• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fast radial scanning probe system on KTX

    2020-05-06 05:59:32TijianDENG鄧體建TaoLAN蘭濤MingshengTAN譚名昇JunfengZHU朱軍鋒JieWU吳捷HangqiXU許航齊ChenCHEN陳晨YolbarsopADIL阿迪里SenZHANG張森JiarenWU鄔佳仁YimingZU祖一鳴WenzheMAO毛文哲HongLI李弘JinlinXIE謝錦林AhdiLIU劉阿娣ZixiLIU劉子奚ZhengweiWU吳征威HaiWANG汪海Xi
    Plasma Science and Technology 2020年4期
    關鍵詞:陳晨

    Tijian DENG (鄧體建),Tao LAN (蘭濤),Mingsheng TAN (譚名昇),Junfeng ZHU(朱軍鋒),Jie WU(吳捷),Hangqi XU(許航齊),Chen CHEN(陳晨),Yolbarsop ADIL (阿迪里),Sen ZHANG (張森),Jiaren WU (鄔佳仁),Yiming ZU (祖一鳴),Wenzhe MAO (毛文哲),Hong LI (李弘),Jinlin XIE (謝錦林),Ahdi LIU (劉阿娣),Zixi LIU (劉子奚),Zhengwei WU (吳征威),Hai WANG (汪海),Xiaohui WEN (溫曉輝),Haiyang ZHOU (周海洋),Zian WEI (衛(wèi)子安),Chijin XIAO (肖持進),2,Weixing DING (丁衛(wèi)星),Ge ZHUANG (莊革) and Wandong LIU (劉萬東)

    1 KTX Laboratory and Department of Engineering and Applied Physics,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    2 Plasma Physics Laboratory,University of Saskatchewan,Saskatoon,SK S7N 5E2,Canada

    Abstract

    Keywords: radial scanning probe,high-speed movement,noncontact magnetic grating ruler

    1.Introduction

    Fast reciprocating probe systems have been widely used in tokamaks to measure plasma edge profile parameters during discharge,such as potential,electron density,and temperature profiles with high temporal and spatial resolutions [1–9].With these systems,the probes can reduce their exposure to plasma by reciprocating movement and thus minimize possible damage.It is a simple and effective means for fast reciprocating probe to measure plasma edge profile parameters.

    There are two processes for the probe systems to send probe into plasma.Probe is pushed to a stand-by position before the discharge in first process.The initial probe position relative to plasma usually needs to be adjusted with a slow stepping motor because of its high accuracy.In second process,probe is fast sent into plasma by powerful thrust during the discharge.As a simple drive source,the pneumatic cylinder has often been chosen to perform the fast movement to measure plasma edge parameters on numerous plasma devices.However,for most systems,maximum velocities achieved by pneumatic cylinder are below 3 m s-1[1–5].Although the maximum speeds of the systems are large enough to reciprocate probe for the long discharge durations,the structure of pneumatic cylinder limits its largest speed.Therefore,as another driving power in now days,the servomotor with very high torque driven by the strong electromagnetic force is chosen for driving the probe system,as it easily provides powerful and precise control.For example,the fast reciprocating probe system on the EAST [6] controls the probe acceleration and deceleration movement and has a reciprocating range of 50 cm with a maximum velocity of 2 m s-1.A 75 cm linear displacement potentiometer gives an analog signal of the probe head position.The speed of 2 m s-1satisfies the reciprocating requirement of EAST.However,its probe system can develop a larger speed if increasing the torque of servo-motor.

    Figure 1.Fast radial scanning probe system on KTX.

    Early reversed field pinches (RFPs) [10–13] have rarely equipped with reciprocating probe due to short discharge durations.However,a plasma profile diagnostic tool is urgently needed for Keda Torus eXperiment (KTX) [14–29]RFP.According to the experiences on tokamaks,a fast scanning probe system is designed to measure the plasma edge potential,density,and temperature profiles on the KTX RFP.For KTX,the duration of discharge is very shorter than most tokamak devices and thus there is not enough time for probe to reciprocate movement.Only a fast scanning movement is proposed,however,a higher scanning speed is required.We hope the probe in the system can travel about 4 cm within 10 ms during KTX discharge.Then,a powerful servo-motor with a high-torque of 35 N m is chosen to drive the probe shaft.From the examples above,potentiometer and optical grating ruler are common displacement measurement tools.But they are easy to damage,especially in collision operation.A noncontact magnetic grating ruler is first adopted to record the fast movement displacement to avoid shock.The system tests indicate that the fast displacements are repeatable and reliable.The preliminary experimental result of the floating potential profile scanned by the system is in agreement with that of the fixed radial probe array.

    The paper is organized as follows.Section 2 introduces the experimental conditions.Section 3 specifies the mechanical design of the scanning drive system.Section 4 describes the control and data acquisition systems.Section 5 gives the bench test results.Section 6 provides the preliminary experimental results,and section 7 presents the summary.

    2.Experimental facilities

    KTX is a medium-sized RFP device located at the University of Science and Technology of China in Hefei,China.It has a major radius of 1.4 m and a minor radius of 0.4 m,with poloidal and toroidal molybdenum limiters of 2.0 cm height.There are two phases in the development of KTX[18]:Phase 1—toroidal fieldBt= 0.35 T,plasma currentIp= 0.5 MA,electron temperatureTe= 300 eV,with a discharge pulse of 30 ms;Phase 2—Bt=0.7 T,Ip= 1 MA,Te= 800 eV,with a discharge pulse of 100 ms.Currently,KTX is under conditioning of Phase 1.The parameters achieved are:Bt= 0.25 T,Ip= 0.2 MA,Te= 100 eV,and a maximum discharge duration of 22 ms[26].The line-averaged density is=(1–2) × 1019m-3.

    Several fundamental diagnostics,including electromagnetic probes [27],a 2D double-foil soft x-ray diagnostic system,a chord 650 GHz solid-state source interferometer[19,22],spectroscopy measurement of seven-channel Hαline diagnostic and bolometer diagnostic,a high-speed visible imaging system,and an array of eddy current probes [23],have been developed to measure plasma current,temperature,line-averaged density,and radiation,provide plasma shape characteristics,and study plasma instabilities.In this work,we introduce a fast radial scanning probe system,built to obtain the profiles of plasma edge density,temperature,and floating potentials within a single discharge.

    3.Mechanical design

    A fast radial scanning probe system is designed and installed on KTX,as shown in figure 1.The system is mounted on the midplane port with a diameter of 150 mm.The mechanical design of the scanning probe system is shown in figure 2.The system consists of two motion drive mechanisms:(1)a standby movement and (2) a fast scanning movement.

    Figure 2.Mechanical design of the scanning probe system.

    The stand-by movement is controlled by a stepping motor to set the initial probe position,providing a maximum stroke of 80.0 cm.In this process,the movable part goes forward along two linear guide rails and compresses long welded bellows.A probe-preparation chamber with a transparent glass port is installed behind the vacuum gate valve to observe and replace the probe.A stable and powerful hightorque servo-motor of 5.5 kW is used to drive the drive board for a fast scanning movement.Balanced counterweights are considered to balance the weight of the servo-motor and ensure that the center of gravity coincides with the center line.To obtain larger forward speeds,the servo-motor works in the torque mode,producing a maximum force of 1100 N on the module slider and drive board by transmission from a highspeed linear actuator.In figure 2,when the fast scanning movement is active,the move board and four compression strings between the drive board and the move board protect the drive board from direct collision with the braking cylinders.Strings moreover guarantee that after the move board collides with the braking cylinders and stops immediately,the drive board slows down gradually without causing damage to the servo-motor and linear actuator.Here,strings with string constant of 1600 N m-1and a natural length of 25.0 cm are chosen.The compression range spans 0–19.0 cm,and the four strings provide a maximum braking force of 1216 N,which is slightly higher than the maximum force deliverable by the servo-motor.The strings can be easily substituted if their string constants are not suitable.The drive board made of light aviation aluminum loses less energy,and,consequently,the move board acquires more power.The four axial hollow cylinders at the strings mounted on the move board ensure that the strings can be compressed vertically.There are four holes in the drive board coaxial with the four hollow cylinders and larger in diameter than the cylinders.Therefore,relative displacement between the drive board and the hollow cylinders is allowed when the speed of the drive board is larger than that of the move board.Four end covers behind the drive board,which are larger than the holes in the board connected to the four hollow cylinders by screws,are pushed backward by the drive board and thus drag the move board back to its original position after the forward fast movement is completed.A 2.05 m long stainless steel probe shaft with a diameter of 2.0 cm is connected to the probe head and the movable part.The total mass of the fast moving part is about 12.0 kg,including the probe head,probe shaft,thin-wall hollow cylinders,move board,and partial fast welded bellows.The system allows the entire radial measurement range covering half of the KTX vacuum chamber in the KTX midplane.Details regarding the motion of each part are presented in section 5.

    4.Control and data acquisition systems

    As mentioned above,it takes two modes of movement to move the probe into the chamber:(1)the stand-by movement and (2) the fast scanning movement.In the stand-by movement,the probe system above the support platform is driven by a stepping motor to a stand-by position before the discharge.Subsequently,the high-torque servo-motor pushes the probe into the edge region after receiving the ‘trigger’ signal from the controlling system.The two operations are carried out by two independent micro control units (MCUs),which conveniently and effectively move the probe by remote control.

    Figure 3.Square signals of fast scanning movement controlled by the MCU.

    In the stand-by movement,the MCU controls the probe shaft and servo-motor assembly to move forward and backward by directional signals and uniform continuous squares with a resolution of 1 mm.

    In the fast scanning movement,the MCU controls the servo-motor by several adjustable square signals shown in figure 3.After the ‘trigger’ signal at t0,the servo-motor is force-free and subsequently becomes active by ‘braking release’ and ‘enabled’ signals.At W1microseconds later,the servo-motor shifts from the position mode to the torque mode by ‘torque–position conversion’,which lasts for W2microseconds.In this mode,the servo-motor pushes the probe shaft to quickly move forward,while the ‘torque input’ signal controls the acceleration and deceleration of the motor,applying the negative and positive voltages,respectively.Square widths of W3,W4,W5,W6,W7,and W8and voltages of V1,V2and V3in the ‘torque input’ signal are related to the ongoing displacement signal of the probe,which will be described in section 5.After the forward movement finishes,the probe shaft returns to the original position at t1with a continuous squares signal,controlled by the servo-motor in the position input.To ensure safety,the servo-motor is in a braking and disabled state after t1that is fed back from a limit switch.

    To achieve good shock resistance ability,a noncontact magnetic grating ruler,made up of a magnetic reading head and a magnetic ruler,is used for the fast displacement measurement of the scanning probe for a high spatial resolution of 5 μm and a maximum velocity of 25 m s-1.In our initial tests,the optical grating ruler,widely used as a high-speed machine tool and in other reciprocating probe systems,has been damaged when the speed of the probe exceeds 2 m s-1.In contrast,the magnetic grating ruler can bear very high speeds and shocks without contact.The probe system is in the‘nearly zero’ magnetic field region less than 20 Gauss in the middle plane,and the discharge magnetic field influence on the magnetic grating ruler can be ignored[29].The output signals of the magnetic grating ruler are two quadrature TTL pulse time serials,which implement a minimum measurement resolution of 5 μm and determine the direction of movement.

    All the probe signals are acquired by National Instrument’s 16-bit PXIe-6368 digitizer with synchronous sampling frequencies of 2 MHz suitable for the high-frequency fluctuations of plasma turbulence.The output TTL pulses of the magnetic grating ruler are digitally sampled with the same card at 10 MHz,which satisfies the minimum temporal resolution requirement of 1.25 μs at a maximum speed of 4 m s-1.The displacement of the drive board is decoded from the output TTL pulses from the servo-motor encoder.The digitizer is installed on a PXIe crate and placed very close to the probe system.Coaxial cables are used to transmit all the signals.The trigger signal and the network use the optical fiber to isolate the connections between the probe system and the center control system.

    5.System test

    A system test on the KTX device was conducted to obtain the movement parameters of the probe system without plasma discharge.The typical testing parameters of MCUs are W1= 200 ms,W2= 600 ms,W3= 200 ms,W4= 120 ms,W5= 5 ms,W6= 35 ms,W7= 40 ms,W8= 95 ms,V1=-10 V,V2=10 V,and V3=-5 V.The displacements and velocities of the probe shaft and drive board are decoded from the output quadrature digital signals and shown in figure 4.

    There are five states presented in figure 4.State A,initial position: the initial length of the string is 25.0 cm,and the distance between the move board and the braking cylinders is 20 cm;State B,acceleration:the drive board is accelerated by the servo-motor in the torque mode at voltage V1,and then the string is compressed to provide a force to drive the probe shaft; State C,collision: the move board hits the braking cylinders and stops immediately; State D,preparation for the rebound of strings: the drive board reduces its speed to 0 m s-1by an acting force from the strings and the servomotor at voltage V2,and the length of the strings achieves a minimum value;State E,rebound end of the strings:under the acting force of the servo-motor at voltage V3,the strings rebound slowly,and the drive board slightly touches the four end covers of the axial hollow cylinders at about t=495 ms.The final state,not shown in figure 4,follows the forward movement back to the original position: the probe shaft is pulled back slowly by the servo-motor in the position mode,and the length of the strings returns to 25.0 cm,whereas the distance between the move board and the braking cylinders returns to 20 cm.

    Figure 4.(a) Forward displacement signals of the probe shaft,drive board,and string length signal(the initial position of the drive board is set as the zero point of displacement).(b)Forward velocity signals of the probe shaft and drive board.

    Figure 4(b) shows that the maximum velocity of the probe shaft reaches 4.0 m s-1,which means that the probe can be sent into the plasma at a distance of 4.0 cm in 10 ms during a discharge.These results are repeatable throughout numerous experiments,with a delay time and an amplitude difference of less than 0.4 ms and 0.5 mm,respectively.

    These results meet users’ requirements of fast scanning edge plasma parameter profiles in KTX.In addition,the displacement and velocity are adjustable in different plasma discharge conditions by changing the width and amplitude parameters of the torque input signal from W1to W8and from V1to V3,respectively.

    6.Preliminary experimental results

    The plasma parameter profile,that is,the floating potential,has been measured by the scanning probe system at ultralow q discharge in KTX [26],here q is safety factor.A sturdy and durable single-tip probe is adopted in this study,as shown in figure 5.The material of the probe tip is made of stainless steel,which is suitable for low-temperature plasma.The single probe tip has a diameter of 3.0 mm and a length of 2.0 mm.The single tip is surrounded by the Al2O3ceramic tube and is exposed to plasma.A polytetrafluoroethylene(PTFE)ring is placed behind the ceramic tube to avoid strong shocks.The elastic PTFE tube 1 and PTFE tube 2 with steps squeeze probe tip to ensure that the stainless steel tip does not damage the two tubes as it shakes in the direction of its movement.At the same time,the measurements of floating potential profile with rake probe array of nine tips are compared with the measurements with reciprocating single-tip probe.The rake probe is composed of graphite tips,a shield,a boron nitride base,and a stainless steel support,as shown in figure 6.Each probe tip has a diameter of 1.5 mm and a length of 2.0 mm.The radial distance between two adjacent tips is 5.0 mm,and the total radial coverage is 4.0 cm.

    Figure 5.Cross-sectional drawing of a single-tip probe for the scanning floating potential profile and schematic of its circuit.

    Figure 7 shows the floating potential profile scanned by the single-tip probe in shot 11301.According to the probe position signal,the probe travels more than 5.0 cm during a discharge.In figure 7(c),the evolution of the plasma floating potential at radial position r = 35.0 cm measured by one of the radial rake probe tips in another shot 11 540 is depicted by the red line.The floating potential Vfis flat at the temporal scale of the single-tip traveling,which suggests that the plasma floating potential profile is invariable,even though the plasma current falls.An obvious gradient is visible in Vfafter 6 ms in figure 7(c)(blue line),which clearly corresponds to a radial position of 38.0–37.0 cm in figure 8 (blue line).The floating potential becomes flatter as the probe is inserted deeper.Sudden changes occur after 12 ms in Vf,possibly due to the instability of the plasma geometry center.In figure 8,red squares with error bars depict the mean floating potential signals with 11 shots,measured by the fixed radial probe array.The data in each shot at a certain position are averaged over a time window of 0.4 ms.From these results,we can conclude that the profiles from the two measurement methods are in agreement.

    The data analyzing techniques will be mentioned here.In our device,the relationship of electron mean free pathλmfp,Debye lengthλDand probe characteristic size h isλmfp≥h≥λD,h is the height of probe tip,and meets the conditions of traditional thin sheath theory.For the single probe’s I–V trace,the stray capacitance Cstrayin the coaxial cable limits the highest sweep frequency on KTX.The toroidal magnetic field Btis large enough to reduce collecting ion and electron saturation current.The ion and electron almost travel parallel to the magnetic field lines and we consider collecting ion current area Aisand electron current area Aesas Ais=2φh and Aes=RAp,here φ is the diameter of probe tip,Apis the superficial area of probe tip and R is correction coefficient,R?1.The Btis strong and thus electron temperature Tecalculated using transition part near the electron saturation region of I–V curve will result in large error.Even so,the region near floating potential in transition part and ion saturation current Iisare basically not influenced.Then,electron density neis measured by ion saturation current Iisand electron temperature Tecan be measured by the transition area near the floating potential of I–V curve.

    Figure 6.Radial rake probe array measuring the floating potential profile at a number of fixed positions and schematic of their circuit.

    Figure 7.Evolution of(a)plasma current Ip,(b)probe position r,and(c) floating potential Vf.

    Figure 8.Comparison of floating potential measurements from a single-tip probe and a radial rake probe array.

    We use the single probe,shown in figure 5 and fixed at the radial positon r = 36 cm,to obtain the I–V trace.In the discharge flattop,the single probe’s I–V trace is measured by applying the ramp voltage sweep Usweepat a frequency of 5 kHz with the circuit in figure 9 and the result is shown in figure 10.The d2I/dU2,shown in figure 11(a),is also calculated by the transition part of I–V curve fitted with a polynomial.From the d2I/dU2curve,we consider that the Electron Energy Distribution Function (EEDF) satisfies the single-Maxwellian distribution.Furthermore,a linear relation exists between ln(I + Iis) and Usweep,shown in figure 11(b).Therefore,we neglect hot electrons influence and there is no bi-Maxwellian effect in our plasma.

    Figure 9.The sweep circuit of the single probe’s I–V trace.

    Figure 10.The result of the I–V trace using the single probe.

    The plasma floating potential Vf,the electron temperature Te,ion saturation current Iis,and electron density nehave been measured by a typical four-tip probe fixed at a radial position r = 36 cm,mounted on this probe system.Two floating potentials in the four-tip probe are put along poloidal direction with a distance ofΔθ= 7 mm.The probe structure and the circuit are presented in figure 12.The graphite probe tip has a diameter of φ = 2.0 mm and a radial height of h = 2.0 mm.The basic plasma parameters measured by the probe are shown in figure 13.The temperature and density are calculated aswhereα= 0.61,e is electron charge,andCsis ion sound speed.The plasma instability is measured by both the saturation current and the floating potential.As low temperature plasma on KTX so far,electron temperature fluctuationis small and conventional treatment is to neglect the fluctuation [30],i.e.hereare the fluctuations of electron density,ion saturation current,plasma potential,and plasma floating potential.The plasma profiles measured by the four-tip probe with fast scanning will be carried out in further experiments.

    Figure 11.The curves of (a) d2I/dU2 and (b) ln(I + Iis)–Usweep relation in transition part of I–V trace.

    7.Summary

    The fast radial scanning probe system built for KTX can quickly position the probe from the edge to the core of the chamber.The stepping motor slowly moves the system to an initial stand-by position,and then the high-torque servomotor applies the large drive force for fast probe scanning of the plasma boundary parameters.A special string design prevents the drive board from strongly punching on braking,to protect the servo-motor.Its temporal control system using the MCUs is very convenient and effective in triggering the probe remotely.The maximum speed of the fast scanning system reaches 4.0 m s-1,which basically satisfies the profile measurement requirement for the KTX discharge.To avoid vibrations,a noncontact magnetic grating ruler of high spatial resolution (5 μm) and a maximum speed of 25 m s-1is used for the position and velocity measurements.The synchronous sampling rates of the data acquisition system are at 2 MHz for analog and at 10 MHz for digital measurements,which are appropriate for the high-frequency fluctuations of plasma turbulence and fast scanning displacement measurement.The test results indicate that the fast displacements are repeatable and reliable.Furthermore,a comparison of the plasma floating potential profiles obtained by the fixed radial rake probe and the scanning single probe suggests that the high-speed scanning probe system is suitable to measure the edge plasma parameter profiles with a single shot.Moreover,the highspeed feature of the scanning probe system is particularly suitable for devices similar to KTX with very short discharge durations.

    Figure 12.The sketch and the circuit of the four-tip probe.

    Figure 13.Basic plasma parameters of (a) plasma current Ip,(b) the plasma floating potential Vf,(c) the electron temperature Te,(d) ion saturation current Iis,and (e) electron density ne.

    Acknowledgments

    This work was supported by the National Magnetic Confinement Fusion Science Program of China (No.2017YFE0301700)and National Natural Science Foundation of China (No.11635008).

    ORCID iDs

    猜你喜歡
    陳晨
    節(jié)日和主角
    我都學過啦
    課桌國王
    段玉裁《說文解字注》校訂《古今韻會舉要》探略
    天中學刊(2022年4期)2022-09-29 07:21:22
    《銳角三角函數》拓展精練
    《二元一次方程組》鞏固練習
    淺談三角函數在三角形解題中的應用
    地鐵運營非正常行車組織及要點相關闡述
    科學家(2021年24期)2021-04-25 11:54:46
    生吞活剝
    拋卻虛榮心 激發(fā)正能量
    免费观看精品视频网站| 成年女人毛片免费观看观看9| 毛片女人毛片| 欧美xxxx黑人xx丫x性爽| a级毛片在线看网站| 国产精品久久视频播放| 中国美女看黄片| 国产亚洲精品久久久com| 两性夫妻黄色片| 国产欧美日韩一区二区精品| 亚洲成人久久爱视频| 美女 人体艺术 gogo| 麻豆成人午夜福利视频| 麻豆久久精品国产亚洲av| 国产午夜福利久久久久久| 精品国产超薄肉色丝袜足j| 1000部很黄的大片| 老司机在亚洲福利影院| 一个人看的www免费观看视频| 国产亚洲av高清不卡| 一级黄色大片毛片| 国产精品久久久久久久电影 | 国产乱人伦免费视频| 免费无遮挡裸体视频| 免费av不卡在线播放| 亚洲电影在线观看av| 我的老师免费观看完整版| 成人国产一区最新在线观看| 欧美日本亚洲视频在线播放| 精品久久久久久,| 丁香欧美五月| 一区福利在线观看| 婷婷六月久久综合丁香| 国产私拍福利视频在线观看| 亚洲熟妇中文字幕五十中出| 久久香蕉精品热| 精品国产三级普通话版| 亚洲片人在线观看| 1024香蕉在线观看| 88av欧美| 淫秽高清视频在线观看| 亚洲人成网站在线播放欧美日韩| 麻豆成人av在线观看| 亚洲色图av天堂| 全区人妻精品视频| 1000部很黄的大片| 欧美又色又爽又黄视频| 亚洲成人中文字幕在线播放| 国产精品亚洲一级av第二区| 国产极品精品免费视频能看的| 国产一级毛片七仙女欲春2| 男人舔女人的私密视频| av中文乱码字幕在线| 97人妻精品一区二区三区麻豆| 久久精品国产亚洲av香蕉五月| 美女高潮喷水抽搐中文字幕| 天堂√8在线中文| 欧美性猛交╳xxx乱大交人| 观看美女的网站| 夜夜爽天天搞| 最近在线观看免费完整版| 99久久精品国产亚洲精品| 婷婷丁香在线五月| 国产 一区 欧美 日韩| 亚洲国产欧美网| 亚洲va日本ⅴa欧美va伊人久久| 在线观看免费视频日本深夜| 成人av一区二区三区在线看| 亚洲真实伦在线观看| 18禁黄网站禁片免费观看直播| 色综合亚洲欧美另类图片| 国产精品一区二区三区四区久久| 90打野战视频偷拍视频| 午夜亚洲福利在线播放| 亚洲精品久久国产高清桃花| 久久久国产成人免费| 中文字幕精品亚洲无线码一区| 欧美极品一区二区三区四区| 级片在线观看| 一区二区三区国产精品乱码| 搞女人的毛片| 亚洲电影在线观看av| 精品人妻1区二区| 午夜福利欧美成人| 亚洲国产欧美网| 久久午夜综合久久蜜桃| 免费在线观看亚洲国产| 亚洲五月天丁香| 久久久久免费精品人妻一区二区| 亚洲精品中文字幕一二三四区| 五月伊人婷婷丁香| 国产一级毛片七仙女欲春2| 国产亚洲精品一区二区www| 两个人看的免费小视频| 久久久久性生活片| 男人的好看免费观看在线视频| 偷拍熟女少妇极品色| 日本精品一区二区三区蜜桃| 精品久久久久久久毛片微露脸| 亚洲aⅴ乱码一区二区在线播放| 99在线视频只有这里精品首页| 欧美中文日本在线观看视频| 最新美女视频免费是黄的| 亚洲国产日韩欧美精品在线观看 | 观看免费一级毛片| www.熟女人妻精品国产| 日韩大尺度精品在线看网址| 9191精品国产免费久久| 国产精品一区二区精品视频观看| 网址你懂的国产日韩在线| 国产视频一区二区在线看| 亚洲成人久久性| 久久人人精品亚洲av| 久久婷婷人人爽人人干人人爱| 亚洲av美国av| 中文字幕熟女人妻在线| 母亲3免费完整高清在线观看| 麻豆国产av国片精品| 久久精品国产99精品国产亚洲性色| 亚洲欧洲精品一区二区精品久久久| 窝窝影院91人妻| 亚洲国产精品合色在线| 成年女人看的毛片在线观看| www.自偷自拍.com| 国产一区在线观看成人免费| 欧美黑人欧美精品刺激| 俄罗斯特黄特色一大片| 18美女黄网站色大片免费观看| 成人性生交大片免费视频hd| 97超级碰碰碰精品色视频在线观看| 99久久成人亚洲精品观看| 国产精品电影一区二区三区| 亚洲欧美日韩东京热| 久久精品91蜜桃| 18禁观看日本| 91av网一区二区| 黄色成人免费大全| 亚洲成人久久性| 国产真人三级小视频在线观看| avwww免费| 国产三级黄色录像| 91av网站免费观看| 黄片大片在线免费观看| 老司机午夜十八禁免费视频| 制服人妻中文乱码| 国产伦一二天堂av在线观看| 精品不卡国产一区二区三区| 亚洲av成人不卡在线观看播放网| 少妇丰满av| 变态另类丝袜制服| 免费人成视频x8x8入口观看| 18禁美女被吸乳视频| 免费看美女性在线毛片视频| 亚洲黑人精品在线| 真人一进一出gif抽搐免费| 观看美女的网站| 久久久久九九精品影院| 欧美黑人巨大hd| 国产美女午夜福利| 在线播放国产精品三级| netflix在线观看网站| 日本黄大片高清| 男人舔女人下体高潮全视频| 露出奶头的视频| 99riav亚洲国产免费| 一进一出抽搐动态| 久久国产精品人妻蜜桃| 少妇熟女aⅴ在线视频| 亚洲 国产 在线| 在线免费观看的www视频| 欧美成人性av电影在线观看| 中文字幕精品亚洲无线码一区| 国产精品一区二区免费欧美| 又黄又爽又免费观看的视频| 此物有八面人人有两片| 亚洲,欧美精品.| 亚洲精华国产精华精| 精品久久蜜臀av无| 看黄色毛片网站| 亚洲一区二区三区色噜噜| 国产高清激情床上av| 免费看美女性在线毛片视频| 操出白浆在线播放| 国产在线精品亚洲第一网站| www日本在线高清视频| 午夜福利在线在线| 久久久久久久久久黄片| 老鸭窝网址在线观看| 女人被狂操c到高潮| 少妇的逼水好多| 免费在线观看影片大全网站| 久久婷婷人人爽人人干人人爱| 在线观看美女被高潮喷水网站 | 欧美精品啪啪一区二区三区| 欧美+亚洲+日韩+国产| 国产91精品成人一区二区三区| а√天堂www在线а√下载| 99久久国产精品久久久| 淫妇啪啪啪对白视频| 国产毛片a区久久久久| 波多野结衣高清无吗| 99在线人妻在线中文字幕| 高清毛片免费观看视频网站| 国产成人欧美在线观看| 亚洲人成网站高清观看| 国产亚洲精品久久久久久毛片| ponron亚洲| 亚洲乱码一区二区免费版| 天堂动漫精品| or卡值多少钱| 老鸭窝网址在线观看| 久9热在线精品视频| 色尼玛亚洲综合影院| 久久午夜综合久久蜜桃| 国产精品国产高清国产av| 99视频精品全部免费 在线 | 午夜成年电影在线免费观看| 禁无遮挡网站| 国产亚洲av嫩草精品影院| 色尼玛亚洲综合影院| 国产精品电影一区二区三区| 亚洲成av人片在线播放无| 国产精品一区二区精品视频观看| 国产三级在线视频| 国产精品一及| 欧美成人性av电影在线观看| 嫁个100分男人电影在线观看| 可以在线观看的亚洲视频| 国产单亲对白刺激| 亚洲第一电影网av| 成人国产综合亚洲| 精品不卡国产一区二区三区| 日韩免费av在线播放| 午夜福利18| www.999成人在线观看| 免费观看人在逋| 又大又爽又粗| 国产成人精品久久二区二区91| 久久九九热精品免费| 免费大片18禁| 亚洲片人在线观看| 国内精品久久久久久久电影| 国产精品 欧美亚洲| 色尼玛亚洲综合影院| 一级毛片精品| 香蕉久久夜色| 日本成人三级电影网站| 午夜两性在线视频| 男人舔奶头视频| 国产又色又爽无遮挡免费看| 88av欧美| 在线观看美女被高潮喷水网站 | 亚洲第一电影网av| 国内精品久久久久精免费| 国产成人av激情在线播放| 国产久久久一区二区三区| 欧美另类亚洲清纯唯美| 中文字幕久久专区| 天天一区二区日本电影三级| 身体一侧抽搐| 村上凉子中文字幕在线| 色综合亚洲欧美另类图片| 成在线人永久免费视频| 嫩草影院入口| 99在线视频只有这里精品首页| 国产69精品久久久久777片 | 一个人看视频在线观看www免费 | 日韩欧美 国产精品| 国产成人精品久久二区二区免费| 欧美日韩瑟瑟在线播放| 在线a可以看的网站| 午夜免费成人在线视频| 久久这里只有精品中国| 欧美一区二区国产精品久久精品| 中国美女看黄片| 亚洲成a人片在线一区二区| 亚洲一区二区三区不卡视频| 国产精品亚洲一级av第二区| 国产一区二区三区视频了| 亚洲国产精品999在线| 免费高清视频大片| 69av精品久久久久久| 青草久久国产| 国产精华一区二区三区| 熟女人妻精品中文字幕| 禁无遮挡网站| 午夜免费激情av| 嫩草影院入口| 久久久久久久精品吃奶| 舔av片在线| 琪琪午夜伦伦电影理论片6080| 日韩三级视频一区二区三区| 97超视频在线观看视频| 最新中文字幕久久久久 | 欧美国产日韩亚洲一区| 老司机午夜福利在线观看视频| 最近在线观看免费完整版| 午夜精品久久久久久毛片777| a在线观看视频网站| 欧美激情在线99| 亚洲国产欧洲综合997久久,| 88av欧美| 久久精品影院6| 久久久久久久精品吃奶| 国产美女午夜福利| 老司机午夜福利在线观看视频| 午夜日韩欧美国产| 国产精品女同一区二区软件 | 免费看光身美女| 国产精品综合久久久久久久免费| 国产精品久久久人人做人人爽| 国产精品女同一区二区软件 | a在线观看视频网站| 欧美丝袜亚洲另类 | 国产淫片久久久久久久久 | 久久久国产欧美日韩av| 1024香蕉在线观看| 亚洲av第一区精品v没综合| 国产精华一区二区三区| 欧美3d第一页| 一级毛片女人18水好多| 国产乱人伦免费视频| 无遮挡黄片免费观看| 99在线人妻在线中文字幕| 日韩av在线大香蕉| 两人在一起打扑克的视频| 亚洲在线观看片| 亚洲美女黄片视频| 国产亚洲精品综合一区在线观看| 少妇熟女aⅴ在线视频| 久久久久国产精品人妻aⅴ院| 国产午夜精品论理片| netflix在线观看网站| netflix在线观看网站| 亚洲一区二区三区不卡视频| 韩国av一区二区三区四区| 天堂网av新在线| 亚洲色图av天堂| 色在线成人网| 19禁男女啪啪无遮挡网站| 亚洲中文av在线| 欧美3d第一页| 9191精品国产免费久久| 91字幕亚洲| 长腿黑丝高跟| 日本a在线网址| 美女 人体艺术 gogo| 精品一区二区三区av网在线观看| 岛国在线观看网站| 不卡一级毛片| 精品国产美女av久久久久小说| 叶爱在线成人免费视频播放| 免费看日本二区| 99国产精品99久久久久| 欧美三级亚洲精品| 亚洲美女视频黄频| 欧美日韩一级在线毛片| 午夜久久久久精精品| 搞女人的毛片| av在线蜜桃| 亚洲性夜色夜夜综合| bbb黄色大片| 精品一区二区三区av网在线观看| 亚洲va日本ⅴa欧美va伊人久久| 99久久精品热视频| 国产成人精品无人区| e午夜精品久久久久久久| 韩国av一区二区三区四区| 成人av一区二区三区在线看| 中文字幕人成人乱码亚洲影| 这个男人来自地球电影免费观看| 精品久久久久久成人av| 色哟哟哟哟哟哟| 日韩欧美三级三区| 性色avwww在线观看| 精品熟女少妇八av免费久了| 国产精品电影一区二区三区| 麻豆久久精品国产亚洲av| 久久久成人免费电影| 综合色av麻豆| 两性夫妻黄色片| 韩国av一区二区三区四区| av天堂在线播放| 色综合站精品国产| 国产三级黄色录像| 一本一本综合久久| 欧洲精品卡2卡3卡4卡5卡区| 国产熟女xx| 亚洲国产看品久久| 免费看美女性在线毛片视频| 18禁黄网站禁片午夜丰满| 国产精品电影一区二区三区| 午夜福利在线观看免费完整高清在 | 欧美高清成人免费视频www| 国产高清视频在线播放一区| www.999成人在线观看| 一本一本综合久久| 日本一本二区三区精品| 亚洲熟女毛片儿| 男女做爰动态图高潮gif福利片| 国产真实乱freesex| 精品国产乱子伦一区二区三区| 全区人妻精品视频| 久久久成人免费电影| av女优亚洲男人天堂 | 日韩国内少妇激情av| 99国产极品粉嫩在线观看| 国产一区二区激情短视频| 一级作爱视频免费观看| 精品国内亚洲2022精品成人| 亚洲中文字幕日韩| 99精品欧美一区二区三区四区| 男插女下体视频免费在线播放| 国产亚洲精品综合一区在线观看| 欧美+亚洲+日韩+国产| 精品久久久久久久毛片微露脸| 美女 人体艺术 gogo| 亚洲av成人一区二区三| 成人av一区二区三区在线看| 久久天堂一区二区三区四区| 亚洲精品粉嫩美女一区| 十八禁人妻一区二区| 淫妇啪啪啪对白视频| 精品国产乱子伦一区二区三区| 波多野结衣高清无吗| 久久久久久久午夜电影| 欧美国产日韩亚洲一区| 国产精品一区二区精品视频观看| 视频区欧美日本亚洲| 国产麻豆成人av免费视频| 国产伦精品一区二区三区四那| 国产99白浆流出| 制服丝袜大香蕉在线| 特大巨黑吊av在线直播| 欧美不卡视频在线免费观看| 久久久久久国产a免费观看| x7x7x7水蜜桃| 韩国av一区二区三区四区| 日韩成人在线观看一区二区三区| 久久午夜亚洲精品久久| 啦啦啦观看免费观看视频高清| 欧美一区二区精品小视频在线| 最近视频中文字幕2019在线8| 真实男女啪啪啪动态图| 日韩欧美 国产精品| 啦啦啦免费观看视频1| 少妇裸体淫交视频免费看高清| 国产成人av激情在线播放| 悠悠久久av| 国产精品久久久人人做人人爽| 中国美女看黄片| 国产精品一区二区免费欧美| 啦啦啦免费观看视频1| 日本 欧美在线| 99热这里只有是精品50| 老汉色∧v一级毛片| 九九热线精品视视频播放| 国产97色在线日韩免费| 亚洲成人免费电影在线观看| 久久久久久国产a免费观看| 亚洲自拍偷在线| 嫩草影视91久久| 亚洲真实伦在线观看| 久久精品国产亚洲av香蕉五月| 亚洲中文av在线| 在线观看免费午夜福利视频| 黄色丝袜av网址大全| 91在线精品国自产拍蜜月 | 99国产精品一区二区蜜桃av| 高清毛片免费观看视频网站| e午夜精品久久久久久久| 很黄的视频免费| 国产v大片淫在线免费观看| 99精品在免费线老司机午夜| 搞女人的毛片| 国产成人精品久久二区二区免费| 亚洲国产高清在线一区二区三| 日韩精品中文字幕看吧| 老熟妇仑乱视频hdxx| 香蕉av资源在线| 国产精品精品国产色婷婷| 国产精华一区二区三区| 欧美一级毛片孕妇| 国产1区2区3区精品| 全区人妻精品视频| 精品国产美女av久久久久小说| 免费人成视频x8x8入口观看| 免费看日本二区| 亚洲一区二区三区不卡视频| 精品电影一区二区在线| 国产精品一及| 91久久精品国产一区二区成人 | 每晚都被弄得嗷嗷叫到高潮| 欧美午夜高清在线| 亚洲国产精品成人综合色| 免费看日本二区| 成人高潮视频无遮挡免费网站| 男女午夜视频在线观看| 国产精品一区二区三区四区久久| 91久久精品国产一区二区成人 | 美女被艹到高潮喷水动态| 99国产精品99久久久久| 免费无遮挡裸体视频| 亚洲真实伦在线观看| 国内毛片毛片毛片毛片毛片| xxxwww97欧美| 国产熟女xx| 又粗又爽又猛毛片免费看| 丁香欧美五月| 18禁国产床啪视频网站| 亚洲精品久久国产高清桃花| 亚洲aⅴ乱码一区二区在线播放| 狂野欧美激情性xxxx| 淫妇啪啪啪对白视频| 1000部很黄的大片| www.自偷自拍.com| 欧美大码av| 黄色丝袜av网址大全| xxxwww97欧美| 国产v大片淫在线免费观看| 九色国产91popny在线| 国产亚洲欧美98| 国产av一区在线观看免费| 欧美乱色亚洲激情| 此物有八面人人有两片| www.999成人在线观看| 国产成人福利小说| 国产成人精品无人区| 97超级碰碰碰精品色视频在线观看| 高清在线国产一区| 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 天堂动漫精品| 又大又爽又粗| 精品久久蜜臀av无| 久久久久久久久中文| 不卡一级毛片| 国产精品av视频在线免费观看| 舔av片在线| 成年免费大片在线观看| 久久久久久久久中文| 不卡一级毛片| 淫秽高清视频在线观看| 禁无遮挡网站| 亚洲avbb在线观看| 久久精品国产综合久久久| 97碰自拍视频| 久久久水蜜桃国产精品网| 这个男人来自地球电影免费观看| 又爽又黄无遮挡网站| 老司机在亚洲福利影院| av天堂在线播放| a级毛片a级免费在线| 免费观看的影片在线观看| 人人妻人人看人人澡| 日本黄大片高清| 久久99热这里只有精品18| 91av网站免费观看| 久久久久精品国产欧美久久久| 欧美日韩精品网址| 国产主播在线观看一区二区| 国产亚洲av嫩草精品影院| 天堂影院成人在线观看| 亚洲国产高清在线一区二区三| 成年女人永久免费观看视频| 麻豆国产av国片精品| 国内久久婷婷六月综合欲色啪| 国产精品一区二区三区四区免费观看 | 日韩三级视频一区二区三区| 男人的好看免费观看在线视频| 亚洲av成人精品一区久久| 亚洲中文字幕日韩| 少妇熟女aⅴ在线视频| 亚洲精品中文字幕一二三四区| 亚洲av成人一区二区三| 99国产极品粉嫩在线观看| 成人无遮挡网站| 人妻丰满熟妇av一区二区三区| 我的老师免费观看完整版| 少妇裸体淫交视频免费看高清| 三级毛片av免费| 精品日产1卡2卡| 亚洲真实伦在线观看| 黄色视频,在线免费观看| 精品久久久久久成人av| 又黄又爽又免费观看的视频| 十八禁网站免费在线| 午夜成年电影在线免费观看| 亚洲电影在线观看av| 国产精品日韩av在线免费观看| 又大又爽又粗| 中文字幕高清在线视频| 三级国产精品欧美在线观看 | 18美女黄网站色大片免费观看| 国产精品久久电影中文字幕| 又紧又爽又黄一区二区| 五月伊人婷婷丁香| 十八禁网站免费在线| 国产激情久久老熟女| 国产av在哪里看| 性色avwww在线观看| 丁香六月欧美| 日本 av在线| 欧美一级毛片孕妇| 亚洲自拍偷在线| 99久久精品国产亚洲精品| 精品一区二区三区视频在线观看免费| 露出奶头的视频| 国产成人啪精品午夜网站| 欧美在线黄色| 国产v大片淫在线免费观看| 国产不卡一卡二| 亚洲欧美精品综合久久99| 国产成人系列免费观看| 婷婷丁香在线五月|