• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimation of plasma density perturbation from dusty plasma injection by laser irradiation on tungsten target in DiPS

    2020-05-06 05:59:30InJeKANGMinKeunBAEInSunPARKMinJiLEEandKyuSunCHUNG
    Plasma Science and Technology 2020年4期

    In Je KANG,Min-Keun BAE,In Sun PARK,Min Ji LEE and Kyu-Sun CHUNG

    1 Department of Electrical Engineering,Hanyang University,Seoul 133791,Republic of Korea

    2 Plasma Technology Research Center,National Fusion Research Institute,Gunsan 54004,Republic of Korea

    Abstract

    Keywords: plasma density perturbation,dusty plasma,tungsten dust,DiPS

    1.Introduction

    In the fields of laboratory,astrophysical,and fusion plasmas,studies on dusty plasmas have been carried out on the mechanisms of charged dust particles,dust acoustic waves,dust particle transport,and their effects on plasma characteristics[1–4].The analysis of dusty plasmas requires understanding of the fundamentals of plasma and atomic physics,innovative experiments and diagnostics,environmental issues,and novel industrial applications because dust particles fully interact with and are coupled to the background plasma,resulting in new and unique plasma phenomena to arise in the plasma [3,4].

    In fusion devices,the studies have focused on dust particle transport,the interaction of dust with plasmas,the observation of dust parameters,and dust effects on edge and core plasmas in terms of various simulation or experimental conditions[2,4–6].Although some mechanisms leading to the formation,transport,and effects of dust on core plasmas have been analyzed,their relative importance is not yet adequately understood [7].Additionally,significant amounts of dust particles,which are a few μm in size,have been found at the divertor or bottom region,and the negative effects of dust on core plasmas have been shown in many recent studies of advanced fusion devices such as JET [8],ASDEX-U [9],DIII-D [10],and KSTAR [11,12].As the development of fusion devices more closely and reliably approaches the technical conditions required for the confinement of a core plasma,it clearly appears that optimization of the plasma performance requires improved understanding and ultimately better control of the interface conditions for dust-interaction with the plasma and material surfaces.This is due to the fact that the major concern so far has been pollution of the plasma by ablated dust particles,which may decrease the performance of the plasma [2,7,13,14].

    Many studies with a laser,an electron beam,and a plasma gun for the interaction of transient heat flux with tungsten materials have been carried out in the research field of plasma wall interactions for fusion devices in recent years.This is because tungsten has been selected as a plasma facing component(PFC) at the divertor baffles and dome in the International Thermonuclear Experimental Reactor (ITER) and proposed as a first wall material in DEMO [15–17].The surface damage of tungsten from transient heat flux such as edge localized modes(ELMs) was investigated when ELM-like conditions were replicated by exposing the tungsten surface to a pulsed laser beam[18,19].Relevant results for the effects of ELMs on tungsten surfaces in fusion devices were presented from the experimental simulation of laser-tungsten interactions,such as melting,cracks,recrystallization and the He bubble structure [16–21].However,the research for the secondary effects on the confined plasmas such as the core or edge region at fusion devices is absent,although dusty plasmas are generated via interactions between the transient heat flux and tungsten,producing dusts from the volume difference according to the vaporization,erosion,melting,and cracks of tungsten surfaces [19,21].

    The divertor plasma simulator (DiPS) was developed as a linear plasma device to apply the probe technique to understand a magnetized presheath region of a simulated tokamak plasma wall interaction region [22,23].DiPS has been performed for experimental simulations of the investigation of electron and ion profiles with a LaB6DC plasma gun for plasma diagnostics and determining the characteristics of magnetized plasma focused on fusion devices [24,25].Recently,we have upgraded DiPS to improve the similarity of the plasma condition with a scrape-off layer(SOL)region in fusion devices and performed experiments on the analysis of diffusion phenomena in presheaths as studies on the fusion plasma edge transport [26].

    This paper estimates the effects of dusty plasma injection on the characteristics of magnetized plasmas,especially plasma density,and is an extension of previous work in DiPS for fusion plasma edge transport.Here,we report on experiments of intrinsic dust detached from PFCs to improve realistic environments,such as dust generation through ELMs interacting with PFCs in fusion devices.Dusty plasma via a laserinduced plasma [27,28] was generated by the interactions between a high-power laser beam and a full tungsten target.Using this technique,laser ablation with the melting and evaporation threshold of target materials was induced to produce transient plasmas with dust particles.To investigate the interaction of the background plasma with dusty plasma in terms of plasma discharge currents and magnetic flux intensity in DiPS,radial profiles of the plasma density at the interaction region were measured using a fast scanning probe(FSP)system with triple tips.The topics covered here are the experimental set-up in section 2,results in section 3,and conclusion in section 4.

    2.Experimental setup

    Figure 1.(a) Experimental set-up,(b) cross-section view for data acquisition system in divertor plasma simulator (DiPS) and (c)schematic view of an electric probe (tip area: 1.73 × 10-2 cm2).(1) dusty plasma,(2) tungsten target,(3) triple probe,(4) magnetic nozzle throat,(5) magnetic nozzle exit,(6) laser beam,(7) distance between laser beam and probe tip (d1 = 0.5 cm),(8) core plasma,(9)edge plasma,(10)oscilloscope,(11)computer,(12)linear position transducer,(13) DC power supply,(14) laser controller,(15) Nd:YAG laser,(16) probe signal (Isat, V1, V2),(17) distance signal(r),(18) fast scanning probe system (FSP),(19) distance between tungsten targets and electric probes (d2 = 5 cm) and (20) plasma.

    Table 1.Comparison of plasma parameters at edge region in tokamak with DiPS.

    Figure 2.(a) The region of experimental set-up in divertor plasma simulator (DiPS),(b) simulation results for magnetic intensity and(c) magnetic field profile in DiPS.

    Figure 3.Frequency comparison: (a) edge localized modes (ELM)peaks in Korea Superconducting Tokamak Advanced Research(KSTAR) by electric probe measurements and (b) reflection light from interaction of laser beam with tungsten target measured by a photodiode.

    Figure 4.(a) Results of interaction of laser beam with a tungsten target by using a fast camera and (b) a photograph of scanning electron microscope (SEM).

    DiPS with a plasma gun can produce plasma parameters at edge-relevant plasma,as shown in table 1.It has a magnetic nozzle for the formation of a magnetic hill and geometrical production of a bounded presheath,which experimentally induces a more similar environment with the magnetized plasma at the SOL region in the fusion device[26].Figure 1 shows the experimental set-up used to analyze the effects of dusty plasma injection on the characteristics of the magnetized plasma using a high-power pulsed laser in DiPS.As shown in figure 2,the full tungsten targets located at the 4°–5° magnetic field line due to a tungsten monoblock at the ~3°–4°magnetic field line angle of incidence in the baseline ITER plasma,which are used in the fusion plasma field [15,29,30],have the following specifications:size = 25 × 25 mm2,density = 19.20 g ccm-1,hardness = 453 HV30,and tungsten content = 99.95%.An Nd:YAG pulsed laser is used for the laser ablation of the tungsten targets,with the following specifications: wavelength = 532 nm,pulse width ~10 ns,maximum energy =250 mJ,and beam diameter = 5 mm.

    Since the generated dusty plasma strongly depended on the absorbed laser energy and the melting threshold of the tungsten walls for ITER was shown as a heat flux factor of transient damage threshold>50 MJ·m-2· s-1/2per a transient heat flux such as ELMs[13,15,31,32],the transient energy flux of the Nd:YAG pulsed laser is fixed at ~100 MJ·m-2· s-1/2per laser shot.

    Figure 5.Results of radial plasma density(ne)and electron temperature(Te)by using triple probes(TP).(a)ne,(b)Te at different discharge currents(10–20 A)and the fixed magnetic flux density 1 kG,(c)ne and (d)Te at different magnetic flux densities (0.8–1 kG)and the fixed discharge current 20 A.0 mm at x-axis represents plasma center.(P) and (D) in the legends are for pure plasmas and pure plasmas + injection of dusty plasmas,respectively.

    These quasi-periodic bursts in fusion devices occur at a frequency of about 10–200 Hz,called‘type-I ELMs’.As shown in figure 3,beam injection frequency is fixed at 20 Hz.The distance (d) between the plasma center and tungsten target is 5 cm,which is in a presheath formed due to geometry of magnetic nozzle at DiPS,as shown in figure 1.From the measurement of the weight difference of the tungsten targets before and after laser irradiation,analysis of scanning electron microscope (SEM) photographs and a fast camera,generated dusts with a generation rate ~3 μg s-1and size of 1–10 μm were observed as shown in figure 4.

    The detailed specification of DiPS and the data collection system by using an FSP system with various probe tips,including the geometry,magnetic flux intensity,plasma parameters at a steady state condition,and plasma gun,are described by Chung and Kang [23,26].In this experiment,the base pressure was 3 × 10-6Torr (4 × 10-4Pa) and operating pressure was ~7 × 10-3Torr (0.9 Pa) for argon gas at 90–130 sccm.The LaB6heating current and bias were 280 A and 16 V,respectively.The magnetic flux density was changed to 0.8–1 kG at the experiment region.Operating ranges of plasma discharge currents were 10–20 A at 40–50 V of DC bias.The incident angle of dusty plasma injection to background plasma was fixed at 90°.The input rates and size of dust particles were assumed from the measured results(3 μg s-1and 1–10 μm).

    To investigate the effects of dusty plasma injection on the characteristics of background plasmas in terms of plasma discharge currents (Idis.) and magnetic flux intensity (B) at DiPS,an FSP system with triple probe tips was used for the measurement of radial plasma profiles,which are able to scan the radial plasma profiles with scan speed 1 m s-1.Radial distance was converted from bias signals measured by using linear position transducer.The structure of a triple probe,which consisted of three molybdenum tips and a ceramic insulator between the tips,is shown in figure 1(c).

    3.Results

    Figure 6.Results for plasma density near core region (0 < r <25 mm).In the legends,Np and Nd are plasma densities of pure plasmas and pure plasmas with an injection of dusty plasma,respectively.

    Figure 7.Results for ratio(εn)of density perturbation by injection of dusty plasma according to radial distance.(a) At different discharge currents (10–20 A) and (b) at different magnetic flux density(0.8–1 kG).0 mm at x-axis represents plasma center.

    Figure 5 shows the results of measurements for the radial plasma profiles.As for the triple probe system,a fixed bias voltage -100 V was applied to the two probe tips (V1),and the other probe was for measuring the floating potential(V2).By using simple formula with potential difference,the electron temperature (Te) and plasma density (ne) were calculated usingTe= [e(V1-V2)]/ ln 2 = [e(V1-V2)]/0.693 and,where e,α,As,and k are electron charge,coefficient for the collective ion saturation current,sheath area,and the Boltzmann constant,respectively.In this study,As≈ probe tip area is assumed and α = 0.49 is used for B > 0 [33].For investigation of the magnetized plasma in DiPS,probe circuits,FSP performance,raw data,and the analysis process of triple probe measurements are reported in previous work [26].We follow the same procedures as previous works for analysis of neand Te.As shown in figure 5,the general tendencies of normal magnetized plasmas are observed.For example,the increase of neand Teis found when increasing Idisand dispersion of plasma profiles is shown with the reduction of B.For focusing effect of plasma density perturbation,nedata near plasma core region was analyzed,where plasma core and edge are defined as 0 < r < 25 mm and r > 25 mm,respectively,due to geometry of magnetic nozzle at DiPS.The average value for five data of plasma density near core region is shown in figure 6,where Npand Ndare plasma densities of pure plasmas and pure plasmas with an injection of dusty plasma,respectively.To obtain the numerical estimation of the density perturbation from dusty plasma injection by laser irradiation on a tungsten target,as shown in figure 7,εn(%) = ∣(N0-NE) /N0∣×100 according to radial density profiles was calculated,where N0and NEare plasma densities of pure plasmas and pure plasmas with the ELM-like condition,respectively,which is an injection of dusty plasma.εn~ 10%is found in core plasmas.Perturbation of neby dusty plasmas is slightly increased from core to edge plasmas,which increases by ~10%–20%.The maximum value ofεnwith >80% is observed in a region of the edge plasma with B = 0.9 kG and Idis= 20 A.In this study,the effects of dusty plasma injection (dusts with a generation rate of ~3 μg s-1and size of 1–10 μm)on plasma density in the magnetized plasma with plasma parameters(ne= (1–5) × 1011cm-3and Te= 10–20 eV scales at the core region in the steady state condition)are insignificant with 10% uncertainty.However,dust particles are intensively bombarded by electrons,ions,and neutral atoms in various charge states and they affect melting and sublimation temperatures,causing the phase change in matter and enhanced evaporation to produce fluctuations of neand Tein plasmas [4].

    Figure 8.Result of ion saturation currents (Isat)measured by a fixed probe at core plasmas (r = 0) with B = 1 kG and Idis = 4.5 A.Black square is raw data and red line is for exponential fitting.λτ is the decay length of ion saturation currents in time scales for fluctuation duration.

    Figure 9.Results of (a) ψ and (b) λτ according to ratio of plasma densities.ψ = Id/Ip is normalized factor of density fluctuations where Ip and Id are Isat values of pure plasmas and pure plasmas + injection of dusty plasmas,respectively.In figure 9(a),red line(L)is linear fitting at ranges Idis = 1–5 A.λτ is decay length of ion saturation currents in time scales for fluctuation duration.n0 is 2 × 1011 cm-3 at Idis = 10 A.

    The effects of dusty plasma injection,generated from evaporation,erosion,and mass loss of a tungsten target after the interaction of high energy flux with the tungsten target,show lower εn,although a maximum εn> 80% was estimated.Why did dusty plasma effects result in an insignificant difference to steady state plasmas? We have the following assumptions: (i) the background plasma density is relatively higher than dusty plasma,and (ii) the duration of dust remaining in the magnetized plasma is too short to affect the plasma parameters during transient phenomena.To check the assumptions of this experiment,transient phenomena were investigated with different configurations of the experimental set-up,such as changing the scanning probe to a fixed probe and changing from high density plasmas (Idis= 10–20 A) to low density plasmas (Idis= 1–5 A).To avoid damage to probes such as melting the tips,we could not measure plasma parameters with the condition of Idis> 5 A since melting of a fixed probe was found in an experimental test of a fixed probe with high-density plasmas and estimation for the duration in which the probe remains in the unmelted state of the probe[34].Figure 8 shows the results of Isatmeasured by a fixed probe at core plasmas (r = 0) with B = 1 kG and Idis= 4.5 A.The transient effect of dusty plasma from laser irradiation on a tungsten target on Isat,which is a mightily important parameter for ne,in the magnetized plasmas with ne~1 × 1011cm-3is observed,as shown in figure 8.The normalized factor for fluctuation of the ion saturation current,ψ=Id/Ip,where Idand Ipare ion saturation currents of pure plasma with/without injection of dusty plasma,respectively,is introduced to estimate transient perturbation of collective ion saturation currents.Results of ψ according to the ratio of plasma densities by changing Idisare given in figure 9(a).The red line is linear fitting at ranges Idis= 1–5 A for low density plasmas.In this setup nxis plasma density at Idis= 1–5 A(n0:2 × 1011cm-3at Idis= 10 A).Perturbations of Isat,which has a higher dependence on plasma density,are found at low density plasmas.From this result with an extrapolation method,ψ = 1–2 is reached at 0.5 < nx/n0< 0.6 for εn~ 10%.From figure 8,the duration of density perturbation by the dusty plasma is maintained for a short time of ~0.4 ms at B = 1 kG and Idis= 4.5 A.The exponential decay of density due to collisions with the mean free path could be expressed asn(t) ≈n0exp[-t/λτ]whereλτis the decay length of ion saturation currents in time scales.To estimate a duration time of perturbation,λτaccording to the ratio of plasma density was analyzed.The range from a high(peak)to low levels of Isatfor exponential fitting was used,as shown in figure 8.The tendency ofλτ,which decreases with increasing neand seems to saturate nx/n0> 0.35,is found as shown in figure 9(b).It is shown that the duration time of perturbation is highly dependent on plasma density [35] and has a shorter time at a higher plasma density (>1011cm-3)than ~0.1 ms.These results presented undesirable effects from vaporization,erosion,melting,and cracks of tungsten surfaces on the plasma density stability of the edge region (ne=1012–1013cm-3) will be insignificant if the interaction of the transient high heat flux,such as the ELM-like condition with~100 MJ · m-2· s-1/2and 20 Hz,with PFCs occurs at one region in fusion devices.

    4.Conclusion

    The effects of dusty plasma injection on the characteristics of plasma density in magnetized plasmas were experimentally estimated at steady state and transient conditions when a similar environment for interaction of ELMs on first walls was experimentally simulated by using the interaction of a high energy pulsed laser with tungsten targets at magnetized plasmas in DiPS.For the estimation of the effects of dusty plasma injection to edge plasmas,when the interaction of ELMs ~ 100 MJ · m-2· s-1/2with 20 Hz on first walls or a divertor in tokamaks is assumed,one wave of plasma parameters for ~0.1 ms can be produced,and it consistently results in perturbation with εn~ 10% at the core region of steady state plasmas.As neincreases,the scale of the effects of dusty plasma injection on edge-relevant plasma was decreased and the duration of transient fluctuation by dusty plasma was reduced.In other words,the effects of dusty plasma injection on the plasma density of edge-relevant plasma were highly dependent on neof the edge-relevant plasmas when the ELM-like condition was replicated by exposing a pulsed laser beam to a tungsten surface.However,additional simulation and experiment studies are essential to verify the results in complex plasma with higher dust generation rate.This is because ELM phenomena with various frequencies and energies occur simultaneously and in many regions due to significantly changing plasma conditions,thus leading to increased undesirable effects on the plasma density stability from higher dust or impurity production.

    Acknowledgments

    This research was supported by National R&D Program through the Nation Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03033076).Additionally,this research was supported by National R&D Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT & Future Planning (2019M1A7A1A03088471).

    欧美xxⅹ黑人| 亚洲成av片中文字幕在线观看| 国产亚洲精品第一综合不卡| tube8黄色片| 久久ye,这里只有精品| 黑丝袜美女国产一区| 尾随美女入室| 国产精品99久久99久久久不卡| 黄色片一级片一级黄色片| 国产熟女欧美一区二区| 伊人久久大香线蕉亚洲五| 男男h啪啪无遮挡| www.精华液| 可以免费在线观看a视频的电影网站| 只有这里有精品99| 亚洲黑人精品在线| 久久国产精品大桥未久av| 国产精品久久久久久精品古装| 日韩 亚洲 欧美在线| 日韩免费高清中文字幕av| 日本vs欧美在线观看视频| 又大又爽又粗| 欧美+亚洲+日韩+国产| 欧美中文综合在线视频| 国产精品二区激情视频| 新久久久久国产一级毛片| 国产精品熟女久久久久浪| 国产亚洲午夜精品一区二区久久| 只有这里有精品99| 香蕉丝袜av| 丝瓜视频免费看黄片| 久久国产精品影院| 欧美性长视频在线观看| 国产成人啪精品午夜网站| 国产av一区二区精品久久| 一级片'在线观看视频| 香蕉国产在线看| 免费观看av网站的网址| 免费观看av网站的网址| 精品国产乱码久久久久久男人| 人体艺术视频欧美日本| 亚洲av日韩精品久久久久久密 | 美女午夜性视频免费| 欧美黑人欧美精品刺激| 9191精品国产免费久久| 一边亲一边摸免费视频| 国产男人的电影天堂91| 99久久精品国产亚洲精品| 大型av网站在线播放| 人人妻人人澡人人爽人人夜夜| 国产又色又爽无遮挡免| 亚洲精品一二三| 18禁国产床啪视频网站| 日韩精品免费视频一区二区三区| 国产精品久久久av美女十八| 国产亚洲av片在线观看秒播厂| 人人妻,人人澡人人爽秒播 | 久久国产精品男人的天堂亚洲| 国产精品一二三区在线看| 国产日韩一区二区三区精品不卡| 国产免费福利视频在线观看| 久久精品熟女亚洲av麻豆精品| 极品少妇高潮喷水抽搐| 大片免费播放器 马上看| 欧美性长视频在线观看| 精品欧美一区二区三区在线| 最近最新中文字幕大全免费视频 | 欧美亚洲 丝袜 人妻 在线| 你懂的网址亚洲精品在线观看| 天堂中文最新版在线下载| 性色av乱码一区二区三区2| 久久人妻福利社区极品人妻图片 | 激情五月婷婷亚洲| 欧美日韩亚洲国产一区二区在线观看 | 久久久精品94久久精品| 久久九九热精品免费| 亚洲美女黄色视频免费看| 久久久国产精品麻豆| 男女床上黄色一级片免费看| 日韩一区二区三区影片| 久久免费观看电影| 国产一区二区三区综合在线观看| 80岁老熟妇乱子伦牲交| 97在线人人人人妻| 免费看av在线观看网站| 亚洲专区国产一区二区| 一本大道久久a久久精品| 国产高清国产精品国产三级| 一级,二级,三级黄色视频| 精品国产超薄肉色丝袜足j| 国产成人a∨麻豆精品| 黑人欧美特级aaaaaa片| 十八禁人妻一区二区| 好男人视频免费观看在线| 女人精品久久久久毛片| 最新在线观看一区二区三区 | av国产精品久久久久影院| 美女福利国产在线| 丝袜脚勾引网站| 老汉色∧v一级毛片| 丁香六月欧美| 国产精品国产三级专区第一集| 亚洲成av片中文字幕在线观看| 欧美激情 高清一区二区三区| 欧美激情极品国产一区二区三区| 国产精品一区二区在线观看99| 19禁男女啪啪无遮挡网站| 亚洲,欧美,日韩| 在线精品无人区一区二区三| 午夜福利,免费看| 日韩,欧美,国产一区二区三区| 久久久国产精品麻豆| 夫妻性生交免费视频一级片| 精品福利永久在线观看| 国产女主播在线喷水免费视频网站| 视频在线观看一区二区三区| 一级毛片黄色毛片免费观看视频| 伊人亚洲综合成人网| 母亲3免费完整高清在线观看| 成年美女黄网站色视频大全免费| 国产成人影院久久av| 亚洲色图 男人天堂 中文字幕| 黄色视频不卡| 欧美97在线视频| 91精品三级在线观看| 韩国精品一区二区三区| 亚洲 国产 在线| 亚洲欧美精品综合一区二区三区| 99久久99久久久精品蜜桃| av天堂久久9| 精品熟女少妇八av免费久了| 免费人妻精品一区二区三区视频| 一区二区三区精品91| 国产精品成人在线| 国产成人91sexporn| 首页视频小说图片口味搜索 | 日韩 亚洲 欧美在线| 97精品久久久久久久久久精品| 三上悠亚av全集在线观看| 欧美在线黄色| 精品人妻熟女毛片av久久网站| 男女无遮挡免费网站观看| 久久久久精品人妻al黑| 亚洲激情五月婷婷啪啪| 欧美亚洲 丝袜 人妻 在线| 男女边摸边吃奶| 亚洲精品日韩在线中文字幕| 老汉色av国产亚洲站长工具| 成年动漫av网址| 亚洲 国产 在线| 亚洲精品国产av蜜桃| 午夜福利一区二区在线看| 在线天堂中文资源库| 国产精品一国产av| 青春草亚洲视频在线观看| 亚洲欧美精品综合一区二区三区| 国产主播在线观看一区二区 | 在线观看免费日韩欧美大片| 免费高清在线观看视频在线观看| 国产激情久久老熟女| av电影中文网址| 久久精品国产a三级三级三级| 好男人电影高清在线观看| 一区二区三区激情视频| 国产伦理片在线播放av一区| 一区在线观看完整版| 国产99久久九九免费精品| 日韩制服丝袜自拍偷拍| 高清视频免费观看一区二区| 成人黄色视频免费在线看| 50天的宝宝边吃奶边哭怎么回事| 每晚都被弄得嗷嗷叫到高潮| 黄色一级大片看看| 欧美人与性动交α欧美精品济南到| 久久ye,这里只有精品| 久久久精品国产亚洲av高清涩受| 精品一品国产午夜福利视频| 亚洲视频免费观看视频| 欧美人与善性xxx| 国产欧美日韩一区二区三区在线| 男人舔女人的私密视频| 亚洲精品久久成人aⅴ小说| 国产淫语在线视频| 成人午夜精彩视频在线观看| 免费看不卡的av| 欧美人与善性xxx| 在线精品无人区一区二区三| 国产成人精品久久久久久| 婷婷色麻豆天堂久久| 亚洲一卡2卡3卡4卡5卡精品中文| 一级片'在线观看视频| 国产免费一区二区三区四区乱码| 一二三四在线观看免费中文在| 成人国产一区最新在线观看 | 免费观看av网站的网址| 精品国产乱码久久久久久小说| 777米奇影视久久| 啦啦啦在线观看免费高清www| 欧美日韩视频高清一区二区三区二| 国产免费视频播放在线视频| 天天躁日日躁夜夜躁夜夜| 99久久99久久久精品蜜桃| 一级毛片我不卡| 国产成人欧美| 亚洲人成网站在线观看播放| 亚洲av日韩在线播放| 国产极品粉嫩免费观看在线| 一区二区av电影网| 99久久精品国产亚洲精品| 啦啦啦中文免费视频观看日本| 亚洲精品成人av观看孕妇| 欧美精品高潮呻吟av久久| 国产成人精品在线电影| 只有这里有精品99| 日韩av免费高清视频| 日日摸夜夜添夜夜爱| 久久久久国产精品人妻一区二区| 亚洲少妇的诱惑av| 人人妻人人爽人人添夜夜欢视频| 欧美在线一区亚洲| 99久久精品国产亚洲精品| 中国国产av一级| 亚洲精品日本国产第一区| 欧美97在线视频| 在线天堂中文资源库| 男女之事视频高清在线观看 | 久久毛片免费看一区二区三区| 成人手机av| 亚洲中文日韩欧美视频| 好男人电影高清在线观看| 亚洲人成77777在线视频| 91麻豆av在线| 又紧又爽又黄一区二区| 欧美人与善性xxx| 精品久久久久久电影网| 国产精品熟女久久久久浪| 精品一品国产午夜福利视频| 亚洲天堂av无毛| 日韩一卡2卡3卡4卡2021年| 成人影院久久| 日日夜夜操网爽| 精品亚洲乱码少妇综合久久| 国产高清不卡午夜福利| 久久久国产一区二区| 在线观看www视频免费| 午夜福利免费观看在线| 2018国产大陆天天弄谢| 狂野欧美激情性bbbbbb| av有码第一页| 国产精品欧美亚洲77777| 午夜视频精品福利| 狠狠婷婷综合久久久久久88av| 欧美另类一区| 妹子高潮喷水视频| 国产免费现黄频在线看| 色综合欧美亚洲国产小说| 丰满饥渴人妻一区二区三| 啦啦啦 在线观看视频| 中文字幕色久视频| 一级黄色大片毛片| 日韩,欧美,国产一区二区三区| 精品一区二区三区四区五区乱码 | 亚洲中文字幕日韩| 黄色视频不卡| 爱豆传媒免费全集在线观看| 黄网站色视频无遮挡免费观看| 在线精品无人区一区二区三| 日韩一卡2卡3卡4卡2021年| 久久久久网色| 男女床上黄色一级片免费看| 老司机午夜十八禁免费视频| 超碰成人久久| 一区福利在线观看| 日本av免费视频播放| 美女福利国产在线| 免费少妇av软件| 十八禁人妻一区二区| 亚洲 欧美一区二区三区| 韩国精品一区二区三区| 天天躁夜夜躁狠狠久久av| 七月丁香在线播放| 手机成人av网站| 欧美老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线| 欧美国产精品va在线观看不卡| 国产午夜精品一二区理论片| 99香蕉大伊视频| 一本久久精品| 国产av一区二区精品久久| 国产熟女午夜一区二区三区| 亚洲自偷自拍图片 自拍| 欧美变态另类bdsm刘玥| 成人黄色视频免费在线看| 无限看片的www在线观看| 国产午夜精品一二区理论片| 国产成人一区二区三区免费视频网站 | 免费在线观看视频国产中文字幕亚洲 | 国产男女超爽视频在线观看| 国产免费视频播放在线视频| 岛国毛片在线播放| xxxhd国产人妻xxx| 99国产精品免费福利视频| 欧美另类一区| av视频免费观看在线观看| 国产男人的电影天堂91| 日本欧美视频一区| 婷婷丁香在线五月| 国产又爽黄色视频| av又黄又爽大尺度在线免费看| 国产在线一区二区三区精| 精品熟女少妇八av免费久了| 久久久久久久大尺度免费视频| 一区二区三区精品91| 亚洲欧美精品综合一区二区三区| 日韩人妻精品一区2区三区| 免费在线观看视频国产中文字幕亚洲 | 亚洲第一青青草原| 性少妇av在线| 韩国精品一区二区三区| 国产麻豆69| 国产成人欧美| 一区在线观看完整版| av国产久精品久网站免费入址| 在线观看免费视频网站a站| 久久久久视频综合| 欧美亚洲日本最大视频资源| 久久精品国产亚洲av高清一级| 欧美日韩国产mv在线观看视频| 19禁男女啪啪无遮挡网站| 久久久久久久久免费视频了| 欧美人与善性xxx| 久久午夜综合久久蜜桃| 午夜福利,免费看| 国产人伦9x9x在线观看| 久久亚洲国产成人精品v| svipshipincom国产片| 亚洲国产看品久久| 美女扒开内裤让男人捅视频| 国产主播在线观看一区二区 | 男女床上黄色一级片免费看| 色视频在线一区二区三区| 黄片小视频在线播放| 男女国产视频网站| 国产91精品成人一区二区三区 | 少妇的丰满在线观看| 国产在线一区二区三区精| 日本一区二区免费在线视频| 欧美日韩亚洲高清精品| 美女主播在线视频| 天天躁夜夜躁狠狠躁躁| 日本wwww免费看| 亚洲国产成人一精品久久久| 成年动漫av网址| 成人三级做爰电影| 午夜福利乱码中文字幕| 国产精品 欧美亚洲| 日韩精品免费视频一区二区三区| 多毛熟女@视频| 美女中出高潮动态图| 七月丁香在线播放| 国产在线观看jvid| 熟女少妇亚洲综合色aaa.| 国产日韩欧美在线精品| 一边亲一边摸免费视频| 国产av一区二区精品久久| 亚洲欧洲日产国产| a级片在线免费高清观看视频| 国产片内射在线| 亚洲精品久久成人aⅴ小说| 久久久国产一区二区| 国产xxxxx性猛交| 可以免费在线观看a视频的电影网站| 在线观看人妻少妇| 国产一区亚洲一区在线观看| 在线观看一区二区三区激情| 国产男女内射视频| 欧美变态另类bdsm刘玥| 两个人看的免费小视频| 在线精品无人区一区二区三| 免费一级毛片在线播放高清视频 | 欧美激情 高清一区二区三区| 欧美大码av| 免费在线观看完整版高清| 黑人欧美特级aaaaaa片| 19禁男女啪啪无遮挡网站| 亚洲精品av麻豆狂野| av有码第一页| 一本久久精品| cao死你这个sao货| 秋霞在线观看毛片| 欧美精品一区二区免费开放| 欧美成人精品欧美一级黄| 狠狠婷婷综合久久久久久88av| 好男人视频免费观看在线| 精品国产一区二区三区久久久樱花| 女人爽到高潮嗷嗷叫在线视频| 丝袜美腿诱惑在线| 一边摸一边抽搐一进一出视频| 欧美在线一区亚洲| 国产精品国产三级国产专区5o| 久久99精品国语久久久| 晚上一个人看的免费电影| 女警被强在线播放| 精品亚洲成a人片在线观看| 久久久久视频综合| 久热这里只有精品99| 爱豆传媒免费全集在线观看| 午夜福利乱码中文字幕| 久久热在线av| 女人久久www免费人成看片| 在线观看免费高清a一片| 夫妻性生交免费视频一级片| 国产精品熟女久久久久浪| 欧美在线一区亚洲| 亚洲中文字幕日韩| 中文字幕人妻熟女乱码| 97在线人人人人妻| 一边亲一边摸免费视频| 熟女av电影| 亚洲精品久久午夜乱码| 久久国产精品大桥未久av| 超碰成人久久| 亚洲一区二区三区欧美精品| 丝袜在线中文字幕| 极品人妻少妇av视频| 亚洲国产毛片av蜜桃av| 欧美成人午夜精品| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频| 黄频高清免费视频| 狂野欧美激情性bbbbbb| 波多野结衣一区麻豆| 亚洲 国产 在线| 免费不卡黄色视频| 在线观看免费视频网站a站| 亚洲欧洲精品一区二区精品久久久| 高清视频免费观看一区二区| 91精品伊人久久大香线蕉| 久久人妻福利社区极品人妻图片 | 成年人黄色毛片网站| 久久久久久久国产电影| 国产成人欧美在线观看 | 亚洲欧美日韩高清在线视频 | 深夜精品福利| 热re99久久国产66热| 国产伦人伦偷精品视频| 久久久久国产精品人妻一区二区| 亚洲天堂av无毛| 黑人巨大精品欧美一区二区蜜桃| 可以免费在线观看a视频的电影网站| 一区福利在线观看| 午夜免费鲁丝| 成在线人永久免费视频| 在线 av 中文字幕| 青草久久国产| 好男人电影高清在线观看| 一本—道久久a久久精品蜜桃钙片| 日韩 欧美 亚洲 中文字幕| 国产高清国产精品国产三级| 五月开心婷婷网| 我要看黄色一级片免费的| 久久久久久久久久久久大奶| 久久久久久免费高清国产稀缺| 黄色片一级片一级黄色片| 波多野结衣av一区二区av| 夫妻午夜视频| 捣出白浆h1v1| 欧美人与性动交α欧美软件| 18在线观看网站| 久久久久久久大尺度免费视频| 亚洲av男天堂| 国产午夜精品一二区理论片| 日日摸夜夜添夜夜爱| 免费女性裸体啪啪无遮挡网站| 国产精品99久久99久久久不卡| 一区二区三区精品91| 嫩草影视91久久| 国产男人的电影天堂91| 人人妻人人爽人人添夜夜欢视频| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| 久久综合国产亚洲精品| 亚洲av电影在线进入| 亚洲午夜精品一区,二区,三区| 国产精品偷伦视频观看了| 99久久人妻综合| 国产激情久久老熟女| www.999成人在线观看| 一区二区三区乱码不卡18| 亚洲激情五月婷婷啪啪| 好男人电影高清在线观看| 成人三级做爰电影| 一二三四社区在线视频社区8| 91九色精品人成在线观看| 久久免费观看电影| 成年av动漫网址| 777米奇影视久久| 欧美黑人欧美精品刺激| 一区二区三区乱码不卡18| 一级,二级,三级黄色视频| 超碰97精品在线观看| av片东京热男人的天堂| 久久精品aⅴ一区二区三区四区| 国产一区二区 视频在线| 黑丝袜美女国产一区| 国产精品免费视频内射| 亚洲欧美成人综合另类久久久| 青春草视频在线免费观看| 91老司机精品| 性色av乱码一区二区三区2| 亚洲成人免费电影在线观看 | 赤兔流量卡办理| 午夜福利视频精品| 日韩人妻精品一区2区三区| 久久久久久久大尺度免费视频| 精品欧美一区二区三区在线| 精品少妇黑人巨大在线播放| 最近手机中文字幕大全| 久久性视频一级片| 免费黄频网站在线观看国产| 亚洲情色 制服丝袜| 久久中文字幕一级| 建设人人有责人人尽责人人享有的| 国产成人一区二区三区免费视频网站 | 男女下面插进去视频免费观看| 婷婷成人精品国产| 国产男人的电影天堂91| 成年人免费黄色播放视频| 老司机影院成人| 国产一区二区三区av在线| 国产一区有黄有色的免费视频| 黄片播放在线免费| 亚洲欧美一区二区三区黑人| 亚洲av综合色区一区| 日韩中文字幕视频在线看片| 亚洲久久久国产精品| 国产精品熟女久久久久浪| 免费观看a级毛片全部| 国产精品麻豆人妻色哟哟久久| 青青草视频在线视频观看| 性色av乱码一区二区三区2| 婷婷色av中文字幕| 777米奇影视久久| 久久鲁丝午夜福利片| 国产精品久久久久久精品电影小说| 最黄视频免费看| 日韩电影二区| 真人做人爱边吃奶动态| 1024视频免费在线观看| 亚洲伊人色综图| 亚洲欧洲精品一区二区精品久久久| 夫妻性生交免费视频一级片| 国产精品国产三级国产专区5o| 十分钟在线观看高清视频www| 宅男免费午夜| 一本大道久久a久久精品| 欧美日韩视频精品一区| 国产淫语在线视频| 中文字幕高清在线视频| 亚洲精品自拍成人| 涩涩av久久男人的天堂| 人人妻人人添人人爽欧美一区卜| 男女免费视频国产| 午夜精品国产一区二区电影| 91麻豆av在线| 国产精品.久久久| 亚洲精品第二区| 在线av久久热| 久久鲁丝午夜福利片| 精品福利观看| 亚洲伊人久久精品综合| 1024香蕉在线观看| 免费在线观看视频国产中文字幕亚洲 | 两人在一起打扑克的视频| kizo精华| 久久精品亚洲熟妇少妇任你| 别揉我奶头~嗯~啊~动态视频 | 1024视频免费在线观看| 国产日韩欧美亚洲二区| 午夜免费鲁丝| 母亲3免费完整高清在线观看| 国产在线一区二区三区精| 欧美久久黑人一区二区| 男女之事视频高清在线观看 | 在线观看免费日韩欧美大片| 日本欧美视频一区| 在线观看免费高清a一片| 日韩大码丰满熟妇| 久久人人97超碰香蕉20202| 一级毛片电影观看| 免费观看人在逋| 欧美亚洲日本最大视频资源| www.精华液| 色网站视频免费| 美女视频免费永久观看网站| 夫妻午夜视频| 欧美激情高清一区二区三区| 国产高清视频在线播放一区 | 一边摸一边做爽爽视频免费| 成人国产av品久久久| 在线观看www视频免费| 亚洲综合色网址| 国产成人精品在线电影| 国产无遮挡羞羞视频在线观看| 国产精品免费大片| 99国产综合亚洲精品| 亚洲国产欧美日韩在线播放| 男女高潮啪啪啪动态图| 中文字幕另类日韩欧美亚洲嫩草| 999精品在线视频| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品久久久久5区| 18禁观看日本| 9色porny在线观看| 永久免费av网站大全|