龔麗景 付鵬宇 王孝強
摘 要:目的:旨在觀察有氧運動對高脂膳食大鼠白色脂肪組織(WAT)和棕色脂肪組織(BAT)中環(huán)氧合酶2(COX2)及其相關基因的影響,以探討有氧運動促進WAT棕色化及BAT活化以抵抗高脂膳食對機體血脂和體重不利影響的可能機制。方法:雄性SD大鼠隨機分為普通對照組(C組)、普通運動組(E組)、高脂對照組(HC組)和高脂運動組(HE組),每組7只。E組和HE組進行中等強度跑臺訓練。8周干預結束后,計算各組大鼠Lees指數(shù),測量體成分,稱量WAT(腎周和附睪處)和BAT(肩胛處)濕重;測試血清甘油三酯(TG)和總膽固醇(CHO)含量;RT-qPCR檢測BAT中COX2 mRNA的相對表達量;Western blot法檢測脂肪組織中腎上腺素能受體β3(Adrβ3)、COX2和解偶聯(lián)蛋白(UCP1)蛋白含量。結果:1)飼喂第2周起高脂膳食大鼠體重較普通膳食大鼠顯著升高,運動第3周起,HE組體重較HC組均顯著降低;運動后E組和HE組大鼠的Lees指數(shù)分別較C組和HC組顯著性下降;2)高脂膳食大鼠脂肪含量顯著增加,運動后出現(xiàn)顯著性下降;與C組相比,HC組WAT濕重顯著增加,運動組WAT濕重顯著降低,E組BAT%較C組顯著升高;3)有氧運動降低高脂膳食大鼠血清CHO和TG水平;4)運動組BAT中COX2 mRNA表達顯著高于對照組;5)E組BAT中UCP1、COX2和Adrβ3蛋白表達顯著高于C組,HE組WAT中COX2蛋白表達顯著高于HC組。結論:有氧運動可降低高脂膳食機體的血脂水平,改善體脂含量和體重,該過程可能與運動激活WAT和BAT中Adrβ3以促進COX2的表達,增加WAT和BAT中UCP1的表達,以促進BAT的活化和WAT的棕色化有關。
關鍵詞:有氧運動;棕色脂肪;白色脂肪棕色化;COX2
Abstract:Objective: To clarify the possible mechanism of aerobic exercise promoting brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning in order to resist the adverse effects of high-fat diet on blood lipids and body weight, by detecting the changes of cyclooxygenase 2 (COX2) related genes in Rats' WAT and BAT. Methods: Male SD rats were randomly divided into
高脂的飲食模式和靜坐少動的生活方式是誘發(fā)肥胖及相關疾病的重要原因,嚴重威脅人類的健康[1]。肥胖及其相關疾病的發(fā)生發(fā)展由多組織器官代謝異常所致,其中脂肪組織是最主要的參與者[2]。脂肪組織主要分儲脂為主的白色脂肪組織(white adipose tissue,WAT)和耗脂的棕色脂肪組織(brown adipose tissue,BAT)。BAT細胞線粒體特異性表達的解偶聯(lián)蛋白1(uncoupling protein 1,UCP1),是BAT發(fā)揮產(chǎn)熱功能的標志性基因。UCP1參與氧化磷酸化過程,可使游離脂肪酸(free fatty acids,F(xiàn)FA)轉變?yōu)闊崮苄问缴l(fā),增加機體能量消耗;WAT在一定條件下可向BAT轉變,稱為白色脂肪棕色化。這些方式均可有效抑制肥胖的發(fā)生與發(fā)展[3]。環(huán)氧合酶2(cyclooxygenase 2,COX2)在調(diào)節(jié)脂肪炎癥和促進能量代謝中發(fā)揮著重要的作用,但它是否與肥胖及相關疾病的發(fā)展相關還不明確,在高脂膳食誘導肥胖的發(fā)展過程中控制COX2的信號和途徑尚不明確[4]。COX2是UCP1合成的重要因子[5],交感神經(jīng)被激活可上調(diào)腎上腺素能受體β3(adrenergic receptor β3,Adrβ3)而刺激COX2表達以增加UCP1活性,促進產(chǎn)熱[6-7]。研究發(fā)現(xiàn),有氧運動作為激活BAT和WAT棕色化的重要途徑,其作用機制與交感神經(jīng)的活性增加密切相關[8]。有氧運動是否通過激活Adrβ3以促進COX2的表達而促進BAT的活化和WAT的棕色化,以促進高脂膳食機體的能耗尚不明確。本研究擬通過8周有氧運動干預高脂膳食大鼠,觀察其BAT和WAT中COX2相關基因的變化,以探明有氧運動促進BAT活化和WAT棕色化,以降低血脂、控制體脂和體重的可能機制。
1 材料與方法
1.1 實驗對象分組與干預
SD大鼠28只,雄性,7周齡,購于北京維通利華實驗動物技術有限公司(許可證號:SCXK(京)2015-0004),隨機分為兩組:普通膳食組(N組),飼喂普通維持飼料;高脂膳食組(H組),飼喂高脂飼料,每組14只。10周后,將N組隨機分為普通對照組(C組,n=7)和普通運動組(E組,n=7),H組隨機分為高脂對照組(HC組,n=7)和高脂運動組(HE組,n=7)。
1.2 飼料成分
普通飼料(中國軍事醫(yī)學科學院實驗動物中心)和高脂飼料(60 kCal% fat,北京華阜康生物技術股份有限公司)的配方如圖1所示。其中普通飼料的能量密度為334 kcal/100 g,高脂飼料的能量密度為524 kcal/100 g,即高脂飼料的能量較同等量的普通飼料高190 kcal/100 g。
1.3 干預與取材
E組和HE組施加跑臺訓練,訓練方案為:速度20 m/min,坡度角0°,1 h/d/次,5次/周,共8周。每周稱量各組大鼠體重。飼養(yǎng)和訓練均在北京體育大學動物實驗室內(nèi)進行[許可證號:SYXK(京)2016-0033]。本研究倫理批準號為2015028(北京體育大學運動科學實驗倫理委員會)。干預結束后,禁食12 h,使用2%戊巴比妥鈉麻醉(50 mg/kg體重)大鼠,測量并記錄體長、體重數(shù)據(jù),計算反映成年大鼠肥胖情況的Lees指數(shù)[8],雙能X射線(XR-46,Norland)掃描并分析大鼠體成分;腹主動脈取血,分離血清-20℃保存?zhèn)溆?取腎周、附睪周WAT和肩胛間BAT,稱重后,液氮冷卻后轉移至-80℃儲存。
3.2 有氧運動對高脂膳食機體BAT和WAT中COX2的調(diào)控作用
3.2.1 有氧運動促進Adrβ3和COX2的表達以增加BAT活性
BAT被毛細血管網(wǎng)包繞,豐富的血液供應和BAT細胞內(nèi)部豐富的線粒體使BAT能夠大量產(chǎn)熱,增加機體能耗從而調(diào)節(jié)機體能量代謝平衡[15]。有研究發(fā)現(xiàn),移植BAT可提高肥胖小鼠機體代謝水平,增加脂肪的氧化,降低肝臟TG水平[16]。BAT細胞表面廣泛分布著Adrβ3,其與去甲腎上腺素(norepinephrine/noradrenaline,NE)結合后,能夠促進脂類分解[17],激活UCP1表達,增加產(chǎn)熱作用,激活BAT[18-19]。Adrβ3敲除可降低BAT的活性,增加WAT的儲量[20],脂肪分化決定因子Shox2(short stature homeobox 2)敲除后可上調(diào)脂肪分解水平,并增加Adrβ3表達,表現(xiàn)出一定程度的肥胖抵抗性[21]。COX2作為BAT產(chǎn)熱的重要參數(shù),可評判機體能量代謝水平,與UCP1、磷酸鳥苷(guanosine diphosphate,GDP)、碘甲腺原氨酸脫碘酶Ⅱ(deiodinase iodothyronine 2,DIO2)等指標反映BAT的整體功能狀態(tài)[22]。Adrβ3的激活被認為是寒冷刺激募集BAT和誘導WAT棕色化所必需的[23],有氧運動作為另一種激活BAT的有效手段,其發(fā)揮作用的機制也與Adrβ3的激活密切相關。本研究中,有氧運動干預后BAT中Adrβ3、COX2和UCP1的表達均增加,BAT%增加,血脂水平降低,Lees指數(shù)下降,體脂和體重減少。說明有氧運動可通過上調(diào)交感神經(jīng)活性,激活Adrβ3-COX2通路以增加BAT活性。研究顯示,運動能夠增加小鼠BAT前體細胞的募集并增加BAT內(nèi)UCP1的表達[24],而手術去除交感神經(jīng)后,模擬運動干預BAT細胞,Adrβ3表達不再增加,也不能產(chǎn)生促進UCP1表達的效果[25],提示有氧運動對激活BAT中Adrβ3和COX2的表達發(fā)揮重要作用。
3.2.2 有氧運動增加Adrβ3和COX2的表達促進WAT棕色化
成人體內(nèi)有活性的BAT數(shù)量少,且BAT激活受到遺傳、生理狀態(tài)、環(huán)境等多種因素的影響,較難發(fā)揮減脂控重的作用[26]。但是,肥胖機體貯存有大量WAT,WAT的棕色化對促進能量代謝平衡更具吸引力和可行性[27]。經(jīng)典的肩胛BAT和WAT中的棕色脂肪樣細胞具有不同的來源[28-29]。分化來源接近WAT細胞的Brite脂肪細胞,是一類BAT細胞,能被Adrβ3明顯調(diào)控作用[30]。有研究顯示,WAT中BAT細胞數(shù)量增加更有可能影響機體全身的能量平衡,同時更易誘發(fā)小鼠的肥胖抵抗。而在偏瘦大鼠脂肪細胞中異丙腎上腺素刺激的前列腺素E2(prostaglandin E2,PGE2)合成明顯高于肥胖者[31]。而PGE2是COX2下游發(fā)揮產(chǎn)熱功能的關鍵基因,提示COX2在能量平衡和肥胖的發(fā)生發(fā)展中起重要作用[32]。研究顯示,寒冷可通過激活交感神經(jīng)而發(fā)揮促進WAT棕色化的作用,而施加COX2的抑制劑或干預COX2敲除小鼠則抑制WAT中UCP1含量的增加[33]。運動干預可能通過提高交感神經(jīng)興奮性以增加WAT內(nèi)Adrβ3數(shù)量,激活COX2的表達從而增加UCP1蛋白表達,誘導WAT內(nèi)的新生棕色脂肪細胞募集產(chǎn)生UCP1陽性的脂肪細胞[6, 34]。本研究顯示,有氧運動可顯著增加WAT中Adrβ3、COX2和UCP1的表達,降低高脂膳食大鼠的血脂水平,提高能量代謝以達到降低體重和減脂的目的(見圖8)。
4 結論
8周中等強度的有氧運動可降低高脂膳食大鼠的血脂水平,增加BAT百分含量,降低體脂含量和體重。有氧運動干預后WAT和BAT中Adrβ3、COX2和UCP1表達增加以促進WAT棕色化和BAT活化可能參與改善高脂膳食對機體的不良影響。
參考文獻:
[1]Lau D C, Obesity Canada Clinical Practice Guidelines Steering C, Expert P. Synopsis of the 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children[J]. CMAJ, 2007,176(8):1103-1106.
[2]姜勇, 趙文華. 成人肥胖的評價方法、指標及標準在公共衛(wèi)生中應用的研究進展[J]. 衛(wèi)生研究, 2013(4):701-705.
[3]Cannon B, Nedergaard J. Brown adipose tissue:function and physiological significance[J]. Physiol Rev, 2004, 84(1):277-359.
[4]Zhang X, Luo Y, Wang C, et al. Adipose mTORC1 Suppresses Prostaglandin Signaling and Beige Adipogenesis via the CRTC2-COX-2 Pathway[J]. Cell Rep, 2018, 24(12):3180-3193.
[5]Preite N Z, Nascimento B P, Muller C R, et al. Disruption of beta3 adrenergic receptor increases susceptibility to DIO in mouse[J]. J Endocrinol, 2016, 231(3):259-269.
[6]Madsen L, Pedersen L M, Lillefosse H H, et al. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity[J]. PLoS One, 2010, 5(6):e11391.
[7]Vegiopoulos A, Muller-Decker K, Strzoda D, et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes[J]. Science, 2010, 328(5982):1158-1161.
[8]付鵬宇, 龔麗景, 朱镕鑫, 等. 有氧運動對肥胖小鼠棕色脂肪mRNA表達譜的影響[J]. 北京體育大學學報, 2016, 39(9):50-56.
[9]Smith W L. Prostanoid biosynthesis and mechanisms of action[J]. The American journal of physiology, 1992, 263(2 Pt 2):F181-191.
[10]龔文輝, 張素梅, 儲玨. 有氧運動對飲食誘導的肥胖鼠下丘腦和褐色脂肪BMP7表達的影響[J]. 中國康復, 2016, 31(2):114-117.
[11]Lee M W, Lee M, Oh K J. Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes:Adipokines, Batokines and MicroRNAs[J]. Journal of clinical medicine, 2019, 8(6):3180-3190.
[12]Garcia-Alonso V, Claria J. Prostaglandin E2 signals white-to-brown adipogenic differentiation[J]. Adipocyte, 2014, 3(4):290-296.
[13]A B, A B, Mj Z, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor[J]. Cell, 1999, 96(6):857-868.
[14]Virtue S,F(xiàn)eldmann H,Christian M,et al. A new role for lipocalin prostaglandin d synthase in the regulation of brown adipose tissue substrate utilization[J].Diabetes,2012,61(12):3139-3147.
[15]Oelkrug R, Polymeropoulos E T, Jastroch M. Brown adipose tissue:physiological function and evolutionary significance[J]. Journal of comparative physiology B, Biochemical, systemic, and environmental physiology, 2015, 185(6):587-606.
[16]Liu X, Wang S, You Y, et al. Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice[J]. Endocrinology, 2015, 156(7):2461-2469.
[17]Jia J J, Tian Y B, Cao Z H, et al. The polymorphisms of UCP1 genes associated with fat metabolism, obesity and diabetes[J]. Mol Biol Rep, 2010, 37(3):1513-1522.
[18]Azzu V, Brand M D. The on-off switches of the mitochondrial uncoupling proteins[J]. Trends Biochem Sci, 2010, 35(5):298-307.
[19]Yi C X, Tschop M H. Brain-gut-adipose-tissue communication pathways at a glance[J]. Disease models & mechanisms, 2012, 5(5):583-587.
[20]Susulic V S, Frederich R C, Lawitts J, et al. Targeted disruption of the beta 3-adrenergic receptor gene[J]. J Biol Chem, 1995, 270(49):29483-29492.
[21]Lee K Y, Yamamoto Y, Boucher J, et al. Shox2 is a molecular determinant of depot-specific adipocyte function[J]. Proc Natl Acad Sci U S A, 2013, 110(28):11409-11414.
[22]Ca T, T H, Mf H, et al. SERCA2a and mitochondrial cytochrome oxidase expression are increased in hearts of exercise-trained old rats[J]. American Journal of Physiology, 1996, 271(1 Pt 2):H68.
[23]Barbatelli G, Murano I, Madsen L, et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation[J]. American journal of physiology Endocrinology and metabolism, 2010, 298(6):E1244-1253.
[24]Xu X, Ying Z, Cai M, et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300(5):R1115-1125.
[25]Contreras G A, Lee Y H, Mottillo E P, et al. Inducible brown adipocytes in subcutaneous inguinal white fat:the role of continuous sympathetic stimulation[J]. Am J Physiol Endocrinol Metab, 2014, 307(9):E793-799.
[26]Madsen L, Pedersen L M, Lillefosse H H, et al. UCP1 Induction during Recruitment of Brown Adipocytes in White Adipose Tissue Is Dependent on Cyclooxygenase Activity[J]. PloS one, 2010, 5(6):e11391.
[27]Jan N, Barbara C. The browning of white adipose tissue:some burning issues[J]. Cell Metabolism, 2014, 20(3):396-407.
[28]Timmons J A, Kristian W, Ola L, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(11):4401-4406.
[29]Patrick S, Bryan B, Wenli Y, et al. PRDM16 controls a brown fat/skeletal muscle switch[J]. Nature, 2008, 454(7207):961-967.
[30]Granneman J G, Pipeng L, Zhengxian Z, et al. Metabolic and cellular plasticity in white adipose tissue I:effects of beta3-adrenergic receptor activation[J]. American journal of physiology Endocrinology and metabolism, 2005, 289(4):608-616.
[31]Gaskins H R, Hausman D B, Martin R J, et al. Evidence for abnormal prostaglandin synthesis in obese Zucker rat adipose cell cultures[J]. Journal of Nutrition, 1989, 119(3):458.
[32]Petersen R K, Claus J R, Rustan A C, et al. Arachidonic acid-dependent inhibition of adipocyte differentiation requires PKA activity and is associated with sustained expression of cyclooxygenases[J]. Journal of Lipid Research, 2003, 44(12):2320.
[33]Maria J, Giorgio B, Roberta A, et al. Beta 3-adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat[J]. Febs Journal, 2003, 270(4):699-705.
[34]Garcia-Alonso V, Titos E, Alcaraz-Quiles J, et al. Prostaglandin E2 Exerts Multiple Regulatory Actions on Human Obese Adipose Tissue Remodeling, Inflammation, Adaptive Thermogenesis and Lipolysis[J]. PLoS One, 2016, 11(4):e0153751.