• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on influencing factors of ion current density measurement in corona discharge of HVDC transmission lines

    2020-05-06 05:58:56ShiqiangLIU劉士強(qiáng)ShouzhengLI李守正YuzeJIANG姜雨澤NanJIANG姜楠JieLI李杰andYanWU吳彥
    Plasma Science and Technology 2020年4期
    關(guān)鍵詞:李杰

    Shiqiang LIU (劉士強(qiáng)),Shouzheng LI (李守正),Yuze JIANG (姜雨澤),Nan JIANG (姜楠),Jie LI (李杰) and Yan WU (吳彥)

    1 School of Electrical Engineering,Dalian University of Technology,Dalian 116024,People’s Republic of China

    2 State Grid Shandong Electric Power Research Institute,Jinan 250003,People’s Republic of China

    Abstract

    Keywords: HVDC,corona discharge,reduced scale device,Wilson plate,ion current density

    1.Introduction

    Figure 1.1-(I) Schematic diagram of reduced scale line-plate experimental device,1-(II) schematic diagram of Wilson plate placement position,1-(III)schematic diagram of the height of the Wilson plate from the grounding plate.(a)Internal testing plate,(b)external shielding plate,(c) Wilson plate,(d) protective annulus,(e) shield ball,(f) HV conductor.

    The advantages of high voltage direct current(HVDC)in long distance and large capacity transmission have resulted in it being widely used throughout the world in recent years.However,since HVDC transmission lines are generally allowed to operate with a slight corona discharge above the onset voltage,considerable positive and negative ions are generated around the lines[1,2].Discharge phenomenon has been widely used in sterilization,pollutant degradation,and medical treatment[3–8],but it needs to be avoided in the field of HVDC as much as possible.The directional movement of positive and negative ions under the action of a space electric field will form the unique ion flow field of HVDC[9,10].The ground level ion current density is a significant parameter for HVDC design and operation.To estimate the ground level ion current density,a collecting plate usually called the Wilson plate,is used to intercept the ions which migrate from the transmission lines to the ground level [11].The Wilson plate is usually located flush with the grounding plate or on the grounding plate.In reality,the ion current density beneath HVDC transmission lines is generally measured and evaluated by using a 1 × 1 m2Wilson plate.In order to study the ground level ion flow field of HVDC transmission lines conveniently,a reduced scale line-plate device has been widely used in the laboratory[12].Scholars have done a lot of theoretical and experimental research on the ion flow field of HVDC transmission lines and have reached many meaningful conclusions [13–16].Fang et al analyzed the edge effect of the Wilson plate in the reduced scale model by combining experimental with numerical simulation [17].The results show that when the ratio of the width of the protective band to the height of the Wilson plate was greater than 5,the measured ion current density was accurate.Bian et al studied the influence of fine particulate matter on the variation of surface morphologies of conductors subjected to positive DC voltages.It was found that the interactions between particles played a critical role in the formation of agglomerations and parallel chains [18].Maruvada compared the results of the ground level ion current density of HVDC transmission lines between calculations and measurements [19],and he found that the most important factor influencing the electric field and ion current distributions is the corona onset gradient of the conductors.Zou et al used an aspirator-type charge meter to study the measurement method of charge densities at ground level under HVDC conductors [20].Wang et al studied the measurement of surface charges on the dielectric film under the HVDC corona wire [21].At present,scholars mainly study the ion flow field of HVDC transmission lines with the Wilson plate directly placed on the grounding plate.However,the study of a Wilson plate which is flush with the grounding plate is seldom published.Therefore,in order to obtain more accurate ground level ion current density directly,it is necessary to study the influence of external factors on the measurement of ion current density when the Wilson plate is flush with the grounding plate.

    In section 2,a new reduced scale wire-plate experimental device in which the Wilson plate is flush with the grounding plate is designed.The influence of the protective annulus width on the ion current density is studied in section 3.1,and reasonable protective annulus parameters are proposed.Furthermore,the height of the Wilson plate from the grounding plate on the ion current density is studied in section 3.2.In addition,the differences between the micro-current galvanometer method and the sampling resistance method used to measure ion current density are compared in section 3.3.Finally,the ground level ion current density distributions of unipolar and bipolar HVDC transmission lines are measured in section 3.4,respectively.The conclusions of this paper given in section 4 can provide a reference for future research.

    2.Experimental setup

    Figure 1(I) shows a schematic diagram of a reduced scale line-plate experimental device for corona discharge in HVDC transmission lines.The grounding plate is mainly composed of two parts.The inner area(a)is a 2480 × 1300 mm2testing plate and the outer area (b) is a 300 mm wide shielding plate in order to eliminate the influence of the edge effect of the testing plate on the measurement results.The distance between the inner plate and outer plate is 2 mm.A smooth aluminum conductor with a diameter of 3 mm and a length of 1600 mm is placed directly above the center of the grounding plate.To eliminate the tip discharge on both sides of the conductor,stainless steel shielding balls with a diameter of 100 mm are installed at the end of the conductor.h represents the height of aluminum conductor from the grounding plate.An aluminum conductor fastened by a nylon rod is connected with a direct DC power supply through the high voltage power supply wire.The Wilson plate is located directly below the conductor.In order to conveniently study the influence of protective annulus width on the ground level ion current density,a 1000 × 1000 mm2removable grounding plate a(2)is placed on the center of the testing plate.The output voltage of the power supply can be adjusted between 0 and 100 kV.Based on the LabVIEW platform,the programmable function of the power supply is used to control the voltage to rise at a rate of 10 kV min-1.

    Figure 2.Schematic diagram of the line-plate HVDC corona discharge.

    The ground level ion current density is measured by using a Wilson plate,which is flush with the grounding plate a(2),as shown in figure 1-(II).In order to measure the ion current density,the Wilson plate and grounding plate are separated by an air protective annulus.w denotes the width of the protective annulus.The size of the Wilson plate is 150 × 200 mm2and it has four chamfers with a radius of 10 mm.Figure 1-(III) shows a schematic diagram of the height of the Wilson plate from the grounding plate.a(1)and a(2) represent the internal grounding plate and the Wilson plate,respectively.d denotes the height of the Wilson plate from the grounding plate.

    The experiments are carried out in an environment with the temperature varying from 18.5°C–21.6°C,the relative humidity varying from 31%–42%,and the atmospheric pressure varying from 1002–1006 hPa.Besides,in order to eliminate the influence of pollutants on the surface of the conductors,absolute ethanol is used to clean the conductors before the experiments.

    3.Results and discussion

    3.1.Influence of the protective annulus width

    The existence of an air protective annulus will distort the electric field around the Wilson plate.The simulation of a two-dimensional electrostatic field of the reduced scale lineplate experimental device is carried out by using COMSOL Multiphysics software.Figure 2 shows a description of the schematic diagram of line-plate HVDC corona discharge in air at the atmospheric environment.Within the numerical model,a positive potential is applied to the HVDC conductor,the grounding plate and the Wilson plate are grounded as zero potential,and a zero charge boundary condition is used at the open boundaries.In the process of simulation,the height of the aluminum conductor h is 500 mm and the diameter of the conductor D is 3 mm.

    Figure 3.Distribution of the ground level electric field under different protective annulus widths.

    Figure 3 shows the distribution of a ground level electrostatic field at 30 kV with different w.The origin of coordinate axes is in the center of the Wilson plate.The numerical value of the lateral axis represents the distance from the origin.It can be seen that the increase of w will lead to serious distortion of the electric field at the edge of the Wilson plate.The upper right corner of figure 3 shows an enlarged view of the electric field in the right protective annulus region.It can be found that when the w is less than 2 mm,the electric field at the edge of the Wilson plate hardly distorts.When the width of the protective annulus is 1 mm,the edge electric field of the Wilson plate is basically maintained at about 25 kV m-1.However,when the width of the protective annulus increases to 8 mm,the edge electric field of the Wilson plate is seriously distorted,and the electric field varies from 13.4–36.5 kV m-1.The intense distortion of the edge electric field of the Wilson plate will seriously affect the measurement of the ion current density on the ground level.Therefore,it is important to study the effect of w on the ground level ion current density.

    In the experiment,the micro-Wilson plates with 1,2,4,6,and 8 mm protective annulus widths are selected to study the effect of w on the ground level ion current density.Figure 4 shows the variation of the ground level ion current density with w under different positive and negative voltages.It can be found that,with the increase of applied voltage,the influence of w on the measurement results is more and more obvious.With the increase of w,the ground level ion current density increases gradually,and the change of ion current density under positive voltage is more stable than that under negative voltage.However,when w is less than 2 mm,the ground level current density basically does not change with w,which indicates that the edge effect of the Wilson plate has little effect on the measurement results.This is consistent with simulation results of the electric field.

    3.2.Influence of the height of the Wilson plate from grounding plate

    In order to verify the influence of the height of the Wilson plate from the grounding plate,d is adjusted from 0–5 cm.Figure 5 shows the influence of d on ion current density under different positive and negative voltages.

    Figure 4.Influence of the protective annulus width on the ground level ion current density under different voltages.

    Figure 5.Influence of the height of the Wilson plate on the ground level ion current density under different voltages.

    It can be seen that the ground level ion current density increases approximately linearly with the increase of d under positive voltage.However,under negative voltage,when the applied voltage is low,there is no obvious linear relationship between the ground level ion current density and d,which may be due to the instability of weak corona discharge under negative voltage.Since HVDC transmission lines generally operate with a slight corona discharge.Therefore,in order to obtain more accurate measurement results,the ground level ion current density should be measured directly by the way that the Wilson plate is flush with the grounding plate as much as possible.

    3.3.Influence of the measurement methods

    The ion current density on the Wilson plate is measured by a micro-current galvanometer (direct method) and sampling resistance method (indirect method),respectively.The direct method uses the FMAC15/1 micro-current galvanometer to measure the ion current,directly.The indirect method uses the Tektrotix DMM4020 high sensitivity digital voltmeter to measure the voltage of the sampling resistance firstly,and then converts it into ion current.The sampling resistors are high accuracy inductance-free resistors with a 0.1%error.The values of the sampling resistors are 0.1,1,2,and 5 M,respectively.Figure 6 shows the variation of ground level ion current density under different positive and negative voltages.

    It can be seen that when the sampling resistance is 0.1 M,the results measured by two methods are basically identical under positive voltage,but there are some deviations under negative voltage,which may be due to the instability of negative corona discharge.However,with the increase of the value of sampling resistance,the ground level ion current density measured by the sampling resistance method decreases gradually,due to the influence of internal resistance of digital voltmeter.

    Figure 6.Comparison of the ion current density of different measurement methods under different voltages.

    Figure 7.Working principle of the digital voltmeter.

    In the measurement process of ion current density,the working principle of a digital voltmeter is shown in figure 7.The ion current produced by corona discharge is equivalent to a direct current source Is.R and Rirepresent the sampling resistance and internal resistance of the instrument,respectively.

    It can be found that the R and Ribelong to the parallel relationship,so the voltage measured by a digital voltmeter is the value of parallel to the resistances.Because the internal resistance of the digital voltmeter is 10 M,which is the same order of magnitude as the sampling resistances,the measurement results need to be corrected.The corrected results of ground level ion current density under different positive and negative voltages are shown in figure 8.

    It can be seen that the ion current density corrected by the sampling resistance method under positive voltage is basically the same as that measured by the micro-current galvanometer method.However,the results obtained by the two methods are slightly different under negative voltage,which may be due to the instability of negative corona discharge and the inconsistency of conductor surface conditions.

    3.4.Applications

    Based on the above research results,the distributions of ground level ion current density under unipolar and bipolar HVDC transmission lines are measured.Figure 9 shows the reduced scale line-plate experimental device for measuring 7 points of ion current density.The size of the Wilson plate is 168 × 218 mm2and it has four chamfers with a radius of 19 mm.The width of the protective annulus is 1 mm.The Wilson plates are 175 mm apart from each other.In the experiment,the Wilson plate is flush with the grounding plate and the ground level ion current density is measured directly by the micro-current galvanometer method.

    3.4.1.Distribution of the ground level ion current density under unipolarity.Figure 10 shows the ground level ion current density distribution of unipolar high voltage conductor under different positive and negative voltages.The conductor is placed at 500 mm above the grounding plate,of which the diameter is 3 mm and the length is 1600 mm.It can be found that the distribution of ground level ion current density of positive polarity is basically symmetrical,while that of negative polarity is not symmetrical with the increase of voltage,which may be due to the uneven distribution of burrs on the conductor surface.With the increase of applied voltage,the ground level ion current density increases rapidly,and the change of the ion current density is the most obvious in the region directly below the conductor (position 4).The ion current mainly concentrates in the region between position 2 and position 6 where the ion current decreases rapidly with the increase of distance from position 4.At the same applied voltage,the ground level ion current density of negative polarity is greater than that of positive polarity,which is due to the following two reasons: (1) the corona onset voltage of negative polarity (–60 kV)is lower than that of positive polarity(70 kV),which makes the negative corona discharge more intense; (2) the rate of the movement of electrons is much faster than that of positive ions,which results in the current of electrons reaching the ground level being larger than that of positive ions.

    Figure 8.Comparison of ion current density after the correction of different measurement methods under different voltages.

    Figure 9.Experimental device for measuring multi-points of the ion current density.

    3.4.2.Distribution of the ground level ion current density under bipolarity.Figure 11 shows the ground level ion current density distribution of bipolar high voltage conductors under different voltages.The conductors are placed 500 mm above the grounding plate,of which the diameter is 3 mm and the length is 1600 mm.The distance between the two conductors is 510 mm.It can be seen that,with the increase of voltage,the ion current density at position 4 fluctuates near zero,and there is a process from positive to negative.The reasons are as follows: the corona discharge is weak at 50 kV.Because of the instability of negative corona discharge,position 4 exhibits a very small positive ion current.However,because the threshold voltage of negative corona discharge is lower than that of positive corona discharge,the ion current density at position 4 shows an obvious negative value when the voltage is higher.Besides,it can be found that,with the increase of voltage,the zero value of the ion current density in the central region of the grounding plate appears between position 4 and position 5.

    In addition,the ground level ion current density in the negative conductor region is significantly higher than that in the positive conductor region.This is the same as unipolar corona discharge.Furthermore,at the same applied voltage,the ground level ion current density in the positive and negative regions of the bipolar conductors is lower than that in the positive and negative unipolar conductors,which is due to the neutralization of positive and negative charged ions produced by the corona discharge of bipolar conductors in the space region.

    4.Conclusions

    In this paper,based on the reduced scale line-plate experimental device in which the Wilson plate is flush with the grounding plate,the influencing factors of the ground level ion current density measurement system are analyzed.The conclusions reached are as follows.

    When the width of the protective annulus is less than 2 mm,the influence of the edge effect on the measurement results of the ground level ion current density can be neglected.The internal resistance of a digital voltmeter seriously affects the measurement results.In order to obtain more accurate values,the measurement results need to be corrected.The ground level ion current density should be measured directly by the way that the Wilson plate is flush with the grounding plate as much as possible.

    Under unipolar conductor,the surface morphology of a conductor has a great influence on the symmetrical distribution of ion current density.Under bipolar conductors,the ion current density in the central region of the grounding plate undergoes a process from positive to negative.At the same applied voltage,the ground level ion current density of positive corona discharge is lower than that of negative corona discharge.

    Figure 10.Distribution of the ground level ion current density under unipolarity.

    Figure 11.Distribution of the ground level ion current density under bipolarity.

    Acknowledgments

    This work are supported by National Natural Science Foundation of China (Nos.51877027,51877028) and State Key Laboratory of Electrical Insulation and Power Equipment(EIPE18206).

    猜你喜歡
    李杰
    Memristor’s characteristics: From non-ideal to ideal
    A spintronic memristive circuit on the optimized RBF-MLP neural network
    基于SPSS軟件建立ARIMA模型
    客聯(lián)(2022年3期)2022-05-31 04:28:08
    Effect of megapore particles packing on dielectric barrier discharge, O3 generation and benzene degradation
    Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial*
    人民海軍首次海戰(zhàn)
    源流(2021年11期)2021-03-25 10:32:07
    小胖熊半夜歷險(xiǎn)記
    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
    ?。楱#镅酲耍颞Γ?多duō 多duo
    Numerical investigation of the time-resolved bubble cluster dynamics by using the interface capturing method of multiphase flow approach*
    香蕉久久夜色| 校园春色视频在线观看| 久久中文字幕一级| 亚洲国产看品久久| 亚洲中文字幕日韩| 日日爽夜夜爽网站| 欧美色欧美亚洲另类二区 | 国产av一区在线观看免费| 亚洲五月婷婷丁香| 国产伦人伦偷精品视频| 精品久久久久久,| 国产视频一区二区在线看| 91精品国产国语对白视频| 大码成人一级视频| 久久天躁狠狠躁夜夜2o2o| 亚洲成av片中文字幕在线观看| 人人妻人人澡欧美一区二区 | 91字幕亚洲| 91大片在线观看| 国产精品一区二区在线不卡| 性少妇av在线| 久久久久国内视频| 天堂√8在线中文| 日韩欧美一区视频在线观看| 涩涩av久久男人的天堂| 成人国产一区最新在线观看| 国产亚洲av高清不卡| 看黄色毛片网站| 久久人人爽av亚洲精品天堂| 日韩一卡2卡3卡4卡2021年| 男人操女人黄网站| 久久天躁狠狠躁夜夜2o2o| 国产成人精品无人区| 午夜福利免费观看在线| 国产一卡二卡三卡精品| 美女大奶头视频| 亚洲av成人不卡在线观看播放网| 日韩中文字幕欧美一区二区| 老司机深夜福利视频在线观看| 黑人欧美特级aaaaaa片| 精品久久蜜臀av无| 三级毛片av免费| 黄片大片在线免费观看| 人成视频在线观看免费观看| 精品国产乱码久久久久久男人| 一个人免费在线观看的高清视频| 欧美老熟妇乱子伦牲交| 日韩 欧美 亚洲 中文字幕| 男人舔女人的私密视频| 国产午夜福利久久久久久| 动漫黄色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品乱码一区二三区的特点 | 国产精品二区激情视频| 久久亚洲精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| 久久人人精品亚洲av| 亚洲国产毛片av蜜桃av| 天天躁夜夜躁狠狠躁躁| 一级黄色大片毛片| 国产亚洲精品综合一区在线观看 | 亚洲精品国产区一区二| 欧美性长视频在线观看| 日日夜夜操网爽| 日韩欧美国产在线观看| 欧美色视频一区免费| 日韩视频一区二区在线观看| 免费av毛片视频| 黄色女人牲交| 午夜福利欧美成人| 此物有八面人人有两片| 亚洲中文字幕日韩| 亚洲最大成人中文| 欧美日本视频| 中文字幕高清在线视频| 欧美久久黑人一区二区| 色综合欧美亚洲国产小说| 91国产中文字幕| videosex国产| 国产又色又爽无遮挡免费看| 亚洲三区欧美一区| 久久 成人 亚洲| 亚洲成a人片在线一区二区| 久久天躁狠狠躁夜夜2o2o| 国产亚洲欧美在线一区二区| 国产精品,欧美在线| 午夜a级毛片| 亚洲美女黄片视频| 欧美日韩黄片免| 少妇熟女aⅴ在线视频| 亚洲中文日韩欧美视频| 日日夜夜操网爽| 免费在线观看日本一区| 久久伊人香网站| 非洲黑人性xxxx精品又粗又长| 一本久久中文字幕| 人成视频在线观看免费观看| 午夜亚洲福利在线播放| 亚洲精品美女久久av网站| 一区福利在线观看| 日韩免费av在线播放| 亚洲欧美激情在线| 欧美国产精品va在线观看不卡| 欧美乱色亚洲激情| 好看av亚洲va欧美ⅴa在| 国产av一区在线观看免费| 午夜久久久在线观看| 亚洲一区高清亚洲精品| e午夜精品久久久久久久| 亚洲五月婷婷丁香| 很黄的视频免费| 亚洲欧洲精品一区二区精品久久久| 亚洲午夜理论影院| 动漫黄色视频在线观看| 国产三级在线视频| 日韩欧美国产一区二区入口| 老司机靠b影院| ponron亚洲| 一区二区三区激情视频| 久久久久国产精品人妻aⅴ院| 午夜日韩欧美国产| 色综合婷婷激情| 国产1区2区3区精品| 人人澡人人妻人| 最近最新中文字幕大全电影3 | 精品国产乱码久久久久久男人| 男女床上黄色一级片免费看| 黑人巨大精品欧美一区二区mp4| 12—13女人毛片做爰片一| 免费少妇av软件| 欧美在线一区亚洲| 日本欧美视频一区| 日本免费一区二区三区高清不卡 | 少妇裸体淫交视频免费看高清 | 成年人黄色毛片网站| 青草久久国产| 久久这里只有精品19| 免费在线观看亚洲国产| 亚洲欧美激情综合另类| 久久草成人影院| 欧美丝袜亚洲另类 | 亚洲专区中文字幕在线| 在线观看66精品国产| 在线观看免费视频日本深夜| 伊人久久大香线蕉亚洲五| 国产精品影院久久| 亚洲国产毛片av蜜桃av| 国产主播在线观看一区二区| 国产高清激情床上av| 男女床上黄色一级片免费看| 91精品三级在线观看| 国产精品野战在线观看| 精品国产乱子伦一区二区三区| 热re99久久国产66热| 成人欧美大片| 欧美国产精品va在线观看不卡| 天天一区二区日本电影三级 | 少妇被粗大的猛进出69影院| 男女午夜视频在线观看| 国产99白浆流出| 久热爱精品视频在线9| 国产精品国产高清国产av| 国产精品1区2区在线观看.| 欧美国产精品va在线观看不卡| 日韩国内少妇激情av| 成年版毛片免费区| 国产精品1区2区在线观看.| 亚洲专区国产一区二区| 亚洲欧美日韩另类电影网站| 国产精品免费视频内射| 欧美精品亚洲一区二区| 老司机深夜福利视频在线观看| av电影中文网址| 国产成+人综合+亚洲专区| 色老头精品视频在线观看| 精品福利观看| 成年版毛片免费区| 国语自产精品视频在线第100页| 亚洲色图av天堂| 97人妻天天添夜夜摸| 黄色成人免费大全| 欧美精品亚洲一区二区| 老司机在亚洲福利影院| 在线观看免费视频日本深夜| x7x7x7水蜜桃| 男人的好看免费观看在线视频 | 女性生殖器流出的白浆| 两性夫妻黄色片| 久久久久久大精品| 日韩 欧美 亚洲 中文字幕| 日韩欧美免费精品| 亚洲avbb在线观看| 在线观看免费视频日本深夜| 精品久久久久久久毛片微露脸| 亚洲一区高清亚洲精品| 亚洲国产高清在线一区二区三 | 国产午夜精品久久久久久| 免费在线观看亚洲国产| 欧美成人午夜精品| 久久中文字幕一级| 欧洲精品卡2卡3卡4卡5卡区| 精品电影一区二区在线| av网站免费在线观看视频| 黄色a级毛片大全视频| 精品电影一区二区在线| 免费看十八禁软件| 免费一级毛片在线播放高清视频 | 中文字幕色久视频| 亚洲成人久久性| 国产精品精品国产色婷婷| 免费久久久久久久精品成人欧美视频| 国产精品免费视频内射| 亚洲性夜色夜夜综合| 国产成人欧美在线观看| 精品国产超薄肉色丝袜足j| videosex国产| 91大片在线观看| 91字幕亚洲| 久久久久久久精品吃奶| 亚洲av成人一区二区三| 亚洲,欧美精品.| 久久这里只有精品19| 色老头精品视频在线观看| 国产一卡二卡三卡精品| 国产成人欧美在线观看| 午夜福利高清视频| 日本 欧美在线| 国产精品野战在线观看| 黄色女人牲交| 久久久国产成人精品二区| 亚洲欧美激情在线| 国产亚洲精品久久久久5区| 日韩欧美国产在线观看| 一级a爱片免费观看的视频| 久久久久九九精品影院| 欧美国产精品va在线观看不卡| 1024香蕉在线观看| 老司机午夜福利在线观看视频| 久久精品91蜜桃| 免费看美女性在线毛片视频| 人妻丰满熟妇av一区二区三区| 亚洲美女黄片视频| 欧美人与性动交α欧美精品济南到| 久久精品亚洲精品国产色婷小说| 老汉色av国产亚洲站长工具| 欧美国产日韩亚洲一区| 91成人精品电影| 十八禁人妻一区二区| 久久精品国产综合久久久| 免费av毛片视频| 精品一区二区三区四区五区乱码| 精品国产超薄肉色丝袜足j| 午夜亚洲福利在线播放| 亚洲中文日韩欧美视频| 免费在线观看完整版高清| 桃色一区二区三区在线观看| 国产精品综合久久久久久久免费 | 中文字幕高清在线视频| 在线免费观看的www视频| 亚洲免费av在线视频| 亚洲三区欧美一区| 欧美在线一区亚洲| 韩国av一区二区三区四区| 国产91精品成人一区二区三区| e午夜精品久久久久久久| 中文亚洲av片在线观看爽| 久久中文字幕人妻熟女| 黄色毛片三级朝国网站| 亚洲成人国产一区在线观看| 法律面前人人平等表现在哪些方面| 日本免费一区二区三区高清不卡 | 成人av一区二区三区在线看| 欧美成人一区二区免费高清观看 | a级毛片在线看网站| 丝袜美足系列| 欧美激情极品国产一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 久久欧美精品欧美久久欧美| 亚洲色图 男人天堂 中文字幕| 日韩国内少妇激情av| 亚洲精品美女久久久久99蜜臀| 老司机午夜福利在线观看视频| 欧美一区二区精品小视频在线| 日本 欧美在线| 香蕉久久夜色| 亚洲av日韩精品久久久久久密| 高清在线国产一区| 色在线成人网| 热99re8久久精品国产| 亚洲欧美日韩另类电影网站| 免费搜索国产男女视频| 少妇熟女aⅴ在线视频| 亚洲av日韩精品久久久久久密| 最新美女视频免费是黄的| 亚洲第一av免费看| 女人被狂操c到高潮| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| 97人妻天天添夜夜摸| 黄色视频,在线免费观看| 久久人人爽av亚洲精品天堂| 丰满的人妻完整版| 亚洲avbb在线观看| 中文字幕人成人乱码亚洲影| 日本撒尿小便嘘嘘汇集6| 不卡一级毛片| 一本久久中文字幕| 一级a爱视频在线免费观看| 久久中文字幕人妻熟女| netflix在线观看网站| 亚洲成av片中文字幕在线观看| 人妻久久中文字幕网| 日本五十路高清| 欧美色视频一区免费| 亚洲专区国产一区二区| av视频在线观看入口| 亚洲av成人一区二区三| 90打野战视频偷拍视频| 丁香六月欧美| 亚洲av成人av| av天堂久久9| 国产精品久久久av美女十八| 两性夫妻黄色片| 一级毛片高清免费大全| 日韩三级视频一区二区三区| 午夜久久久在线观看| 少妇 在线观看| 亚洲九九香蕉| netflix在线观看网站| 欧美激情极品国产一区二区三区| 精品国内亚洲2022精品成人| www.999成人在线观看| 午夜成年电影在线免费观看| 亚洲国产看品久久| 精品午夜福利视频在线观看一区| 午夜福利18| 亚洲人成电影免费在线| 悠悠久久av| www.www免费av| 老熟妇乱子伦视频在线观看| 国产高清有码在线观看视频 | 97超级碰碰碰精品色视频在线观看| 99久久久亚洲精品蜜臀av| 18禁裸乳无遮挡免费网站照片 | 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说| 国产精品99久久99久久久不卡| 精品不卡国产一区二区三区| 最近最新免费中文字幕在线| 国产精品99久久99久久久不卡| 最近最新中文字幕大全免费视频| 日韩国内少妇激情av| 香蕉丝袜av| 亚洲午夜理论影院| 免费看美女性在线毛片视频| 搞女人的毛片| 一个人免费在线观看的高清视频| 热re99久久国产66热| 变态另类丝袜制服| 一级毛片高清免费大全| 免费高清在线观看日韩| 9191精品国产免费久久| 成在线人永久免费视频| 在线观看舔阴道视频| 90打野战视频偷拍视频| 精品久久久精品久久久| 日韩欧美免费精品| 欧美日韩瑟瑟在线播放| 日韩av在线大香蕉| 老熟妇乱子伦视频在线观看| 久久精品91无色码中文字幕| 一级黄色大片毛片| 国产成人影院久久av| 国产精品免费视频内射| 母亲3免费完整高清在线观看| 亚洲最大成人中文| 久久久久久久久久久久大奶| 精品不卡国产一区二区三区| 青草久久国产| 亚洲精品在线美女| 后天国语完整版免费观看| 日韩中文字幕欧美一区二区| 亚洲成av人片免费观看| 亚洲成人久久性| 中文字幕人妻熟女乱码| 亚洲全国av大片| 可以在线观看的亚洲视频| 午夜视频精品福利| 一进一出抽搐动态| 亚洲伊人色综图| x7x7x7水蜜桃| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 欧美av亚洲av综合av国产av| 一卡2卡三卡四卡精品乱码亚洲| 一a级毛片在线观看| 精品久久久久久成人av| 久久精品国产清高在天天线| 国产精品一区二区免费欧美| 91精品三级在线观看| 久久人人爽av亚洲精品天堂| 日韩三级视频一区二区三区| 精品卡一卡二卡四卡免费| 成人亚洲精品一区在线观看| 国产熟女xx| 免费看美女性在线毛片视频| www日本在线高清视频| 亚洲av熟女| 亚洲av五月六月丁香网| 麻豆av在线久日| 黄网站色视频无遮挡免费观看| 大香蕉久久成人网| 丝袜在线中文字幕| 国产成人一区二区三区免费视频网站| 女人高潮潮喷娇喘18禁视频| 久久久久国产一级毛片高清牌| 国产又爽黄色视频| 国产成人啪精品午夜网站| 精品人妻在线不人妻| 欧美中文综合在线视频| 少妇被粗大的猛进出69影院| xxx96com| 久久久久久久午夜电影| 精品久久久精品久久久| 人成视频在线观看免费观看| 久久国产精品影院| 两性夫妻黄色片| 国产精品综合久久久久久久免费 | 久久婷婷成人综合色麻豆| 国产精品美女特级片免费视频播放器 | 久久久久亚洲av毛片大全| 99久久精品国产亚洲精品| 亚洲国产毛片av蜜桃av| 黄色丝袜av网址大全| 国产精品二区激情视频| 中文字幕高清在线视频| 两个人视频免费观看高清| 国语自产精品视频在线第100页| 桃红色精品国产亚洲av| 成人av一区二区三区在线看| 成人国语在线视频| 精品一品国产午夜福利视频| 久久国产精品人妻蜜桃| 日韩三级视频一区二区三区| 国产精品亚洲美女久久久| 两个人视频免费观看高清| 侵犯人妻中文字幕一二三四区| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美日韩在线播放| 老司机午夜十八禁免费视频| 巨乳人妻的诱惑在线观看| 欧美性长视频在线观看| 亚洲伊人色综图| 久久九九热精品免费| 精品久久久精品久久久| 欧美激情极品国产一区二区三区| 黄色丝袜av网址大全| 巨乳人妻的诱惑在线观看| 精品无人区乱码1区二区| 亚洲一区二区三区色噜噜| 久久九九热精品免费| 欧美+亚洲+日韩+国产| 精品久久蜜臀av无| 国产91精品成人一区二区三区| 国产精品电影一区二区三区| 香蕉丝袜av| 亚洲专区国产一区二区| 久99久视频精品免费| 波多野结衣av一区二区av| 国产精品久久电影中文字幕| 国产精品二区激情视频| 国产亚洲精品一区二区www| 欧美在线一区亚洲| 亚洲国产欧美日韩在线播放| 国产成人欧美在线观看| 亚洲成人国产一区在线观看| 色播在线永久视频| av超薄肉色丝袜交足视频| 国产一级毛片七仙女欲春2 | 亚洲国产欧美网| 亚洲欧美一区二区三区黑人| 麻豆成人av在线观看| 99在线视频只有这里精品首页| 免费看a级黄色片| 精品久久久久久成人av| 久久久水蜜桃国产精品网| 欧美乱码精品一区二区三区| 中国美女看黄片| 一进一出抽搐gif免费好疼| 桃色一区二区三区在线观看| 亚洲视频免费观看视频| 日日摸夜夜添夜夜添小说| 免费高清视频大片| 最近最新中文字幕大全电影3 | 在线观看www视频免费| 两个人视频免费观看高清| 波多野结衣巨乳人妻| 在线免费观看的www视频| 中文字幕色久视频| 午夜免费成人在线视频| 男人操女人黄网站| 精品一区二区三区视频在线观看免费| 满18在线观看网站| 日韩国内少妇激情av| 黄频高清免费视频| 9191精品国产免费久久| 国产精品爽爽va在线观看网站 | 大码成人一级视频| 一级a爱片免费观看的视频| 国产成人欧美在线观看| 精品久久久久久,| 免费不卡黄色视频| 日本五十路高清| 亚洲成a人片在线一区二区| 午夜影院日韩av| 亚洲欧美激情综合另类| 亚洲欧美激情在线| 两性夫妻黄色片| 国产成人欧美| 别揉我奶头~嗯~啊~动态视频| 欧洲精品卡2卡3卡4卡5卡区| 久久亚洲精品不卡| 成人国语在线视频| 亚洲 国产 在线| 欧美色视频一区免费| 亚洲 欧美 日韩 在线 免费| 黄片大片在线免费观看| 亚洲成人免费电影在线观看| 99香蕉大伊视频| 91成人精品电影| 九色国产91popny在线| 国产精品av久久久久免费| 老熟妇乱子伦视频在线观看| 日本一区二区免费在线视频| 两个人免费观看高清视频| 亚洲欧美精品综合久久99| 久久中文看片网| 免费一级毛片在线播放高清视频 | 亚洲国产欧美日韩在线播放| 午夜福利成人在线免费观看| 久久香蕉国产精品| 国产精品1区2区在线观看.| bbb黄色大片| 国产av一区二区精品久久| 波多野结衣巨乳人妻| 国产精品久久视频播放| av天堂在线播放| 日韩欧美国产在线观看| 国内毛片毛片毛片毛片毛片| 久久香蕉精品热| 黄色片一级片一级黄色片| 日韩欧美一区视频在线观看| 高潮久久久久久久久久久不卡| 51午夜福利影视在线观看| 免费在线观看影片大全网站| 成熟少妇高潮喷水视频| АⅤ资源中文在线天堂| 9191精品国产免费久久| 大香蕉久久成人网| 巨乳人妻的诱惑在线观看| 国产激情欧美一区二区| 啪啪无遮挡十八禁网站| 欧美+亚洲+日韩+国产| 国产人伦9x9x在线观看| 91av网站免费观看| 身体一侧抽搐| 色av中文字幕| 91成年电影在线观看| 久久香蕉精品热| 少妇的丰满在线观看| www.999成人在线观看| 曰老女人黄片| 无人区码免费观看不卡| 少妇被粗大的猛进出69影院| 女人爽到高潮嗷嗷叫在线视频| 欧美乱妇无乱码| 久久国产精品男人的天堂亚洲| 免费观看精品视频网站| av超薄肉色丝袜交足视频| av中文乱码字幕在线| 国产成人av激情在线播放| а√天堂www在线а√下载| 女人被躁到高潮嗷嗷叫费观| 色尼玛亚洲综合影院| 亚洲无线在线观看| 日韩中文字幕欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久午夜电影| 亚洲人成网站在线播放欧美日韩| 老司机午夜福利在线观看视频| 国产三级黄色录像| 亚洲欧美精品综合一区二区三区| 国产区一区二久久| 亚洲成人国产一区在线观看| 色婷婷久久久亚洲欧美| 欧美乱妇无乱码| 久久亚洲精品不卡| 精品久久久精品久久久| 久9热在线精品视频| 国产蜜桃级精品一区二区三区| 咕卡用的链子| 十八禁人妻一区二区| 美女午夜性视频免费| 国产成人免费无遮挡视频| 一本久久中文字幕| 国产又色又爽无遮挡免费看| 热re99久久国产66热| 给我免费播放毛片高清在线观看| 一区二区三区激情视频| 国产成人一区二区三区免费视频网站| 精品乱码久久久久久99久播| 99久久99久久久精品蜜桃| cao死你这个sao货| 亚洲 欧美 日韩 在线 免费| 如日韩欧美国产精品一区二区三区|