡(jiǎn)單快速的無壓技術(shù)合成了高純Ti2AlC粉末(99.2%), 制備的Ag/Ti2AlC復(fù)合電觸頭材料組織均勻、Ti2AlC顆粒與Ag基體結(jié)合緊密、相對(duì)密度高(95.7%)、硬度適中(96HV)、導(dǎo)電性好(電阻率低至79.5 nΩ·m)、抗電弧侵蝕性能優(yōu)良(5610次電弧放電后觸頭質(zhì)量損失僅為4.4wt%)。Ag/Ti2AlC優(yōu)良的結(jié)構(gòu)和性能主要?dú)w因于Ti2AlC本身的導(dǎo)電導(dǎo)熱性能和Ag/Ti2AlC之間的潤(rùn)濕性。該復(fù)合材料在進(jìn)一步深入研究后, 有望大面積應(yīng)用并替代傳統(tǒng)電觸頭材料。

    Ti2AlC; 電觸頭; 金屬陶瓷復(fù)合; 導(dǎo)電性; 潤(rùn)濕性; 抗電弧侵蝕

    TG148

    A

    date:2019-05-23;

    date: 2019-07-14

    National Natural Science Foundation of China (51731004, 51671054); Fundamental Research Funds for the Central Universities in China (2242018K40108; 2242018K40109); Natural Science Foundation of Jiangsu Province (BK20181285); Youth Research Fund Project of Anhui University of Technology

    DING Jianxiang(1987-), male, PhD candidate. E-mail: 15295562390@163.com; jxding@ahut.edu.cn

    丁健翔(1987-), 男, 博士研究生. E-mail: 15295562390@163.com; jxding@ahut.edu.cn

    Corresponding author:TIAN Wubian, associate professor. E-mail: wbtian@seu.edu.cn; SUN Zhengming, professor. E-mail: zmsun@seu.edu.cn

    田無邊, 副教授. E-mail: wbtian@seu.edu.cn; 孫正明, 教授. E-mail: zmsun@seu.edu.cn

    1000-324X(2020)06-0729-06

    10.15541/jim20190243

    猜你喜歡
    材料科學(xué)潤(rùn)濕性導(dǎo)電性
    中海油化工與新材料科學(xué)研究院
    材料科學(xué)與工程學(xué)科
    加入超高分子量聚合物的石墨烯纖維導(dǎo)電性優(yōu)異
    分子動(dòng)力學(xué)模擬研究方解石表面潤(rùn)濕性反轉(zhuǎn)機(jī)理
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    等離子體對(duì)老化義齒基托樹脂表面潤(rùn)濕性和粘接性的影響
    預(yù)潤(rùn)濕對(duì)管道潤(rùn)濕性的影響
    PPy/Ni/NanoG復(fù)合材料的制備及導(dǎo)電性能研究
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    国产激情久久老熟女| 中文字幕精品免费在线观看视频| 女人被躁到高潮嗷嗷叫费观| 宅男免费午夜| www.www免费av| 国产亚洲欧美精品永久| 国产精品亚洲美女久久久| 国产成人欧美| 久久精品影院6| 日韩大码丰满熟妇| 久久久久久久久免费视频了| 久久久久久免费高清国产稀缺| 日韩精品免费视频一区二区三区| 亚洲九九香蕉| 老司机午夜福利在线观看视频| 精品久久久精品久久久| 亚洲精品在线观看二区| 亚洲av电影在线进入| 99香蕉大伊视频| 精品久久久久久久久久免费视频| 在线观看www视频免费| 丰满的人妻完整版| 桃红色精品国产亚洲av| 亚洲情色 制服丝袜| 亚洲五月色婷婷综合| 午夜福利高清视频| 变态另类丝袜制服| 日本一区二区免费在线视频| 国产成人精品久久二区二区免费| 亚洲伊人色综图| 琪琪午夜伦伦电影理论片6080| 后天国语完整版免费观看| 最近最新中文字幕大全电影3 | 黄色丝袜av网址大全| 又黄又爽又免费观看的视频| av中文乱码字幕在线| videosex国产| 非洲黑人性xxxx精品又粗又长| 免费观看精品视频网站| 纯流量卡能插随身wifi吗| 91精品三级在线观看| 国产色视频综合| 久久午夜综合久久蜜桃| 麻豆成人av在线观看| 精品一品国产午夜福利视频| 午夜福利在线观看吧| 午夜成年电影在线免费观看| 国产精品99久久99久久久不卡| 日韩 欧美 亚洲 中文字幕| 18禁美女被吸乳视频| 首页视频小说图片口味搜索| 色老头精品视频在线观看| 一级a爱片免费观看的视频| 欧美激情高清一区二区三区| 欧美中文日本在线观看视频| 曰老女人黄片| 久久亚洲精品不卡| 免费看十八禁软件| 午夜久久久久精精品| 黑人巨大精品欧美一区二区mp4| 国产精品久久久人人做人人爽| 电影成人av| 国产精品 欧美亚洲| 国语自产精品视频在线第100页| 一a级毛片在线观看| cao死你这个sao货| 中文字幕最新亚洲高清| 久久久久久人人人人人| 国产欧美日韩精品亚洲av| 69精品国产乱码久久久| 一区二区三区国产精品乱码| 无遮挡黄片免费观看| 午夜亚洲福利在线播放| 国产成人啪精品午夜网站| 国产成+人综合+亚洲专区| 久久国产乱子伦精品免费另类| 欧美日韩乱码在线| 大码成人一级视频| 在线观看免费视频日本深夜| 国产一区二区三区综合在线观看| 欧美黄色淫秽网站| 欧美精品啪啪一区二区三区| 久久天堂一区二区三区四区| 大香蕉久久成人网| 热re99久久国产66热| 亚洲精品在线观看二区| cao死你这个sao货| 黄色a级毛片大全视频| 亚洲一区二区三区色噜噜| 一二三四社区在线视频社区8| 在线观看免费日韩欧美大片| 久久久久久久久中文| 国产男靠女视频免费网站| 91av网站免费观看| √禁漫天堂资源中文www| 少妇 在线观看| 黄片小视频在线播放| 好男人在线观看高清免费视频 | 亚洲国产欧美日韩在线播放| 成在线人永久免费视频| 国产av一区在线观看免费| 女同久久另类99精品国产91| 女生性感内裤真人,穿戴方法视频| 日本一区二区免费在线视频| 亚洲午夜精品一区,二区,三区| 国产精品香港三级国产av潘金莲| 黄片大片在线免费观看| 精品高清国产在线一区| 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 亚洲av片天天在线观看| 国产又色又爽无遮挡免费看| 18美女黄网站色大片免费观看| xxx96com| av天堂在线播放| 国产亚洲精品久久久久5区| 精品午夜福利视频在线观看一区| 国产亚洲精品久久久久久毛片| 中文字幕人妻丝袜一区二区| 女警被强在线播放| 老司机深夜福利视频在线观看| 久久亚洲精品不卡| 欧美乱妇无乱码| 国产成人免费无遮挡视频| 波多野结衣高清无吗| 国产亚洲精品久久久久5区| 亚洲国产中文字幕在线视频| 亚洲精品中文字幕在线视频| 日韩欧美免费精品| 国产精品久久电影中文字幕| 丝袜在线中文字幕| 国产精品自产拍在线观看55亚洲| 两人在一起打扑克的视频| 欧美性长视频在线观看| 人人妻人人爽人人添夜夜欢视频| aaaaa片日本免费| 国产精品国产高清国产av| 老司机靠b影院| 欧美黑人欧美精品刺激| 99在线视频只有这里精品首页| 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| 亚洲无线在线观看| 国产精品永久免费网站| 夜夜看夜夜爽夜夜摸| 啦啦啦 在线观看视频| 久久久精品国产亚洲av高清涩受| 国产精品国产高清国产av| 欧美黄色片欧美黄色片| 精品无人区乱码1区二区| 欧美性长视频在线观看| 亚洲熟妇熟女久久| 性欧美人与动物交配| 国产精品一区二区精品视频观看| 十八禁网站免费在线| 日本一区二区免费在线视频| 国产精品99久久99久久久不卡| 一二三四社区在线视频社区8| 日本vs欧美在线观看视频| 日韩精品中文字幕看吧| 免费高清视频大片| 国产成人欧美在线观看| 女同久久另类99精品国产91| 日韩视频一区二区在线观看| 国产精品一区二区在线不卡| 亚洲成人精品中文字幕电影| 成人手机av| 日日爽夜夜爽网站| 巨乳人妻的诱惑在线观看| 18禁裸乳无遮挡免费网站照片 | 免费无遮挡裸体视频| 亚洲久久久国产精品| 97超级碰碰碰精品色视频在线观看| 久久久久国产精品人妻aⅴ院| 久久精品国产清高在天天线| 操美女的视频在线观看| 亚洲熟女毛片儿| 琪琪午夜伦伦电影理论片6080| 精品午夜福利视频在线观看一区| 成人av一区二区三区在线看| 两个人视频免费观看高清| 欧美大码av| 久久欧美精品欧美久久欧美| a在线观看视频网站| 麻豆一二三区av精品| 日韩 欧美 亚洲 中文字幕| 久久午夜亚洲精品久久| www日本在线高清视频| 国产精品免费一区二区三区在线| 性欧美人与动物交配| 亚洲三区欧美一区| 国产一区二区三区在线臀色熟女| av天堂久久9| 国产精品久久久久久亚洲av鲁大| 嫁个100分男人电影在线观看| 国产成人精品久久二区二区免费| 国产精品免费一区二区三区在线| 国产区一区二久久| 老司机靠b影院| 亚洲欧美一区二区三区黑人| 精品久久久久久久人妻蜜臀av | 国产97色在线日韩免费| 亚洲国产欧美日韩在线播放| 老鸭窝网址在线观看| 黄色毛片三级朝国网站| 国产一卡二卡三卡精品| 狂野欧美激情性xxxx| 夜夜看夜夜爽夜夜摸| 国产精品av久久久久免费| 日韩欧美国产在线观看| 免费少妇av软件| 欧美人与性动交α欧美精品济南到| 欧美绝顶高潮抽搐喷水| 午夜福利,免费看| 桃色一区二区三区在线观看| 亚洲国产欧美日韩在线播放| 亚洲精华国产精华精| 丰满人妻熟妇乱又伦精品不卡| 老司机靠b影院| 男女下面插进去视频免费观看| 日日摸夜夜添夜夜添小说| avwww免费| 精品熟女少妇八av免费久了| 亚洲色图av天堂| 女生性感内裤真人,穿戴方法视频| 精品久久久久久成人av| 日韩欧美国产一区二区入口| 欧美成狂野欧美在线观看| 国产精品亚洲美女久久久| 99精品欧美一区二区三区四区| 欧美中文日本在线观看视频| 999久久久精品免费观看国产| 久久精品国产亚洲av高清一级| 免费在线观看日本一区| 18禁国产床啪视频网站| 校园春色视频在线观看| 91成人精品电影| 中国美女看黄片| 韩国av一区二区三区四区| 欧美激情 高清一区二区三区| 久久久国产成人精品二区| 国产一区二区三区视频了| 亚洲av熟女| 日日摸夜夜添夜夜添小说| 黄色女人牲交| 一卡2卡三卡四卡精品乱码亚洲| 18禁观看日本| 午夜精品在线福利| 精品不卡国产一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 看片在线看免费视频| 男女下面进入的视频免费午夜 | 国产精品久久电影中文字幕| 欧美av亚洲av综合av国产av| x7x7x7水蜜桃| 日本免费一区二区三区高清不卡 | 伊人久久大香线蕉亚洲五| 午夜福利在线观看吧| 一本综合久久免费| 亚洲熟妇中文字幕五十中出| 欧美久久黑人一区二区| 在线永久观看黄色视频| 一卡2卡三卡四卡精品乱码亚洲| 伊人久久大香线蕉亚洲五| 亚洲人成电影观看| 欧美性长视频在线观看| 91av网站免费观看| 久久精品国产综合久久久| 99热只有精品国产| 正在播放国产对白刺激| 国产主播在线观看一区二区| 老司机福利观看| 久久人人97超碰香蕉20202| 在线观看午夜福利视频| 国产精品99久久99久久久不卡| 久久中文字幕人妻熟女| 亚洲av片天天在线观看| 国产精品日韩av在线免费观看 | 久久久精品欧美日韩精品| 久久久久久久久免费视频了| 1024香蕉在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产xxxxx性猛交| 非洲黑人性xxxx精品又粗又长| 亚洲 欧美 日韩 在线 免费| 中国美女看黄片| 少妇熟女aⅴ在线视频| 一个人免费在线观看的高清视频| 国产精品一区二区免费欧美| 1024香蕉在线观看| 亚洲欧洲精品一区二区精品久久久| 美女大奶头视频| 一进一出抽搐动态| 少妇粗大呻吟视频| 99精品久久久久人妻精品| 亚洲五月色婷婷综合| av视频在线观看入口| 精品国产国语对白av| 国产精品久久久人人做人人爽| 国产色视频综合| 又黄又爽又免费观看的视频| 黄色视频,在线免费观看| 老司机福利观看| 18禁观看日本| 国产麻豆成人av免费视频| 久久精品91蜜桃| 久久天躁狠狠躁夜夜2o2o| 欧美绝顶高潮抽搐喷水| 久久人妻熟女aⅴ| 午夜日韩欧美国产| 亚洲av成人av| 欧美最黄视频在线播放免费| 十八禁网站免费在线| 久久影院123| 男女下面进入的视频免费午夜 | 精品第一国产精品| 宅男免费午夜| 黄片播放在线免费| 亚洲男人天堂网一区| 亚洲国产精品久久男人天堂| 欧美黑人精品巨大| 欧美一级毛片孕妇| 精品国产一区二区三区四区第35| 欧美成人免费av一区二区三区| 亚洲美女黄片视频| 狂野欧美激情性xxxx| 国产三级在线视频| 在线av久久热| 美女大奶头视频| 十分钟在线观看高清视频www| 91字幕亚洲| 国产欧美日韩一区二区精品| 一区二区三区高清视频在线| 国产精品美女特级片免费视频播放器 | 亚洲全国av大片| 久久九九热精品免费| 天天一区二区日本电影三级 | 亚洲人成网站在线播放欧美日韩| 亚洲精品久久国产高清桃花| 日本黄色视频三级网站网址| 制服诱惑二区| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费午夜福利视频| 97碰自拍视频| 亚洲免费av在线视频| 久久欧美精品欧美久久欧美| 免费不卡黄色视频| 免费看a级黄色片| 国内精品久久久久久久电影| 亚洲精品一区av在线观看| 国产成人一区二区三区免费视频网站| 国产精品久久久久久亚洲av鲁大| 夜夜夜夜夜久久久久| 久久欧美精品欧美久久欧美| 国产97色在线日韩免费| 一级a爱片免费观看的视频| 少妇的丰满在线观看| 国产男靠女视频免费网站| 国内精品久久久久久久电影| 久久久国产欧美日韩av| 久久精品国产99精品国产亚洲性色 | 色综合站精品国产| 亚洲av成人一区二区三| 极品教师在线免费播放| 不卡av一区二区三区| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 国产成人精品久久二区二区91| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品久久久久5区| 欧美绝顶高潮抽搐喷水| 国产成人精品久久二区二区91| 欧美激情久久久久久爽电影 | 久久久久久免费高清国产稀缺| 禁无遮挡网站| 少妇粗大呻吟视频| 国内精品久久久久久久电影| 亚洲国产毛片av蜜桃av| 欧美另类亚洲清纯唯美| 亚洲视频免费观看视频| 国内精品久久久久精免费| 一二三四社区在线视频社区8| 一级毛片女人18水好多| 91成年电影在线观看| 看黄色毛片网站| 露出奶头的视频| 咕卡用的链子| 日韩欧美免费精品| 欧美不卡视频在线免费观看 | 搡老妇女老女人老熟妇| 国产乱人伦免费视频| 久久精品91蜜桃| 欧美成狂野欧美在线观看| 麻豆久久精品国产亚洲av| 麻豆国产av国片精品| 悠悠久久av| 可以在线观看的亚洲视频| 亚洲熟女毛片儿| 如日韩欧美国产精品一区二区三区| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区精品| 久久久久亚洲av毛片大全| 国产区一区二久久| av在线播放免费不卡| 欧美中文综合在线视频| 国产一卡二卡三卡精品| 国产激情欧美一区二区| 久久久精品欧美日韩精品| 久久精品亚洲精品国产色婷小说| 国产精品久久久久久人妻精品电影| 亚洲欧美精品综合一区二区三区| 国产精华一区二区三区| 亚洲专区中文字幕在线| e午夜精品久久久久久久| 村上凉子中文字幕在线| 午夜成年电影在线免费观看| 岛国视频午夜一区免费看| 国产精品电影一区二区三区| or卡值多少钱| www日本在线高清视频| a级毛片在线看网站| 精品不卡国产一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久人人97超碰香蕉20202| 99久久精品国产亚洲精品| 国产野战对白在线观看| 真人做人爱边吃奶动态| 深夜精品福利| 50天的宝宝边吃奶边哭怎么回事| or卡值多少钱| 美女国产高潮福利片在线看| 桃红色精品国产亚洲av| 成人国产一区最新在线观看| 在线av久久热| 国产免费av片在线观看野外av| 9色porny在线观看| 午夜福利免费观看在线| 日韩精品中文字幕看吧| 午夜福利视频1000在线观看 | 成人三级做爰电影| 欧美激情 高清一区二区三区| 国产99久久九九免费精品| 日韩视频一区二区在线观看| 成年版毛片免费区| 午夜精品在线福利| 人人妻人人澡欧美一区二区 | 天堂动漫精品| 精品国产国语对白av| 两个人视频免费观看高清| 女同久久另类99精品国产91| bbb黄色大片| 午夜福利18| 色av中文字幕| 人人妻人人爽人人添夜夜欢视频| 精品国产国语对白av| 高清黄色对白视频在线免费看| 在线观看免费视频日本深夜| 国产麻豆成人av免费视频| 国产成人系列免费观看| 91大片在线观看| 天堂√8在线中文| 亚洲国产日韩欧美精品在线观看 | 国内久久婷婷六月综合欲色啪| 欧美黄色片欧美黄色片| 热re99久久国产66热| 久久精品国产亚洲av高清一级| 777久久人妻少妇嫩草av网站| 日本a在线网址| 精品久久久精品久久久| 一级,二级,三级黄色视频| 在线观看免费视频日本深夜| 久久久久国内视频| 国产亚洲精品久久久久久毛片| 国产熟女午夜一区二区三区| 亚洲美女黄片视频| 午夜久久久久精精品| 琪琪午夜伦伦电影理论片6080| 搞女人的毛片| 亚洲五月婷婷丁香| 亚洲精品在线观看二区| 日本在线视频免费播放| av有码第一页| 欧美激情久久久久久爽电影 | 久久久国产欧美日韩av| 国产人伦9x9x在线观看| 成人亚洲精品一区在线观看| 老司机在亚洲福利影院| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩无卡精品| 欧美久久黑人一区二区| 国产精品av久久久久免费| 国产精品1区2区在线观看.| 国产欧美日韩一区二区精品| 美女大奶头视频| 最近最新中文字幕大全电影3 | 1024视频免费在线观看| 欧美+亚洲+日韩+国产| 欧美另类亚洲清纯唯美| АⅤ资源中文在线天堂| 免费在线观看视频国产中文字幕亚洲| 久久性视频一级片| 91成人精品电影| 天堂影院成人在线观看| 日韩视频一区二区在线观看| 亚洲欧美日韩另类电影网站| 精品熟女少妇八av免费久了| 亚洲国产看品久久| 欧美最黄视频在线播放免费| 高清黄色对白视频在线免费看| 国产一区二区三区视频了| 首页视频小说图片口味搜索| 美女高潮喷水抽搐中文字幕| 久久精品亚洲精品国产色婷小说| 大香蕉久久成人网| 亚洲成人精品中文字幕电影| 国产在线精品亚洲第一网站| 国内毛片毛片毛片毛片毛片| 久久精品91蜜桃| 欧美丝袜亚洲另类 | 中文字幕高清在线视频| 亚洲黑人精品在线| 91字幕亚洲| 法律面前人人平等表现在哪些方面| 老汉色av国产亚洲站长工具| 欧美精品啪啪一区二区三区| 久久久国产成人免费| 啦啦啦免费观看视频1| 人人澡人人妻人| 丝袜美腿诱惑在线| 亚洲 欧美 日韩 在线 免费| 国产成人欧美在线观看| 十八禁网站免费在线| 亚洲va日本ⅴa欧美va伊人久久| 久久午夜亚洲精品久久| 国产又爽黄色视频| 国产精品电影一区二区三区| 一个人观看的视频www高清免费观看 | 亚洲精品美女久久久久99蜜臀| 好看av亚洲va欧美ⅴa在| 大香蕉久久成人网| 国产在线观看jvid| 亚洲 欧美一区二区三区| 一夜夜www| 欧美亚洲日本最大视频资源| 亚洲av电影不卡..在线观看| 国产三级黄色录像| 欧美精品亚洲一区二区| 热99re8久久精品国产| 久久婷婷人人爽人人干人人爱 | 日本 欧美在线| 18禁观看日本| 亚洲精品国产色婷婷电影| 午夜福利免费观看在线| 亚洲人成网站在线播放欧美日韩| 亚洲一区高清亚洲精品| 国产欧美日韩精品亚洲av| 美女国产高潮福利片在线看| 日本一区二区免费在线视频| 国产精品久久久久久精品电影 | 美女大奶头视频| 脱女人内裤的视频| 国产精品久久久久久人妻精品电影| 天天躁夜夜躁狠狠躁躁| 亚洲欧洲精品一区二区精品久久久| 俄罗斯特黄特色一大片| 国产一级毛片七仙女欲春2 | 国语自产精品视频在线第100页| 99久久国产精品久久久| 欧美午夜高清在线| 香蕉久久夜色| 久9热在线精品视频| 美女午夜性视频免费| 中文字幕av电影在线播放| 国产精品久久视频播放| av天堂在线播放| 国产精品一区二区免费欧美| 亚洲一码二码三码区别大吗| 男人舔女人的私密视频| 伦理电影免费视频| 午夜亚洲福利在线播放| 老熟妇仑乱视频hdxx| svipshipincom国产片| 叶爱在线成人免费视频播放| 国产成人欧美| svipshipincom国产片| av在线天堂中文字幕| 亚洲一区二区三区色噜噜| 免费久久久久久久精品成人欧美视频| or卡值多少钱| 国产欧美日韩一区二区精品| 一区二区日韩欧美中文字幕| 欧美日本视频| 精品欧美国产一区二区三| 午夜a级毛片| 韩国av一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 亚洲精品久久成人aⅴ小说| 欧美日本视频| 久久久国产成人免费| 色综合亚洲欧美另类图片| 在线国产一区二区在线| 国产成人影院久久av| 亚洲国产精品sss在线观看| 国产成人免费无遮挡视频| 亚洲人成电影观看| 美女午夜性视频免费| 99久久99久久久精品蜜桃| 国产av又大| 少妇被粗大的猛进出69影院| 一本综合久久免费| 亚洲人成电影免费在线| 久久中文看片网| 欧美不卡视频在线免费观看 | 国产成人av教育| 岛国视频午夜一区免费看|