• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient method to calculate the eigenvalues of the Zakharov–Shabat system

    2024-01-25 07:11:34ShikunCui崔世坤andZhenWang王振
    Chinese Physics B 2024年1期
    關(guān)鍵詞:王振

    Shikun Cui(崔世坤) and Zhen Wang(王振)

    1School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,China

    2School of Mathematical Sciences,Beihang University,Beijing 100191,China

    Keywords: Zakharov–Shabat system,eigenvalue,numerical method,Chebyshev polynomials

    1.Introduction

    The nonlinear Schr¨odinger (NLS) equation is an important integrable equation that is derived from hydrodynamics and has been used to describe the propagation of optical solitons,Langmuir waves in plasma physics,Bose–Einstein condensation, and other physical phenomena.[1–4]Considering the initial value problem for the nonlinear Schr¨odinger(NLS)equation

    whereq0(x) is a given function defined in Schwartz spaceS(R),subscriptsxandtrepresent the partial derivatives with respect to space and time, respectively.Whenλ=1, equation(1)is called a focusing NLS equation,and whenλ=?1,equation (1) is called a defocusing NLS equation.The NLS equation(1)is integrable and admits the following Lax pair:

    whereψis a column vector with a shape of 2×1,kis a spectral parameter defined in complex field C,qis the potential function, and ˉqrepresents the complex conjugation ofq.A long but standard computation shows that the compatibility conditionψxt=ψtxfor the eigenfunctionψis equivalent to the NLS equation iqt+qxx+2λ|q|2q=0 for classical solutionsq.[6]Equation(2)is called the Zakharov–Shabat(ZS)system,which is thex-part of the Lax pair.The properties of the solution for the NLS equation are determined by the eigenvalues for the ZS system.[6]

    The inverse scattering transform is an important method for solving integrable equations[5]and was a milestone of mathematical physics in the twentieth century.The inverse scattering transform of the NLS equation was proposed by Zakharov and Shabat.[6]The inverse scattering transform consists of direct scattering and inverse scattering.In direct scattering,we need to solve the ZS system and calculate the scattering data.The ZS system (2) is an eigenvalue problem and we need to find thekso that the ZS system exists as a nontrivial solution,wherekrepresents the eigenvalue andψis the corresponding eigenfunction.The eigenvalues for the ZS system consist of the discrete eigenvaluesκj, ˉκj(j=1,2,...,n1)and the continuous eigenvalues, whereκj ∈CR.The continuous spectrum of the ZS system is the real axis R, so we only need to calculate the discrete eigenvalues of the ZS system.The number of solitons that emerged inq(x,0) for the NLS equation is equal ton1.It is worth noting that the discrete eigenvalue of the ZS system can be an empty set and the solution will not evolve into solitons at this time.The amplitude of the soliton is determined by the imaginary part ofκj.The velocity of the soliton is determined by the real part ofκj.

    It is important to develop simple and effective methods to calculate the eigenvalues of the ZS system.In most cases,the eigenvalues of the ZS system (2) cannot be obtained analytically.Therefore, it is difficult to calculate the eigenvalues of the ZS system analytically.Calculating the eigenvalues of the ZS system is an important step in the inverse scattering transform.If we cannot efficiently calculate the discrete eigenvalues of the ZS system,then we will not be able to solve the equation by the inverse scattering transform.Meanwhile,calculating the eigenvalues of the ZS equation is of great significance for the study of the evolution of solutions.By analyzing the number and magnitude of discrete eigenvalues,we can obtain the number and properties of solitons, which are closely related to the “soliton resolution conjecture”.[7]The numerical implementation of the inverse scattering transform attracted special attention when the NLS equation soliton solutions were proposed as potential candidates for fiber optical transmission.At present, increasing the accuracy and efficiency of computational methods for solving the direct ZS system remains an urgent problem in nonlinear optics.

    Several numerical methods have been proposed to calculate the eigenvalues of the ZS system.Boffetta and Osborne developed a numerical algorithm for computing the direct scattering transform for the NLS equation.[8]Bronski considered the semi-classical limit of the ZS eigenvalue problem.[9]The finite difference method was used to compute the ZS eigenvalue problem numerically.[10,12]Hill’s method can be used to calculate the eigenvalues of the ZS system.[11]The Fourier collocation method (FCM) is an effective method to calculate the eigenvalues of the ZS system.[19]Vasylchenkovaet al.summarized several nonlinear Fourier transform(NFT)methods, and compared their quality and performance.[13]These methods can be divided into two types: the first is the iterative method for the zero point of Jost function,and the second is to solve the matrix eigenvalue problem.[14]

    In this paper,we proposed an efficient numerical method for calculating the eigenvalues for the ZS system.We use Chebyshev polynomials and tanh(ax) mapping to extract the key information of the potential function, and then transform the ZS eigenvalue problem into a matrix eigenvalue problem.By solving the matrix eigenvalue problem, we can get the eigenvalues for the ZS system.This method not only has good convergence for the Satsuma–Yajima potential but also converges quickly for complex Y-shape potential.In addition,this method can be further extended to other linear systems.

    This paper is structured as follows.In Section 2,the theoretical knowledge of Chebyshev polynomials is presented and our numerical method is presented in detail.In Section 3,our method is used to calculate the eigenvalues of the ZS system with the Satsuma–Yajima potential,the sech(2∈x)eisech(2∈x)/∈potential, and the exp(?ix)sech(x) potential.The convergence of our method is analyzed.Our method has spectral accuracy and its convergence rate is fast.Finally, some discussions are given in Section 4.

    2.Methodology

    The details of our method will be introduced in this section.Our method is summarized in the following steps.For the ZS system(2),Chebyshev polynomials are used to approximate the eigenfunctionψand the potential functionqwith the help of mappingH(x)=tanh(ax)(a >0).Using Chebyshev nodes,we turn the ZS eigenvalue problem into a matrix eigenvalue problem.We can then obtain the eigenvalues of the ZS system by calculating the matrix eigenvalue problem.

    We define thenChebyshev nodes by

    For the given functionf(x)defined in unit interval I,we can approximatef(x)by

    where

    Fis obtained by an appropriately scaled discrete cosine transform off(χ),F=[T(χ)]?1.

    Tk(x)(k=0,1,...,n?1)is the Chebyshev polynomial of the first kind,

    Chebyshev polynomials and their derivatives satisfy the relationship[15]

    where

    Using Eqs.(4) and (5), the function?f/?xcan be approximated by Chebyshev polynomials

    For a given functiong(x)defined in real field R, we can approximateg(x) by Chebyshev polynomials and mappingH(x)=tanh(ax)

    whereTR(x)=T(H(x))=[T0(H(x)),...,Tn?1(H(x))],H?1represent the inverse mapping ofH(x).H(x) is a one-to-one mapping, which maps the real field R to the unit interval I.The results of mappingH(x)are shown in Fig.1.

    Fig.1.Results of mapping H(x)about different a.

    By using Eqs.(5)and(7),and the chain rule,?g/?xcan be approximated by Chebyshev polynomials

    In this way, the functiong(x) and its derivatives?g/?xare approximated by Chebyshev polynomials.

    If a given function changes rapidly in a certain region,then we call this interval its‘rapid-changed interval.’H(x)=tanh(ax)changes near 0 rapidly,and its rapid-changed interval is expressed as[?L1,L1].L1is obtained by solving

    wherea1is a real number close to 1.Takinga1=0.9951 as an example, the rapid-changed interval ofH(x)=tanh(0.3x) is[?10,10], the rapid-changed interval ofH(x)=tanh(0.2x)is[?15,15],and the rapid-changed interval ofH(x)=tanh(0.1x)is[?30,30].

    The mappingH(x)distributes more Chebyshev nodes in the rapid-changed interval and distributes fewer Chebyshev nodes outside the rapid-changed interval.So in the rapidchanged interval,we can effectively identify the key information of the given function with the help of tanh(ax)mapping.

    It is worth noting that the value ofawill influence the calculated result.Choosing an appropriateais important in our numerical method.For the selection of parametera(0<a <1), we give the following recommendation.The value ofaaffects the range of rapid-changed interval and the range of rapid-changed interval will increase asadecreases.For the potential function defined in Schwartz space, it also has the rapid-changed interval.The rapid-changed interval of the potential function must be included in the rapid-changed interval of tanh(ax)mapping.If not,then we will be unable to completely extract the information of the potential function.

    Rewriting the ZS system(λ=1)into a linear eigenvalue problem gives

    Using Eqs.(7)and(8),we appropriate the eigenfunctionψ,ψxand the potential functionqby Chebyshev polynomials withnnodes,

    wherej=1,2.

    By substituting Eq.(10)into Eq.(9),we get

    Settingx=H?1(χ),equation(11)is rewritten into

    where

    Equation(12)is recorded asAψ=ikψ,where

    matrix for?xin our method andBis a diagonal matrix that is composed of Chebyshev series forq(x).

    The eigenvalue problem(12)can be solved by the quadrature right-triangle(QR)algorithm.[16]In the QR algorithm,the matrixAis decomposed intoA=QR,whereQis an orthogonal matrix andRis an upper triangular matrix.

    The steps of theQRalgorithm are as follows:

    diagonal elements ofAnare the eigenvalues ofAasn →∞.

    Regarding the accuracy of this method, it does not need to truncate the interval and has spectral accuracy[19]for the smooth potential function.Because we do not truncate the calculated interval, our method will not produce a truncation error for the analytic potential.

    3.Numerical results

    Our method is used to calculate the eigenvalues of ZS system(λ=1)(2)with three potentials and the convergency of the method is analyzed.All of the numerical examples that are reported here are run on an Asustek computer with Intel(R)Core(TM)i7-11800H processor and 16 GB memory.

    3.1.The Satsuma–Yajima potential

    Our numerical method is used to calculate the eigenvalues of the ZS system(λ=1)with Satsuma–Yajima potential.Numerical results are compared with the analytical results and the performance of our numerical method is compared with the performance of the FCM.[19]

    Whenq=Asech(x), Satsuma and Yajima exactly calculated the discrete eigenvalues of the ZS system.[17]Satsuma and Yajima found that the discrete eigenvalue in the upper-half complex plane C+is

    wherenis a positive number satisfying.Due to the symmetry of the discrete eigenvalues,[17]the ZS system withAsech(x)potential has the discrete eigenvalues ˉκnin C?.

    In the specific calculation, we calculate the eigenvalues ofq(x)=1.8sech(x).Whenq(x)=1.8sech(x),the ZS system has four discrete eigenvaluesκ1=1.3i,κ2=0.3i, ˉκ1=?1.3i and ˉκ2=?0.3i.The number of Chebyshev nodesnis set to 200 and the value ofais set to 0.15.The calculation results are shown in Fig.2.Figure 2(a) shows the calculated eigenvalues of the ZS system with the Satsuma–Yajima potential.There are four discrete eigenvalues in Fig.2(a),which is consistent with the theoretical result.Figure 2(b) shows the calculated eigenfunction in pointκ1and figure 2(c) gives the calculated eigenfunction in pointκ2.The absolute error between the calculatedκ1and the exactκ1is 1.85×10?15,and the absolute error between the calculatedκ2and the exactκ2is 1.61×10?16.The method takes about 0.2 s to finish.These results show that our method is efficient.

    Fig.2.The calculated results of ZS system with 1.8sech(x) potential.(a) The calculated eigenvalues (red) and exact eigenvalues (blue) of 1.8sech(x)potential.(b)Numerical results of ψ1 (red line)and ψ2 (green line)at k=κ1.(c)Numerical results of ψ1 (red line)and ψ2 (green line)at k=κ2.

    The stability and convergency of our method need to be analyzed.In area [a,n]∈[0.1,0.33]×[21,251], we calculate the eigenvalues of the ZS system withq(x)=1.8sech(x), the absolute error ink=κ1is shown in Fig.3(a).There are three routes in Fig.3(a)(blue route 1,black route 2,and green route 3),the convergency of our method is analyzed along the three routes.In the Fourier collocation method, the calculated interval is truncated to[?25,25].The relationship between the error andnis shown in Fig.3(b),the red line is the error curve calculated by the Fourier collocation method(FCM),the blue line is the error curve calculated by our method along Fig.3(a)“route 1”, the black line is the error bar calculated by our method along Fig.3(a) “route 2”, and the green line is the error bar calculated by our method along Fig.3(a) “route 3”.Figure 3(b) shows that our method is more accurate than the FCM and the convergence rate of our method is faster than FCM,so our method is more efficient.Because the error calculated by the FCM decays exponentially with the number of nodes,[19]the error of our method also decays exponentially with the number of nodes and its error decays faster than any power ofn?1.Thus the spectral accuracy of the method is confirmed.

    Fig.3.The absolute error in area[a,n]∈[0.1,0.33]×[21,251].(a)The absolute error picture(k=κ1).(b)The error diagram along route 1(blue line),the error diagram along route 2(black line),the error diagram along route 3 (green line), and the error diagram of the Fourier collocation method(red line).

    We also explored the computational efficiency of our method and compared it with the FCM.We calculated the discrete eigenvalues of the 1.8sech(x)potential at different numbers of nodes and the time is shown in Table 1.

    Table 1.The time required to complete the program at different nodes n.

    The minimum error generated by our method is about 10?15level.This method can achieve machine accuracy.Since the calculated accuracy of the mathematical software is 16 significant figures, there will be an error of about 10?15level in the calculation process.Our method can greatly improve the calculated accuracy, especially when the number of Chebyshev nodes is small.

    3.2.The Y-shape potential

    Bronski computed the eigenvalues of the sech(2∈x)eisech(2∈x)/∈potential and found that the shape of the discrete eigenvalues is “Y”.[9]Settingn= 400 anda=0.02, our method is used to compute the eigenvalues of the sech(2∈x)eisech(2∈x)/∈potential with ∈=0.2,∈=0.1 and∈=0.05, and the calculated results are shown in Fig.4.The calculations are finished within 0.6 s.

    When ∈= 0.2, there are three discrete eigenvalues in C+; when ∈=0.1, there are six discrete eigenvalues in C+;and when ∈=0.05, there are 12 discrete eigenvalues in C+.The calculated results are consistent with Bronski’s results(Ref.[9],p.385,Table 1).The calculated discrete eigenvalues become Y-shaped with the decrease of ∈,which are consistent with the theoretical results.

    There are six discrete eigenvalues in C+in Fig.4(b),and their values are shown in Table 2.

    Fig.4.The calculated eigenvalues of ZS system with sech(2∈x)eisech(2∈x)/∈potential(a=0.02).

    From Table 2, we learn that the sech(0.2x)e10isech(0.2x)potential has two pure imaginary eigenvalues and four complex discrete eigenvalues in C+.Thus, theq(x,0) =sech(0.2x)e10isech(0.2x)initial profile will evolve into a secondorder breather and four solitons for the NLS equation.The Fourier spectral method[18]is used to calculate the evolution of the NLS equation withq(x,0)=sech(0.2x)e10isech(0.2x).The density of the calculated result is shown in Fig.5.In Figs.5(a)and 5(b), the initial profileq(x,0) = sech(0.2x)e10isech(0.2x)evolves into four solitons and a second-order breather, which is consist with Fig.4(b).

    The correctness of the calculated result is verified by analyzing the convergence of the method.Whenn=400 anda=0.02, we obtain the eigenvalueκ1=?1.78524894765016×10?15+0.116148026898534i of the sech(0.2x)e10isech(0.2x)potential.Under differentnChebyshev nodes, we calculate the Cauchy error for theq(x,0)=sech(0.2x)e10isech(0.2x)potential atκ1.The calculated result is shown in Fig.6.The Cauchy error in Fig.6 is defined by

    whereκ1(n)is the calculatedκ1undernChebyshev nodes andκ1=?1.78524894765016×10?15+0.116148026898534i.

    Table 2.The values for the calculated discrete eigenvalues of the ZS system with sech(0.2x)e10isech(0.2x) potential.

    Fig.5.The evolution of the initial profile q(x,0)=sech(0.2x)e10isech(0.2x)for the NLS equation.

    Fig.6.The Cauchy error for the sech(2∈x)eisech(2∈x)/∈in κ1.

    In Fig.6,the method gradually converges asnincreases,and generates an error of 10?15level.

    3.3.The solitonic potential

    Optical solitons have very important applications in all optical networks,optical communication,and optical logic devices.The soliton solution of the NLS equation is considered to be a potential solution for fiber optic transmission, so it is important to calculate its discrete eigenvalues.In this subsection, our method is used to calculate the eigenvalues ofqso=exp(?ix)sech(x).The initial value of the optical solitons can describe the propagation of signals in optical fibers.

    As we all know,qsohas a discrete eigenvalueκ1=0.5+0.5i in C+.[10]Settingn=200 anda=0.1, our method is used to compute the spectrum ofqso=exp(?ix)sech(x), the calculated result is shown in Fig.7.The absolute error between the calculatedκ1and the exactκ1is 7.77×10?16,and the absolute error between the calculatedκ2and the actualκ2is 6.31×10?15.The calculation is finished within 0.3 s.Our method is more accurate and faster than the NFT method.[13]

    Fig.7.The calculated eigenvalues of the qso=exp(?ix)sech(x)potential.

    4.Conclusion

    A numerical method is proposed to calculate the discrete eigenvalues for the ZS system.The tools that are used are Chebyshev polynomials and tanh(ax)mapping.We can effectively identify the key information of the given function with the help of tanh(ax) mapping and realize the high-efficiency calculation.

    Our method has following advantages.First, we do not need to truncate the calculated region for analytical potentials,so our method will not produce truncation error when using Chebyshev polynomials to appropriate the given function.Second,the method can calculate the discrete eigenvalues for the ZS system with spectral accuracy.This method is highprecision and efficient.We calculate the discrete eigenvalues of the Satsuma–Yajima potential and compare the method with the Fourier collocation method,and find that the convergence rate of our method is faster than the Fourier collocation method.For the complex sech(2∈x)eisech(2∈x)/∈potential,our method still converges quickly.It is worth mentioning that our method can be further extended to solve other linear eigenvalue problems.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.52171251, U2106225, and 52231011) and Dalian Science and Technology Innovation Fund(Grant No.2022JJ12GX036).

    猜你喜歡
    王振
    Analytical three-periodic solutions of Korteweg–de Vries-type equations
    CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
    Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
    電池?zé)峁芾硐到y(tǒng)散/加熱特性研究及保溫安全設(shè)計(jì)
    包裝工程(2022年11期)2022-06-20 09:37:36
    3種葉面肥在小麥上的應(yīng)用效果
    怕馬蹄與拍馬屁
    雜文月刊(2022年4期)2022-04-22 20:28:21
    EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS?
    THE EXISTENCE OF A BOUNDED INVARIANT REGION FOR COMPRESSIBLE EULER EQUATIONS IN DIFFERENT GAS STATES*
    博物館安防系統(tǒng)改造工程淺析
    明英宗幼年教育管窺
    国产成人精品久久二区二区91| 欧洲精品卡2卡3卡4卡5卡区| 97超级碰碰碰精品色视频在线观看| x7x7x7水蜜桃| 最新在线观看一区二区三区| 日本a在线网址| 天堂动漫精品| 五月开心婷婷网| av在线天堂中文字幕 | 久久精品亚洲av国产电影网| 人人妻人人澡人人看| tocl精华| 在线观看免费午夜福利视频| 国产极品粉嫩免费观看在线| 很黄的视频免费| 亚洲第一欧美日韩一区二区三区| 美女扒开内裤让男人捅视频| 国产人伦9x9x在线观看| 人妻丰满熟妇av一区二区三区| 啦啦啦在线免费观看视频4| 国产熟女xx| 欧美日韩精品网址| 黄色 视频免费看| 午夜视频精品福利| 三上悠亚av全集在线观看| 亚洲精品一区av在线观看| 色哟哟哟哟哟哟| www.自偷自拍.com| 久久国产乱子伦精品免费另类| 国产高清激情床上av| 亚洲,欧美精品.| av有码第一页| 在线看a的网站| 久久久久九九精品影院| 后天国语完整版免费观看| 日本wwww免费看| 国产亚洲欧美精品永久| 最近最新中文字幕大全电影3 | av中文乱码字幕在线| 国产真人三级小视频在线观看| 91麻豆精品激情在线观看国产 | 麻豆一二三区av精品| 超碰成人久久| 色哟哟哟哟哟哟| 亚洲成人免费av在线播放| 久久亚洲精品不卡| 午夜福利,免费看| 久久久久久大精品| 亚洲欧美一区二区三区黑人| 日韩大码丰满熟妇| 操出白浆在线播放| 老司机福利观看| 最新美女视频免费是黄的| 啦啦啦在线免费观看视频4| 免费在线观看视频国产中文字幕亚洲| 欧美不卡视频在线免费观看 | 999久久久国产精品视频| 午夜精品国产一区二区电影| 色在线成人网| 国产91精品成人一区二区三区| 国产精品日韩av在线免费观看 | 丝袜人妻中文字幕| 精品一区二区三区四区五区乱码| 高清av免费在线| 看免费av毛片| 老熟妇乱子伦视频在线观看| 12—13女人毛片做爰片一| 亚洲全国av大片| 精品一品国产午夜福利视频| 国产黄a三级三级三级人| 色综合站精品国产| 国产三级黄色录像| 国产一区二区激情短视频| 男人的好看免费观看在线视频 | 俄罗斯特黄特色一大片| 精品午夜福利视频在线观看一区| 水蜜桃什么品种好| 国产欧美日韩精品亚洲av| 午夜精品在线福利| 人人妻人人添人人爽欧美一区卜| 一级毛片女人18水好多| 夜夜躁狠狠躁天天躁| 久久精品国产综合久久久| 黄色成人免费大全| 91字幕亚洲| 少妇被粗大的猛进出69影院| 99re在线观看精品视频| 亚洲国产精品999在线| www.999成人在线观看| 一个人免费在线观看的高清视频| 在线观看午夜福利视频| 亚洲五月婷婷丁香| 国产亚洲欧美98| 日韩欧美在线二视频| 看黄色毛片网站| 变态另类成人亚洲欧美熟女 | 日本欧美视频一区| 一进一出好大好爽视频| 免费高清在线观看日韩| 一边摸一边抽搐一进一小说| 色婷婷av一区二区三区视频| 国产高清国产精品国产三级| 91九色精品人成在线观看| 国产视频一区二区在线看| 乱人伦中国视频| 免费av毛片视频| 久久中文字幕一级| 香蕉久久夜色| 精品福利观看| 黑人巨大精品欧美一区二区蜜桃| 国产不卡一卡二| 欧美午夜高清在线| 欧美激情极品国产一区二区三区| 51午夜福利影视在线观看| 在线观看免费午夜福利视频| www.熟女人妻精品国产| 精品久久久精品久久久| 国产精品免费视频内射| 欧美+亚洲+日韩+国产| 国产高清激情床上av| 视频区欧美日本亚洲| 精品福利永久在线观看| 如日韩欧美国产精品一区二区三区| 欧美黄色淫秽网站| 黄色怎么调成土黄色| 欧美精品亚洲一区二区| 免费看a级黄色片| 亚洲精品美女久久久久99蜜臀| 亚洲七黄色美女视频| 操出白浆在线播放| 国产人伦9x9x在线观看| 99国产精品一区二区三区| 亚洲专区中文字幕在线| 欧美老熟妇乱子伦牲交| а√天堂www在线а√下载| 国产欧美日韩综合在线一区二区| 国产aⅴ精品一区二区三区波| 欧美激情久久久久久爽电影 | 国产深夜福利视频在线观看| 国产免费av片在线观看野外av| 亚洲性夜色夜夜综合| 国产熟女午夜一区二区三区| 免费av中文字幕在线| 午夜福利影视在线免费观看| 亚洲精品在线美女| 亚洲片人在线观看| 丝袜美腿诱惑在线| 久久香蕉激情| 级片在线观看| 亚洲av五月六月丁香网| 亚洲少妇的诱惑av| 天堂√8在线中文| 久久精品成人免费网站| 久久精品国产99精品国产亚洲性色 | 免费高清视频大片| 久久精品91无色码中文字幕| 亚洲成国产人片在线观看| 一区二区三区国产精品乱码| 久久久久国产精品人妻aⅴ院| 99久久人妻综合| 国产精品一区二区三区四区久久 | 欧美激情久久久久久爽电影 | 另类亚洲欧美激情| 一夜夜www| 很黄的视频免费| 国产1区2区3区精品| 成人特级黄色片久久久久久久| 男人舔女人下体高潮全视频| 黑丝袜美女国产一区| 黄色片一级片一级黄色片| 一级毛片女人18水好多| 亚洲中文字幕日韩| 国产高清激情床上av| 99国产精品一区二区蜜桃av| 免费在线观看亚洲国产| 免费一级毛片在线播放高清视频 | 亚洲成人免费av在线播放| 久久精品人人爽人人爽视色| 欧美日韩视频精品一区| 亚洲欧洲精品一区二区精品久久久| 欧美激情久久久久久爽电影 | 精品乱码久久久久久99久播| a级毛片在线看网站| 老司机福利观看| 欧美精品啪啪一区二区三区| 婷婷精品国产亚洲av在线| 成年人免费黄色播放视频| 99riav亚洲国产免费| 久久伊人香网站| 欧美日韩精品网址| 男女下面进入的视频免费午夜 | 高清欧美精品videossex| 日本五十路高清| 天堂√8在线中文| 精品福利永久在线观看| 久久久国产成人精品二区 | 一二三四社区在线视频社区8| 视频区欧美日本亚洲| 最新美女视频免费是黄的| 啦啦啦在线免费观看视频4| 日韩中文字幕欧美一区二区| 他把我摸到了高潮在线观看| 国产有黄有色有爽视频| av福利片在线| 中文字幕最新亚洲高清| 欧美日韩av久久| 久久久久久人人人人人| 国产麻豆69| 久久精品成人免费网站| 黄色丝袜av网址大全| 好看av亚洲va欧美ⅴa在| 日韩欧美国产一区二区入口| 亚洲人成77777在线视频| 99精品久久久久人妻精品| 国产1区2区3区精品| 波多野结衣高清无吗| av在线天堂中文字幕 | 成人精品一区二区免费| 国产一区二区三区视频了| 19禁男女啪啪无遮挡网站| 欧美色视频一区免费| 精品一区二区三区av网在线观看| 亚洲精品在线美女| 19禁男女啪啪无遮挡网站| 国产麻豆69| 国产精品久久久久成人av| 天天影视国产精品| 狠狠狠狠99中文字幕| 久久久国产一区二区| 一边摸一边抽搐一进一出视频| 久久精品aⅴ一区二区三区四区| 一个人观看的视频www高清免费观看 | 最好的美女福利视频网| 少妇裸体淫交视频免费看高清 | 久久久久久久久免费视频了| 国产xxxxx性猛交| 天堂动漫精品| 无人区码免费观看不卡| 在线国产一区二区在线| 久久国产乱子伦精品免费另类| 大型av网站在线播放| 国产激情久久老熟女| 欧美成人午夜精品| 国产成年人精品一区二区 | 乱人伦中国视频| 中文字幕另类日韩欧美亚洲嫩草| 可以免费在线观看a视频的电影网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产av一区二区精品久久| 国产黄色免费在线视频| 亚洲在线自拍视频| 午夜视频精品福利| 国产av精品麻豆| 老司机午夜福利在线观看视频| 老熟妇乱子伦视频在线观看| 亚洲成人国产一区在线观看| 99香蕉大伊视频| 99久久99久久久精品蜜桃| 巨乳人妻的诱惑在线观看| 中国美女看黄片| 淫妇啪啪啪对白视频| 午夜精品国产一区二区电影| 丝袜美腿诱惑在线| 国产激情久久老熟女| 在线观看www视频免费| 国产午夜精品久久久久久| 极品人妻少妇av视频| 国产精品乱码一区二三区的特点 | 国产亚洲欧美在线一区二区| 色婷婷av一区二区三区视频| 亚洲午夜精品一区,二区,三区| 免费av毛片视频| 99香蕉大伊视频| 又黄又粗又硬又大视频| 在线观看一区二区三区| 黄片大片在线免费观看| 热re99久久国产66热| 亚洲国产精品999在线| 国产精品久久久久久人妻精品电影| av天堂久久9| 精品电影一区二区在线| 叶爱在线成人免费视频播放| 国产精品久久电影中文字幕| 国产亚洲精品久久久久久毛片| 老汉色av国产亚洲站长工具| 精品久久久久久电影网| 色婷婷久久久亚洲欧美| 欧美黄色片欧美黄色片| x7x7x7水蜜桃| 水蜜桃什么品种好| 在线天堂中文资源库| 久久久国产成人精品二区 | 操出白浆在线播放| 麻豆一二三区av精品| 国产精品久久久人人做人人爽| 欧美黄色淫秽网站| 国产亚洲精品第一综合不卡| 精品一区二区三区四区五区乱码| 精品少妇一区二区三区视频日本电影| 国产有黄有色有爽视频| 亚洲一区二区三区不卡视频| 色综合站精品国产| 在线观看免费高清a一片| 欧美黑人欧美精品刺激| 久久热在线av| 免费av毛片视频| 亚洲avbb在线观看| 国产一区在线观看成人免费| 成人三级做爰电影| 男人舔女人下体高潮全视频| 熟女少妇亚洲综合色aaa.| 国产男靠女视频免费网站| 精品熟女少妇八av免费久了| 纯流量卡能插随身wifi吗| 国产色视频综合| 九色亚洲精品在线播放| av网站免费在线观看视频| 午夜福利影视在线免费观看| 91av网站免费观看| 咕卡用的链子| 久久久国产精品麻豆| 日日夜夜操网爽| 黄片小视频在线播放| 黄色丝袜av网址大全| av欧美777| 女人被狂操c到高潮| 99国产极品粉嫩在线观看| 别揉我奶头~嗯~啊~动态视频| 精品国产亚洲在线| 国产精品偷伦视频观看了| 97人妻天天添夜夜摸| 亚洲av熟女| 欧美乱色亚洲激情| 精品国产乱码久久久久久男人| 99国产精品99久久久久| 国产精品日韩av在线免费观看 | 午夜视频精品福利| 免费在线观看黄色视频的| 久久久久久免费高清国产稀缺| 国产精品久久视频播放| 国产精品免费视频内射| 99riav亚洲国产免费| 国产精品免费视频内射| 99riav亚洲国产免费| 侵犯人妻中文字幕一二三四区| cao死你这个sao货| 老熟妇乱子伦视频在线观看| 电影成人av| 又黄又爽又免费观看的视频| 一个人观看的视频www高清免费观看 | 日韩免费高清中文字幕av| 90打野战视频偷拍视频| 搡老熟女国产l中国老女人| 90打野战视频偷拍视频| 女人爽到高潮嗷嗷叫在线视频| 国产精品日韩av在线免费观看 | 日韩欧美国产一区二区入口| 亚洲成a人片在线一区二区| 成人国产一区最新在线观看| 国产精品秋霞免费鲁丝片| 欧美一区二区精品小视频在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品综合久久久久久久免费 | 少妇的丰满在线观看| 日本五十路高清| 免费不卡黄色视频| 亚洲自拍偷在线| 夜夜夜夜夜久久久久| 国产亚洲精品第一综合不卡| 亚洲欧美精品综合久久99| 日韩成人在线观看一区二区三区| 精品日产1卡2卡| 国产不卡一卡二| 亚洲avbb在线观看| 午夜免费观看网址| 欧美久久黑人一区二区| 亚洲熟妇熟女久久| 在线国产一区二区在线| 91av网站免费观看| 手机成人av网站| av超薄肉色丝袜交足视频| 老熟妇乱子伦视频在线观看| 这个男人来自地球电影免费观看| 999久久久精品免费观看国产| 国产色视频综合| 亚洲精品中文字幕在线视频| 视频区图区小说| 日韩欧美国产一区二区入口| 久久久国产成人精品二区 | 精品久久久久久久久久免费视频 | 中文字幕最新亚洲高清| 国产精品一区二区三区四区久久 | 视频区图区小说| 久久欧美精品欧美久久欧美| 可以免费在线观看a视频的电影网站| 天天影视国产精品| 成人18禁在线播放| 国产精品一区二区三区四区久久 | 国产精品美女特级片免费视频播放器 | 亚洲国产看品久久| 级片在线观看| 国产一区二区三区综合在线观看| 亚洲av片天天在线观看| 91av网站免费观看| 欧美精品亚洲一区二区| 成人手机av| 女人被躁到高潮嗷嗷叫费观| 美女 人体艺术 gogo| 亚洲av成人不卡在线观看播放网| 久久精品国产99精品国产亚洲性色 | 男人舔女人的私密视频| aaaaa片日本免费| 在线视频色国产色| 午夜久久久在线观看| 精品人妻在线不人妻| 国产激情久久老熟女| 日韩欧美一区二区三区在线观看| xxx96com| 久久久久久大精品| 免费日韩欧美在线观看| 又大又爽又粗| 国产无遮挡羞羞视频在线观看| 欧美日韩一级在线毛片| www.自偷自拍.com| 99久久综合精品五月天人人| 91麻豆精品激情在线观看国产 | 国产亚洲精品久久久久5区| 超碰成人久久| 又大又爽又粗| 老熟妇仑乱视频hdxx| 国产成人av教育| 女人高潮潮喷娇喘18禁视频| av网站在线播放免费| 国产区一区二久久| 国产又色又爽无遮挡免费看| 丰满迷人的少妇在线观看| 在线天堂中文资源库| netflix在线观看网站| 欧美日韩乱码在线| 亚洲精品成人av观看孕妇| 青草久久国产| 大型黄色视频在线免费观看| 国产97色在线日韩免费| 91精品三级在线观看| xxx96com| 淫秽高清视频在线观看| 日韩国内少妇激情av| 免费搜索国产男女视频| 色哟哟哟哟哟哟| 精品一区二区三区四区五区乱码| 国产又色又爽无遮挡免费看| 国产在线精品亚洲第一网站| 久久久国产精品麻豆| 老司机深夜福利视频在线观看| 日韩人妻精品一区2区三区| 妹子高潮喷水视频| 美女 人体艺术 gogo| 丁香欧美五月| 黄片大片在线免费观看| 亚洲精品中文字幕在线视频| 两人在一起打扑克的视频| 精品国产一区二区三区四区第35| 最新美女视频免费是黄的| 国产一区二区在线av高清观看| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 久久久久久免费高清国产稀缺| 午夜老司机福利片| 在线观看一区二区三区激情| 级片在线观看| 久久精品人人爽人人爽视色| 亚洲午夜精品一区,二区,三区| 在线观看免费日韩欧美大片| av天堂在线播放| 校园春色视频在线观看| 99热只有精品国产| 咕卡用的链子| 18美女黄网站色大片免费观看| 12—13女人毛片做爰片一| 欧美丝袜亚洲另类 | 国产精品久久视频播放| 纯流量卡能插随身wifi吗| 久久精品国产99精品国产亚洲性色 | 国产野战对白在线观看| www.精华液| 免费高清视频大片| 老司机深夜福利视频在线观看| 在线观看午夜福利视频| 嫩草影视91久久| 女人被狂操c到高潮| 久热这里只有精品99| 亚洲欧美日韩高清在线视频| 俄罗斯特黄特色一大片| 国产视频一区二区在线看| 99久久国产精品久久久| 啦啦啦免费观看视频1| 久久人人爽av亚洲精品天堂| 国产一区二区三区在线臀色熟女 | 在线观看日韩欧美| 亚洲国产毛片av蜜桃av| 91大片在线观看| 一个人免费在线观看的高清视频| 国产精品1区2区在线观看.| 后天国语完整版免费观看| 久久国产乱子伦精品免费另类| 中文字幕最新亚洲高清| 亚洲狠狠婷婷综合久久图片| 少妇 在线观看| 精品熟女少妇八av免费久了| 久久狼人影院| av国产精品久久久久影院| 性色av乱码一区二区三区2| 天堂俺去俺来也www色官网| 午夜老司机福利片| 国产蜜桃级精品一区二区三区| 久久 成人 亚洲| 日日干狠狠操夜夜爽| 超碰97精品在线观看| 女人被狂操c到高潮| 精品乱码久久久久久99久播| 亚洲一区二区三区不卡视频| 亚洲五月婷婷丁香| 日韩成人在线观看一区二区三区| 久久久久久久久免费视频了| 日本免费a在线| 黄网站色视频无遮挡免费观看| 三级毛片av免费| 婷婷六月久久综合丁香| 免费一级毛片在线播放高清视频 | 在线播放国产精品三级| 成人免费观看视频高清| 亚洲欧美精品综合一区二区三区| 精品国产一区二区久久| 一进一出好大好爽视频| 国产熟女xx| 亚洲五月婷婷丁香| 亚洲国产毛片av蜜桃av| 亚洲精品久久午夜乱码| 亚洲欧美一区二区三区黑人| 女人被躁到高潮嗷嗷叫费观| 国产激情久久老熟女| 亚洲中文av在线| a级毛片黄视频| 女警被强在线播放| av欧美777| 成人精品一区二区免费| 中国美女看黄片| av中文乱码字幕在线| 制服人妻中文乱码| 99国产综合亚洲精品| 国产精品亚洲一级av第二区| 女人精品久久久久毛片| 日本精品一区二区三区蜜桃| 国产免费男女视频| 久久久国产成人免费| av欧美777| 看黄色毛片网站| 日韩高清综合在线| 无遮挡黄片免费观看| 久久热在线av| 在线看a的网站| 日本免费一区二区三区高清不卡 | 中文亚洲av片在线观看爽| 日韩一卡2卡3卡4卡2021年| 精品乱码久久久久久99久播| 99国产精品一区二区三区| 久久香蕉激情| 80岁老熟妇乱子伦牲交| 女人爽到高潮嗷嗷叫在线视频| 久久九九热精品免费| 99re在线观看精品视频| 美女福利国产在线| 高清毛片免费观看视频网站 | 无人区码免费观看不卡| 精品国产美女av久久久久小说| 国产亚洲精品一区二区www| 在线观看免费日韩欧美大片| 国产又爽黄色视频| 男男h啪啪无遮挡| 久久久久九九精品影院| 日本欧美视频一区| 一级毛片高清免费大全| 嫁个100分男人电影在线观看| 美女大奶头视频| 黄色毛片三级朝国网站| 最近最新免费中文字幕在线| 国产亚洲精品第一综合不卡| 怎么达到女性高潮| 日韩av在线大香蕉| www.自偷自拍.com| 国产精品一区二区免费欧美| а√天堂www在线а√下载| 大型黄色视频在线免费观看| 国产aⅴ精品一区二区三区波| 日本a在线网址| 欧美+亚洲+日韩+国产| 丰满迷人的少妇在线观看| 亚洲av熟女| 亚洲精品在线观看二区| 久久热在线av| 免费人成视频x8x8入口观看| 黑人巨大精品欧美一区二区蜜桃| 9色porny在线观看| 免费搜索国产男女视频| 国产野战对白在线观看| 啦啦啦在线免费观看视频4| 免费看十八禁软件| 亚洲第一av免费看| 色播在线永久视频| 真人一进一出gif抽搐免费| 男女下面进入的视频免费午夜 | 中文字幕色久视频| 国产黄a三级三级三级人| 欧美成人午夜精品| 一级片'在线观看视频|