• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults?

    2019-08-06 02:07:40HongPingYang楊宏平WenJuanYuan原文娟JunLuo羅俊andJingZhu朱靜
    Chinese Physics B 2019年7期
    關(guān)鍵詞:原文

    Hong-Ping Yang(楊宏平), Wen-Juan Yuan(原文娟), Jun Luo(羅俊), and Jing Zhu(朱靜),?

    1National Center for Electron Microscopy in Beijing,School of Materials Science and Engineering,the State Key Laboratory of New Ceramics and Fine Processing,Key Laboratory of Advanced Materials(MOE),Tsinghua University,Beijing 100084,China

    2Center for Electron Microscopy,Institute for New Energy Materials&Low-Carbon Technologies,School of Materials Science and Engineering,Tianjin University of Technology,Tianjin 300384,China

    Keywords: bilayer graphene quantum dots,rotational stacking faults,first-principles calculation

    1. Introduction

    Graphene has attracted the interest of researchers worldwide due to its unique properties, while numerous experimental and theoretical studies have been conducted on its applications in the fields of electronics,[1]optoelectronics,[2]photonics,[3]photovoltaics,[4]mechanics,[5]quantum interference,[6]quantum computation,[7]field emission,[8]fluorescence emission,[9]and secondary electron emission.[10,11]It has been found that defects such as point defects,[12]line defects,[13]and grain boundaries[14]can modulate the electronic structure and magnetic properties of graphene. Therefore, it is very promising to use defects to modulate the properties of graphene and, thus, develop various functional devices.[15-17]

    Rotational stacking faults (RSFs) are a type of intrinsic defects that commonly occur in layered materials, such as folded monolayer and few-layer two-dimensional molybdenum disulfide[18-20]and graphene.[21,22]An RSF refers to the deviation from the standard sequence of the stacking order among layers in a layered material, and a relative rotation exists between the layers. Studies have already shown that RSFs can change the electronic structure of layered materials.[21-24]In particular, bilayer graphene with a small rotation angle,known as the magic angle,has unconventional superconductivity.[25,26]However, the influence of RSFs on the magnetic and electronic properties of bilayer graphene quantum dots has not been fully studied.

    In this work,we employed the first-principles calculation based on density functional theory (DFT) to study the electrical and magnetic properties of bilayer graphene quantum dots with RSFs having different rotational angles. Our results show that these bilayer graphene quantum dots have different magnetic moments, energy levels, and spin distributions.For example, some graphene quantum dots have spin up in both highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital(LUMO),while some have spin down and up. These results indicated that RSFs with different rotational angles can be used to modulate the magnetism and electronic structures of bilayer graphene quantum dots,aiding us to develop various new electronic,magnetic,and spintronic devices.

    2. Calculation methodology

    The software used in this study for the first-principles calculation was the Vienna ab initio simulation package(VASP).[27]The methodology used was the projector augmented wave(PAW)[28]method.The exchange correlation energy was evaluated using the Perdew-Burke-Ernzerhof(PBE)formulation,[29]a derivation of the generalized gradient approximation. The cutoff kinetic energy of the plane wave basis set was set at 400 eV. The convergence threshold energy was set to 10-5eV.The supercell used in the calculation had a vacuum layer of at least 20 ?A in all three directions which was large enough to avoid interactions between adjacent bilayer graphene quantum dots. Therefore,only a k-point was used to express the Brillouin zone. To determine the ground states of the bilayer graphene quantum dots, the spin polarization and non-spin polarization of all models were also determined. The total energy was compared,and the lower energy state was selected as the ground state for the following calculation.

    3. Results and discussion

    Because many RSF rotational angles were found in the experiments,[18-21,30,31]we selected bilayer graphene quantum dots with RSF angles of 0°,8.95°,19.11°,30°,40.89°,51.05°,and 60°as examples for calculations. The total number of atoms was 138,which was the same as that in a previous work on molybdenum disulfide quantum dots.[32]Among them,the bilayer graphene quantum dots with the 60°RSFs were actually in the most stable AB stacking form. Figure 1(a)-1(n)show three-dimensional(3D)views and top views of bilayer graphene quantum dots with RSF rotational angles of 0°,8.95°,19.11°,30°,40.89°,51.05°,and 60°,respectively. For convenience, we label these models as configurations A, B,C, D, E, F, and AB, respectively. Figure 2 shows the relaxed structures of these models. From Figs. 1 and 2, we find that the model structures of configurations A-F prior to and after relaxation were not the same, and the models after relaxation did not become the most stable AB stacking form,which indicate that the emergence of RSFs is ubiquitous. The unrelaxed models can be considered as partial and restricted structures that were extracted from an infinite bilayer graphene. Thus,to comprehensively study the magnetic and electronic structural properties of bilayer graphene quantum dots with RSFs,we performed DFT calculations for both the unrelaxed and relaxed models.

    We first performed calculations for the unrelaxed models. The total energy differences between the spin polarized state and the non-spin polarized state of the seven models in Fig. 1 were -1.5 eV, -3.8 eV, -3.2 eV, -5.5 eV, -2.4 eV,-0.3 eV, and -5.9 eV, respectively. The total energies of all the spin polarized states were lower, which indicates that the ground states of these models were all magnetic.[15,33]Their magnetic moments were 28.0001μB, 21.2795μB, 20.2941μB,15.8469μB, 21.9491μB, 19.8623μB, and 28.0067μB, respectively,where μBdenotes the Bohr magneton. Figure 3 shows the spatial distribution of unpaired spins of the seven unrelaxed models. They were mainly concentrated at the edge of the models,which indicates that magnetism mainly originated from the edge structure of the models.

    Fig.1. Unrelaxed model of bilayer graphene quantum dots with seven different RSF rotational angles: (a)0°,(b)8.95°,(c)19.11°,(d)30°,(e)40.89°,(f)51.05°,and(g)60°.These models are labeled as configurations A,B,C,D,E,F,and AB,respectively.(h)-(n)The corresponding top views of(a)-(g).

    Fig.2. Relaxed model of bilayer graphene quantum dots with seven different RSF rotational angles: (a)0°,(b)8.95°,(c)19.11°,(d)30°,(e)40.89°,(f)51.05°,and(g)60°. (h)-(n)The corresponding top views of(a)-(g).

    Fig.3.Spatial distribution of unpaired spins of the unrelaxed bilayer graphene quantum dots models with seven different RSF rotational angles.Unpaired spins were obtained by subtracting the spin down density from the spin up density;results in positive values are shown in light blue,and results in negative values are shown in light yellow. (a)-(g)The 3D views and(h)-(n)the top views of(a)-(g),respectively.

    Figure 4 shows the energy level structure and spin state near the Fermi level of the seven unrelaxed models. Because the ground states were all spin polarized,their electronic structures also split into two states. We then define the majority spins and minority spins as spin up and spin down, respectively. The energy level structure and the spin distribution were also different for these models.Among them,the HOMO and LUMO of models A, B, and C were both spin up, those of models D,E,and AB were spin up and spin down,respectively,and the HOMO and LUMO of model F were spin down and spin up, respectively. This indicates that different RSF rotational angles could be used to modulate the spin distribution of bilayer graphene, thereby obtaining different spin polarized currents,which is critical for the production of spintronic devices.[34]A comparison of Figs. 1, 3, and 4 shows that the difference in the magnetic moment and spin distribution originated from the different stacking modes of the bilayer graphene,namely,the difference in the rotational angles.

    In addition, we also observed that the LUMO-HOMO energy gaps of these seven models varied in magnitude, and were 0.0009 eV(0°),0.0128 eV(8.95°),0.0094 eV(19.11°),0.0108 eV(30°),0.0028 eV(40.89°),0.0044 eV(51.05°),and 0.0271 eV(60°),respectively. These differences implied that the electron conduction of these seven quantum dots showed different responses to an external electric field. Their ability to generate photons and interact with photons also differed.[35]This is advantageous for designing and producing various allcarbon electronic and optoelectronic functional devices.

    Fig.4. Distribution of the energy levels near the Fermi level of the unrelaxed models of bilayer graphene quantum dots with different RSF rotational angles. Labels A-F and AB correspond to models A-F and AB, respectively. The dashed line represents the Fermi level. The energy levels in black and red correspond to spin up and spin down, respectively.

    Fig.5. Spatial distribution of unpaired spins of the relaxed bilayer graphene quantum dots models with seven different RSF rotational angles.Unpaired spins were obtained by subtracting the spin down density from the spin up density;results in positive values are shown in light blue,and results in negative values are shown in light yellow. (a)-(g)The 3D views and(h)-(n)the top views of(a)-(g),respectively.

    We then performed DFT calculations for the relaxed models and found that the results were very similar to those of the unrelaxed models, as shown in Figs. 5 and 6. The total energy differences between the spin polarized state and the non-spin polarized state of these models were -5.7 eV,-3.8 eV,-4.1 eV,-4.3 eV,-4.4 eV,-3.5 eV,and-6.5 eV respectively, which indicates that the ground states of these models were all magnetic. The spatial distributions of unpaired spins of these models showed that the magnetism also mainly originated from the edge structure of the models. As shown in Fig. 5, the magnetic moments were 20.0000μB,16.2101μB, 16.0000μB, 18.0000μB, 14.0000μB, 16.0000μB,and 26.0000μB,respectively.The energy gaps of these relaxed models were 0.0870 eV, 0.0282 eV, 0.0665 eV, 0.2408 eV,0.3059 eV, 0.3068 eV, and 0.2907 eV, respectively. Similar to the DFT results of the unrelaxed models, the energy levels and spin distributions of the relaxed models also varied with changes in the RSF rotational angles,as shown in Fig.6.Figures 3 and 5 show that the magnetic moment of bilayer graphene quantum dots mainly originated from the edge, regardless of relaxation. Different rotational angles led to different edge structures, resulting in different magnetic moments.Thus, different RSF rotational angles can modulate the magnetic moment of bilayer graphene quantum dots. The DFT results in Figs. 4 and 6 demonstrated that RSFs of different rotational angles can modulate the distribution of spin and energy level of bilayer graphene quantum dots,regardless of relaxation.

    Fig.6. Distribution of energy levels near the Fermi level of the relaxed models of bilayer graphene quantum dots with different RSF rotational angles.Labels A-F and AB correspond to models A-F and AB,respectively. The dashed line represents the Fermi level. The energy levels in black and red correspond to spin up and spin down,respectively.

    To better understand the effect of different RSF rotational angles on the magnetic moment and energy gap of bilayer graphene quantum dots,we plotted the magnetic moment and energy gap of unrelaxed and relaxed models together as a function of the rotational angle,as shown in Fig.7. The maximum magnetic moments of both unrelaxed and relaxed models were found to occur around 0°and 60°. The minimum values occurred around 30°and 51°for the unrelaxed models,and 19°and 41°for the relaxed models,as shown in Fig.7(a). This indicates that RSFs with different rotational angles can modulate the magnetism of bilayer graphene quantum dots. Figure 7(b)shows that the maximum energy gap of the unrelaxed model corresponded to around 9°and 60°, and the minimum value corresponded to around 0°and 41°.The maximum energy gap of the relaxed model corresponded to around 0°and 41°,and the minimum value corresponded to around 9°and 60°. The trends for the maximum and minimum energy gaps of the two models were the exact opposite,indicating that the restrictiveness at the edge of the quantum dots had a significant influence on the properties of the electronic structure,thus further confirming that RSFs with different rotational angles can modulate the electronic structure of bilayer graphene quantum dots,regardless of relaxation. Therefore,bilayer graphene quantum dots with RSFs having different rotational angles are a potential means to tailor the properties of graphene. This can be used to develop different electronic,magnetic,and spintronic devices based on bilayer graphene quantum dots.

    Fig. 7. (a) Plot of magnetic moment against rotational angle for unrelaxed and relaxed models of bilayer graphene quantum dots with different RSF rotational angles. (b) Plot of LUMO-HOMO energy gap against rotational angle for unrelaxed and relaxed models of bilayer graphene quantum dots with different RSF rotational angles.

    To explore the source of the magnetic moments of these models,we focused on the bilayer graphene quantum dots with a 30°RSF rotational angle as an example and determined the magnetic moment of each atom in the quantum dots by using Bader charge analysis.[36-38]Figure 8 shows the magnetic moment of individual atoms in the unrelaxed bilayer graphene quantum dots. We added the magnetic moments of each atom to obtain a sum of 15.8467μB, this is consistent with the total magnetic moment in the DFT calculation;i.e.,15.8469μB.This demonstrates the validity of the Bader charge analysis.Figure 9 shows the results of the relaxed model. The sum of the magnetic moments of the individual atoms was 18.0000μB,consistent with the total magnetic moment in the DFT calculation;i.e.,18.0000μB. Figures 8 and 9 show that atoms with larger magnetic moments were all near the edge, while the magnetic moments of the inner atoms were much smaller.This finding suggests that the magnetic properties of these models originate mainly from their edge atoms, which is consistent with our conclusions from the spatial distributions of unpaired spins in Figs.3 and 5,and the results of other works.[32,33,39,40]Because the magnetic moments of bilayer graphene quantum dots are mainly derived from the edge atoms,and the number of edge atoms is proportional to the quantum dot size,the number of total atoms is proportional to the square of the quantum dot size, the maximum magnetic moments of the edge atoms are all about 1μB,as shown in Figs.8 and 9,so it can be concluded that the average atomic magnetic moments of quantum dots decrease with the increase of the size, which is similar to the nanoribbons.[33]In addition,we also found that the distribution of the magnetic moment of each atom in the relaxed quantum dot model was more stable than the unrelaxed model,where atoms with negative magnetic moment essentially disappeared and the magnetic moments were more concentrated at the edge.

    Fig. 8. Magnetic moment of individual atom obtained through the Bader charge analysis of unrelaxed bilayer graphene quantum dots with 30° RSF rotational angle.

    Fig. 9. Magnetic moment of individual atom obtained through the Bader charge analysis of relaxed bilayer graphene quantum dots with 30° RSF rotational angle.

    4. Conclusion

    Our first-principles calculation results show that bilayer graphene quantum dots containing RSFs with different rotational angles are all magnetic, while the magnetic moment varies with changes in the rotational angles. By examining the spatial distribution of unpaired spins and through Bader charge analysis,we confirm that the magnetic moment mainly originates from the edge atoms,while the rotational angle determines the edge structure. Consequently, we can modulate the magnetic moment of bilayer graphene quantum dots using RSFs with different rotational angles. We also discover that RSFs with different rotational angles can modulate the distribution of energy level and spin of bilayer graphene quantum dots. We expect that our findings will potentially open a new path of defect engineering to produce electronic, magnetic,and spintronic devices with a variety of functions.

    猜你喜歡
    原文
    Definition, Mission and Standards of International Olive Council (英文原文)
    Omega-6 for Body, Omega-3 for Brain: Balance for Brain Development in Children (英文原文)
    Developing ISO International Standards for the Animal and Vegetable Fats and Oils Sector (英文原文)
    讓句子動(dòng)起來(lái)
    豐 碑
    嘗糞憂心
    哭竹生筍
    扼虎救父
    恣蚊飽血
    埋兒奉母
    国产极品粉嫩免费观看在线| 天美传媒精品一区二区| 婷婷色综合www| 国产无遮挡羞羞视频在线观看| 亚洲欧美色中文字幕在线| 不卡视频在线观看欧美| 日韩大码丰满熟妇| 国产人伦9x9x在线观看| 久久久精品区二区三区| 捣出白浆h1v1| 亚洲美女黄色视频免费看| 久久久久精品国产欧美久久久 | 亚洲色图 男人天堂 中文字幕| 少妇人妻久久综合中文| 国语对白做爰xxxⅹ性视频网站| 九九爱精品视频在线观看| 宅男免费午夜| 亚洲av国产av综合av卡| svipshipincom国产片| 在现免费观看毛片| 91成人精品电影| kizo精华| 亚洲精品日韩在线中文字幕| 两个人看的免费小视频| 国产一级毛片在线| 性高湖久久久久久久久免费观看| 99热国产这里只有精品6| 最近中文字幕高清免费大全6| 麻豆乱淫一区二区| 91精品三级在线观看| 永久免费av网站大全| 爱豆传媒免费全集在线观看| 国产 精品1| 巨乳人妻的诱惑在线观看| 校园人妻丝袜中文字幕| 亚洲av综合色区一区| 久久久精品免费免费高清| 男女免费视频国产| 午夜激情久久久久久久| 久热爱精品视频在线9| h视频一区二区三区| 午夜福利网站1000一区二区三区| 国产片内射在线| 97人妻天天添夜夜摸| 国产精品香港三级国产av潘金莲 | 精品久久蜜臀av无| 午夜激情av网站| 精品一区二区三卡| 国产精品 国内视频| 国产亚洲欧美精品永久| 免费黄色在线免费观看| 亚洲成av片中文字幕在线观看| 91国产中文字幕| 久久影院123| 亚洲五月色婷婷综合| 久久久精品免费免费高清| 日韩人妻精品一区2区三区| 高清av免费在线| 免费日韩欧美在线观看| 一区二区日韩欧美中文字幕| 在线天堂最新版资源| 国产熟女欧美一区二区| 亚洲精品自拍成人| 国产成人啪精品午夜网站| 成年人午夜在线观看视频| 国产一区有黄有色的免费视频| 叶爱在线成人免费视频播放| 一级毛片 在线播放| 最近手机中文字幕大全| 成人午夜精彩视频在线观看| 久久天躁狠狠躁夜夜2o2o | 一二三四在线观看免费中文在| 久久精品aⅴ一区二区三区四区| 成人毛片60女人毛片免费| 久久久国产一区二区| a级毛片黄视频| 久久精品熟女亚洲av麻豆精品| 永久免费av网站大全| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 一级爰片在线观看| 午夜日本视频在线| 久久97久久精品| 18禁观看日本| 中文字幕另类日韩欧美亚洲嫩草| 日韩av免费高清视频| 最近2019中文字幕mv第一页| 国产探花极品一区二区| 操美女的视频在线观看| av女优亚洲男人天堂| 日韩一区二区视频免费看| 日韩av在线免费看完整版不卡| 国产片内射在线| 丰满饥渴人妻一区二区三| 人人妻人人爽人人添夜夜欢视频| 国产欧美日韩综合在线一区二区| 欧美人与性动交α欧美软件| 久久久欧美国产精品| 最新的欧美精品一区二区| 国产精品一区二区在线不卡| 午夜精品国产一区二区电影| 免费高清在线观看日韩| 男女边吃奶边做爰视频| 悠悠久久av| 久久精品人人爽人人爽视色| 色综合欧美亚洲国产小说| 9热在线视频观看99| 久久毛片免费看一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲国产精品一区三区| 国产深夜福利视频在线观看| 天天操日日干夜夜撸| 一级毛片电影观看| 飞空精品影院首页| 亚洲欧美精品自产自拍| 男女高潮啪啪啪动态图| 纯流量卡能插随身wifi吗| 欧美最新免费一区二区三区| 久久久久视频综合| 日韩中文字幕欧美一区二区 | 欧美日韩视频精品一区| 中文字幕精品免费在线观看视频| 蜜桃在线观看..| 麻豆av在线久日| 国产一区二区 视频在线| 在线亚洲精品国产二区图片欧美| 成年美女黄网站色视频大全免费| 成人漫画全彩无遮挡| 国产成人欧美| 精品国产露脸久久av麻豆| 亚洲成国产人片在线观看| 亚洲精品日本国产第一区| 成人午夜精彩视频在线观看| 制服诱惑二区| 午夜福利影视在线免费观看| 欧美黑人精品巨大| 国产极品粉嫩免费观看在线| 午夜激情av网站| 国产精品二区激情视频| 18禁裸乳无遮挡动漫免费视频| 老司机影院成人| 少妇被粗大的猛进出69影院| 视频区图区小说| 我要看黄色一级片免费的| 秋霞伦理黄片| 欧美人与性动交α欧美精品济南到| 在线观看免费高清a一片| 男女午夜视频在线观看| 只有这里有精品99| 午夜福利影视在线免费观看| 欧美人与善性xxx| av免费观看日本| 亚洲av福利一区| 女人爽到高潮嗷嗷叫在线视频| 国产精品香港三级国产av潘金莲 | 午夜免费鲁丝| 久久精品国产a三级三级三级| 中文字幕另类日韩欧美亚洲嫩草| 综合色丁香网| av在线app专区| 电影成人av| 综合色丁香网| 国产成人系列免费观看| 国产精品一国产av| 久久精品亚洲熟妇少妇任你| 91精品三级在线观看| 操美女的视频在线观看| 亚洲精品在线美女| 欧美xxⅹ黑人| 欧美日韩视频高清一区二区三区二| 成年av动漫网址| 天堂俺去俺来也www色官网| www.av在线官网国产| 中国三级夫妇交换| 在线观看www视频免费| 午夜福利在线免费观看网站| 久久影院123| 人人妻,人人澡人人爽秒播 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产在视频线精品| 不卡视频在线观看欧美| 日韩大片免费观看网站| 超碰97精品在线观看| 国产av码专区亚洲av| 久久久精品94久久精品| 伊人久久国产一区二区| 亚洲激情五月婷婷啪啪| 夜夜骑夜夜射夜夜干| 熟女av电影| 精品一区二区免费观看| 亚洲av福利一区| 亚洲欧美一区二区三区国产| 大陆偷拍与自拍| 国产精品 欧美亚洲| 婷婷成人精品国产| 老鸭窝网址在线观看| av在线播放精品| 日韩视频在线欧美| 菩萨蛮人人尽说江南好唐韦庄| 国产黄色视频一区二区在线观看| 精品国产一区二区三区久久久樱花| 免费av中文字幕在线| 18禁观看日本| 亚洲av国产av综合av卡| 综合色丁香网| 老司机靠b影院| www.av在线官网国产| 街头女战士在线观看网站| 亚洲精品国产色婷婷电影| 亚洲四区av| 久久狼人影院| 夫妻性生交免费视频一级片| 日韩视频在线欧美| 老鸭窝网址在线观看| 免费av中文字幕在线| 国产精品久久久久久久久免| 国产精品av久久久久免费| 色吧在线观看| 欧美 亚洲 国产 日韩一| tube8黄色片| 男女免费视频国产| 中国国产av一级| 欧美日韩亚洲高清精品| 十八禁网站网址无遮挡| 男人操女人黄网站| 精品少妇久久久久久888优播| 黄色 视频免费看| 久久精品国产亚洲av涩爱| 街头女战士在线观看网站| 校园人妻丝袜中文字幕| 丰满饥渴人妻一区二区三| 免费在线观看完整版高清| 街头女战士在线观看网站| 看免费av毛片| 国产成人欧美| 大香蕉久久网| 91aial.com中文字幕在线观看| 天堂8中文在线网| 欧美成人精品欧美一级黄| 亚洲在久久综合| 成人国产麻豆网| netflix在线观看网站| 亚洲国产精品国产精品| 日本黄色日本黄色录像| 精品国产乱码久久久久久小说| 久久国产亚洲av麻豆专区| 精品视频人人做人人爽| 久久久精品国产亚洲av高清涩受| 蜜桃国产av成人99| 久久99精品国语久久久| 国产精品99久久99久久久不卡 | 校园人妻丝袜中文字幕| 熟女av电影| 国产一区亚洲一区在线观看| 国产爽快片一区二区三区| 国产黄色免费在线视频| 夜夜骑夜夜射夜夜干| 啦啦啦 在线观看视频| 亚洲国产中文字幕在线视频| 国产亚洲av片在线观看秒播厂| 国产精品无大码| 久久久久精品性色| 国产精品av久久久久免费| 日本av手机在线免费观看| 日韩一区二区视频免费看| 一级毛片 在线播放| 飞空精品影院首页| 亚洲精品久久久久久婷婷小说| 2021少妇久久久久久久久久久| 老汉色av国产亚洲站长工具| 中国三级夫妇交换| 亚洲精品成人av观看孕妇| 国产av精品麻豆| 各种免费的搞黄视频| 亚洲国产精品成人久久小说| 天堂中文最新版在线下载| 美女福利国产在线| 亚洲精品美女久久av网站| 国产精品欧美亚洲77777| 极品少妇高潮喷水抽搐| 精品国产一区二区久久| 久久久久久久大尺度免费视频| 色精品久久人妻99蜜桃| 97人妻天天添夜夜摸| 精品国产露脸久久av麻豆| 国产av国产精品国产| 亚洲精品一二三| 久久久国产一区二区| 新久久久久国产一级毛片| 别揉我奶头~嗯~啊~动态视频 | 国产精品嫩草影院av在线观看| 亚洲中文av在线| 黄片播放在线免费| 欧美激情 高清一区二区三区| av网站在线播放免费| 97在线人人人人妻| 少妇人妻久久综合中文| 亚洲精品一区蜜桃| 欧美日韩福利视频一区二区| 999精品在线视频| 亚洲精品自拍成人| 一二三四在线观看免费中文在| 欧美xxⅹ黑人| 高清欧美精品videossex| 女人久久www免费人成看片| 欧美日韩视频高清一区二区三区二| 两个人免费观看高清视频| 一本色道久久久久久精品综合| 亚洲精品国产av蜜桃| 亚洲美女黄色视频免费看| 久久久久国产精品人妻一区二区| 母亲3免费完整高清在线观看| 高清欧美精品videossex| 久久女婷五月综合色啪小说| 亚洲,一卡二卡三卡| 亚洲成人国产一区在线观看 | 秋霞在线观看毛片| 日韩人妻精品一区2区三区| 在现免费观看毛片| av.在线天堂| 国产免费一区二区三区四区乱码| 老司机影院毛片| 丁香六月欧美| 丝袜脚勾引网站| 久久久国产精品麻豆| 午夜免费鲁丝| 亚洲精品美女久久久久99蜜臀 | 亚洲成人一二三区av| 这个男人来自地球电影免费观看 | 精品国产乱码久久久久久小说| 超碰97精品在线观看| 男的添女的下面高潮视频| 夜夜骑夜夜射夜夜干| 大陆偷拍与自拍| 国产成人a∨麻豆精品| 国产探花极品一区二区| 啦啦啦在线免费观看视频4| 一本一本久久a久久精品综合妖精| 国产视频首页在线观看| 亚洲第一青青草原| 人人妻人人添人人爽欧美一区卜| 国产探花极品一区二区| 丁香六月欧美| 99国产精品免费福利视频| 亚洲精品乱久久久久久| 青春草国产在线视频| 国产一区二区激情短视频 | 91精品三级在线观看| 国产精品亚洲av一区麻豆 | 亚洲激情五月婷婷啪啪| 一区二区三区四区激情视频| 国产日韩欧美在线精品| 国产精品无大码| 老司机深夜福利视频在线观看 | 日本欧美国产在线视频| 欧美黄色片欧美黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品成人久久小说| 黄色一级大片看看| 欧美国产精品一级二级三级| 狠狠精品人妻久久久久久综合| 中文欧美无线码| 亚洲欧美激情在线| 青草久久国产| 欧美亚洲日本最大视频资源| 操出白浆在线播放| 亚洲av成人不卡在线观看播放网 | 香蕉国产在线看| 黄网站色视频无遮挡免费观看| 超色免费av| 建设人人有责人人尽责人人享有的| 亚洲人成电影观看| 妹子高潮喷水视频| 中文字幕人妻熟女乱码| 国产在线一区二区三区精| 亚洲伊人久久精品综合| videos熟女内射| 18禁裸乳无遮挡动漫免费视频| 欧美av亚洲av综合av国产av | 久久天堂一区二区三区四区| 青青草视频在线视频观看| 亚洲久久久国产精品| 校园人妻丝袜中文字幕| 成人免费观看视频高清| 咕卡用的链子| 满18在线观看网站| 国产精品免费视频内射| 街头女战士在线观看网站| 999精品在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人巨大精品欧美一区二区蜜桃| 18禁裸乳无遮挡动漫免费视频| 在线观看一区二区三区激情| 国产男女内射视频| 亚洲成人国产一区在线观看 | 久热这里只有精品99| 欧美日韩亚洲综合一区二区三区_| 久久精品国产综合久久久| 精品国产露脸久久av麻豆| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产精品成人久久小说| 亚洲av国产av综合av卡| 国产一级毛片在线| 亚洲国产av新网站| 天天影视国产精品| 夫妻午夜视频| 深夜精品福利| 男男h啪啪无遮挡| 欧美最新免费一区二区三区| 老司机亚洲免费影院| 国产女主播在线喷水免费视频网站| 777久久人妻少妇嫩草av网站| 久久久亚洲精品成人影院| 少妇 在线观看| 中文欧美无线码| 在线亚洲精品国产二区图片欧美| e午夜精品久久久久久久| 国产精品久久久av美女十八| 啦啦啦在线观看免费高清www| 人妻 亚洲 视频| 国产日韩一区二区三区精品不卡| 十八禁网站网址无遮挡| 午夜91福利影院| 久久人妻熟女aⅴ| a 毛片基地| 又大又爽又粗| 在线观看www视频免费| 看非洲黑人一级黄片| 亚洲美女搞黄在线观看| xxx大片免费视频| 精品人妻在线不人妻| 亚洲国产精品一区三区| 女性生殖器流出的白浆| 热99国产精品久久久久久7| 人成视频在线观看免费观看| 国产乱来视频区| 69精品国产乱码久久久| 亚洲成人免费av在线播放| 高清av免费在线| 18禁国产床啪视频网站| 日日摸夜夜添夜夜爱| 叶爱在线成人免费视频播放| 亚洲欧美中文字幕日韩二区| 黄片无遮挡物在线观看| 高清在线视频一区二区三区| 午夜久久久在线观看| kizo精华| 男男h啪啪无遮挡| 亚洲第一区二区三区不卡| 最近2019中文字幕mv第一页| 观看av在线不卡| av在线app专区| 亚洲精品国产一区二区精华液| 亚洲人成网站在线观看播放| 高清不卡的av网站| 国产伦人伦偷精品视频| 日韩一区二区三区影片| 亚洲欧洲国产日韩| 国产色婷婷99| 精品一区二区三区av网在线观看 | 久久久久久久久免费视频了| 免费高清在线观看日韩| 黄色视频在线播放观看不卡| 国产熟女午夜一区二区三区| 涩涩av久久男人的天堂| 亚洲国产中文字幕在线视频| 久久久久精品人妻al黑| www日本在线高清视频| 90打野战视频偷拍视频| 国产精品久久久久成人av| 日韩av不卡免费在线播放| 国产一级毛片在线| 成人国语在线视频| 亚洲精华国产精华液的使用体验| 一区二区三区四区激情视频| 久久人妻熟女aⅴ| 精品少妇一区二区三区视频日本电影 | 高清av免费在线| 人人妻人人爽人人添夜夜欢视频| 亚洲成人手机| 纵有疾风起免费观看全集完整版| 久久精品久久久久久久性| 亚洲欧美成人综合另类久久久| 国产又爽黄色视频| 成人18禁高潮啪啪吃奶动态图| 五月开心婷婷网| 自线自在国产av| 一本色道久久久久久精品综合| av视频免费观看在线观看| 国产高清国产精品国产三级| 精品酒店卫生间| 色婷婷久久久亚洲欧美| 91国产中文字幕| 伊人久久国产一区二区| 亚洲欧洲日产国产| 久久鲁丝午夜福利片| av电影中文网址| 日韩av在线免费看完整版不卡| 纯流量卡能插随身wifi吗| 中文字幕色久视频| h视频一区二区三区| 又粗又硬又长又爽又黄的视频| 天天影视国产精品| 国产精品免费大片| 捣出白浆h1v1| 亚洲自偷自拍图片 自拍| 欧美亚洲 丝袜 人妻 在线| 亚洲美女搞黄在线观看| 国产精品免费大片| 成年人免费黄色播放视频| 日本欧美国产在线视频| 青草久久国产| 亚洲成人免费av在线播放| av天堂久久9| 欧美最新免费一区二区三区| 黄色视频在线播放观看不卡| 别揉我奶头~嗯~啊~动态视频 | 免费看av在线观看网站| 最新在线观看一区二区三区 | 天天添夜夜摸| 97精品久久久久久久久久精品| 操出白浆在线播放| 男女无遮挡免费网站观看| 看免费av毛片| 国产免费福利视频在线观看| 免费看av在线观看网站| 一本—道久久a久久精品蜜桃钙片| 热99久久久久精品小说推荐| 嫩草影院入口| 午夜福利网站1000一区二区三区| 悠悠久久av| 大片电影免费在线观看免费| 亚洲国产日韩一区二区| 久久久久网色| 中文字幕人妻熟女乱码| 久久狼人影院| 丁香六月欧美| 美女大奶头黄色视频| 晚上一个人看的免费电影| 亚洲国产欧美在线一区| 捣出白浆h1v1| 亚洲一区中文字幕在线| 少妇被粗大猛烈的视频| 青春草视频在线免费观看| 久久97久久精品| 中文天堂在线官网| 熟妇人妻不卡中文字幕| 丰满乱子伦码专区| 免费高清在线观看日韩| 欧美成人午夜精品| 亚洲免费av在线视频| 国产伦理片在线播放av一区| 无限看片的www在线观看| 制服诱惑二区| 精品一区二区三卡| 亚洲色图综合在线观看| 欧美在线一区亚洲| 自线自在国产av| 亚洲精品国产色婷婷电影| 国产高清不卡午夜福利| 精品少妇一区二区三区视频日本电影 | 色播在线永久视频| 色精品久久人妻99蜜桃| 高清在线视频一区二区三区| 亚洲av电影在线观看一区二区三区| 欧美日韩综合久久久久久| 久久久精品区二区三区| 在线观看三级黄色| 黄色一级大片看看| 最近的中文字幕免费完整| 99久久精品国产亚洲精品| 1024香蕉在线观看| 高清欧美精品videossex| 日本午夜av视频| 男女无遮挡免费网站观看| 91精品伊人久久大香线蕉| 国产精品 国内视频| 国产深夜福利视频在线观看| 久久午夜综合久久蜜桃| 免费观看av网站的网址| 亚洲精品中文字幕在线视频| 高清av免费在线| 人人妻人人澡人人爽人人夜夜| 日韩一区二区三区影片| av又黄又爽大尺度在线免费看| 欧美激情极品国产一区二区三区| 一二三四在线观看免费中文在| 制服人妻中文乱码| 欧美激情极品国产一区二区三区| 97精品久久久久久久久久精品| 中国三级夫妇交换| 啦啦啦 在线观看视频| 一级a爱视频在线免费观看| av片东京热男人的天堂| 亚洲久久久国产精品| 欧美日韩精品网址| 日日撸夜夜添| 亚洲成av片中文字幕在线观看| 欧美日韩av久久| 日日撸夜夜添| 在线天堂中文资源库| 在线免费观看不下载黄p国产| 亚洲精品乱久久久久久| 大香蕉久久网| 国产精品国产三级国产专区5o| 女人精品久久久久毛片| 久久鲁丝午夜福利片| 亚洲欧美日韩另类电影网站| 最近最新中文字幕免费大全7| 日本黄色日本黄色录像| 少妇人妻精品综合一区二区| 亚洲精品乱久久久久久| 看十八女毛片水多多多| 一边摸一边做爽爽视频免费| 啦啦啦在线观看免费高清www|