• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋰離子電池開路電壓曲線形狀與多階段容量損失

    2019-12-11 05:08:48張劍波
    關(guān)鍵詞:北京理工大學(xué)開路清華大學(xué)

    葛 昊,李 哲,2,張劍波,2

    (1清華大學(xué)汽車安全與節(jié)能國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100084;2北京理工大學(xué)北京電動(dòng)車輛協(xié)同創(chuàng)新中心,北京 100081)

    It would be superfluous to emphasize the importance of lithium-ion battery aging any more.Intensified efforts have been emerging worldwide including deciphering aging mechanisms via in-situ and ex-situ diagnostic methods[1-4], scrutinizing aging main factors during battery operation by extensive experiment matrixes[5-6], predicting aging states based on a wide spectrum of models[7-8], and improving aging performance with strategies spanning from material screening[9]to system controlling[10].

    Regarding the aging behavior, an intriguing phenomenon is that an abrupt drop of capacity,following a gradual degradation, commences at a state of health (SOH)iroughly around 80%, as delineated in Fig.1(a).The abrupt drop capacity is also termed as rapid rollover capacity loss[9]or nonlinear aging[11],leading to the multi-stage capacity loss with cell aging.It is important to note that usually two kinds of capacity are reported in aging studies: ① the capacity recorded when the cells are aged according to a certain aging protocol; ②the capacity measured in a reference performance test when the cell is taken out of the aging process.In the former case, the cell is usually subject to a higher current rate to accelerate the aging process, while in the latter case a relatively small current rate, say 1/25 C or 1/10 C, is used to obtain the thermodynamic capacity.When talking about the inflexion point, we here refer to the former case, which is more relevant to the real applications.

    This broadly multi-stage aging mode with an inflexion point in between has been reported in a multitude of battery chemistries: LCO-graphite[1],LFP-graphite[12-13], NCA-graphite[5], NMC-graphite[4,6,9,11], LMO/NMC-graphite[14], and NMCLTO[15].Understanding the mechanism of such an abrupt capacity loss and predicting the inflexion point are crucial as far as the replacement and reuse of aged batteries are considered[11].

    Some previous studies attribute this phenomenon to lithium-plating[1,11,13,16]or electrolyte-drying[17].In our opinion, these may not adequately explain the occurrence of abrupt capacity loss: ① the case of LTO anode, in which the anode potential is around 1.5 V (νs.Li+/Li) and lithium-plating is kinetically unfavorable, defies the necessity of an elucidation invoking lithium-plating; ②the frequent emergence can hardly be understood by electrolyte-drying with a relatively low-probability, especially in the cells with abundant electrolyte.Meanwhile, till now, rare attempts have been made to quantitatively predict the inflexion point.

    In this work, we propose another interpretation that such an abrupt drop in capacity could be an intrinsic nature of batteries with a varying-slope open-circuit-voltage (OCV) curve and increasing internal resistance during aging.To this end, we put forward a general theory of inflexion point for battery aging.Being general means that this theory is not limited to a particular aging mechanism or a specified battery chemistry.On the contrary, major aging mechanisms and battery chemistries can be incorporated into the framework of this theory.We first demonstrate our basic idea using a simple example in section 2, and then generalize our treatment in section 3.Section 4 concludes the findings.

    Fig.1 (a) Relative capacity as a function of cycle number during battery aging.Aging test protocols are: (i) LFP/Graphite:constant current (CC)-constant voltage (CV) cycling with a current of 3.75C between 2.0 and 3.6 V with a cut-off current of 0.57 A at 25[13]; (ii) NMC/Graphite: 1C CC charge followed by CV step at 4.2 V until a current of 100 mA was reached and 1C CC discharge to 2.5 V at 30[9]; (iii) NMC/LTO: the charge rate is set as 3C and the discharge rate is set as 2C.The cells are charged to 2.7 V, rested for 20 min and discharged to 1.5 V at 50[15].(b) The pseudo-OCV (ps-OCV) curves of (i) LFP/Graphitei; (ii) NMC/Graphite[18]; (iii) NMC/LTO[19]

    1 A two-stage example

    As an introductory example, we describe the battery using ensemble parameters without interelectrode separations.Despite of all kinds of aging mechanisms, we simplify the aging behavior as the change of discharging curves originating from the OCV curves and internal resistances.The model assumptions and specifications are as follows.

    (1)The OCV of the battery is assumed to be composed of two lines with different slopes,as displayed by the uppermost curve in Fig 2(a).Albeit being oversimplified, such two-slope feature is frequently seen in the pseudo-OCV1(ps-OCV)curves of batteries, see Fig.1(b).

    whereV0is the intercept of the ps-OCV curve.k1andk2,k2>k1>0, are the magnitude of slopes in high voltage and low voltage regions, respectively.The SOC is denoted asxandx1represents the turning point connecting the two lines.h(x) is the Heaviside step function.

    (2)The ps-OCV curve is assumed to be unchanged during aging, while the internal resistance increases, due to, for example, thickening of the solid/electrolyte interphase (SEI) film.It has not escaped our notice that the ps-OCV curve would slip and shrink during aging, such an effect is to be considered in a refined model in the subsequent part of this section.The resistance growth is described as,

    whereRis the cell resistance during aging,R0is the initial resistance,tthe cycle number, andαthe growth factor which is positive.Such an expression neglects the resistance dependence on SOC, which is to be took into account later.An increasing profile withα= 0.5 is frequently seen, which can be rationalized assuming the SEI growth is diffusion limited[20].

    (3)The cell aging test adopts the CC-CV protocol.The cell is fully charged to a SOC of 100%and then is subject to discharge at a current ofI.The discharge process is terminated when the cell voltage reaches the lower bound ofVlb,

    whereVis the cell voltage, andxendreflects the cell SOC when the discharge process is terminated.

    We feed this model with the parameters in Table 1.It is worth noting that this model parametrization was made without any attempt to emulate any particular battery chemistry, just for the demonstration of our ideas, instead.The cell voltageνs.SOC curves,exhibited in Fig.2(a), sink along with aging due to the increasing internal resistance as shown in Fig.2(b).The profile of capacity retention ratio calculated from Eq.(3) and Eq.(4) with respect to cycle number is given in Fig.2(c).Clearly, a two-stage aging behavior manifests.Note in passing that the abrupt capacity loss in the second stage is obtained here when the only aging factor is the gradually increasing resistance due to the SEI film growth.

    By this point, we see that lithium-plating or electrolyte-drying is not necessarily needed to produce a two-stage aging behavior.For the case examined here, the inflexion point has its root in the two-slope nature of the OCV curve, concomitant with an increasing resistance profile.The resistanceincreasing does not show different stages, while the multi-stage capacity loss results from the multi-slope OCV curves.One can find that, the inflexion point,80% SOH, is exactly the turning point in terms of depth of discharge (DOD) at which the OCV slope translates fromk1tok2.In addition, the stage 1 in the capacity retention curve in Fig.2(c) is corresponding to slope 2 in the OCV curve, while stage 2 is associated with slope 1.

    Table1 Parameters for the two-stage example

    Fig.2 (a) Evolution of cell discharging voltage curves during cycling.The red line represents the lower bound of cutoff voltage.(b) The growth of internal resistance with battery aging.(c) Capacity retention ratio as a function of cycle number, displaying a two- stage aging behavior.

    From the aspect of thermodynamics, slippage of the OCV curve originating from loss of active material and loss of lithium inventory[2-3]can also be incorporated in the above model by reformulating Eq.(1) as,

    whereS(t) represents the slippage.

    In this scenario, the inflexion point in the capacity retention ratio curve is given by,

    wherextrepresents the inflection point corresponding to the capacity retention.

    A basic consideration would be a linear slippage,S(t)=ks*twhereksis the slipping rate.Provided the same parameters in table 1 andks= 5×10-4, we examine the ps-OCV curve, the cell voltage curve and the capacity retention ratio fade during battery aging,as shown in Fig.3.In line with Eq.(6) and Eq.(7), the inflexion point of capacity fade decreases from 80%SOH to~60% SOH because of the slippage of the ps-OCV curve.However, the inflection point in terms of cycle numbertis independent of the slippage.Due to the loss of active materials and lithium inventory,the actual value in terms of SOH of the inflexion point would be smaller than the value in terms of DOD of the turning point in the ps-OCV curve.In other words, the position of the inflexion point can be employed, to some extent, as an indicator of loss of active materials and lithium inventory.

    2 A general theory

    A generalized formulation is provided in this section to cope with other major aging mechanisms distinguished between positive electrode and negative electrode.When speaking of aging mechanism, we here do not mean fundamental physico-chemical reactions or structural changes but their outcomes that are classified into loss of active materials, loss oflithium inventory and increase of cell resistance[2-3].The use of SOC would bring confusions when both positive and negative electrodes are involved.In this regard, we employ the usable lithium content in an electrode, x, as an intrinsic descriptor of the state of the electrode.The OCV of each electrode can be expressed as,

    Fig.3 (a) Slippage of the ps-OCV curve during aging.(b) Evolution of cell voltage curves during discharge and the red line represents the lower bound of voltage.(c) The magnitude of slippage during battery aging.(d) Capacity retention ratio as a function of cycle number, compared to the case without considering slippage.

    where the superscript ‘n’ and ‘p’ refer to negative electrode or positive electrode, respectively.Eq.(8) can be regarded as an extension of Eq.(1)by considering a multitude of slopes, of which the number is denoted as M.kiis the magnitude of slopes at different regions, and xirepresents the turning point at which the slope of the OCV curve changes.

    SOC-dependent resistance growth can be formulated as,

    Next, we need to correlate xnand xp.Here the xpof a fresh cell is normalized to the region of [0, 1].When the cell is fully charged, the lithium content in the positive electrode has a minimum value that is set as the reference value which is unchanged during aging,, in this study.On the contrary, the lithium content in the negative electrode at this point may slip due to aging factors including the loss of lithium inventory.In addition, loss of active materials commences at both electrodes which would alter the loading ratio between positive electrode and negative electrode.Based on the conservation of lithium-ions,the following relation is established,

    where a(t) refers to the fraction of loss of active materials in an electrode, r0is the initial loading ratio.represents the lithium content in the negativeelectrode when the cell is at fully charged state, andis the lithium content in the positive electrode at the same time.S(t) denotes the slippage ofduring aging.The cell voltage is written as,

    wherer(t) is the time-varying loading ratio.

    Given the lower bound of voltage during discharge,Vlb, one can solve the lithium content in the positive electrode,xendp, or that in the negative electrode equivalently, when the discharge process is terminated.

    Therefore, the capacity retention ratio of the cell during aging,c(t), is defined as,

    Fig.4 exemplifies this general theory using the parameters shown in table 2.The OCV curveof positive electrode has three slopes, while that of negative electrode has seven slopes, of which three are set as zero to resemble the voltage terraces in graphite.In this regard, the OCV curve of the full cell has seven slopes, while four of them are relatively obvious.Given the aging factors as delineated in Fig.4(c), Fig.4(b) describes the cell voltage curves with aging.Fig.4(d) depicts the calculated capacity retention ratio of the cell as a function of aging time.Noticeably, four obvious phases can be seen, and they are corresponding to the slopes in both positive and negative (P+N), positive (P), and negative (N), and P+N, respectively.

    Table 2 Parameters used in this general theory simulation

    Fig.4 (a) Initial OCV curves of the positive electrode, anode electrode and the full cell; (b) Evolution of cell voltage curves during discharge and the red line represents the lower bound of voltage; (c) Profiles of parameters during aging; (d) Multistage drop of the capacity retention ratio as a function of cycle number

    The theory and results in this work show a possible way to predict the abrupt drop of capacity retention during cycling, of which the criterion is that the turning point of the multi-slope OCV curve reaches the discharging cut-off voltage.

    3 Conclusion

    A key message that this work conveys is that the observed multi-stage aging behavior may originate from the multi-slope nature of OCV curves of battery materials and the continuous increasing kinetic polarization during aging.The previously proposed lithium-plating or electrolyte drying can be sufficient causes, however, they are not necessarily required.A general theory that is facile to incorporate major aging mechanisms and battery chemistries is developed.Aside from providing new insights in understanding the abrupt drop in capacity retention, the presented theory is believed to bring new benefits in the full lifespan design and reuse of lithium-ion batteries.They specifically include the prediction of inflexion points, assessment of battery designs exerted by modifications at materials level, and the optimization of operating conditions.

    猜你喜歡
    北京理工大學(xué)開路清華大學(xué)
    北京理工大學(xué)機(jī)械與車輛學(xué)院簡(jiǎn)介
    清華大學(xué):“如鹽在水”開展課程思政
    高效水泥磨開路系統(tǒng)的改造
    北京理工大學(xué)通信與網(wǎng)絡(luò)實(shí)驗(yàn)室
    我的清華大學(xué)自主招生經(jīng)歷
    王旭鵬傾情獻(xiàn)唱最新單曲《開路者》
    青年歌聲(2019年2期)2019-02-21 01:17:36
    自然生物挖角開路
    延續(xù)了兩百年的“開路日”
    Design of Two-wheeled Mobile Control Robot with Holographic Projection
    他永遠(yuǎn)是我們的老學(xué)長(zhǎng)——清華大學(xué)受助研究生來(lái)信摘編
    91大片在线观看| 一进一出好大好爽视频| 老司机在亚洲福利影院| 亚洲色图综合在线观看| 人成视频在线观看免费观看| 亚洲美女黄片视频| 99九九在线精品视频| 多毛熟女@视频| 亚洲国产av新网站| tube8黄色片| 欧美亚洲日本最大视频资源| 99九九在线精品视频| 99久久国产精品久久久| 国产男女超爽视频在线观看| 久久久久精品国产欧美久久久| 人人妻人人澡人人看| 精品福利永久在线观看| 成人亚洲精品一区在线观看| 少妇精品久久久久久久| 咕卡用的链子| 欧美另类亚洲清纯唯美| 少妇裸体淫交视频免费看高清 | 最新的欧美精品一区二区| 国产亚洲欧美在线一区二区| 精品亚洲成国产av| 在线观看www视频免费| 建设人人有责人人尽责人人享有的| 久久国产亚洲av麻豆专区| 夜夜夜夜夜久久久久| 亚洲av国产av综合av卡| 亚洲中文av在线| 天天影视国产精品| 日本黄色视频三级网站网址 | 色视频在线一区二区三区| aaaaa片日本免费| 久久免费观看电影| 大香蕉久久网| 纯流量卡能插随身wifi吗| 在线十欧美十亚洲十日本专区| 国产激情久久老熟女| 别揉我奶头~嗯~啊~动态视频| 天天操日日干夜夜撸| 国产在线视频一区二区| 人人妻,人人澡人人爽秒播| 91字幕亚洲| 国产精品欧美亚洲77777| 免费人妻精品一区二区三区视频| 日韩成人在线观看一区二区三区| 热99国产精品久久久久久7| 两人在一起打扑克的视频| 女人精品久久久久毛片| 欧美日韩一级在线毛片| 交换朋友夫妻互换小说| 中文字幕人妻丝袜一区二区| 国产伦理片在线播放av一区| a级片在线免费高清观看视频| 两个人免费观看高清视频| 精品亚洲乱码少妇综合久久| 在线观看免费高清a一片| 亚洲五月婷婷丁香| 99精国产麻豆久久婷婷| 男女免费视频国产| 欧美日本中文国产一区发布| 男女无遮挡免费网站观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲精品第一综合不卡| 亚洲专区国产一区二区| 精品少妇内射三级| 首页视频小说图片口味搜索| 精品福利永久在线观看| 极品教师在线免费播放| 欧美日韩中文字幕国产精品一区二区三区 | 免费日韩欧美在线观看| 国产精品电影一区二区三区 | 精品免费久久久久久久清纯 | 亚洲熟妇熟女久久| 欧美变态另类bdsm刘玥| 一区二区日韩欧美中文字幕| 91字幕亚洲| 自线自在国产av| 久久久久网色| 色综合婷婷激情| 精品国产乱子伦一区二区三区| 成人三级做爰电影| 精品一区二区三区四区五区乱码| 免费人妻精品一区二区三区视频| 国产福利在线免费观看视频| 久久精品人人爽人人爽视色| 欧美激情 高清一区二区三区| 日韩视频在线欧美| 黄色 视频免费看| 岛国在线观看网站| 午夜日韩欧美国产| 久久久久久久久免费视频了| √禁漫天堂资源中文www| 亚洲精品国产一区二区精华液| 人人妻人人澡人人看| 成人手机av| 欧美日韩视频精品一区| 国产一区二区在线观看av| 别揉我奶头~嗯~啊~动态视频| 一边摸一边抽搐一进一小说 | 99精品欧美一区二区三区四区| 国产亚洲欧美在线一区二区| 国产精品久久久久久人妻精品电影 | 高清黄色对白视频在线免费看| 最近最新免费中文字幕在线| 国产黄色免费在线视频| 免费看十八禁软件| 久久天躁狠狠躁夜夜2o2o| 日韩欧美免费精品| 午夜福利免费观看在线| 视频区欧美日本亚洲| 亚洲性夜色夜夜综合| 欧美精品一区二区大全| 桃红色精品国产亚洲av| a级片在线免费高清观看视频| 十八禁网站网址无遮挡| 国产男女超爽视频在线观看| 亚洲成人国产一区在线观看| 国产av一区二区精品久久| 亚洲 国产 在线| 亚洲色图av天堂| 亚洲三区欧美一区| 三上悠亚av全集在线观看| 丁香六月天网| 国产精品麻豆人妻色哟哟久久| 亚洲 国产 在线| 亚洲精品国产区一区二| 纯流量卡能插随身wifi吗| 在线观看人妻少妇| 亚洲精品在线观看二区| 国产精品久久久久久精品古装| 亚洲熟女毛片儿| 久久精品国产a三级三级三级| 日韩 欧美 亚洲 中文字幕| 国内毛片毛片毛片毛片毛片| 欧美成狂野欧美在线观看| 久久精品亚洲av国产电影网| 成年人黄色毛片网站| 欧美日韩福利视频一区二区| 亚洲人成伊人成综合网2020| 国产成人免费观看mmmm| 多毛熟女@视频| 久久午夜综合久久蜜桃| 亚洲精品国产色婷婷电影| √禁漫天堂资源中文www| 国产精品 欧美亚洲| 国产精品久久电影中文字幕 | 国产视频一区二区在线看| 啦啦啦中文免费视频观看日本| 两个人看的免费小视频| 成人影院久久| 在线播放国产精品三级| 亚洲欧洲日产国产| 人人澡人人妻人| 美女福利国产在线| 久久精品亚洲熟妇少妇任你| 国产亚洲av高清不卡| 国产在线一区二区三区精| 韩国精品一区二区三区| www.自偷自拍.com| 天天影视国产精品| av视频免费观看在线观看| 欧美日韩中文字幕国产精品一区二区三区 | av一本久久久久| 亚洲国产欧美网| 麻豆乱淫一区二区| 老熟妇仑乱视频hdxx| 亚洲精品在线观看二区| 欧美亚洲日本最大视频资源| 丝瓜视频免费看黄片| 亚洲国产毛片av蜜桃av| 亚洲视频免费观看视频| 香蕉丝袜av| 日韩大码丰满熟妇| 久久中文字幕一级| 肉色欧美久久久久久久蜜桃| 日本av免费视频播放| 可以免费在线观看a视频的电影网站| 日本vs欧美在线观看视频| 老司机福利观看| 色视频在线一区二区三区| 黄色a级毛片大全视频| 欧美乱码精品一区二区三区| 日韩一区二区三区影片| 新久久久久国产一级毛片| 国产主播在线观看一区二区| 久久狼人影院| 蜜桃在线观看..| 国产在线视频一区二区| 母亲3免费完整高清在线观看| 欧美日韩一级在线毛片| 国产精品偷伦视频观看了| 成人手机av| 菩萨蛮人人尽说江南好唐韦庄| av又黄又爽大尺度在线免费看| 久久ye,这里只有精品| 免费一级毛片在线播放高清视频 | 国产aⅴ精品一区二区三区波| 精品少妇久久久久久888优播| 亚洲午夜理论影院| 欧美性长视频在线观看| 黄色视频在线播放观看不卡| 国产日韩欧美视频二区| 超碰97精品在线观看| 好男人电影高清在线观看| 亚洲美女黄片视频| 精品一品国产午夜福利视频| 国产欧美日韩一区二区三| 亚洲精品美女久久久久99蜜臀| 捣出白浆h1v1| 久久国产精品大桥未久av| 少妇裸体淫交视频免费看高清 | 两个人免费观看高清视频| 美女高潮喷水抽搐中文字幕| 国产精品.久久久| 日韩欧美免费精品| 国产成人精品久久二区二区91| 亚洲五月婷婷丁香| 99热网站在线观看| 亚洲欧美日韩高清在线视频 | 日本精品一区二区三区蜜桃| 亚洲精品国产精品久久久不卡| 在线看a的网站| 99riav亚洲国产免费| 制服人妻中文乱码| 成年版毛片免费区| av天堂在线播放| 欧美激情 高清一区二区三区| 国产精品.久久久| 成人黄色视频免费在线看| aaaaa片日本免费| 黄色a级毛片大全视频| 一级a爱视频在线免费观看| 中文字幕av电影在线播放| 电影成人av| videos熟女内射| 国产精品久久久av美女十八| 免费在线观看完整版高清| 国产av精品麻豆| 亚洲精华国产精华精| 久久香蕉激情| 我的亚洲天堂| 动漫黄色视频在线观看| 男女无遮挡免费网站观看| 久久人妻福利社区极品人妻图片| 黄片大片在线免费观看| 成人国产av品久久久| 亚洲精品乱久久久久久| 亚洲欧洲日产国产| 中亚洲国语对白在线视频| av网站在线播放免费| 香蕉国产在线看| 国产精品欧美亚洲77777| 黄色a级毛片大全视频| 亚洲av成人一区二区三| 亚洲精品在线美女| 日韩视频在线欧美| 久久久久精品人妻al黑| 超色免费av| 黄色丝袜av网址大全| 成年人午夜在线观看视频| 国产成人系列免费观看| 国产精品av久久久久免费| 嫁个100分男人电影在线观看| 操出白浆在线播放| 欧美另类亚洲清纯唯美| 成人永久免费在线观看视频 | 90打野战视频偷拍视频| 欧美日韩一级在线毛片| 欧美日韩亚洲国产一区二区在线观看 | 亚洲三区欧美一区| 国产又色又爽无遮挡免费看| 91成年电影在线观看| 又大又爽又粗| 老司机午夜福利在线观看视频 | 麻豆成人av在线观看| 国产精品久久久人人做人人爽| 日韩欧美免费精品| 亚洲avbb在线观看| 亚洲精品成人av观看孕妇| 十八禁网站免费在线| 高清毛片免费观看视频网站 | 国产日韩一区二区三区精品不卡| 女人爽到高潮嗷嗷叫在线视频| 亚洲熟女毛片儿| 精品人妻在线不人妻| 99精国产麻豆久久婷婷| 操美女的视频在线观看| 看免费av毛片| 天堂俺去俺来也www色官网| kizo精华| 日本黄色日本黄色录像| 亚洲精品自拍成人| 亚洲avbb在线观看| 91麻豆av在线| 午夜激情久久久久久久| 黑人操中国人逼视频| 久久久久久久国产电影| 国产亚洲欧美在线一区二区| 久久九九热精品免费| 久久人妻av系列| 黄网站色视频无遮挡免费观看| 欧美在线黄色| 天堂中文最新版在线下载| 免费观看a级毛片全部| 亚洲欧洲日产国产| 欧美国产精品va在线观看不卡| 色在线成人网| 欧美在线一区亚洲| 欧美日韩亚洲国产一区二区在线观看 | 黄色 视频免费看| 考比视频在线观看| 母亲3免费完整高清在线观看| 国产97色在线日韩免费| 国产免费视频播放在线视频| 久久久精品区二区三区| 国产一卡二卡三卡精品| 久久精品91无色码中文字幕| 亚洲精品国产一区二区精华液| 高清欧美精品videossex| 91成人精品电影| 国产有黄有色有爽视频| 十分钟在线观看高清视频www| 国产1区2区3区精品| 麻豆乱淫一区二区| 亚洲美女黄片视频| 80岁老熟妇乱子伦牲交| 亚洲一区中文字幕在线| 自线自在国产av| 露出奶头的视频| 中文欧美无线码| 精品久久蜜臀av无| 又黄又粗又硬又大视频| av免费在线观看网站| 日韩欧美国产一区二区入口| 人人妻人人爽人人添夜夜欢视频| 老鸭窝网址在线观看| 中文字幕色久视频| 99国产精品99久久久久| 老汉色∧v一级毛片| 蜜桃在线观看..| 亚洲精华国产精华精| 免费久久久久久久精品成人欧美视频| 一本大道久久a久久精品| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品美女久久久久99蜜臀| 亚洲av国产av综合av卡| 大片电影免费在线观看免费| 免费在线观看视频国产中文字幕亚洲| 99国产极品粉嫩在线观看| 在线天堂中文资源库| 中文欧美无线码| 9色porny在线观看| 亚洲成人免费电影在线观看| 人妻 亚洲 视频| 老鸭窝网址在线观看| 免费久久久久久久精品成人欧美视频| 欧美国产精品va在线观看不卡| 精品亚洲成国产av| 天天添夜夜摸| 99热网站在线观看| 夜夜骑夜夜射夜夜干| 国产成人系列免费观看| 一夜夜www| 美女主播在线视频| 中文字幕高清在线视频| 午夜免费成人在线视频| 日韩欧美免费精品| 日韩有码中文字幕| 午夜福利视频精品| 国产欧美日韩一区二区三区在线| 90打野战视频偷拍视频| 91麻豆av在线| 手机成人av网站| 一进一出好大好爽视频| 母亲3免费完整高清在线观看| 最新美女视频免费是黄的| 日本黄色视频三级网站网址 | 丝袜喷水一区| cao死你这个sao货| 欧美另类亚洲清纯唯美| 老司机深夜福利视频在线观看| 国产日韩欧美亚洲二区| 深夜精品福利| 女警被强在线播放| 欧美人与性动交α欧美软件| 久久狼人影院| 两性夫妻黄色片| 日日摸夜夜添夜夜添小说| 国产精品影院久久| 免费看十八禁软件| 国产av国产精品国产| 麻豆成人av在线观看| 另类亚洲欧美激情| 麻豆国产av国片精品| 国产精品电影一区二区三区 | 国产精品久久久久久精品电影小说| 国产精品久久久人人做人人爽| 在线观看免费午夜福利视频| 久久精品国产综合久久久| 亚洲欧美色中文字幕在线| 国产色视频综合| 亚洲自偷自拍图片 自拍| 国产精品免费一区二区三区在线 | 五月开心婷婷网| 午夜老司机福利片| 色综合婷婷激情| 国产一区有黄有色的免费视频| 国内毛片毛片毛片毛片毛片| 国产成人啪精品午夜网站| 老司机靠b影院| 精品国产乱码久久久久久男人| 亚洲第一欧美日韩一区二区三区 | 老熟女久久久| 亚洲一码二码三码区别大吗| 一级毛片电影观看| 免费在线观看影片大全网站| 成人亚洲精品一区在线观看| 亚洲第一欧美日韩一区二区三区 | 波多野结衣av一区二区av| 欧美激情高清一区二区三区| 免费av中文字幕在线| 久久人人97超碰香蕉20202| 天堂中文最新版在线下载| 欧美中文综合在线视频| 成人特级黄色片久久久久久久 | 色精品久久人妻99蜜桃| 淫妇啪啪啪对白视频| 久久婷婷成人综合色麻豆| 90打野战视频偷拍视频| 可以免费在线观看a视频的电影网站| 欧美日韩精品网址| 美女高潮喷水抽搐中文字幕| 午夜老司机福利片| 老司机亚洲免费影院| 亚洲成人国产一区在线观看| 欧美日韩一级在线毛片| 日韩免费高清中文字幕av| 日韩欧美一区视频在线观看| 如日韩欧美国产精品一区二区三区| 亚洲中文日韩欧美视频| 免费少妇av软件| 免费人妻精品一区二区三区视频| 99re在线观看精品视频| 人妻一区二区av| 国产一区二区在线观看av| 黑人巨大精品欧美一区二区mp4| 19禁男女啪啪无遮挡网站| 欧美成人免费av一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 激情视频va一区二区三区| 国内毛片毛片毛片毛片毛片| 天堂8中文在线网| tube8黄色片| 99riav亚洲国产免费| 欧美乱码精品一区二区三区| 国产不卡av网站在线观看| 精品久久久久久电影网| 国产精品98久久久久久宅男小说| 日韩三级视频一区二区三区| 亚洲第一欧美日韩一区二区三区 | 久久天堂一区二区三区四区| 亚洲免费av在线视频| 久久久久久免费高清国产稀缺| 久久中文字幕人妻熟女| 久久午夜综合久久蜜桃| 极品少妇高潮喷水抽搐| 香蕉国产在线看| 老熟妇乱子伦视频在线观看| 亚洲av日韩精品久久久久久密| 夫妻午夜视频| 国产深夜福利视频在线观看| 电影成人av| 成人永久免费在线观看视频 | 午夜激情久久久久久久| 老熟女久久久| 亚洲熟女精品中文字幕| a级毛片黄视频| 成年人免费黄色播放视频| 亚洲欧洲日产国产| 亚洲伊人色综图| 黄片大片在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲午夜精品一区,二区,三区| 中文字幕人妻丝袜一区二区| 少妇的丰满在线观看| 老司机靠b影院| 日韩人妻精品一区2区三区| 亚洲av片天天在线观看| 国产一卡二卡三卡精品| av片东京热男人的天堂| 日本黄色视频三级网站网址 | 成人免费观看视频高清| 午夜久久久在线观看| 丝瓜视频免费看黄片| 电影成人av| 欧美日韩国产mv在线观看视频| a级片在线免费高清观看视频| 亚洲伊人久久精品综合| 精品一区二区三区视频在线观看免费 | 视频在线观看一区二区三区| 精品卡一卡二卡四卡免费| a级片在线免费高清观看视频| 首页视频小说图片口味搜索| 欧美亚洲日本最大视频资源| 大型av网站在线播放| 成人精品一区二区免费| 1024香蕉在线观看| 国产精品亚洲av一区麻豆| 悠悠久久av| 日韩大码丰满熟妇| 下体分泌物呈黄色| 18禁美女被吸乳视频| 真人做人爱边吃奶动态| 国产不卡av网站在线观看| 国产麻豆69| 一边摸一边做爽爽视频免费| 国内毛片毛片毛片毛片毛片| 亚洲国产欧美网| 宅男免费午夜| 婷婷丁香在线五月| 午夜福利视频在线观看免费| 精品一区二区三区四区五区乱码| 欧美 日韩 精品 国产| 日本一区二区免费在线视频| 九色亚洲精品在线播放| 日韩三级视频一区二区三区| 久久热在线av| 亚洲精品久久成人aⅴ小说| 成人国语在线视频| 成人国产一区最新在线观看| 如日韩欧美国产精品一区二区三区| 变态另类成人亚洲欧美熟女 | 美女高潮到喷水免费观看| 久久ye,这里只有精品| 在线观看人妻少妇| 中文字幕人妻熟女乱码| 妹子高潮喷水视频| 国产精品成人在线| 麻豆乱淫一区二区| a在线观看视频网站| 侵犯人妻中文字幕一二三四区| 69av精品久久久久久 | 亚洲久久久国产精品| 国产片内射在线| 国产精品香港三级国产av潘金莲| 免费不卡黄色视频| 自线自在国产av| 欧美日韩一级在线毛片| 我的老师免费观看完整版| 日本一二三区视频观看| 99视频精品全部免费 在线 | 国产伦一二天堂av在线观看| 午夜福利免费观看在线| 夜夜躁狠狠躁天天躁| 久久中文看片网| 一本精品99久久精品77| 色综合亚洲欧美另类图片| 亚洲第一电影网av| 九九久久精品国产亚洲av麻豆 | 国产午夜精品论理片| 亚洲国产欧美人成| 成人欧美大片| 免费高清视频大片| 久久人妻av系列| 97超视频在线观看视频| 中文字幕最新亚洲高清| 18禁国产床啪视频网站| 国产精品 欧美亚洲| 国产不卡一卡二| 老司机福利观看| 巨乳人妻的诱惑在线观看| 亚洲欧美精品综合久久99| 日韩欧美精品v在线| 久久久国产成人精品二区| 2021天堂中文幕一二区在线观| 夜夜夜夜夜久久久久| 国产三级在线视频| 女警被强在线播放| 此物有八面人人有两片| 在线看三级毛片| 免费看a级黄色片| 国产精品亚洲av一区麻豆| 亚洲乱码一区二区免费版| e午夜精品久久久久久久| 亚洲精品在线观看二区| 在线看三级毛片| 村上凉子中文字幕在线| 老司机午夜福利在线观看视频| 日韩欧美精品v在线| 又爽又黄无遮挡网站| 国产精品久久久av美女十八| 少妇的丰满在线观看| 亚洲国产精品999在线| 欧美黄色淫秽网站| 亚洲自拍偷在线| 精品久久蜜臀av无| 18禁黄网站禁片免费观看直播| 亚洲第一欧美日韩一区二区三区| 美女免费视频网站| 校园春色视频在线观看| 最新中文字幕久久久久 | 波多野结衣巨乳人妻| 久久久国产精品麻豆| 日韩欧美在线乱码| 国产精品精品国产色婷婷| 欧美乱色亚洲激情| 亚洲精品中文字幕一二三四区| 少妇熟女aⅴ在线视频| 国产精品久久久久久人妻精品电影| 国产精品98久久久久久宅男小说| a在线观看视频网站| 三级国产精品欧美在线观看 |