• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mode transition induced by gas pressure in dusty acetylene microdischarges: twodimensional simulation

    2020-05-06 05:59:18XiangmeiLIU劉相梅NingningZU祖寧寧HongyingLI李洪影andJingyaoLI李景堯
    Plasma Science and Technology 2020年4期
    關(guān)鍵詞:寧寧

    Xiangmei LIU (劉相梅),Ningning ZU (祖寧寧),Hongying LI (李洪影) and Jingyao LI (李景堯)

    School of Science,Qiqihar University,Qiqihar 161006,People’s Republic of China

    Abstract

    Keywords:radio-frequency capacitive discharge,acetylene microplasma,nanoparticle dynamics

    1.Introduction

    Microdischarge has been widely studied by many researchers because of their extraordinary properties such as small physical size,high electron densities,stable operation at atmospheric pressure,and non-thermal characteristics[1,2].These properties result in the use of microplasma in a variety of material processing and biomedical applications,especially in thin film deposition and nanomaterials synthesis [2].Raballand et al [3] investigated the deposition of carbon-free silicon dioxide films by means of capillary plasma electrode discharges,and the residence time that is controlled by the distance between sample and plasma was confirmed to be able to adjust the polymerization sequence.Shortly afterwards,the silicon dioxide (SiOxHy) film deposition based on atmospheric pressure microplasma jet was reported by Reuter et al[4].In their studies,two jets are centered in front of a rotating substrate holder with a distance of 4 mm in parallel at a distance of 40 mm.The results show that SiOxHyfilm could be achieved and the main carbon loss mechanism from the film is a surface reaction with oxygen.Besides,because of the controllable deposition for microplasma,the properties of hydrogenated amorphous carbon (a-C:H) films are demonstrated in reference [5].It was shown that a-C:H film was deposited at the rate of approximately 7 nm s-1on the area of 1.7 × 10-3mm2.In addition,research has shown that compared with large-volume and low-pressure plasmas,microplasmas offer unique capabilities for the synthesis of nanomaterials,which includes nanostructured thin films,aerosol nanoparticles,and nanocomposites [1].Thus,a careful study of microplasma for thin film deposition is necessary.

    In this article,we mainly focus on hydrogenated amorphous carbon film deposition from acetylene (C2H2) at atmospheric pressure microplasma.The hydrogenated amorphous carbon films have a low abrasive coefficient,infrared transparency,and high hardness properties,which can be widely used for passivation layers [6],field emission cold cathodes for future flat-screen displays [7],and tribological materials [8].Among these industrial applications,dust particle formation has especially been an important issue [9].Therefore,several attempts have been made to control dust particle formation and physical properties by using numerical simulations and experimental measurements.De Bleecker et al [10,11] provided a one-dimensional fluid model to describe the chemical kinetic scheme and revealed the important dust particle formation mechanisms and dust precursors.However,compared with the negative ion results with the experimental measurements [12,13],the agreement is unsatisfactory.On this basis,Mao et al[14]presented new negative ions that involve the vinylidene anion (H2CC-) and C2nH-2,which are important for dust particle formation.Their calculated results agree well with the experimental measurements by Benedikt et al[12]and Deschenaux et al[13].Thus,the initial dust particle formation mechanisms in low-pressure C2H2discharges are relatively well understood.However,so far few research studies have been devoted to dust particle behavior in acetylene microdischarge,in which some unique properties like non-equilibrium,discharge mode transition,and high energetic electron characteristics will seriously affect dust particle behavior.Hence,a deep and detailed investigation of dust particle formation and growth mechanisms in C2H2microplasma is expected.

    In this work,dust particle formation and physical properties in capacitive radio-frequency C2H2microdischarge is carefully investigated by using a two-dimensional (2D)aerosol dynamics model and fluid model,which is described in detail in section 2.The aerosol dynamics model is used to study the particle generation while the fluid model is used to investigate the dusty plasma characteristics,in which the particles’ continuity equation,momentum balance equation,and electron energy balance equation are introduced.Section 3 presents the simulation results for acetylene microdischarge and discusses the effect of the process parameters on the dust particle and plasma characteristics.A conclusion is made in section 4.

    2.Theoretical model

    Figure 1.Schematic of cylindrically symmetric geometry in microdischarges for acetylene.

    The 2D fluid model based on reference [9] is extended to investigate the acetylene microdischarge characteristics in a cylindrical discharge chamber.The reactor geometry is shown in figure 1,in which the radio-frequency (13.56 MHz)source is applied to the showerhead electrode with the voltageV=V0sinωt,while the bottom electrode is set to be grounded.The gas pumps across two opposing sidewalls and the pumping grid is assumed to be effectively transparent.In this study,the effect of the gas flow on dust particle behavior is negligible for the following two cases: first,in this study we put our focus on the process parameters effect on the dust particle property,especially for the 1 nm diameter particles.Under this condition,the electrostatic force and the ion drag force remain the most dominant forces.Second,based on the experimental studies by Deschenaux et al [13],the gas flow rate of 8 sccm is fed into the showerhead electrode,which is very small in the plasma region.Thus,a uniform gas temperature of 400 K is assumed.

    Based on the experimental observations,a total of 50 different species are calculated in this plasma module,containing C2H2,C4H2,C6H2,C8H2,C10H2,C12H2,H2,CH,CH2,H,C2H,C4H,C6H,C8H,C10H,C12H,C8H6,C10H6,C12H6,H2CC-,C2H-,C4H-2,C4H-,C6H-2,C6H-,C8H-2,C8H-,C8H-4,C10H-,C12H-,C10H-4,e,C2H+2,H+2,H+,C2H+,CH+,C+2,C+,C4H+2,C6H+2,C8H+2,C4H+,C6H+,C8H+,C6H+4,C8H+4,C8H+6,C10H+6,and C12H+6. For each species j (electrons,ions,molecules,and dust particles),the continuity equation is taken into account to study the particle density nj,

    where Γjis the particle flux and Sjrepresent the sink and source terms of particle j.The momentum balance equation is estimated by a drift-diffusion approximation,which suggests that the small species (electrons,ions,and molecules) flux terms consist of a drift and a diffusion term [15,16],

    where Djand μjare the diffusion coefficient and mobility of particle j,respectively.Due to the lower momentum transfer frequency,ions cannot follow the actual electric field E,and thus an effective electric field Eeffinstead of an electric field is adopted in the momentum balance equation to compensate for the effects of inertia.The momentum balance equation for nanoparticles is quite complicated and calculated by assuming that the damping neutral drag balances the sum of electrostatic force,ion drag force,and thermophoretic force,

    wherend,Γd,rd,mdare the nanoparticle’s density,flux,radius,and mass,νmdrepresents the momentum loss frequency,vththe gas average thermal velocity,and vsthe ions’mean speed.Tgasand kTare the neutral gas temperature and thermal conductivity.Γ is the Coulomb logarithm,bcthe collection impact parameter,and bπ/2the impact parameter corresponding to a deflection angle π/2.miand Γiare the ion’s mass and flux.To make the model fully self-consistent,the Poisson’s equation is coupled to the balance equations to calculate the electric field E and the potential φ,

    where e is the elementary charge and ε0the permittivity of vacuum space.ni,ne,and ndare the ion,electron,and nanoparticle densities,respectively.The nanoparticle charge Qdcan be obtained from the charge build-up equation.Finally,the electron energy balance equation is introduced to obtain electron temperature Te,which is calculated from the second moment of the Boltzmann equation:

    Here,Γwis the electron energy density flux and Swthe electron energy loss due to electron impact collisions.No energy balance for neutrals and ions due to the local gas temperature is assumed.

    Equations (1) and (2) for the ions are solved explicitly with the FCT scheme[17],and equations(1),(2),(4),and(5)for the electrons and nanoparticles are solved by an implicit iterative solution with the Scharfetter–Gummel scheme [18].With the help of C programming language,the behavior of each species(electrons,ions,molecules,and dust particles)is carefully investigated.Since the mass of nanoparticles is much bigger than that of electrons and ions,a longer time step is adopted for the nanoparticle module.

    It is well known that the nanometer-size particle is primarily formed through successive reactions between acetylene molecules and anions[10].The small anions C2H-and H2CC-are generated by the electron induced dissociative attachment of the C2H2feed gas,

    with 95% leading to the formation of H2CC-and 5% to the formation of C2H-.The larger anionsCn2H-andCn2H-2(n >1) are generated by two parts: (1) the electron induced dissociative attachment ofCn2H2(similar to the equations(6)and (7)),and (2) a consecutive chain of polymerization reactions,

    Similar to reference[10],C12H-is used for the starting point of the fast coagulation phase.During coagulation,the particle size quickly grows from a few nanometers to 50–60 nm,whereas the density of the particle number sharply decreases[19].Thus,aerosol dynamics model is introduced and described by

    where n(v)is the particle density in the volume range(v,v +dv),β(u,v) represents the coagulation frequency between the particles with volumes u and v.The first term on the righthand side of equation (10) represents the smaller particle formation,where the factor of 1/2 is introduced in the integral since collisions are counted twice.The second term describes the particle loss because of coagulation with any volume particles.δ(v-v0)equals zero whenv≠v0and is unity when v = v0,and thus Jo(v) in the third term represents the rate of new particle formation with volume v0by nucleation.

    3.Results and discussion

    Here we present selected calculation results for the acetylene microdischarge,with a radio frequency of 13.56 MHz,an ion temperature of 400 K,and an initial voltage of 80 V.We have studied the effects of different secondary electron emission coefficients on the plasma density,and found that the difference is rather small,thus the secondary electron emission(SEE) coefficients are set at 0.1,which is consistent with the simulation of Zhang et al [20].To evaluate the effect of discharge parameters on the electron heating mode and nanoparticle behavior,the gas pressure is varied from 100–500 Torr,the voltage is varied from 80–150 V,and the gap between the powered electrode and grounded electrode is varied from 400–1000 μm.

    Figure 2 presents an axial profile of the electron density at different electrode gaps of 400,500,800,and 1000 μm,corresponding to the variation in pressure from 100–500 Torr.As is well known,the electric field is weak in the bulk of the discharge,but much stronger in the sheaths.Therefore,the electron density exhibits two prominent peaks at the bulksheath boundaries and gets lower in the center of the discharge.We can observe from figure 2(a) that the electron density is proportional to the electrode gap at the gas pressure of 100 Torr for the power effect,showing properties of the α mode.As the gas pressure increases,the electron density shows a complicated transformation,which is mainly reflected in those two aspects:

    Figure 2.Calculated electron density profiles for different electrode gaps,with the gas pressures (a) 100 Torr,(b) 300 Torr,and (c)500 Torr.

    Figure 3.An axial profile of electron temperature versus electrode gap at the pressures of (a) 100 Torr,(b) 300 Torr,and (c) 500 Torr,and the mean power density at (d).

    (1) As is clear from figures 2(b)and(c)(300 and 500 Torr),the electron density shows a abrupt decrease with the increase of electrode gap,by 4 orders of magnitude,which is quite different from that in figure 2(a).

    (2) When the gas pressure increases,the electron densities in the whole electrode gap range decrease instead of increase,which is not an α discharge characteristic.

    These variations suggest that the plasmas may exist in two different discharge modes.As is well known [21,22],a radio-frequency discharge can burn in the α mode and γ mode.In the α mode,plasma is sustained by bulk ionization,while in the γ mode it is sustained by secondary electron emission.Based on the medium pressure glow discharges[23],the mode transition from α to γ is accompanied by abrupt decreases in the plasma density and the electron temperature.Considering that the electron density in figure 2 and the electron temperature in figure 3 decrease with the pressure,we can conclude that the mode transition from α to γ occurs.

    Figure 4.A radial profile of the electron density versus electrode gap at the pressures of (a) 100 Torr,(b) 300 Torr,and (c) 500 Torr,and the degree of the nonuniform variation at (d).

    For a better understanding of the mode transition,the axial profile of electron temperature versus electrode gap at different pressures is shown in figures 3(a)-(c),while the mean power density p is shown in figure 3(d).We can clearly see that the electron temperature is mainly distributed in the bulk of the discharge at the pressure of 100 Torr(figure 3(a)),showing properties of an α mode.When going to larger pressure (figures 3(b) and (c)),two peaks of equal magnitude on both sides of the electrodes are formed,showing properties of the γ mode.Thus,we can believe that the mode transition from α to γ occurs when the pressure increases.Furthermore,as we can see in figure 3(d)the mean power density at the pressure of 100 Torr remains nearly constant,suggesting that the power is proportional to the electrode gap.This results in a linear increase of the electron density with the electrode gap,as shown in figure 2(a).As the pressure increases,the mode transition from α to γ occurs [21,22],in which the plasma is sustained by the secondary electron emission.In the γ mode(>100 Torr),the sheath thickness decreases with the increase of the electrode gaps,and thus the mean power density decreases sharply,as shown in figure 3(d).This results in a exponential decrease of the electron density with the increase of the electrode gap,as shown in figures 2(b) and (c).

    The radial profiles of the electron density are plotted in figure 4 as a function of the electrode gap at different pressures.As shown in figures 4(b) and (c),the electron density has changed by 4 orders of magnitude,and then the variation in its radial profile shape is not significant.Therefore,the degree of nonuniformity αnonis introduced and defined as follows:

    Figure 5.Calculated nanoparticle density profiles for different electrode gaps,with the gas pressures: (a) 100 Torr,(b) 300 Torr,and (c) 500 Torr.

    where nav,nmax,and nminrepresent the average,maximum,and minimum values,respectively,of electron density neat the center of the discharge above the bottom electrode [24](r ≤ 4 mm).Note that according to the definition,the minimum value of αnoncorresponds to the most uniform plasma.Figure 4(d) shows the degree of nonuniform αnonvariation with the electrode gap.It can be seen from figure 4(d) that αnonincreases sharply with the increase of the electrode gap at the gas pressure of 100 Torr,and a minimum of 10 is achieved at the electrode gap of 400 μm.As the pressure increases,a higher degree of nonuniformity is observed at the value of 1000 μm,and a minimum at some intermediate value of electrode gap,which depends on the gas pressure.Therefore,the control of the electrode gap can be considered as an effective tool for improving the plasma uniformity.Furthermore,the plasma uniformity for higher pressure is considerably better than that in the 100 Torr case in most of the electrode gap range,since the degree of nonuniformity decreases generally with the increase of gas pressure.Therefore,it is believed that by properly increasing the gas pressure,the plasma uniformity can be greatly improved,while the plasma density has no significant change.This is important for the deposition of hydrogenated amorphous carbon films.

    The axial density profiles of the most important nanoparticles for different electrode gaps are shown in figure 5,with the pressure of 100–500 Torr.A diameter of 1 nm for the nanoparticles is chosen to obtain the details of the axial variation,since these particles have a higher number density in the coagulation phase.Similar to the variation in electron density,the nanoparticle density increases gently with the electrode gap at the pressure of 100 Torr,but decreases significantly in the range of 300-500 Torr.These results show once more that two different electron heating modes,α mode and γ mode,appear in acetylene microdischarge.Furthermore,as shown in figure 5(a) the nanoparticle exhibits two prominent peaks on the sheath boundaries,and becomes much lower within the bulk plasma.As is we known,the location of the nanoparticle in the discharge reactor mainly depends on the competition between the ion drag force arising from the positive ion acceleration to the top and bottom electrodes and the electric field force arising from the sheath regions [9].When the gas pressure is 100 Torr,the ion drag force seems to take a leading position,which pushes the particles to the wall surfaces at both sides of the reactor vessel and decreases the particle density at the bulk plasma.As the gas pressure increases,it seems that the peak values of nanoparticle density decrease significantly,and then the profiles vary continuously from an edge high to a center high.This can be explained by the fact that the increase of gas pressure makes the competitiveness of the ion drag force weak,and then the electric field force plays a leading role,which forces the nanoparticle to the bulk plasma regions.Hence our model predicts that a nanoparticle can be suspended in some well-defined regions of the plasma by varying the gas pressure.

    Since two different electron heating modes may appear in this study,a comparison between the results obtained at 100 and 500 Torr seems to be possible.Figure 6 shows the variation in electron density with the electrode gap at different voltages,with the pressures of 100 and 500 Torr.It can be observed from figure 6 that at the gas pressure of 100 Torr,the electron density increases linearly with the increase of applied voltage,in agreement with the Townsend discharge property.However,at a pressure of 500 Torr,the electron density shows a sharp increase with the increase of applied voltage (increase by about 20 times),which is also in agreement with the γ mode discharge property.Moreover,when P = 500 Torr the electron density at L = 400,500 μm increases much faster than that at L = 800,1000 μm.This finding suggests the necessity of fine tuning of the electrode gap in order to achieve higher plasma density in the γ mode.

    The effect of the voltage on the profile of the axial variation of the nanoparticle density is shown in figure 7,with the gas pressures of 100 and 500 Torr.We can clearly observe that when P = 100 Torr,the nanoparticle increases by about 2 times with the increase of voltage while when P = 500 Torr,the nanoparticle increases by about 2 orders of magnitude with the increase of voltage,especially when L = 400 μm.That means that the voltage effect on the nanoparticle density in the α mode is much less than that in the γ mode.When comparing these results with the electron density in figure 6,we can observe that the nanoparticle density increases much faster,especially at the electrode gaps of 400 and 500 μm.

    Figure 6.Calculated electron density profiles for different electrode gaps,with the gas pressures of 100 and 500 Torr and applied voltages of 80 and 150 V.

    Figure 7.Calculated nanoparticle density profiles for different electrode gaps,with the gas pressures of 100 and 500 Torr,and applied voltages of 80 and 150 V.

    Since the variation in the plasma density’s radial profile shape is not obvious,the variation in the degree of nonuniformity αnonwith the electrode gap at different voltages for 100 Torr (α mode) and 500 Torr (γ mode) is shown in figure 8.We can observe from this figure that αnonmonotonically increases with the electrode gap both at the voltages of 80 and 150 V in the α mode,meaning that good plasma uniformity can be achieved at the electrode gap of 400 μm.It is also shown that αnonfor 150 V is larger than that in the 80 V case,implying that the plasma uniformity for 80 V is considerably better than that in the 150 V case in most of the electrode gap range.In the γ mode,the degree of the variation in nonuniformity with the electrode gap at 150 V is similar to that of 80 V,with the minimum at the value of 500 μm and the maximum at the value of 1000 μm.Therefore,the plasma uniformity is poor at the electrode gap of 1000 μm both in the α mode and γ mode.

    Figure 8.The degree of the variation of nonuniformity with the electrode gap,with the gas pressures of 100 and 500 Torr,and applied voltages of 80 and 150 V.

    4.Conclusion

    The property of the dust plasmas in microdischarges for acetylene has been investigated in detail by use of a 2D fluid model and an aerosol dynamics model.The model is used to predict the electrode gap,gas pressure,and radio-frequency source voltage effects on the axial distributions of electron density and nanoparticle density,and it is more important that these effects on the plasma uniformity are also studied,which is closely related to the performance of hydrogenated amorphous carbon films.

    It has been shown that gas pressure can strongly influence the axial profiles of electron temperature,as well as the electron density values.The abrupt decreases of electron density and electron temperature imply that two different electron heating modes(α mode and γ mode)appear in C2H2microplasma.To confirm the existence of these two modes,the applied voltage effect on the plasma density is taken into account,and it has been shown that the effect of voltage on the plasma density in the α mode is much less than that in the γ mode.

    Furthermore,it has also been shown that controlling the gas pressure can greatly influence the axial profiles of nanoparticle density.The profiles vary continuously from an edge high to a center high with the increase of gas pressure.

    It has been shown that plasma uniformity could be considerably improved by optimizing the electrode gap and gas pressure.The necessity of fine tuning of the electrode gap in order to obtain better plasma uniformity has also been demonstrated.

    In summary,gas pressure control can considerably improve the electron density and plasma uniformity,as well as the nanoparticle density axial profiles in capacitive radiofrequency C2H2microdischarge and thus it will be extremely useful in industrial applications.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.11805107 and 21703112)and the Fundamental Research Funds in Heilongjiang Provincial Universities of China (No.135209312).

    猜你喜歡
    寧寧
    書法家 韓寧寧
    韓寧寧·書法作品欣賞
    蛙鼠新傳
    五行真經(jīng)(20)
    五行真經(jīng)
    五行真經(jīng)(17)
    娃娃有話說
    Faceàma propre culture
    李寧寧:用愛與責(zé)任熔鑄醫(yī)魂
    樹葉畫
    中文资源天堂在线| 能在线免费观看的黄片| 在线免费观看的www视频| av.在线天堂| 中文字幕人妻熟人妻熟丝袜美| 丰满乱子伦码专区| 国产av不卡久久| 日本五十路高清| 国产黄片美女视频| 内射极品少妇av片p| 中文字幕亚洲精品专区| 国产精品久久久久久av不卡| 亚洲自偷自拍三级| 婷婷色麻豆天堂久久 | 身体一侧抽搐| 国产免费男女视频| 九九爱精品视频在线观看| 日本欧美国产在线视频| 成人特级av手机在线观看| 久久国产乱子免费精品| 国产免费男女视频| 又黄又爽又刺激的免费视频.| 最近2019中文字幕mv第一页| 一区二区三区四区激情视频| 国内揄拍国产精品人妻在线| 成人毛片60女人毛片免费| 亚洲国产日韩欧美精品在线观看| 国产69精品久久久久777片| 我要看日韩黄色一级片| 婷婷色综合大香蕉| 麻豆久久精品国产亚洲av| 国产成人午夜福利电影在线观看| 日本黄色片子视频| av国产久精品久网站免费入址| 久久久久久国产a免费观看| 久久欧美精品欧美久久欧美| 日韩在线高清观看一区二区三区| 能在线免费观看的黄片| av视频在线观看入口| 又粗又硬又长又爽又黄的视频| 亚洲国产精品sss在线观看| 精品酒店卫生间| 不卡视频在线观看欧美| 免费观看精品视频网站| 成年av动漫网址| 亚洲美女搞黄在线观看| 亚洲久久久久久中文字幕| 男人和女人高潮做爰伦理| 日本爱情动作片www.在线观看| 久久精品影院6| 五月伊人婷婷丁香| 成人毛片60女人毛片免费| 色综合色国产| 午夜视频国产福利| 女人被狂操c到高潮| 午夜老司机福利剧场| or卡值多少钱| www.色视频.com| 亚洲av中文av极速乱| 国产老妇女一区| 中文资源天堂在线| 日本一本二区三区精品| 韩国高清视频一区二区三区| 日韩亚洲欧美综合| 欧美激情在线99| 日韩强制内射视频| 国产欧美另类精品又又久久亚洲欧美| 午夜日本视频在线| 亚洲第一区二区三区不卡| 亚洲最大成人中文| 午夜免费男女啪啪视频观看| 99热这里只有精品一区| 国产精品一区www在线观看| 日韩av在线大香蕉| 亚洲av电影在线观看一区二区三区 | 村上凉子中文字幕在线| av国产免费在线观看| 日韩欧美精品免费久久| 在线观看美女被高潮喷水网站| 国产男人的电影天堂91| 亚洲欧美成人综合另类久久久 | 深爱激情五月婷婷| 国产精品人妻久久久影院| 3wmmmm亚洲av在线观看| 日韩av不卡免费在线播放| av.在线天堂| 三级经典国产精品| 日韩成人伦理影院| 99热精品在线国产| 国产大屁股一区二区在线视频| 久热久热在线精品观看| 51国产日韩欧美| 在现免费观看毛片| 成人午夜高清在线视频| 日本免费a在线| 国产精品爽爽va在线观看网站| 美女xxoo啪啪120秒动态图| 久久99热这里只有精品18| 22中文网久久字幕| 久久精品人妻少妇| 国内精品美女久久久久久| 欧美日韩综合久久久久久| 国产av码专区亚洲av| 国产探花极品一区二区| 国产精品蜜桃在线观看| 欧美3d第一页| 啦啦啦啦在线视频资源| 国产精品一区www在线观看| 男人的好看免费观看在线视频| 日本av手机在线免费观看| 美女xxoo啪啪120秒动态图| 国产精品无大码| 国产午夜精品久久久久久一区二区三区| av国产免费在线观看| 精品久久久久久久久亚洲| 亚洲av成人精品一二三区| 欧美bdsm另类| 3wmmmm亚洲av在线观看| 日日啪夜夜撸| 国产精品综合久久久久久久免费| 中文天堂在线官网| 国产午夜福利久久久久久| 三级国产精品欧美在线观看| 国产精品久久久久久久电影| 免费观看精品视频网站| 亚洲欧美一区二区三区国产| 五月玫瑰六月丁香| 日韩欧美三级三区| 日韩中字成人| 小说图片视频综合网站| 亚洲无线观看免费| av线在线观看网站| 欧美另类亚洲清纯唯美| 国产精品久久久久久久久免| a级毛色黄片| 美女高潮的动态| 精品无人区乱码1区二区| 成人av在线播放网站| 亚洲欧美清纯卡通| 午夜精品在线福利| 老司机影院成人| 午夜福利在线观看吧| 少妇熟女欧美另类| 成人鲁丝片一二三区免费| 99久久人妻综合| 欧美97在线视频| 欧美+日韩+精品| 免费看光身美女| www.av在线官网国产| 国产精品乱码一区二三区的特点| 久久亚洲国产成人精品v| 国产亚洲精品av在线| a级一级毛片免费在线观看| 国产淫语在线视频| 青春草视频在线免费观看| 国产探花在线观看一区二区| 天堂网av新在线| 成人午夜精彩视频在线观看| 人人妻人人看人人澡| 99热精品在线国产| 国产日韩欧美在线精品| 观看免费一级毛片| 亚洲三级黄色毛片| 久久久久久久亚洲中文字幕| 午夜久久久久精精品| 十八禁国产超污无遮挡网站| 亚洲精品一区蜜桃| 成年av动漫网址| 日韩欧美国产在线观看| 国产色爽女视频免费观看| 国产成人一区二区在线| 黄色日韩在线| 男人舔女人下体高潮全视频| 国产精品,欧美在线| 男女下面进入的视频免费午夜| 欧美日韩精品成人综合77777| 最新中文字幕久久久久| 色综合亚洲欧美另类图片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日日啪夜夜撸| 欧美日韩在线观看h| 97人妻精品一区二区三区麻豆| 蜜臀久久99精品久久宅男| 人人妻人人澡欧美一区二区| 少妇被粗大猛烈的视频| 草草在线视频免费看| 亚洲美女视频黄频| 亚洲综合色惰| 亚洲精品乱久久久久久| 亚州av有码| 色综合站精品国产| 亚洲最大成人av| 一个人免费在线观看电影| 欧美zozozo另类| 亚洲精品国产av成人精品| 午夜爱爱视频在线播放| 99热全是精品| 亚洲久久久久久中文字幕| av线在线观看网站| 亚洲在线观看片| 欧美变态另类bdsm刘玥| 国产午夜精品论理片| 人妻制服诱惑在线中文字幕| 国产老妇女一区| 日韩av不卡免费在线播放| www日本黄色视频网| 久久99热这里只有精品18| 中文精品一卡2卡3卡4更新| 舔av片在线| 日韩av在线大香蕉| 男人和女人高潮做爰伦理| 99热6这里只有精品| 欧美成人免费av一区二区三区| 亚洲图色成人| 亚洲三级黄色毛片| 久久亚洲国产成人精品v| 国产精品.久久久| 亚洲中文字幕日韩| 日本免费一区二区三区高清不卡| 久久99精品国语久久久| 少妇被粗大猛烈的视频| 中国国产av一级| 能在线免费看毛片的网站| 精品人妻熟女av久视频| 欧美成人免费av一区二区三区| 中文字幕制服av| 十八禁国产超污无遮挡网站| 亚洲成av人片在线播放无| 国产精品1区2区在线观看.| 在线观看av片永久免费下载| 国产一区二区在线观看日韩| 亚洲精品乱久久久久久| 中国国产av一级| 97热精品久久久久久| 99热6这里只有精品| 亚洲人成网站在线播| 黄色欧美视频在线观看| 国产亚洲精品av在线| av天堂中文字幕网| 亚洲精品,欧美精品| 美女国产视频在线观看| 久久久久久久午夜电影| 岛国在线免费视频观看| 国产精品嫩草影院av在线观看| 99热全是精品| av黄色大香蕉| 免费看光身美女| 永久网站在线| 国内揄拍国产精品人妻在线| 国产高清国产精品国产三级 | 亚洲一级一片aⅴ在线观看| 久久久久久国产a免费观看| 久久韩国三级中文字幕| 久久人人爽人人片av| 国产av一区在线观看免费| 欧美日韩国产亚洲二区| 亚洲中文字幕一区二区三区有码在线看| 日本色播在线视频| 免费不卡的大黄色大毛片视频在线观看 | 精品国内亚洲2022精品成人| 日韩,欧美,国产一区二区三区 | 国产黄片视频在线免费观看| 国产淫片久久久久久久久| 晚上一个人看的免费电影| 黄色欧美视频在线观看| 色综合色国产| 日韩精品青青久久久久久| 亚洲自偷自拍三级| 六月丁香七月| 99热全是精品| 真实男女啪啪啪动态图| 国产精品乱码一区二三区的特点| 中文字幕av成人在线电影| 日日撸夜夜添| 丰满少妇做爰视频| 在线播放国产精品三级| 国产精品一区二区三区四区免费观看| 日韩,欧美,国产一区二区三区 | 国产一区二区亚洲精品在线观看| 亚洲av熟女| 国产中年淑女户外野战色| 欧美高清性xxxxhd video| 欧美高清成人免费视频www| 亚洲国产高清在线一区二区三| 91av网一区二区| 久久久久久大精品| 欧美xxxx黑人xx丫x性爽| 干丝袜人妻中文字幕| 成人一区二区视频在线观看| 国产精品1区2区在线观看.| av播播在线观看一区| 欧美性猛交黑人性爽| 国产精华一区二区三区| 秋霞伦理黄片| 男女啪啪激烈高潮av片| 亚洲av成人av| 国产亚洲av嫩草精品影院| 国产av一区在线观看免费| 黄色日韩在线| 久久精品夜夜夜夜夜久久蜜豆| 一二三四中文在线观看免费高清| 尤物成人国产欧美一区二区三区| 亚洲最大成人中文| 午夜福利在线在线| 国产精品人妻久久久影院| 亚洲五月天丁香| 国产v大片淫在线免费观看| 国产在线男女| 精品一区二区三区人妻视频| 国产私拍福利视频在线观看| 成人午夜高清在线视频| 久久人人爽人人片av| 亚洲三级黄色毛片| 成人亚洲欧美一区二区av| 看非洲黑人一级黄片| 我要看日韩黄色一级片| 国产真实乱freesex| 国产久久久一区二区三区| 中国美白少妇内射xxxbb| 边亲边吃奶的免费视频| 高清日韩中文字幕在线| 69人妻影院| 春色校园在线视频观看| 男人和女人高潮做爰伦理| 亚洲一区高清亚洲精品| 一级av片app| 秋霞伦理黄片| 国产极品精品免费视频能看的| 久久婷婷人人爽人人干人人爱| 久久精品久久精品一区二区三区| 99热6这里只有精品| 国产成人午夜福利电影在线观看| 午夜福利高清视频| av免费在线看不卡| 毛片一级片免费看久久久久| 中文字幕制服av| 黄色一级大片看看| 国产真实伦视频高清在线观看| 日本av手机在线免费观看| 一级av片app| 国产成人一区二区在线| 看非洲黑人一级黄片| 久久午夜福利片| 内地一区二区视频在线| 少妇熟女aⅴ在线视频| 日本午夜av视频| 青青草视频在线视频观看| 国产亚洲一区二区精品| 91精品一卡2卡3卡4卡| 久久久亚洲精品成人影院| 亚洲精品乱久久久久久| videossex国产| 亚洲人与动物交配视频| 精品久久久久久久人妻蜜臀av| 欧美日韩综合久久久久久| 免费av毛片视频| 女人十人毛片免费观看3o分钟| 午夜激情欧美在线| 国产精品人妻久久久久久| 亚洲自拍偷在线| 日韩成人av中文字幕在线观看| 亚洲av不卡在线观看| 免费看光身美女| 欧美bdsm另类| 日韩av在线大香蕉| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av涩爱| av免费观看日本| av视频在线观看入口| 亚洲久久久久久中文字幕| 99久久九九国产精品国产免费| 久久精品久久久久久噜噜老黄 | 内地一区二区视频在线| 大香蕉久久网| 国产成人免费观看mmmm| 韩国av在线不卡| 国内精品一区二区在线观看| 免费电影在线观看免费观看| 午夜精品在线福利| 日韩欧美在线乱码| 蜜臀久久99精品久久宅男| 嫩草影院新地址| 国产精品永久免费网站| 欧美日韩一区二区视频在线观看视频在线 | 搡女人真爽免费视频火全软件| 嫩草影院入口| 亚洲精品一区蜜桃| 国产精品一区二区在线观看99 | 欧美激情久久久久久爽电影| 日本wwww免费看| 欧美成人一区二区免费高清观看| 久久人妻av系列| 我的老师免费观看完整版| 久久久久久久午夜电影| 青春草国产在线视频| 亚洲最大成人中文| 久久久久久久久大av| 桃色一区二区三区在线观看| 黄色配什么色好看| 国产私拍福利视频在线观看| 18禁在线无遮挡免费观看视频| 一本久久精品| 天堂网av新在线| 波多野结衣高清无吗| 舔av片在线| 欧美成人免费av一区二区三区| 国语自产精品视频在线第100页| 七月丁香在线播放| 精品欧美国产一区二区三| 国产精品野战在线观看| 汤姆久久久久久久影院中文字幕 | 亚洲第一区二区三区不卡| 亚洲av免费在线观看| 男人和女人高潮做爰伦理| 欧美变态另类bdsm刘玥| 久久99蜜桃精品久久| 久久韩国三级中文字幕| videos熟女内射| 纵有疾风起免费观看全集完整版 | 纵有疾风起免费观看全集完整版 | 国产av在哪里看| 女人十人毛片免费观看3o分钟| 99久国产av精品| 在线a可以看的网站| 99热网站在线观看| 1024手机看黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久伊人网av| 久久精品夜色国产| 国产老妇女一区| 超碰av人人做人人爽久久| 中文在线观看免费www的网站| 午夜福利网站1000一区二区三区| 国产黄片视频在线免费观看| 午夜久久久久精精品| 国内精品美女久久久久久| 18禁在线播放成人免费| 久久久久久久国产电影| 国产女主播在线喷水免费视频网站 | 国产视频内射| 两性午夜刺激爽爽歪歪视频在线观看| 日本五十路高清| 精品免费久久久久久久清纯| 午夜久久久久精精品| 国产极品精品免费视频能看的| 搡女人真爽免费视频火全软件| 国产一区二区在线av高清观看| 男女国产视频网站| 三级国产精品片| 国产又黄又爽又无遮挡在线| 插逼视频在线观看| av在线亚洲专区| 久久久久久久亚洲中文字幕| 国产极品精品免费视频能看的| 又粗又硬又长又爽又黄的视频| 免费黄色在线免费观看| 日韩成人伦理影院| 男人舔女人下体高潮全视频| 一区二区三区乱码不卡18| 欧美97在线视频| 日韩人妻高清精品专区| 18禁在线播放成人免费| 中文字幕制服av| 精品国产一区二区三区久久久樱花 | 一个人看视频在线观看www免费| 欧美bdsm另类| 麻豆成人午夜福利视频| 免费看光身美女| 国产一区亚洲一区在线观看| 午夜激情欧美在线| 欧美不卡视频在线免费观看| 亚洲av.av天堂| 精品欧美国产一区二区三| 特级一级黄色大片| 日日撸夜夜添| 能在线免费观看的黄片| 国产精品99久久久久久久久| 精华霜和精华液先用哪个| 99久国产av精品国产电影| 成人午夜精彩视频在线观看| 村上凉子中文字幕在线| 青春草亚洲视频在线观看| 亚洲av不卡在线观看| 国产精品一区二区在线观看99 | 免费在线观看成人毛片| 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| 麻豆成人午夜福利视频| 人妻制服诱惑在线中文字幕| 亚洲最大成人av| 夜夜爽夜夜爽视频| 最新中文字幕久久久久| 99热6这里只有精品| 精品国产露脸久久av麻豆 | 国产一级毛片七仙女欲春2| 亚洲综合色惰| 国产一级毛片在线| 纵有疾风起免费观看全集完整版 | 哪个播放器可以免费观看大片| 日韩亚洲欧美综合| 夫妻性生交免费视频一级片| 嫩草影院新地址| 亚洲国产日韩欧美精品在线观看| 亚洲国产欧美人成| 久久人妻av系列| 黄片wwwwww| 能在线免费观看的黄片| 亚洲色图av天堂| 国产精品爽爽va在线观看网站| 国产综合懂色| 五月伊人婷婷丁香| 狂野欧美白嫩少妇大欣赏| 最近中文字幕2019免费版| 少妇裸体淫交视频免费看高清| 18+在线观看网站| 丰满人妻一区二区三区视频av| 亚洲av电影不卡..在线观看| 国产午夜精品久久久久久一区二区三区| 欧美色视频一区免费| 三级经典国产精品| 中文字幕熟女人妻在线| 欧美一级a爱片免费观看看| 最新中文字幕久久久久| 日韩一区二区三区影片| 国产精品一区二区性色av| 好男人视频免费观看在线| 亚洲,欧美,日韩| 国产av不卡久久| 十八禁国产超污无遮挡网站| 久久久成人免费电影| 嘟嘟电影网在线观看| 成人三级黄色视频| 1024手机看黄色片| 国产女主播在线喷水免费视频网站 | 亚洲成色77777| 99国产精品一区二区蜜桃av| 亚洲在久久综合| 噜噜噜噜噜久久久久久91| 欧美高清成人免费视频www| 久久精品综合一区二区三区| 国产成人精品一,二区| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 日韩一本色道免费dvd| 毛片女人毛片| 在线观看66精品国产| 日韩精品青青久久久久久| 国产黄色小视频在线观看| 少妇高潮的动态图| 美女黄网站色视频| 中文字幕av在线有码专区| 欧美一区二区亚洲| 欧美区成人在线视频| 精品人妻熟女av久视频| 亚洲乱码一区二区免费版| 一卡2卡三卡四卡精品乱码亚洲| 国产成人免费观看mmmm| 人妻少妇偷人精品九色| 免费观看a级毛片全部| 午夜久久久久精精品| 中国国产av一级| 国产黄片美女视频| 麻豆乱淫一区二区| 久久久久久久久大av| 久久这里有精品视频免费| 久久6这里有精品| 亚洲国产高清在线一区二区三| 成年免费大片在线观看| 久久久久久久久久黄片| 日韩欧美在线乱码| 亚洲国产最新在线播放| 日日啪夜夜撸| 国产在视频线在精品| 亚洲av电影在线观看一区二区三区 | 亚洲综合精品二区| 国产乱人视频| 国产久久久一区二区三区| 九九热线精品视视频播放| 在线a可以看的网站| 久久精品国产亚洲网站| 国产私拍福利视频在线观看| 欧美日韩国产亚洲二区| 日本欧美国产在线视频| av免费观看日本| 又黄又爽又刺激的免费视频.| 在线观看美女被高潮喷水网站| 亚洲欧美精品自产自拍| 亚洲国产成人一精品久久久| 精品久久久久久久久av| 免费无遮挡裸体视频| 国产麻豆成人av免费视频| 国产成人91sexporn| 中文资源天堂在线| 亚洲av免费高清在线观看| eeuss影院久久| 国产激情偷乱视频一区二区| 六月丁香七月| 蜜臀久久99精品久久宅男| 国产高清三级在线| 69人妻影院| 在线观看av片永久免费下载| 色尼玛亚洲综合影院| av在线天堂中文字幕| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美精品综合久久99| 国产亚洲午夜精品一区二区久久 | 亚洲精华国产精华液的使用体验| 国语对白做爰xxxⅹ性视频网站| 神马国产精品三级电影在线观看| 国产大屁股一区二区在线视频| 久久久久久大精品| 欧美日韩一区二区视频在线观看视频在线 | ponron亚洲| 精品久久久久久久久久久久久| 一级毛片久久久久久久久女|