• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector?

    2019-08-06 02:07:44YongWang王勇HaoLi李浩LiXingYou尤立星ChaoLinLv呂超林
    Chinese Physics B 2019年7期
    關(guān)鍵詞:李浩

    Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(呂超林),

    He-Qing Wang(王河清)1,2,3, Xing-Yu Zhang(張興雨)1,2,3, Wei-Jun Zhang(張偉君)1,3, Hui Zhou(周慧)1,3,

    Lu Zhang(張露)1,2,3, Xiao-Yan Yang(楊曉燕)1,3, and Zhen Wang(王鎮(zhèn))1,3

    1State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology(SIMIT),

    Chinese Academy of Sciences,Shanghai 200050,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    Keywords: niobium nitride,superconducting nanowire single-photon detectors,detection mechanism

    1. Introduction

    Superconducting nanowire single-photon detectors(SNSPDs) have the advantages of high detection efficiency,low dark count rate, and low timing jitter, which have led to their wide used in various applications, such as quantum key distribution,[1-3]laser communication and ranging,[4-9]fluorescence spectroscopy,[10]and single photon imaging.[11]The detector performance has been considerably improved in recent years. For example, the system detection efficiency(SDE) at the wavelength of 1550 nm was raised to 93%(90%) for WSi (NbN) SNSPDs by adopting lossless optical cavities.[12,13]In the case of the timing jitter,[14-16]a timing resolution of less than 5 ps was achieved by using cryogenic amplifiers and optimizing the nanowire structures.[17]Nevertheless, the intrinsic detection mechanism of SNSPDs is not well comprehended, even though many theoretical and experimental studies have been conducted.[18-23]

    When one photon is absorbed by a superconductor, it leads to the breaking up of Cooper pairs, forming a cloud of quasi-particles. Many models, such as the hot-spot model,[24]quasi-particles diffusion,[18]and vortex crossing model,[19,20,25]were applied to describe the behavior of these quasi-particles. One important technique to verify the detection model is determining the relation between the responding photon energy and bias current (Ib) at a certain responding probability. This relation is commonly referred to as the energy-current relation. A linear energy-current relation indicates that quasiparticle diffusion plays a critical role in photon response, while a nonlinear relation implies that a model considering only the quasiparticle diffusion is unsuitable and that a vortex-related detection model should be taken into consideration.[25]The linear relation was first determined for NbN-based detectors over a large range of photon energies(0.75-8.26 eV)by using quantum detector tomography(QDT).[26]Subsequently,similar results were reported for WSi-based detectors with a slight deviation from the linear behavior at low energies (0.75-0.85 eV).[27]However, other experimental results have shown nonlinear energy-current relations for WSi[25]and MoSi[28]SNSPDs. In the case of NbN SNSPDs, a nonlinear energy-current relation was also observed over a photon energy range from 0.8 eV to 2.76 eV.[25]The reported inconsistent results make the detection mechanism uncertain and thus more investigations on energy-current relations are required.

    In this work,the energy-current relation of NbN SNSPDs with different linewidths(30-140 nm)was studied with varying photon wavelengths (energy) from 510 nm to 1700 nm(0.73 eV to 2.43 eV).All the extracted energy-current curves show apparent nonlinear relations over the measured photon energy range. These results imply that a detection model that considers only quasiparticle diffusion is inappropriate. Our results may serve as an interesting reference for further investigation on the detection mechanism of SNSPD.

    2. Device design and fabrication

    We fabricated the detectors on a Si substrate with oxidized layers on both sides. A NbN thin film with a nominal thickness of 7.0 nm was deposited on the substrate at room temperature via reactive DC magnetron sputtering in a mixture of Ar(79%)and N2(21%)gas at a total pressure of 0.273 Pa.The sputtering current and corresponding voltage were 2.19 A and 264 V, respectively. The film thickness was controlled by the deposition time based on the calculated sputtering rate.Meander nanowire structures,covering an active circular area of diameter 5 μm, were patterned by electron beam lithography on the NbN film. The film was then reactively etched in CF4plasma.Finally,a bridge was etched using reactive ions to form the co-plane waveguide to enable the readout of the electrical signals. Figure 1(a)shows the schematic of the SNSPD,and the structures from top to bottom are NbN,SiO2,and the Si substrate. As shown in Fig.1(b)and the inset,the nanowire was patterned as meander type with width and pitch of 60 nm and 150 nm,respectively.The resulting device shows a critical temperature of 7.6 K and a square resistance 125 Ω/sq.

    Fig.1. (a)Schematic of a superconducting nanowire single-photon detector.(b) Scanning electron microscopy image of the surface topography of the NbN device. The active diameter of the device is 5μm. The inset shows a magnified image of a nanowire with width and pitch of 60 nm and 150 nm,respectively.

    3. Results and discussion

    The device was illuminated by a HI 1060 FLEX fiber(core diameter: 6.0±0.5 μm) placed in front of the device and packed in a copper sampling mount. Then,the device was installed in a Gifford-McMahon cryocooler with a working temperature of 2.100±0.005 K.The bias current was applied via a quasi-constant current source,[24]and a bias-tee was utilized to separate the high-frequency detection pulses from a DC port. The device bonding with the transmission line was connected to the DC plus RF port of the bias-tee. The voltage pulse generated by the SNSPD was then amplified by a room-temperature, 50-dB gain, low noise amplifier (RF Bay Inc. LNA-650). In the optical module, the incident light was generated by a bromine-tungsten lamp. This light was passed through a grating monochromator for a series of wavelengths from 510 nm to 1700 nm. Subsequently,two attenuators were utilized to control the incident photon flux on the device.

    In the experiment,we varied the incident wavelength and recorded the photon count as a function of the bias current.For each bias current, the input fiber connected with the system was blocked,and dark counts were collected for 10 s using a commercial counter. Then,the light was unblocked,and the output pulse counts were collected for another 10 s. We thus obtained the photon counts by subtracting the dark counts from the pulse counts.

    The intrinsic detection efficiency (IDE) represents the pulse generation probability of the nanowire after photon absorption,which is written as IDE=PCR/ABR,where PCR is the measured photon count rate and ABR is the absorbed photon count rate. Due to the saturated SDE at high bias current,we may assume that the maximum IDE reaches unity and ABR is independent of the bias current,after which the IDE curves as a function of bias current were obtained by normalizing the SDE curves.

    Figure 2 shows the dependence of IDE on the bias current for wavelengths ranging from 510 nm to 1700 nm. We observed that the nanowire starts registering photons at a bias current of approximately 4.5 μA. All of the curves show a plateau near the switching current at around ISW=10.0 μA.At the same current,the high photon energy results in a higher IDE,and thus,the IDE curves of short wavelengths saturated more rapidly than those of long wavelengths.

    Fig. 2. Intrinsic detection efficiency as a function of bias current for wavelengths ranging from 510 nm to 1700 nm for an SNSPD linewidth of 60 nm.

    We then extracted the energy-current relations from Fig. 2, as shown in Fig. 3, in which the IDE values are determined to be 1%, 30%, 50%, and 80% in comparison with previous reported works.[21,28]The curves showed nonlinear energy-current relations,which were different from the linear relation observed in the case of QDT measurements for the NbN nanodetector.[26]Furthermore, apparent nonlinear relations were observed in the low-energy region unlike the results of a previous experimental work,[25]where only a slightly deviation from the linear relation was observed at a 50% responding probability. This result indicates that a detection mechanism model that considers only quasiparticle diffusion is incompatible with our observations.

    Fig.3.Bias current as a function of incident photon energy at a response probability of 1%(green triangle), 30%(dark triangle), 50%(blue triangle),and 80%(red triangle)for an SNSPD linewidth of 60 nm. The red lines represent the fitting curves with the equation I=I0+Ae-E/E0.

    To quantitatively characterize the nonlinear relations,we fitted our data using the function I =I0+Ae-E/E0, where I represents the bias current, E is the photon energy of excitation,I0is the reference current,and A and E0are constants.As shown in Fig.3,the fitted curves coincide well with the experimental results for the IDE of 1%,30%,50%,and 80%,where I0=4.7μA,5.8μA,6.2μA,6.7μA,A=2.7μA,11.3μA,62.3 μA, 98.1 μA, and E0=0.5 eV, 0.3 eV, 0.2 eV, 0.2 eV,respectively. However, this formula does not fit the existing physical models.[26]Consequently,we have to admit here that this is an empirical fitting and the underlying mechanism is unclear yet.

    This observation was further verified by measuring the energy-current relations of SNSPDs with linewidths of 30 nm,80 nm, 100 nm, and 140 nm. Figure 4 shows the relation curves at 1%IDE which are all nonlinear and in good agreement with the above mentioned empirical formula. Note that for SNSPDs with linewidths of 80 nm, 100 nm, and 140 nm,PCR did not saturate at higher bias currents for long wavelengths and a sigmoid function fitting was applied to obtain the normalized IDE curve. We also noted that Ibs in the energy-current curves vary greatly for different linewidths.The smaller the nanowire width,the lower bias current at 1%response probability under the same photon energy. Indeed,various detection models of SNSPD agree with each other(at least qualitatively) on this point. For the hot-spot model, the same photon energy means the same hot-spot size. The wider nanowire needs a higher bias current to guarantee that the redistributed bias current density exceeds the critical current density and thus generate the detection event.[24]In the quasiparticles diffusion model,the current carrying capacity of the wire is proportional to the number of remaining Cooper pairs.A wider nanowire indicates a smaller quasiparticles density across the nanowire,which needs a larger bias current to guarantee that the Cooper pairs exceed the critical velocity.[18]For the vortex-crossing model, the vortex barrier is proportional to the wire width. To overcome the energy barrier, the wider nanowire needs a higher bias current to reduce the barrier.[20]

    Fig.4.Plot of bias current versus incident photon energy at 1%response probability for wire widths of 30 nm,80 nm,100 nm,and 140 nm.Both the experimental data and the fitting curves(red lines)follow a nonlinear energy-current relation. The fitting parameters are I0 =1.6 μA,2.2μA,3.9μA,9.7μA;A=0.7μA,10.6μA,14.4μA,10.7μA;and E0=0.5 eV,1.0 eV,0.8 eV,0.7 eV,respectively.

    In previous works, linear energy-current relations were found by using QDT[26]for different types of NbN devices such as nanodetectors,nanobridges,and meanders.Similar results were also found in WSi nanobridge detectors along with a slight deviation for the range between 0.75 eV to 0.85 eV.[27]On the contrary, nonlinear relations were also observed in MoSi,[28]WSi,[25]and NbN[25]meander detectors. While the conclusion of non-linear relationship of energy-current in this paper has been drawn in previous work,[25]our work here further confirms the non-linear relationship under different nanowire widths and adds the experimental data at the width of 60 nm in the long wavelength range. In Ref.[25],the data was obtained by using extrapolation (sigmoid curve fitting)instead. Moreover, the fitting function is given in our work to quantitatively characterize the nonlinear relations. Our results indicate the nonlinear relation in NbN SNSPDs using various nanowire widths, provide additional experimental data,and may serve as an interesting reference for further investigation. Finally,it is worth noting that those discrepancies in the reported experimental results may be explained by the different photon energy range, different structures,and/or different materials and more systematically comparison is necessary before making the conclusion whether the quasiparticle diffusion model dominates the detection mechanism of SNSPD.

    4. Conclusion

    We studied the IDE-bias current relation of SNSPDs for different photon energies from 0.73 eV to 2.43 eV and derived the energy-current relation.A clear nonlinear relation was observed for SNSPDs with different linewidths. The results are consistent with previous reports on MoSi[28]and WSi,[25]but different from the initial results in the QDT measurements for the NbN nanodetector. However, the conclusion drawn from the linear relation may not be suitable for the detection mechanism of SNSPDs. Therefore, more systematical experimental work is necessary to determine the detection model of the SNSPDs.

    Acknowledgment

    The authors would like to thank L. Ma, H. Jin, and Z.Chen for the fabrication support, J. Huang and C. Zhang for the measurement instruction.

    猜你喜歡
    李浩
    “算兩次”法在數(shù)學(xué)解題中的應(yīng)用
    Quantum estimation of rotational speed in optomechanics
    Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
    Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles?
    李浩:防治新冠肺炎,科學(xué)利用藥膳
    李浩作品
    國畫家(2017年5期)2017-10-16 06:26:25
    李浩:總有那么一股勁兒——走進空軍某試驗訓(xùn)練基地無人機飛行員李浩
    那個叫李浩的兄弟
    楊班侯大功架四十二式太極拳(四)
    少林與太極(2016年4期)2016-06-16 00:47:47
    《二次根式的乘除》測試題
    亚洲国产欧洲综合997久久,| av在线播放精品| 国产精品人妻久久久影院| 美女xxoo啪啪120秒动态图| 欧美成人a在线观看| 亚洲av中文av极速乱| 草草在线视频免费看| 亚洲av成人av| 国内精品宾馆在线| 真实男女啪啪啪动态图| 在线天堂最新版资源| 黄片无遮挡物在线观看| or卡值多少钱| 人妻系列 视频| 大又大粗又爽又黄少妇毛片口| 国产精品国产高清国产av| 成人毛片a级毛片在线播放| 色综合亚洲欧美另类图片| 午夜亚洲福利在线播放| 男人狂女人下面高潮的视频| 两性午夜刺激爽爽歪歪视频在线观看| 精华霜和精华液先用哪个| 亚洲国产欧美在线一区| 在线观看午夜福利视频| 秋霞在线观看毛片| 亚洲精华国产精华液的使用体验 | 12—13女人毛片做爰片一| 人体艺术视频欧美日本| 国产成人影院久久av| 69av精品久久久久久| 99国产精品一区二区蜜桃av| 久久综合国产亚洲精品| 美女xxoo啪啪120秒动态图| 乱人视频在线观看| 校园人妻丝袜中文字幕| 女人十人毛片免费观看3o分钟| 性色avwww在线观看| 国产精品久久久久久精品电影小说 | 久久精品国产清高在天天线| 国产精品1区2区在线观看.| 欧美不卡视频在线免费观看| 日本色播在线视频| 超碰av人人做人人爽久久| 免费搜索国产男女视频| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲精品av在线| 亚洲在久久综合| 日韩视频在线欧美| 久久久久久久久久成人| 美女脱内裤让男人舔精品视频 | 亚洲成人久久性| 人人妻人人澡欧美一区二区| 亚洲欧美成人综合另类久久久 | av国产免费在线观看| 免费看a级黄色片| 哪个播放器可以免费观看大片| 国产国拍精品亚洲av在线观看| 亚洲最大成人av| 国产高清有码在线观看视频| 亚洲av免费高清在线观看| 午夜亚洲福利在线播放| 黄色视频,在线免费观看| 两个人视频免费观看高清| 久久久久九九精品影院| 国产单亲对白刺激| 国产av一区在线观看免费| 亚洲精品乱码久久久v下载方式| 日本av手机在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 日韩高清综合在线| av视频在线观看入口| 偷拍熟女少妇极品色| 国产精品久久久久久av不卡| 日韩一区二区三区影片| 亚洲国产精品国产精品| 老司机福利观看| 成人鲁丝片一二三区免费| 高清毛片免费看| 一级毛片aaaaaa免费看小| 色5月婷婷丁香| 亚洲经典国产精华液单| 99久久九九国产精品国产免费| 好男人视频免费观看在线| 日本爱情动作片www.在线观看| 偷拍熟女少妇极品色| 久久久成人免费电影| 久久久久久九九精品二区国产| 亚洲国产高清在线一区二区三| 欧美不卡视频在线免费观看| av在线蜜桃| 亚洲精品自拍成人| 黄片wwwwww| 青青草视频在线视频观看| 久久人人爽人人片av| 国产精品野战在线观看| 欧美日本亚洲视频在线播放| 一区二区三区四区激情视频 | 日产精品乱码卡一卡2卡三| 嫩草影院精品99| 麻豆av噜噜一区二区三区| 久久久久免费精品人妻一区二区| av国产免费在线观看| 国内精品美女久久久久久| 在线免费观看的www视频| 春色校园在线视频观看| 国产午夜精品一二区理论片| 少妇人妻一区二区三区视频| 亚洲婷婷狠狠爱综合网| 国产色婷婷99| 国产真实伦视频高清在线观看| 观看美女的网站| 干丝袜人妻中文字幕| 午夜视频国产福利| 亚洲激情五月婷婷啪啪| 最近中文字幕高清免费大全6| 人妻系列 视频| 特级一级黄色大片| 男女做爰动态图高潮gif福利片| 国产精品久久视频播放| 亚洲三级黄色毛片| av天堂在线播放| 日本av手机在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 大香蕉久久网| 丰满人妻一区二区三区视频av| 老司机影院成人| 亚洲丝袜综合中文字幕| 哪个播放器可以免费观看大片| 91久久精品国产一区二区成人| 亚洲美女搞黄在线观看| 日本成人三级电影网站| 97在线视频观看| 国产视频内射| 欧美区成人在线视频| 热99在线观看视频| 久久久色成人| 欧美最黄视频在线播放免费| 欧美日本亚洲视频在线播放| 国产高清有码在线观看视频| 亚洲欧美日韩高清在线视频| 亚洲成人av在线免费| 日韩欧美三级三区| 成人性生交大片免费视频hd| 伊人久久精品亚洲午夜| 少妇丰满av| 美女内射精品一级片tv| 免费人成在线观看视频色| 欧美日本亚洲视频在线播放| 99riav亚洲国产免费| 亚洲在线自拍视频| 国产乱人视频| 成人午夜高清在线视频| 日韩一区二区视频免费看| 欧美日本亚洲视频在线播放| 亚洲av熟女| 国产在视频线在精品| 身体一侧抽搐| 日本爱情动作片www.在线观看| 色尼玛亚洲综合影院| 久久精品91蜜桃| 九九热线精品视视频播放| 国产单亲对白刺激| 寂寞人妻少妇视频99o| 精品久久国产蜜桃| 女人被狂操c到高潮| 老熟妇乱子伦视频在线观看| 色综合站精品国产| 日本三级黄在线观看| 天堂中文最新版在线下载 | 一卡2卡三卡四卡精品乱码亚洲| 一级黄色大片毛片| 日韩强制内射视频| 国产精品久久电影中文字幕| 两个人的视频大全免费| 色播亚洲综合网| 久久久a久久爽久久v久久| 麻豆久久精品国产亚洲av| 亚洲无线在线观看| 中文字幕制服av| 欧美区成人在线视频| 九色成人免费人妻av| 麻豆乱淫一区二区| 99视频精品全部免费 在线| 亚洲欧洲日产国产| 直男gayav资源| av在线蜜桃| 97在线视频观看| 午夜福利成人在线免费观看| 亚洲一区二区三区色噜噜| 青青草视频在线视频观看| 成年av动漫网址| 一级黄色大片毛片| 久久综合国产亚洲精品| 久久久久久久亚洲中文字幕| 村上凉子中文字幕在线| 最后的刺客免费高清国语| 国产色婷婷99| 久久久成人免费电影| 久99久视频精品免费| 久久久久久久久久成人| 国产精品,欧美在线| 成人性生交大片免费视频hd| 国产精品乱码一区二三区的特点| 久久精品影院6| 国产单亲对白刺激| 亚洲激情五月婷婷啪啪| 97热精品久久久久久| 联通29元200g的流量卡| 亚洲欧美精品专区久久| 给我免费播放毛片高清在线观看| 国产免费男女视频| 床上黄色一级片| 晚上一个人看的免费电影| 亚洲第一区二区三区不卡| 欧美性感艳星| 内地一区二区视频在线| 大香蕉久久网| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av.av天堂| 欧美在线一区亚洲| a级毛色黄片| 联通29元200g的流量卡| 国产精品.久久久| 日本与韩国留学比较| 床上黄色一级片| 男人的好看免费观看在线视频| 久久精品国产鲁丝片午夜精品| 国产精品.久久久| 久久精品国产自在天天线| 久久精品综合一区二区三区| 国产老妇伦熟女老妇高清| 乱码一卡2卡4卡精品| 变态另类成人亚洲欧美熟女| av免费观看日本| 深夜精品福利| 老司机影院成人| 精品久久久久久久久久久久久| 国产一级毛片七仙女欲春2| 亚洲av一区综合| av黄色大香蕉| 免费观看a级毛片全部| 午夜福利视频1000在线观看| 九草在线视频观看| 亚洲精品国产成人久久av| 亚洲第一电影网av| 欧美一级a爱片免费观看看| 久久人人精品亚洲av| 日韩欧美精品免费久久| 国产伦一二天堂av在线观看| 长腿黑丝高跟| 九九爱精品视频在线观看| 国产精品综合久久久久久久免费| av在线播放精品| 午夜久久久久精精品| 男的添女的下面高潮视频| 少妇裸体淫交视频免费看高清| 亚洲美女搞黄在线观看| 少妇人妻一区二区三区视频| 久久久色成人| 国产亚洲精品久久久久久毛片| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 欧美+亚洲+日韩+国产| 少妇猛男粗大的猛烈进出视频 | 一级毛片久久久久久久久女| 一级毛片aaaaaa免费看小| 最新中文字幕久久久久| 国产精品美女特级片免费视频播放器| 一个人看的www免费观看视频| 久久久久久大精品| 黄色欧美视频在线观看| 色综合亚洲欧美另类图片| a级毛色黄片| 悠悠久久av| 六月丁香七月| 日韩国内少妇激情av| 国产av不卡久久| 中文字幕免费在线视频6| 日本免费一区二区三区高清不卡| 一级毛片我不卡| 国产成人一区二区在线| 国产黄a三级三级三级人| 久久久久久久久久久丰满| 欧美又色又爽又黄视频| 午夜精品在线福利| 一级黄色大片毛片| 少妇猛男粗大的猛烈进出视频 | 男女视频在线观看网站免费| 成人永久免费在线观看视频| 成人特级av手机在线观看| 又黄又爽又刺激的免费视频.| 深夜a级毛片| 国产淫片久久久久久久久| 夫妻性生交免费视频一级片| 欧美激情在线99| 欧美潮喷喷水| 亚洲18禁久久av| 免费黄网站久久成人精品| 波多野结衣高清无吗| 午夜福利视频1000在线观看| 成人亚洲欧美一区二区av| 观看美女的网站| 国产激情偷乱视频一区二区| 深夜精品福利| 丝袜喷水一区| 色综合亚洲欧美另类图片| 亚洲精品456在线播放app| 日韩一本色道免费dvd| 男插女下体视频免费在线播放| 欧美激情久久久久久爽电影| 超碰av人人做人人爽久久| 啦啦啦观看免费观看视频高清| 亚洲欧美成人综合另类久久久 | 少妇熟女aⅴ在线视频| 成年女人永久免费观看视频| 国产成人a区在线观看| 精品久久久久久久久亚洲| 午夜激情福利司机影院| 欧美精品一区二区大全| 亚洲av免费高清在线观看| 九草在线视频观看| 97超视频在线观看视频| 欧美性感艳星| 日韩人妻高清精品专区| 床上黄色一级片| 一级av片app| 少妇的逼水好多| 亚洲精品亚洲一区二区| 岛国在线免费视频观看| 如何舔出高潮| 成人特级黄色片久久久久久久| 搡女人真爽免费视频火全软件| 99久久无色码亚洲精品果冻| 久久人人爽人人片av| 日本熟妇午夜| 久久99热这里只有精品18| 国模一区二区三区四区视频| 中文字幕人妻熟人妻熟丝袜美| 大又大粗又爽又黄少妇毛片口| 不卡一级毛片| 国产精品人妻久久久影院| 熟女人妻精品中文字幕| 国产色婷婷99| 国产精品无大码| 亚洲高清免费不卡视频| 人妻久久中文字幕网| 婷婷亚洲欧美| 亚洲自偷自拍三级| 男女视频在线观看网站免费| 成人一区二区视频在线观看| 2021天堂中文幕一二区在线观| 一本久久中文字幕| 亚洲国产高清在线一区二区三| 欧美xxxx黑人xx丫x性爽| 岛国毛片在线播放| 91在线精品国自产拍蜜月| 亚洲人成网站在线观看播放| 少妇的逼好多水| 午夜精品一区二区三区免费看| 亚洲av.av天堂| 亚洲不卡免费看| 精华霜和精华液先用哪个| 欧美丝袜亚洲另类| 亚洲第一区二区三区不卡| 一级毛片我不卡| 欧美激情久久久久久爽电影| 最近视频中文字幕2019在线8| 99久久成人亚洲精品观看| 国产精品一区二区在线观看99 | 国产午夜精品一二区理论片| 又粗又爽又猛毛片免费看| 中国国产av一级| 亚洲一区高清亚洲精品| 国产探花极品一区二区| 国产高清激情床上av| 国产真实乱freesex| 欧美潮喷喷水| av天堂在线播放| 天天躁日日操中文字幕| 又爽又黄a免费视频| 日韩一本色道免费dvd| 一个人免费在线观看电影| 日本三级黄在线观看| 免费观看在线日韩| 一级二级三级毛片免费看| 欧美高清性xxxxhd video| 此物有八面人人有两片| 亚洲精品影视一区二区三区av| 成人一区二区视频在线观看| 国产一区二区激情短视频| 国产探花在线观看一区二区| 久久精品综合一区二区三区| 国产精品不卡视频一区二区| 偷拍熟女少妇极品色| 亚洲性久久影院| 国产精品女同一区二区软件| 欧美激情国产日韩精品一区| 两个人视频免费观看高清| 欧美日韩精品成人综合77777| 午夜福利成人在线免费观看| 久久精品国产亚洲av香蕉五月| 校园春色视频在线观看| 色综合亚洲欧美另类图片| 国产乱人偷精品视频| 久久久久久伊人网av| 日韩欧美国产在线观看| 久久婷婷人人爽人人干人人爱| 欧美另类亚洲清纯唯美| 久久精品久久久久久噜噜老黄 | 成年版毛片免费区| 在线观看午夜福利视频| 日本黄大片高清| 麻豆成人午夜福利视频| 日韩精品青青久久久久久| 欧美xxxx性猛交bbbb| 亚洲精品亚洲一区二区| 欧美丝袜亚洲另类| 18禁黄网站禁片免费观看直播| 99久国产av精品| 亚洲精品日韩av片在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品电影一区二区三区| 级片在线观看| 午夜福利在线在线| 人妻少妇偷人精品九色| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 高清毛片免费看| 欧美bdsm另类| 久久精品久久久久久久性| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 国产 一区 欧美 日韩| 3wmmmm亚洲av在线观看| 国产黄色视频一区二区在线观看 | 久久久久免费精品人妻一区二区| 搡女人真爽免费视频火全软件| a级毛色黄片| www.av在线官网国产| 少妇的逼好多水| 亚洲美女搞黄在线观看| 精品人妻偷拍中文字幕| 美女xxoo啪啪120秒动态图| 国产激情偷乱视频一区二区| 国产高清激情床上av| av女优亚洲男人天堂| 如何舔出高潮| 久久人人精品亚洲av| 成人亚洲精品av一区二区| 国产伦精品一区二区三区视频9| 国产色爽女视频免费观看| 有码 亚洲区| 国产伦在线观看视频一区| 欧美激情在线99| 夜夜看夜夜爽夜夜摸| 99在线视频只有这里精品首页| 久久欧美精品欧美久久欧美| 国产精品伦人一区二区| av免费在线看不卡| 午夜视频国产福利| 欧美zozozo另类| 国产熟女欧美一区二区| 乱系列少妇在线播放| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av天美| 深夜精品福利| 尾随美女入室| 99久久无色码亚洲精品果冻| 人妻夜夜爽99麻豆av| 桃色一区二区三区在线观看| 久久久成人免费电影| 啦啦啦韩国在线观看视频| 国产一区二区亚洲精品在线观看| 精品少妇黑人巨大在线播放 | 欧美极品一区二区三区四区| 亚洲自偷自拍三级| 久久久久久久久中文| 在线免费观看的www视频| 赤兔流量卡办理| a级毛片免费高清观看在线播放| av专区在线播放| 青青草视频在线视频观看| 搞女人的毛片| 国产一区二区三区av在线 | 自拍偷自拍亚洲精品老妇| 国产精品久久电影中文字幕| 黄片无遮挡物在线观看| 内地一区二区视频在线| 麻豆国产97在线/欧美| 国产成人freesex在线| 免费观看人在逋| 九九在线视频观看精品| 热99re8久久精品国产| 一进一出抽搐gif免费好疼| 免费看av在线观看网站| 久久久久久久久大av| 九九爱精品视频在线观看| 国产av不卡久久| 搞女人的毛片| 一级毛片久久久久久久久女| 你懂的网址亚洲精品在线观看 | 国产成人福利小说| 99热这里只有精品一区| 婷婷色综合大香蕉| 天堂网av新在线| 我要搜黄色片| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久av不卡| 22中文网久久字幕| 国产av不卡久久| 99国产精品一区二区蜜桃av| 一级二级三级毛片免费看| 精品久久久久久久人妻蜜臀av| 深夜精品福利| 亚洲在线自拍视频| 有码 亚洲区| 精品99又大又爽又粗少妇毛片| 美女大奶头视频| 精品午夜福利在线看| 日本在线视频免费播放| 国产免费一级a男人的天堂| 1024手机看黄色片| 国产免费一级a男人的天堂| 亚洲婷婷狠狠爱综合网| 国产老妇女一区| 一个人免费在线观看电影| 国产激情偷乱视频一区二区| 成年女人永久免费观看视频| 欧美成人免费av一区二区三区| 亚洲成人精品中文字幕电影| 亚洲欧美清纯卡通| 国产精品.久久久| 爱豆传媒免费全集在线观看| 久久久久久久久久久丰满| 九九久久精品国产亚洲av麻豆| 美女内射精品一级片tv| 国产老妇女一区| 欧美日韩乱码在线| 亚洲,欧美,日韩| 国产av不卡久久| 久久久久免费精品人妻一区二区| 嫩草影院新地址| 日韩大尺度精品在线看网址| 日韩强制内射视频| 欧美+日韩+精品| 丰满乱子伦码专区| 成人高潮视频无遮挡免费网站| 免费观看人在逋| 18+在线观看网站| 精品免费久久久久久久清纯| 如何舔出高潮| 美女国产视频在线观看| 国产色爽女视频免费观看| 男人舔女人下体高潮全视频| 欧美高清性xxxxhd video| 国产黄片美女视频| 亚洲精品久久国产高清桃花| 国产高清有码在线观看视频| av在线老鸭窝| 日韩制服骚丝袜av| 亚洲成a人片在线一区二区| 日产精品乱码卡一卡2卡三| 1024手机看黄色片| 2022亚洲国产成人精品| 亚洲欧美精品综合久久99| 久久久久久久久久久免费av| 男人的好看免费观看在线视频| 赤兔流量卡办理| 嫩草影院新地址| 全区人妻精品视频| 成人特级av手机在线观看| 91狼人影院| 国产精品一区二区三区四区久久| 久久精品夜色国产| 女同久久另类99精品国产91| 欧美潮喷喷水| 午夜福利在线观看免费完整高清在 | 日韩欧美在线乱码| 少妇裸体淫交视频免费看高清| 国产探花在线观看一区二区| 国国产精品蜜臀av免费| 中国美白少妇内射xxxbb| 精品午夜福利在线看| 99久久精品一区二区三区| 国内精品一区二区在线观看| 日本一二三区视频观看| 边亲边吃奶的免费视频| 国产精品久久视频播放| 亚洲一区二区三区色噜噜| 毛片一级片免费看久久久久| 欧美最黄视频在线播放免费| 国产成人一区二区在线| 一级毛片久久久久久久久女| 国产在线精品亚洲第一网站| 床上黄色一级片| 日韩在线高清观看一区二区三区| 国产 一区精品| 久久这里只有精品中国| 韩国av在线不卡| 3wmmmm亚洲av在线观看| 午夜激情欧美在线| 久久精品国产自在天天线| 尤物成人国产欧美一区二区三区| 亚洲自拍偷在线| 中出人妻视频一区二区| 99久久九九国产精品国产免费| 99riav亚洲国产免费| 欧美日韩一区二区视频在线观看视频在线 | 一边亲一边摸免费视频| 欧美高清性xxxxhd video| ponron亚洲| 人妻系列 视频| av福利片在线观看| 日日干狠狠操夜夜爽| 久久午夜亚洲精品久久|