• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on influencing factors of ion current density measurement in corona discharge of HVDC transmission lines

    2020-05-06 05:58:56ShiqiangLIU劉士強(qiáng)ShouzhengLI李守正YuzeJIANG姜雨澤NanJIANG姜楠JieLI李杰andYanWU吳彥
    Plasma Science and Technology 2020年4期
    關(guān)鍵詞:李杰

    Shiqiang LIU (劉士強(qiáng)),Shouzheng LI (李守正),Yuze JIANG (姜雨澤),Nan JIANG (姜楠),Jie LI (李杰) and Yan WU (吳彥)

    1 School of Electrical Engineering,Dalian University of Technology,Dalian 116024,People’s Republic of China

    2 State Grid Shandong Electric Power Research Institute,Jinan 250003,People’s Republic of China

    Abstract

    Keywords: HVDC,corona discharge,reduced scale device,Wilson plate,ion current density

    1.Introduction

    Figure 1.1-(I) Schematic diagram of reduced scale line-plate experimental device,1-(II) schematic diagram of Wilson plate placement position,1-(III)schematic diagram of the height of the Wilson plate from the grounding plate.(a)Internal testing plate,(b)external shielding plate,(c) Wilson plate,(d) protective annulus,(e) shield ball,(f) HV conductor.

    The advantages of high voltage direct current(HVDC)in long distance and large capacity transmission have resulted in it being widely used throughout the world in recent years.However,since HVDC transmission lines are generally allowed to operate with a slight corona discharge above the onset voltage,considerable positive and negative ions are generated around the lines[1,2].Discharge phenomenon has been widely used in sterilization,pollutant degradation,and medical treatment[3–8],but it needs to be avoided in the field of HVDC as much as possible.The directional movement of positive and negative ions under the action of a space electric field will form the unique ion flow field of HVDC[9,10].The ground level ion current density is a significant parameter for HVDC design and operation.To estimate the ground level ion current density,a collecting plate usually called the Wilson plate,is used to intercept the ions which migrate from the transmission lines to the ground level [11].The Wilson plate is usually located flush with the grounding plate or on the grounding plate.In reality,the ion current density beneath HVDC transmission lines is generally measured and evaluated by using a 1 × 1 m2Wilson plate.In order to study the ground level ion flow field of HVDC transmission lines conveniently,a reduced scale line-plate device has been widely used in the laboratory[12].Scholars have done a lot of theoretical and experimental research on the ion flow field of HVDC transmission lines and have reached many meaningful conclusions [13–16].Fang et al analyzed the edge effect of the Wilson plate in the reduced scale model by combining experimental with numerical simulation [17].The results show that when the ratio of the width of the protective band to the height of the Wilson plate was greater than 5,the measured ion current density was accurate.Bian et al studied the influence of fine particulate matter on the variation of surface morphologies of conductors subjected to positive DC voltages.It was found that the interactions between particles played a critical role in the formation of agglomerations and parallel chains [18].Maruvada compared the results of the ground level ion current density of HVDC transmission lines between calculations and measurements [19],and he found that the most important factor influencing the electric field and ion current distributions is the corona onset gradient of the conductors.Zou et al used an aspirator-type charge meter to study the measurement method of charge densities at ground level under HVDC conductors [20].Wang et al studied the measurement of surface charges on the dielectric film under the HVDC corona wire [21].At present,scholars mainly study the ion flow field of HVDC transmission lines with the Wilson plate directly placed on the grounding plate.However,the study of a Wilson plate which is flush with the grounding plate is seldom published.Therefore,in order to obtain more accurate ground level ion current density directly,it is necessary to study the influence of external factors on the measurement of ion current density when the Wilson plate is flush with the grounding plate.

    In section 2,a new reduced scale wire-plate experimental device in which the Wilson plate is flush with the grounding plate is designed.The influence of the protective annulus width on the ion current density is studied in section 3.1,and reasonable protective annulus parameters are proposed.Furthermore,the height of the Wilson plate from the grounding plate on the ion current density is studied in section 3.2.In addition,the differences between the micro-current galvanometer method and the sampling resistance method used to measure ion current density are compared in section 3.3.Finally,the ground level ion current density distributions of unipolar and bipolar HVDC transmission lines are measured in section 3.4,respectively.The conclusions of this paper given in section 4 can provide a reference for future research.

    2.Experimental setup

    Figure 1(I) shows a schematic diagram of a reduced scale line-plate experimental device for corona discharge in HVDC transmission lines.The grounding plate is mainly composed of two parts.The inner area(a)is a 2480 × 1300 mm2testing plate and the outer area (b) is a 300 mm wide shielding plate in order to eliminate the influence of the edge effect of the testing plate on the measurement results.The distance between the inner plate and outer plate is 2 mm.A smooth aluminum conductor with a diameter of 3 mm and a length of 1600 mm is placed directly above the center of the grounding plate.To eliminate the tip discharge on both sides of the conductor,stainless steel shielding balls with a diameter of 100 mm are installed at the end of the conductor.h represents the height of aluminum conductor from the grounding plate.An aluminum conductor fastened by a nylon rod is connected with a direct DC power supply through the high voltage power supply wire.The Wilson plate is located directly below the conductor.In order to conveniently study the influence of protective annulus width on the ground level ion current density,a 1000 × 1000 mm2removable grounding plate a(2)is placed on the center of the testing plate.The output voltage of the power supply can be adjusted between 0 and 100 kV.Based on the LabVIEW platform,the programmable function of the power supply is used to control the voltage to rise at a rate of 10 kV min-1.

    Figure 2.Schematic diagram of the line-plate HVDC corona discharge.

    The ground level ion current density is measured by using a Wilson plate,which is flush with the grounding plate a(2),as shown in figure 1-(II).In order to measure the ion current density,the Wilson plate and grounding plate are separated by an air protective annulus.w denotes the width of the protective annulus.The size of the Wilson plate is 150 × 200 mm2and it has four chamfers with a radius of 10 mm.Figure 1-(III) shows a schematic diagram of the height of the Wilson plate from the grounding plate.a(1)and a(2) represent the internal grounding plate and the Wilson plate,respectively.d denotes the height of the Wilson plate from the grounding plate.

    The experiments are carried out in an environment with the temperature varying from 18.5°C–21.6°C,the relative humidity varying from 31%–42%,and the atmospheric pressure varying from 1002–1006 hPa.Besides,in order to eliminate the influence of pollutants on the surface of the conductors,absolute ethanol is used to clean the conductors before the experiments.

    3.Results and discussion

    3.1.Influence of the protective annulus width

    The existence of an air protective annulus will distort the electric field around the Wilson plate.The simulation of a two-dimensional electrostatic field of the reduced scale lineplate experimental device is carried out by using COMSOL Multiphysics software.Figure 2 shows a description of the schematic diagram of line-plate HVDC corona discharge in air at the atmospheric environment.Within the numerical model,a positive potential is applied to the HVDC conductor,the grounding plate and the Wilson plate are grounded as zero potential,and a zero charge boundary condition is used at the open boundaries.In the process of simulation,the height of the aluminum conductor h is 500 mm and the diameter of the conductor D is 3 mm.

    Figure 3.Distribution of the ground level electric field under different protective annulus widths.

    Figure 3 shows the distribution of a ground level electrostatic field at 30 kV with different w.The origin of coordinate axes is in the center of the Wilson plate.The numerical value of the lateral axis represents the distance from the origin.It can be seen that the increase of w will lead to serious distortion of the electric field at the edge of the Wilson plate.The upper right corner of figure 3 shows an enlarged view of the electric field in the right protective annulus region.It can be found that when the w is less than 2 mm,the electric field at the edge of the Wilson plate hardly distorts.When the width of the protective annulus is 1 mm,the edge electric field of the Wilson plate is basically maintained at about 25 kV m-1.However,when the width of the protective annulus increases to 8 mm,the edge electric field of the Wilson plate is seriously distorted,and the electric field varies from 13.4–36.5 kV m-1.The intense distortion of the edge electric field of the Wilson plate will seriously affect the measurement of the ion current density on the ground level.Therefore,it is important to study the effect of w on the ground level ion current density.

    In the experiment,the micro-Wilson plates with 1,2,4,6,and 8 mm protective annulus widths are selected to study the effect of w on the ground level ion current density.Figure 4 shows the variation of the ground level ion current density with w under different positive and negative voltages.It can be found that,with the increase of applied voltage,the influence of w on the measurement results is more and more obvious.With the increase of w,the ground level ion current density increases gradually,and the change of ion current density under positive voltage is more stable than that under negative voltage.However,when w is less than 2 mm,the ground level current density basically does not change with w,which indicates that the edge effect of the Wilson plate has little effect on the measurement results.This is consistent with simulation results of the electric field.

    3.2.Influence of the height of the Wilson plate from grounding plate

    In order to verify the influence of the height of the Wilson plate from the grounding plate,d is adjusted from 0–5 cm.Figure 5 shows the influence of d on ion current density under different positive and negative voltages.

    Figure 4.Influence of the protective annulus width on the ground level ion current density under different voltages.

    Figure 5.Influence of the height of the Wilson plate on the ground level ion current density under different voltages.

    It can be seen that the ground level ion current density increases approximately linearly with the increase of d under positive voltage.However,under negative voltage,when the applied voltage is low,there is no obvious linear relationship between the ground level ion current density and d,which may be due to the instability of weak corona discharge under negative voltage.Since HVDC transmission lines generally operate with a slight corona discharge.Therefore,in order to obtain more accurate measurement results,the ground level ion current density should be measured directly by the way that the Wilson plate is flush with the grounding plate as much as possible.

    3.3.Influence of the measurement methods

    The ion current density on the Wilson plate is measured by a micro-current galvanometer (direct method) and sampling resistance method (indirect method),respectively.The direct method uses the FMAC15/1 micro-current galvanometer to measure the ion current,directly.The indirect method uses the Tektrotix DMM4020 high sensitivity digital voltmeter to measure the voltage of the sampling resistance firstly,and then converts it into ion current.The sampling resistors are high accuracy inductance-free resistors with a 0.1%error.The values of the sampling resistors are 0.1,1,2,and 5 M,respectively.Figure 6 shows the variation of ground level ion current density under different positive and negative voltages.

    It can be seen that when the sampling resistance is 0.1 M,the results measured by two methods are basically identical under positive voltage,but there are some deviations under negative voltage,which may be due to the instability of negative corona discharge.However,with the increase of the value of sampling resistance,the ground level ion current density measured by the sampling resistance method decreases gradually,due to the influence of internal resistance of digital voltmeter.

    Figure 6.Comparison of the ion current density of different measurement methods under different voltages.

    Figure 7.Working principle of the digital voltmeter.

    In the measurement process of ion current density,the working principle of a digital voltmeter is shown in figure 7.The ion current produced by corona discharge is equivalent to a direct current source Is.R and Rirepresent the sampling resistance and internal resistance of the instrument,respectively.

    It can be found that the R and Ribelong to the parallel relationship,so the voltage measured by a digital voltmeter is the value of parallel to the resistances.Because the internal resistance of the digital voltmeter is 10 M,which is the same order of magnitude as the sampling resistances,the measurement results need to be corrected.The corrected results of ground level ion current density under different positive and negative voltages are shown in figure 8.

    It can be seen that the ion current density corrected by the sampling resistance method under positive voltage is basically the same as that measured by the micro-current galvanometer method.However,the results obtained by the two methods are slightly different under negative voltage,which may be due to the instability of negative corona discharge and the inconsistency of conductor surface conditions.

    3.4.Applications

    Based on the above research results,the distributions of ground level ion current density under unipolar and bipolar HVDC transmission lines are measured.Figure 9 shows the reduced scale line-plate experimental device for measuring 7 points of ion current density.The size of the Wilson plate is 168 × 218 mm2and it has four chamfers with a radius of 19 mm.The width of the protective annulus is 1 mm.The Wilson plates are 175 mm apart from each other.In the experiment,the Wilson plate is flush with the grounding plate and the ground level ion current density is measured directly by the micro-current galvanometer method.

    3.4.1.Distribution of the ground level ion current density under unipolarity.Figure 10 shows the ground level ion current density distribution of unipolar high voltage conductor under different positive and negative voltages.The conductor is placed at 500 mm above the grounding plate,of which the diameter is 3 mm and the length is 1600 mm.It can be found that the distribution of ground level ion current density of positive polarity is basically symmetrical,while that of negative polarity is not symmetrical with the increase of voltage,which may be due to the uneven distribution of burrs on the conductor surface.With the increase of applied voltage,the ground level ion current density increases rapidly,and the change of the ion current density is the most obvious in the region directly below the conductor (position 4).The ion current mainly concentrates in the region between position 2 and position 6 where the ion current decreases rapidly with the increase of distance from position 4.At the same applied voltage,the ground level ion current density of negative polarity is greater than that of positive polarity,which is due to the following two reasons: (1) the corona onset voltage of negative polarity (–60 kV)is lower than that of positive polarity(70 kV),which makes the negative corona discharge more intense; (2) the rate of the movement of electrons is much faster than that of positive ions,which results in the current of electrons reaching the ground level being larger than that of positive ions.

    Figure 8.Comparison of ion current density after the correction of different measurement methods under different voltages.

    Figure 9.Experimental device for measuring multi-points of the ion current density.

    3.4.2.Distribution of the ground level ion current density under bipolarity.Figure 11 shows the ground level ion current density distribution of bipolar high voltage conductors under different voltages.The conductors are placed 500 mm above the grounding plate,of which the diameter is 3 mm and the length is 1600 mm.The distance between the two conductors is 510 mm.It can be seen that,with the increase of voltage,the ion current density at position 4 fluctuates near zero,and there is a process from positive to negative.The reasons are as follows: the corona discharge is weak at 50 kV.Because of the instability of negative corona discharge,position 4 exhibits a very small positive ion current.However,because the threshold voltage of negative corona discharge is lower than that of positive corona discharge,the ion current density at position 4 shows an obvious negative value when the voltage is higher.Besides,it can be found that,with the increase of voltage,the zero value of the ion current density in the central region of the grounding plate appears between position 4 and position 5.

    In addition,the ground level ion current density in the negative conductor region is significantly higher than that in the positive conductor region.This is the same as unipolar corona discharge.Furthermore,at the same applied voltage,the ground level ion current density in the positive and negative regions of the bipolar conductors is lower than that in the positive and negative unipolar conductors,which is due to the neutralization of positive and negative charged ions produced by the corona discharge of bipolar conductors in the space region.

    4.Conclusions

    In this paper,based on the reduced scale line-plate experimental device in which the Wilson plate is flush with the grounding plate,the influencing factors of the ground level ion current density measurement system are analyzed.The conclusions reached are as follows.

    When the width of the protective annulus is less than 2 mm,the influence of the edge effect on the measurement results of the ground level ion current density can be neglected.The internal resistance of a digital voltmeter seriously affects the measurement results.In order to obtain more accurate values,the measurement results need to be corrected.The ground level ion current density should be measured directly by the way that the Wilson plate is flush with the grounding plate as much as possible.

    Under unipolar conductor,the surface morphology of a conductor has a great influence on the symmetrical distribution of ion current density.Under bipolar conductors,the ion current density in the central region of the grounding plate undergoes a process from positive to negative.At the same applied voltage,the ground level ion current density of positive corona discharge is lower than that of negative corona discharge.

    Figure 10.Distribution of the ground level ion current density under unipolarity.

    Figure 11.Distribution of the ground level ion current density under bipolarity.

    Acknowledgments

    This work are supported by National Natural Science Foundation of China (Nos.51877027,51877028) and State Key Laboratory of Electrical Insulation and Power Equipment(EIPE18206).

    猜你喜歡
    李杰
    Memristor’s characteristics: From non-ideal to ideal
    A spintronic memristive circuit on the optimized RBF-MLP neural network
    基于SPSS軟件建立ARIMA模型
    客聯(lián)(2022年3期)2022-05-31 04:28:08
    Effect of megapore particles packing on dielectric barrier discharge, O3 generation and benzene degradation
    Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial*
    人民海軍首次海戰(zhàn)
    源流(2021年11期)2021-03-25 10:32:07
    小胖熊半夜歷險(xiǎn)記
    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
    ?。楱#镅酲耍颞Γ?多duō 多duo
    Numerical investigation of the time-resolved bubble cluster dynamics by using the interface capturing method of multiphase flow approach*
    欧美在线一区亚洲| 精品国产国语对白av| 亚洲欧美精品综合一区二区三区| 国产野战对白在线观看| 亚洲九九香蕉| 国产成人影院久久av| 女人精品久久久久毛片| 久久 成人 亚洲| 一边摸一边做爽爽视频免费| 欧美变态另类bdsm刘玥| 国产福利在线免费观看视频| 一级片'在线观看视频| 丰满少妇做爰视频| 美女视频免费永久观看网站| 亚洲成av片中文字幕在线观看| 久久久久久久久久久久大奶| 欧美少妇被猛烈插入视频| 欧美国产精品va在线观看不卡| 久久久久久人人人人人| 高清视频免费观看一区二区| 只有这里有精品99| 国产成人av激情在线播放| 777久久人妻少妇嫩草av网站| 亚洲欧美色中文字幕在线| 亚洲国产日韩一区二区| 国产熟女午夜一区二区三区| 亚洲欧美日韩高清在线视频 | av一本久久久久| 久久精品亚洲熟妇少妇任你| 少妇精品久久久久久久| 国产av精品麻豆| 亚洲人成电影免费在线| av国产精品久久久久影院| 丰满饥渴人妻一区二区三| 亚洲国产毛片av蜜桃av| 亚洲欧美精品自产自拍| 亚洲国产欧美在线一区| 在现免费观看毛片| 久久精品aⅴ一区二区三区四区| av有码第一页| 欧美人与性动交α欧美精品济南到| 成人18禁高潮啪啪吃奶动态图| 9热在线视频观看99| 天天影视国产精品| 黄频高清免费视频| 亚洲av男天堂| 男男h啪啪无遮挡| 老司机靠b影院| 免费看不卡的av| 国产女主播在线喷水免费视频网站| 欧美黄色淫秽网站| 国产片特级美女逼逼视频| 91成人精品电影| 国产高清不卡午夜福利| 精品久久蜜臀av无| 亚洲午夜精品一区,二区,三区| 国产精品久久久av美女十八| 欧美xxⅹ黑人| 高清av免费在线| 亚洲国产最新在线播放| 丁香六月天网| 黄频高清免费视频| 国产精品人妻久久久影院| 人妻人人澡人人爽人人| 欧美av亚洲av综合av国产av| 最近中文字幕2019免费版| 精品国产一区二区久久| 美国免费a级毛片| 精品人妻1区二区| 国产免费现黄频在线看| 精品一区二区三区四区五区乱码 | 日韩视频在线欧美| 交换朋友夫妻互换小说| 精品一区在线观看国产| 久久精品久久久久久久性| 男女床上黄色一级片免费看| 视频区图区小说| 少妇猛男粗大的猛烈进出视频| 亚洲专区中文字幕在线| 久久人妻福利社区极品人妻图片 | 国产又色又爽无遮挡免| 午夜av观看不卡| 久久久久久久久免费视频了| 国产高清视频在线播放一区 | 免费在线观看黄色视频的| 少妇猛男粗大的猛烈进出视频| 亚洲 国产 在线| 国产精品一区二区在线观看99| 亚洲国产av影院在线观看| 精品卡一卡二卡四卡免费| 国产在线一区二区三区精| 国产精品一区二区在线观看99| 操美女的视频在线观看| 在线 av 中文字幕| 另类亚洲欧美激情| 亚洲熟女精品中文字幕| 亚洲国产欧美网| 亚洲专区中文字幕在线| 国产免费现黄频在线看| 高清av免费在线| 97人妻天天添夜夜摸| h视频一区二区三区| 亚洲黑人精品在线| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美中文字幕日韩二区| 蜜桃在线观看..| 最新的欧美精品一区二区| 国产人伦9x9x在线观看| 免费在线观看影片大全网站 | av天堂久久9| 欧美成人午夜精品| 亚洲久久久国产精品| 别揉我奶头~嗯~啊~动态视频 | 纯流量卡能插随身wifi吗| 国产在线免费精品| 免费不卡黄色视频| 免费在线观看视频国产中文字幕亚洲 | 男女午夜视频在线观看| 男女边摸边吃奶| 丰满迷人的少妇在线观看| 悠悠久久av| 亚洲av电影在线进入| 一本色道久久久久久精品综合| 老司机影院成人| 欧美变态另类bdsm刘玥| 美女主播在线视频| 亚洲自偷自拍图片 自拍| 久久亚洲精品不卡| 操出白浆在线播放| 成年人午夜在线观看视频| 赤兔流量卡办理| 成年人黄色毛片网站| 免费一级毛片在线播放高清视频 | 天天躁夜夜躁狠狠躁躁| 男女下面插进去视频免费观看| 国产高清videossex| 啦啦啦啦在线视频资源| 国产熟女欧美一区二区| 一级毛片电影观看| 亚洲专区中文字幕在线| 美女大奶头黄色视频| 久久ye,这里只有精品| 99热全是精品| 成在线人永久免费视频| 国产人伦9x9x在线观看| 精品人妻1区二区| 成年美女黄网站色视频大全免费| 成人18禁高潮啪啪吃奶动态图| 久久久久久人人人人人| 午夜福利在线免费观看网站| 久久精品久久久久久噜噜老黄| 久久ye,这里只有精品| 免费日韩欧美在线观看| 国产淫语在线视频| a级毛片在线看网站| 国产精品 欧美亚洲| 一边摸一边抽搐一进一出视频| av在线app专区| 色94色欧美一区二区| 在线观看免费午夜福利视频| 午夜免费鲁丝| 国产深夜福利视频在线观看| 欧美xxⅹ黑人| 欧美大码av| 亚洲五月色婷婷综合| h视频一区二区三区| 天天操日日干夜夜撸| 国产成人啪精品午夜网站| 亚洲欧美一区二区三区久久| 亚洲精品国产区一区二| 韩国高清视频一区二区三区| 国产欧美日韩精品亚洲av| 大型av网站在线播放| 午夜激情久久久久久久| 男人爽女人下面视频在线观看| 亚洲国产毛片av蜜桃av| 国产熟女欧美一区二区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品成人av观看孕妇| 美女中出高潮动态图| 久久亚洲国产成人精品v| 久久久亚洲精品成人影院| 最新在线观看一区二区三区 | 久久久国产欧美日韩av| 男女下面插进去视频免费观看| 国产精品秋霞免费鲁丝片| 啦啦啦在线免费观看视频4| 纯流量卡能插随身wifi吗| www.av在线官网国产| 99精品久久久久人妻精品| 黄色毛片三级朝国网站| 亚洲国产毛片av蜜桃av| 人成视频在线观看免费观看| 国产精品一区二区在线不卡| 精品人妻一区二区三区麻豆| 狠狠婷婷综合久久久久久88av| 久久久久久亚洲精品国产蜜桃av| 手机成人av网站| 赤兔流量卡办理| 黄频高清免费视频| 啦啦啦视频在线资源免费观看| 国产爽快片一区二区三区| 性高湖久久久久久久久免费观看| 国产97色在线日韩免费| 老司机在亚洲福利影院| 91精品三级在线观看| 69精品国产乱码久久久| 在线 av 中文字幕| 国产精品久久久人人做人人爽| 欧美日韩综合久久久久久| 久久久久久亚洲精品国产蜜桃av| 久久精品亚洲熟妇少妇任你| 亚洲第一青青草原| 亚洲综合色网址| 水蜜桃什么品种好| 一本一本久久a久久精品综合妖精| 如日韩欧美国产精品一区二区三区| 亚洲精品av麻豆狂野| 极品少妇高潮喷水抽搐| 伊人亚洲综合成人网| 在线观看免费高清a一片| 精品亚洲成a人片在线观看| 丝袜人妻中文字幕| 国产1区2区3区精品| 国产野战对白在线观看| 欧美日韩福利视频一区二区| 欧美国产精品va在线观看不卡| 在线观看一区二区三区激情| 别揉我奶头~嗯~啊~动态视频 | av片东京热男人的天堂| 日本欧美国产在线视频| 久久鲁丝午夜福利片| 一区二区av电影网| 2021少妇久久久久久久久久久| 日韩精品免费视频一区二区三区| 国产精品一国产av| av电影中文网址| 亚洲,欧美,日韩| 99热国产这里只有精品6| 婷婷色综合www| 欧美97在线视频| 国产精品国产三级专区第一集| 国产成人av激情在线播放| 超碰97精品在线观看| 亚洲欧美精品自产自拍| 国产高清国产精品国产三级| 在线亚洲精品国产二区图片欧美| 天天操日日干夜夜撸| 亚洲精品国产一区二区精华液| 自线自在国产av| 欧美xxⅹ黑人| 91老司机精品| 午夜免费观看性视频| 91国产中文字幕| 亚洲 欧美一区二区三区| 亚洲精品一区蜜桃| 永久免费av网站大全| 两个人看的免费小视频| 亚洲精品久久成人aⅴ小说| 交换朋友夫妻互换小说| 一区二区三区乱码不卡18| 大香蕉久久成人网| 亚洲成人手机| 亚洲激情五月婷婷啪啪| 亚洲国产欧美网| 国产伦理片在线播放av一区| 国产一区亚洲一区在线观看| 亚洲专区中文字幕在线| 日本午夜av视频| 777久久人妻少妇嫩草av网站| 99国产综合亚洲精品| 黄色怎么调成土黄色| 日韩精品免费视频一区二区三区| 国产一区亚洲一区在线观看| 极品少妇高潮喷水抽搐| 精品久久久久久电影网| 日韩制服丝袜自拍偷拍| 观看av在线不卡| 99热全是精品| 亚洲精品日韩在线中文字幕| 777久久人妻少妇嫩草av网站| 欧美日韩亚洲综合一区二区三区_| 人人妻人人添人人爽欧美一区卜| 尾随美女入室| 久久久精品94久久精品| 丝袜喷水一区| 大香蕉久久成人网| netflix在线观看网站| 精品一区二区三卡| 国产极品粉嫩免费观看在线| 免费在线观看视频国产中文字幕亚洲 | 韩国精品一区二区三区| 后天国语完整版免费观看| 午夜福利影视在线免费观看| 人妻 亚洲 视频| 午夜老司机福利片| 日韩免费高清中文字幕av| 岛国毛片在线播放| 成人影院久久| 精品人妻1区二区| 大型av网站在线播放| 亚洲,一卡二卡三卡| 巨乳人妻的诱惑在线观看| 99热网站在线观看| 久久国产精品影院| 亚洲精品自拍成人| 精品福利观看| 一级毛片黄色毛片免费观看视频| 亚洲欧美一区二区三区久久| 国产一区二区激情短视频 | 大片免费播放器 马上看| 久久精品熟女亚洲av麻豆精品| 女人精品久久久久毛片| 午夜视频精品福利| 亚洲熟女精品中文字幕| 亚洲欧美日韩另类电影网站| 久久精品成人免费网站| 中文字幕精品免费在线观看视频| 国产熟女欧美一区二区| av国产精品久久久久影院| 人人妻人人爽人人添夜夜欢视频| 麻豆国产av国片精品| 美女福利国产在线| 国产精品国产av在线观看| 欧美日韩成人在线一区二区| 亚洲精品av麻豆狂野| 搡老岳熟女国产| 老司机午夜十八禁免费视频| 婷婷成人精品国产| 大香蕉久久成人网| 免费日韩欧美在线观看| 亚洲中文av在线| 久久ye,这里只有精品| 悠悠久久av| 精品福利永久在线观看| 亚洲国产最新在线播放| 啦啦啦 在线观看视频| 中文字幕最新亚洲高清| 国产精品久久久av美女十八| 欧美日韩一级在线毛片| 亚洲专区中文字幕在线| 老鸭窝网址在线观看| 久久精品久久精品一区二区三区| 久久狼人影院| 国产极品粉嫩免费观看在线| 男人爽女人下面视频在线观看| 精品少妇黑人巨大在线播放| 精品第一国产精品| 曰老女人黄片| 大陆偷拍与自拍| 啦啦啦中文免费视频观看日本| tube8黄色片| 97在线人人人人妻| 99精国产麻豆久久婷婷| 国产精品久久久久成人av| 国产精品国产av在线观看| 久久久精品94久久精品| 制服人妻中文乱码| 日本欧美国产在线视频| 免费在线观看影片大全网站 | 韩国高清视频一区二区三区| 色网站视频免费| 久久久国产一区二区| 自线自在国产av| 欧美xxⅹ黑人| 咕卡用的链子| 国产高清不卡午夜福利| 首页视频小说图片口味搜索 | 在线 av 中文字幕| 欧美精品一区二区大全| 五月天丁香电影| 国产伦理片在线播放av一区| 国产精品欧美亚洲77777| 午夜激情av网站| 90打野战视频偷拍视频| 女人爽到高潮嗷嗷叫在线视频| a级片在线免费高清观看视频| 久久久精品国产亚洲av高清涩受| 建设人人有责人人尽责人人享有的| 亚洲av日韩在线播放| 精品少妇内射三级| 国产精品二区激情视频| 黑人猛操日本美女一级片| 国产午夜精品一二区理论片| 国产精品亚洲av一区麻豆| 国产高清视频在线播放一区 | 波野结衣二区三区在线| 国产一区二区 视频在线| 免费在线观看完整版高清| 亚洲综合色网址| 97在线人人人人妻| 国产国语露脸激情在线看| 一级黄色大片毛片| 人体艺术视频欧美日本| 午夜福利视频精品| 亚洲人成77777在线视频| 成人影院久久| 一区二区日韩欧美中文字幕| 欧美久久黑人一区二区| 考比视频在线观看| 欧美中文综合在线视频| 精品卡一卡二卡四卡免费| 久久天堂一区二区三区四区| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 欧美中文综合在线视频| 尾随美女入室| 丰满人妻熟妇乱又伦精品不卡| av在线app专区| 99国产精品一区二区蜜桃av | 欧美日韩黄片免| 国产精品一国产av| 亚洲中文字幕日韩| 超色免费av| 婷婷成人精品国产| 91国产中文字幕| 在线观看免费高清a一片| 黄色视频不卡| 美女主播在线视频| av又黄又爽大尺度在线免费看| 国产深夜福利视频在线观看| 国产三级黄色录像| 又大又黄又爽视频免费| 丰满少妇做爰视频| 亚洲国产看品久久| 亚洲国产欧美一区二区综合| av一本久久久久| 一边摸一边抽搐一进一出视频| 尾随美女入室| 人人妻人人澡人人看| 一级毛片女人18水好多 | 男女午夜视频在线观看| 丝袜美腿诱惑在线| 婷婷丁香在线五月| 国产精品一区二区精品视频观看| 午夜福利乱码中文字幕| 国产成人影院久久av| 国产成人av激情在线播放| 女人被躁到高潮嗷嗷叫费观| www.av在线官网国产| 国产成人一区二区三区免费视频网站 | 亚洲男人天堂网一区| 国产97色在线日韩免费| 人人妻,人人澡人人爽秒播 | 99国产精品一区二区三区| 国产精品九九99| 制服人妻中文乱码| 日韩欧美一区视频在线观看| 久9热在线精品视频| 一区二区三区激情视频| 汤姆久久久久久久影院中文字幕| 在线观看免费高清a一片| 午夜福利在线免费观看网站| 丁香六月欧美| 久久国产精品大桥未久av| 亚洲精品日本国产第一区| 大陆偷拍与自拍| 高清不卡的av网站| 老司机影院毛片| 欧美精品啪啪一区二区三区 | 午夜福利影视在线免费观看| 欧美精品一区二区大全| 欧美日韩黄片免| 精品国产一区二区久久| 女人高潮潮喷娇喘18禁视频| 午夜久久久在线观看| 亚洲,欧美精品.| 久久久精品94久久精品| 新久久久久国产一级毛片| 国产成人av教育| 飞空精品影院首页| 香蕉国产在线看| 亚洲国产精品国产精品| 少妇人妻 视频| 黄色 视频免费看| 一级毛片 在线播放| 人人妻,人人澡人人爽秒播 | 国产97色在线日韩免费| h视频一区二区三区| 熟女少妇亚洲综合色aaa.| 一个人免费看片子| 欧美国产精品一级二级三级| h视频一区二区三区| 国产精品 欧美亚洲| 成年人免费黄色播放视频| 人人澡人人妻人| 精品少妇黑人巨大在线播放| 国产人伦9x9x在线观看| 国产91精品成人一区二区三区 | 国产精品麻豆人妻色哟哟久久| 丰满人妻熟妇乱又伦精品不卡| avwww免费| 国产精品三级大全| 亚洲精品一二三| 中国国产av一级| 人妻 亚洲 视频| 2018国产大陆天天弄谢| 亚洲精品美女久久久久99蜜臀 | 两个人免费观看高清视频| 大码成人一级视频| 亚洲av美国av| 人人澡人人妻人| 人人妻人人爽人人添夜夜欢视频| 亚洲精品久久午夜乱码| 人妻一区二区av| 亚洲免费av在线视频| 狠狠精品人妻久久久久久综合| 丝袜人妻中文字幕| 九色亚洲精品在线播放| 免费女性裸体啪啪无遮挡网站| 国产精品国产三级国产专区5o| 嫁个100分男人电影在线观看 | 亚洲色图 男人天堂 中文字幕| 天堂俺去俺来也www色官网| 一区二区三区精品91| 亚洲精品一区蜜桃| 首页视频小说图片口味搜索 | 中文精品一卡2卡3卡4更新| 日韩 欧美 亚洲 中文字幕| 精品少妇久久久久久888优播| 久久天堂一区二区三区四区| av国产久精品久网站免费入址| 国产福利在线免费观看视频| 人妻人人澡人人爽人人| 久久精品亚洲av国产电影网| 女人高潮潮喷娇喘18禁视频| 久久久久久亚洲精品国产蜜桃av| 国产伦理片在线播放av一区| 中文字幕最新亚洲高清| 99国产综合亚洲精品| 欧美成人午夜精品| 日本色播在线视频| 精品国产一区二区三区四区第35| 久久久久国产一级毛片高清牌| 91精品三级在线观看| 中文字幕色久视频| 在线精品无人区一区二区三| 又黄又粗又硬又大视频| 国产av精品麻豆| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 精品亚洲成a人片在线观看| 少妇的丰满在线观看| 一本一本久久a久久精品综合妖精| 国精品久久久久久国模美| 精品福利永久在线观看| 久久久精品区二区三区| 久久久久视频综合| av欧美777| 黄色毛片三级朝国网站| 欧美激情高清一区二区三区| 国产无遮挡羞羞视频在线观看| 99精品久久久久人妻精品| 日韩电影二区| 大片电影免费在线观看免费| 美女午夜性视频免费| 50天的宝宝边吃奶边哭怎么回事| 人体艺术视频欧美日本| 五月天丁香电影| 国产成人精品久久久久久| 午夜视频精品福利| 视频区图区小说| 国产又色又爽无遮挡免| 中文字幕最新亚洲高清| 80岁老熟妇乱子伦牲交| 七月丁香在线播放| 一二三四在线观看免费中文在| 波多野结衣一区麻豆| 久久精品国产综合久久久| 免费观看av网站的网址| 久久久久网色| 一区二区av电影网| 中文字幕制服av| 多毛熟女@视频| 亚洲国产精品999| 高潮久久久久久久久久久不卡| 啦啦啦 在线观看视频| 亚洲成人手机| 国产伦人伦偷精品视频| 999精品在线视频| 日韩一卡2卡3卡4卡2021年| 亚洲av美国av| netflix在线观看网站| 久久精品国产亚洲av高清一级| 中文字幕制服av| 狂野欧美激情性xxxx| 黄色一级大片看看| 日韩免费高清中文字幕av| 男女边摸边吃奶| 在线观看人妻少妇| www.精华液| 九色亚洲精品在线播放| 亚洲五月婷婷丁香| 欧美日韩亚洲高清精品| 亚洲精品国产色婷婷电影| 看免费成人av毛片| 亚洲精品一卡2卡三卡4卡5卡 | 国产午夜精品一二区理论片| 一本久久精品| 久久精品国产亚洲av高清一级| 好男人电影高清在线观看| 爱豆传媒免费全集在线观看| 在线天堂中文资源库| av电影中文网址| 男人操女人黄网站| 日韩欧美一区视频在线观看| 丰满迷人的少妇在线观看| 大型av网站在线播放| 97在线人人人人妻| 国产成人啪精品午夜网站| 精品人妻熟女毛片av久久网站| 啦啦啦在线免费观看视频4| 汤姆久久久久久久影院中文字幕| 国产xxxxx性猛交| 午夜免费鲁丝|