• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method?

    2019-08-06 02:07:34YanYanZhang張燕燕RanCheng程然DongNi倪東MingTian田明
    Chinese Physics B 2019年7期

    Yan-Yan Zhang(張燕燕), Ran Cheng(程然), Dong Ni(倪東), Ming Tian(田明),

    Ji-Wu Lu(盧繼武)4,?, and Yi Zhao(趙毅)1

    1College of Information Science and Electronic Engineering,Zhejiang University,Hangzhou 310027,China

    2State Key Laboratory of Industrial Control Technology,Zhejiang University,Hangzhou 310027,China

    3Shanghai Huali Microelectronics Corporation,Shanghai 200120,China

    4College of Electrical and Information Engineering,Hunan University,Changsha 410082,China

    Keywords: cross-plane thermal conductivity,ultra-fast transient hot strip method

    1. Introduction

    To further improve device performance and the integration density of chips in the post-Moore era, novel structured transistors like FinFETs and ultra-thin body and buried oxide (UTBB) FETs have been adopted.[1,2]However, due to the high drive current and the low thermal conductivity, the severe self-heating effects of these new structure transistors may lead to reliability problems.[3,4]The thermal characterization of thin silicon films is of great importance for studying self-heating effects in high performance transistors. The accurate extraction of thermal parameters for these thin Si films,which is quite different from that for bulk silicon, is necessary for the heat modeling and estimation in high performance circuits.[5,6]In general, measurements of cross-plane thermal conductivity are much more difficult than those in the in-plane direction of silicon films, due to the small thermal resistance RFinduced by the high thermal conductivity film. Therefore,few research studies about the cross-plane thermal conductivity of silicon films have been reported. So far, cross-plane thermal conductivity has been measured in holey silicon structures,and the thermal conductivity of the porous film is much lower than that of the simulated whole silicon film.[7,8]The extra boundaries introduced increase the phonon boundary scattering and reduce the cross-plane thermal conductivity,which is significant for thermoelectric applications. Lots of models have been established to calculate the cross-plane thermal conductivity.[9-11]According to the simulation results given in Ref. [11], the cross-plane thermal conductivity decreases as the silicon film thickness diminishes and is lower than the in-plane thermal conductivity. The lower thermal conductivity in the vertical direction may result in a higher channel operating temperature and further degrade the performance of the devices. What is more, the heat transport mechanism in the vertical direction is different from that in the lateral orientation as the thickness of the silicon film decreases. With the film thickness reduced below 1 μm, diffusive heat transport in-plane is dominated by various scattering mechanisms,such as Umklapp scattering,phonon boundary scattering,and imperfection scattering.[12,13]However,with the thickness reduction, heat transport in the cross-plane transfers to ballistic phonon transport,which means that the phonon mean free path is shorter than the length scale in the temperature gradient direction and phonons can travel without the internal scattering. Therefore,it is important and necessary to investigate the cross-plane thermal conductivity of thin silicon films,whether for figuring out the operation principles of phonon transport in the vertical direction or for understanding the self-heating effect in transistors.

    The transient hot strip method (THS) was first proposed by Gustafsson to extract the thermal conductivity and thermal diffusivity of solids and fluids,[14]and was later also applied to measure the thermal conductivity of metallic materials by inserting an insulation layer between the metal heater and the tested film.[15]The THS method is a feasible technique for thermal conductivity measurements. Traditionally,THS measurements are carried out in a millisecond or second time scale.[16]In this paper, we proposed an ultra-fast transient hot strip method to determine the cross-plane thermal conductivity of thin silicon films. The ultra-short pulse took place from nanosecond to microsecond time scales for film thickness ranging from 10 nm to tens of μm depending on the thermal diffusivity of the materials. The pulse width of the electrical voltage was selected from 200 ns to 20 μs,which is a compromise between our experimental setup and the requirement of measurement accuracy. The cross-plane thermal conductivity data for silicon films with different thicknesses(from 30 nm to 10 nm)at different temperatures(from 75 K to 400 K) were successfully extracted from the time dependent temperature response after the ultra-short electrical pulse. The positive temperature dependence indicates that phonon boundary scattering dominates in the studied temperature region. Adopting a novel analysis model derived from the heat transport equation based on extended irreversible hydrodynamics (EIT), good consistency was achieved between the experimental data and the simulations,experimentally verifying the ballistic phonon transport heat conduction in the cross plane of thin silicon films.

    2. Experimental setup

    The process flow for fabricating the test structures is shown in Fig. 1. After pre-cleaning the silicon-on-insulator(SOI) substrate with a thick Si layer, the silicon film was thinned to 30 nm, 17 nm, 10 nm, and 0 nm (control sample)by a cyclic thermal oxidation and HF etching. Following that, 10 nm-thick Al2O3was grown by atomic layer deposition(ALD)at 300°C to isolate the silicon film from the heater metal. After the deposition of a 50 nm-thick Ni layer by thermal evaporation, the Ni electrodes were patterned by optical lithography and wet-etching in diluted HCl. The schematic in Fig. 1 on the right shows a three-dimensional view of such a fabricated test structure. The length of the test structures is 1000 μm, and the width is 10 μm. The ratio of length/width was designed to be far greater than 20 to minimize the effect of the finite strip length. The thickness of the buried oxide(BOX)layer is 3μm and the substrate silicon has a thickness of 675μm.

    Fig. 1. (a) The process flow for fabricating the structure and (b) the schematic of the structure.

    By applying an electrical pulse with a pulse time of 20μs to the Ni electrode,the sample was heated by the Joule heating produced, and the temperature went up. In this structure, the Ni strip acted as both the heater and the sensor. The measurements were performed at an environmental temperature from 300 K to 400 K with steps of 10 K in a vacuum ambient of 2.7×10-7mbar in order to minimize the effects of heat convection. The oven temperature was PID controlled, and the temperature accuracy was 0.001 K. The ambient temperature was sensed by a silicon diode placed close to the sample.

    Fig.2.(a)Resistance distribution at temperatures between 300 K and 400 K,varied as the pulse time increased,and(b)a zoomed-in schematic of the resistance distribution at temperature 300 K.

    The resistance responses in the temperature range between 300 K and 400 K are shown in Fig. 2. Figure 2(a)shows that the linear resistance increased as the temperature increased, and the zoomed-in resistance response curve at 300 K after the voltage pulse is shown in Fig. 2(b). The resistance increased as the pulse time increased during the earlier 10μs,and then tended to saturate during the latter 10μs.According to the resistance response at a certain ambient temperature,the temperature rise can be calculated.

    Considering the uncertainty induced by the measurement setup, we took the average resistance of the third hundred nanosecond as the initial resistance R0. The temperature coefficient of resistance (TCR) was obtained by measuring the resistance R at different temperatures T and was calculated as

    The dependence of the initial resistance R0and the temperature coefficient α on temperature is summarized in Fig.3.Figure 3(a) shows R at temperatures between 300 K and 400 K,and figure 3(b)shows the TCR of the Ni strip in the same temperature regime. It can be found that R increases linearly as the temperature increases, while the trend of TCR change is the reverse.

    Fig.3. (a)The initial resistances R0 extracted from the resistance distribution varied as the pulse time increased, and R0 was calculated by averaging the resistances at the third hundred nanosecond. (b)The temperature coefficient distribution at different environment temperatures ranging from 300 K to 400 K in steps of 10 K.

    The temperature rise ΔT can be calculated using the following equation:

    According to the THS model, the temperature in the metal strip can also be characterized as

    where P0is the heat generation power per unit length, γ is a geometrical parameter, h is the length of the heater, κ is the thermal conductivity,and t is the measurement time.[17]The γ parameter is related to the sample structure[18]and the optical values of γ with different structures are shown in Fig.4. Here,it was set as 2 for the same structure in Fig.4(c).

    Fig.4.Geometrical parameter γ is related to the measurement structure,and(a)γ =4,(b)γ =2,(c)γ =2,(d)γ =1 for the structures shown.

    The thermal impedance Rthis defined as ΔT/P0, and therefore Rthcan be expressed as

    When the width of the strip d is small, f(τ)is approximately proportional to lnt as given by

    where D is the thermal diffusivity of the film,and τ is the characteristic time. Therefore, the thermal conductivity is related to the slope of Rthversus t in the log scale,and is given by

    Figures 5(a) and 5(b) show the Rthdistributions of the control sample and of the sample with TSOI=30 nm in the same temperature region, respectively. Comparing the slope from different SOI thicknesses with that from the control sample in the same linear region, the thermal conductivity of different thin silicon films can be obtained.

    As shown in Fig. 5(c), the film thermal conductivity κSi,filmcan be calculated as

    Fig.5. The linear region in thermal resistance distribution versus pulse time in log scale. The thermal resistance increased as temperature increased. (a)The control sample without SOI,(b)the sample with SOI thickness of 30 nm,and(c)the schematic of κSi,film extraction.

    3. Results and discussion

    The extracted thermal conductivities of the silicon films with different thicknesses are shown in Fig.6(a). Black symbols represent the thermal conductivity of 30 nm SOI, red symbols are the thermal conductivity of 17 nm SOI, and the blue symbols are for 10 nm SOI.As the temperature increases,the conductivity does not decrease significantly, which is a similar trend to that in in-plane data.[19]This implies that internal scattering is not dominant in the present temperature regime since the Umklapp scattering has 1/T dependence on temperature.[20]The ratio of the thermal conductivity of 30 nm, 17 nm, and 10 nm SOI over the bulk value is only~6.9%,~4.3%,and ~3.8%at 300 K,respectively. This extremely low thermal dissipation in devices or circuits may result in hot spots,which interrupts smooth operation. Also,we measured the temperature response of films of the above three thicknesses in the low temperature region (75-285 K). The data are shown in Fig. 6(b). The values at a cryogenic temperature from 75 K to 210 K gradually increase as temperature rises.Beyond 210 K,the thermal conductivity goes up to a certain level. The positive temperature dependence indicates that the phonon-boundary scattering dominates in ultra-thin silicon films below 210 K.

    Fig.6. The cross-plane thermal conductivity extracted at temperatures(a)from 300 K to 400 K,and(b)from 75 K to 285 K.

    According to the work reported in Ref.[21],the average mean free path(MFP)in nanostructured silicon films is about 200 nm. As the film thickness in this work is much smaller than the MFP, phonons can carry heat without internal scattering. In Ref.[12], a ballistic heat transport model based on extended irreversible thermodynamics was used to calculate the cross-plane thermal conductivity. The EIT model was first proposed by Alvarez and Jou,and was very effective for predicting cross-plane thermal conductivity in silicon films.[10]The analysis form is given by

    where κfilm,Siis the cross-plane thermal conductivity, κbulkrefers to the silicon bulk thermal conductivity, L is the thickness of the thin film,and l is the phonon mean free path.When L is smaller than l,phonons can transport heat without internal scattering,and the above formalism can be simplified as

    Comparison of the calculated results from the EIT model and the experiment data is shown in Fig. 7(a). The bulk silicon thermal conductivity κbulkand the average mean free path l are cited from the references.[9,22]It can be found that a satisfactory match between the calculated and experimental results is achieved.This indicates that the ballistic phonon transport dominates in vertical heat conduction in ultra-thin silicon films below 50 nm. The underestimate of TSOI=30 nm in the low temperature region may be attributed to the poor interface quality between Al2O3and SOI films,which could result in a large interface thermal resistance increase as the temperature decreases. The extracted thermal conductivities also match well with the data simulated using the Landauer method as show in Fig.7(b).[23]The consistency between the experiment data and the simulation values validates the feasibility of the ultrafast THS method for cross-plane thermal conductivity extraction.

    Fig.7. The comparison of experimental data with the values calculated from(a)the EIT model from the low temperature region 75 K to high temperature 400 K,(b)the Landauer method in Ref.[23].

    4. Conclusion

    The sub-20 μs ultra-fast THS method has been implemented for measuring the cross-plane thermal conductivity of ultra-thin silicon films. The cross-plane thermal conductivities of 30 nm, 17 nm, and 10 nm thin silicon films were successfully extracted for the first time. The ratio of the thin film’s thermal conductivity over the bulk value is only about 6.9%,4.3%,and 3.8%at 300 K,respectively. The experimental data show a satisfactory agreement with the EIT model and the Landauer model, indicating ballistic phonon transport in the vertical temperature gradient direction of the silicon films.The measured thermal conductivities of silicon films provide important guidance in dealing with the self-heating related issues in advanced transistors.The results in this study also suggest possible thermoelectric applications for ultra-thin silicon films.

    男女边吃奶边做爰视频| 亚洲国产精品成人久久小说| 少妇精品久久久久久久| 欧美日韩综合久久久久久| 一区二区三区精品91| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲婷婷狠狠爱综合网| 女的被弄到高潮叫床怎么办| 看免费成人av毛片| 日本色播在线视频| 成人漫画全彩无遮挡| 国内精品宾馆在线| 欧美97在线视频| 成人亚洲欧美一区二区av| 国产熟女午夜一区二区三区| 天堂8中文在线网| 在线免费观看不下载黄p国产| 精品一区二区三卡| 久久久久久久久久久久大奶| 欧美少妇被猛烈插入视频| 美女国产高潮福利片在线看| 美女中出高潮动态图| 欧美日韩综合久久久久久| 亚洲av成人精品一二三区| 黄片播放在线免费| 久久久久久久大尺度免费视频| 国产毛片在线视频| 亚洲精品久久久久久婷婷小说| 九色成人免费人妻av| 一本大道久久a久久精品| 乱人伦中国视频| 国产精品.久久久| 99香蕉大伊视频| 在线观看美女被高潮喷水网站| 少妇 在线观看| 国产淫语在线视频| 视频在线观看一区二区三区| 国产视频首页在线观看| 妹子高潮喷水视频| 欧美日本中文国产一区发布| 又大又黄又爽视频免费| 一区二区三区乱码不卡18| 少妇熟女欧美另类| 男女午夜视频在线观看 | av在线观看视频网站免费| av又黄又爽大尺度在线免费看| 亚洲国产最新在线播放| av在线老鸭窝| 日本黄大片高清| 国产精品国产三级国产av玫瑰| av国产久精品久网站免费入址| 18禁观看日本| 国产精品久久久久久久电影| 国产一区二区在线观看日韩| 亚洲av.av天堂| 亚洲精品色激情综合| 日本vs欧美在线观看视频| 久久久国产一区二区| 免费大片18禁| 成人无遮挡网站| 最近2019中文字幕mv第一页| 纯流量卡能插随身wifi吗| 国产又爽黄色视频| 91精品三级在线观看| 日本-黄色视频高清免费观看| 一区二区三区精品91| 亚洲精品乱久久久久久| 久久人人爽av亚洲精品天堂| 99久久精品国产国产毛片| 精品99又大又爽又粗少妇毛片| 亚洲性久久影院| 午夜福利在线观看免费完整高清在| 国产精品国产三级国产av玫瑰| 欧美人与性动交α欧美软件 | 国产亚洲午夜精品一区二区久久| a级毛色黄片| 国产伦理片在线播放av一区| 欧美日韩精品成人综合77777| 啦啦啦中文免费视频观看日本| 久久久久久人人人人人| 国产av码专区亚洲av| 十分钟在线观看高清视频www| av电影中文网址| 国产又爽黄色视频| 18在线观看网站| 国产片内射在线| 人妻系列 视频| 亚洲性久久影院| 婷婷色综合大香蕉| 18禁在线无遮挡免费观看视频| 国产爽快片一区二区三区| 久久久国产精品麻豆| 一区二区av电影网| 性色avwww在线观看| 老女人水多毛片| av.在线天堂| 精品午夜福利在线看| 中文乱码字字幕精品一区二区三区| 一级爰片在线观看| 只有这里有精品99| 亚洲成人手机| av视频免费观看在线观看| 这个男人来自地球电影免费观看 | 一边亲一边摸免费视频| 欧美日韩视频精品一区| 99久久综合免费| 十八禁高潮呻吟视频| 免费女性裸体啪啪无遮挡网站| 大码成人一级视频| 一级黄片播放器| 人妻一区二区av| 国产欧美日韩综合在线一区二区| www日本在线高清视频| 日韩欧美一区视频在线观看| 91国产中文字幕| 日日摸夜夜添夜夜爱| 99久久人妻综合| 免费观看av网站的网址| 又粗又硬又长又爽又黄的视频| 人妻少妇偷人精品九色| 亚洲精品美女久久av网站| 免费播放大片免费观看视频在线观看| 女性被躁到高潮视频| 午夜免费观看性视频| 国产精品偷伦视频观看了| 看免费av毛片| 日本91视频免费播放| 大话2 男鬼变身卡| 在线观看国产h片| 黄色 视频免费看| 欧美最新免费一区二区三区| 国国产精品蜜臀av免费| 成人二区视频| 日本免费在线观看一区| 美女xxoo啪啪120秒动态图| 欧美日韩亚洲高清精品| 日本免费在线观看一区| 欧美性感艳星| 丁香六月天网| 香蕉国产在线看| 毛片一级片免费看久久久久| 在线观看人妻少妇| 精品人妻偷拍中文字幕| 精品卡一卡二卡四卡免费| 男女午夜视频在线观看 | 欧美丝袜亚洲另类| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久av不卡| 久久精品aⅴ一区二区三区四区 | 777米奇影视久久| 日韩 亚洲 欧美在线| 深夜精品福利| 少妇人妻久久综合中文| 一边摸一边做爽爽视频免费| 日韩,欧美,国产一区二区三区| 色婷婷av一区二区三区视频| 亚洲欧美中文字幕日韩二区| 精品少妇黑人巨大在线播放| 免费不卡的大黄色大毛片视频在线观看| 亚洲人与动物交配视频| 久久久国产精品麻豆| 久久人人爽人人爽人人片va| 在线亚洲精品国产二区图片欧美| 亚洲精品aⅴ在线观看| 国产亚洲最大av| 国产精品久久久久久久久免| 午夜福利网站1000一区二区三区| 日本av手机在线免费观看| 国产亚洲精品第一综合不卡 | 国产精品蜜桃在线观看| 成人毛片a级毛片在线播放| 制服人妻中文乱码| av在线app专区| 母亲3免费完整高清在线观看 | 久久国内精品自在自线图片| 亚洲国产日韩一区二区| 欧美另类一区| 免费黄频网站在线观看国产| av播播在线观看一区| 丰满少妇做爰视频| 国产午夜精品一二区理论片| 国产成人免费观看mmmm| 久久精品久久久久久久性| 国产成人精品在线电影| 狂野欧美激情性xxxx在线观看| 天天躁夜夜躁狠狠躁躁| 久久久久久久久久人人人人人人| 多毛熟女@视频| 91精品伊人久久大香线蕉| 欧美精品亚洲一区二区| 少妇 在线观看| 热99久久久久精品小说推荐| 成人国产av品久久久| 黑人猛操日本美女一级片| 午夜精品国产一区二区电影| 男女下面插进去视频免费观看 | 久久久久久久久久人人人人人人| 久久人人爽av亚洲精品天堂| 国产乱人偷精品视频| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区三区| 日韩精品免费视频一区二区三区 | 欧美成人午夜精品| 中文字幕另类日韩欧美亚洲嫩草| 高清不卡的av网站| 国产成人午夜福利电影在线观看| 少妇人妻 视频| 亚洲欧美中文字幕日韩二区| 99精国产麻豆久久婷婷| 精品少妇久久久久久888优播| 午夜福利视频在线观看免费| 最黄视频免费看| 亚洲国产色片| 波野结衣二区三区在线| 欧美日韩视频高清一区二区三区二| 亚洲av在线观看美女高潮| 最近最新中文字幕大全免费视频 | 老司机影院毛片| 日韩av免费高清视频| 国产一级毛片在线| 亚洲av日韩在线播放| av国产精品久久久久影院| 日韩精品免费视频一区二区三区 | 妹子高潮喷水视频| 久久久久久久久久久久大奶| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲av涩爱| av又黄又爽大尺度在线免费看| 亚洲精品456在线播放app| 免费观看在线日韩| 欧美性感艳星| av视频免费观看在线观看| 精品久久久久久电影网| 亚洲五月色婷婷综合| 国产男女超爽视频在线观看| 国产高清国产精品国产三级| 国产高清三级在线| 少妇人妻久久综合中文| 国产精品久久久久久久久免| 久久久亚洲精品成人影院| 精品少妇内射三级| 亚洲成av片中文字幕在线观看 | 久久久久久久精品精品| 午夜91福利影院| 精品亚洲成a人片在线观看| 男女下面插进去视频免费观看 | 久久精品国产自在天天线| 日韩精品有码人妻一区| 亚洲国产欧美在线一区| 一边摸一边做爽爽视频免费| 欧美xxⅹ黑人| 亚洲,一卡二卡三卡| 亚洲国产看品久久| 18禁裸乳无遮挡动漫免费视频| 黄色 视频免费看| 亚洲一码二码三码区别大吗| 午夜91福利影院| 99re6热这里在线精品视频| 日韩三级伦理在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲天堂av无毛| 曰老女人黄片| 精品熟女少妇av免费看| av国产久精品久网站免费入址| 欧美+日韩+精品| 精品午夜福利在线看| 亚洲精品国产av蜜桃| av网站免费在线观看视频| 91精品国产国语对白视频| 久热这里只有精品99| 日本wwww免费看| 少妇熟女欧美另类| 日韩av不卡免费在线播放| 在线观看免费高清a一片| 18+在线观看网站| 久久久久视频综合| 日本91视频免费播放| 99热国产这里只有精品6| 国产精品国产三级国产专区5o| 狠狠婷婷综合久久久久久88av| 免费观看性生交大片5| 久久久精品免费免费高清| 一本—道久久a久久精品蜜桃钙片| 中文字幕制服av| 亚洲精品,欧美精品| 中文乱码字字幕精品一区二区三区| 久久国产精品大桥未久av| 久久青草综合色| 国产精品国产av在线观看| 在线观看三级黄色| 乱码一卡2卡4卡精品| 美女主播在线视频| 欧美日韩亚洲高清精品| 大香蕉久久成人网| 99热这里只有是精品在线观看| 男女免费视频国产| 日本欧美国产在线视频| 老司机影院毛片| 国产精品一区二区在线不卡| 韩国av在线不卡| 丰满少妇做爰视频| 国产69精品久久久久777片| 久久婷婷青草| 母亲3免费完整高清在线观看 | 最新中文字幕久久久久| 又黄又粗又硬又大视频| 少妇被粗大的猛进出69影院 | 丰满迷人的少妇在线观看| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 国产男人的电影天堂91| 国产无遮挡羞羞视频在线观看| 宅男免费午夜| 国产成人免费观看mmmm| 女的被弄到高潮叫床怎么办| 久久久久久久久久久久大奶| 91精品伊人久久大香线蕉| 成年动漫av网址| 亚洲av成人精品一二三区| 人妻少妇偷人精品九色| 免费看光身美女| 有码 亚洲区| a级毛色黄片| 亚洲国产精品一区二区三区在线| 91久久精品国产一区二区三区| 亚洲五月色婷婷综合| 人人妻人人澡人人爽人人夜夜| 五月玫瑰六月丁香| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 久久热在线av| 免费少妇av软件| 日韩精品有码人妻一区| 久久99热6这里只有精品| 亚洲成色77777| 国产成人精品婷婷| 国产精品久久久久久精品古装| 纵有疾风起免费观看全集完整版| 亚洲av.av天堂| 精品久久久精品久久久| 在线观看人妻少妇| 亚洲精品乱码久久久久久按摩| 亚洲精品国产av成人精品| 成年动漫av网址| 女人精品久久久久毛片| 少妇熟女欧美另类| 人体艺术视频欧美日本| 丰满迷人的少妇在线观看| 自线自在国产av| 欧美精品人与动牲交sv欧美| 高清不卡的av网站| 国产av一区二区精品久久| 国产极品粉嫩免费观看在线| 久久精品夜色国产| 亚洲经典国产精华液单| 黄片播放在线免费| 国产爽快片一区二区三区| 国产毛片在线视频| 亚洲国产av影院在线观看| 国产 精品1| 不卡视频在线观看欧美| 97在线视频观看| tube8黄色片| 成人手机av| 精品久久久精品久久久| 一区二区日韩欧美中文字幕 | 自拍欧美九色日韩亚洲蝌蚪91| 久久精品夜色国产| 国产av精品麻豆| 激情五月婷婷亚洲| 国产亚洲精品第一综合不卡 | 国产精品久久久久久久久免| 欧美精品人与动牲交sv欧美| 色视频在线一区二区三区| 免费人成在线观看视频色| 91aial.com中文字幕在线观看| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 在线观看免费日韩欧美大片| 侵犯人妻中文字幕一二三四区| 精品国产露脸久久av麻豆| 久久99热这里只频精品6学生| 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到 | 国产淫语在线视频| 久久久久久伊人网av| 性色av一级| 久久久亚洲精品成人影院| 日韩免费高清中文字幕av| 另类亚洲欧美激情| 日韩中文字幕视频在线看片| 亚洲av综合色区一区| 亚洲欧美精品自产自拍| 久久97久久精品| 国产福利在线免费观看视频| 制服人妻中文乱码| 又黄又爽又刺激的免费视频.| 亚洲av中文av极速乱| 午夜福利影视在线免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美最新免费一区二区三区| 精品久久久久久电影网| 久久久久久久大尺度免费视频| 1024视频免费在线观看| 国产老妇伦熟女老妇高清| 国产av精品麻豆| 热re99久久国产66热| 日韩一区二区视频免费看| 看非洲黑人一级黄片| 欧美3d第一页| 丝袜人妻中文字幕| 老司机影院成人| 在线天堂最新版资源| 在线观看免费高清a一片| 青春草视频在线免费观看| 国产精品成人在线| 免费久久久久久久精品成人欧美视频 | 在线亚洲精品国产二区图片欧美| 成人毛片60女人毛片免费| 亚洲综合精品二区| 免费大片黄手机在线观看| 黑人猛操日本美女一级片| 日韩视频在线欧美| 色吧在线观看| 婷婷成人精品国产| 国产精品国产三级专区第一集| 9热在线视频观看99| 亚洲欧美精品自产自拍| 亚洲欧洲精品一区二区精品久久久 | 一级爰片在线观看| 日韩三级伦理在线观看| 97在线人人人人妻| 日韩中字成人| 妹子高潮喷水视频| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻精品综合一区二区| 18禁观看日本| 这个男人来自地球电影免费观看 | 成人手机av| 亚洲精品成人av观看孕妇| 欧美精品人与动牲交sv欧美| 中文字幕精品免费在线观看视频 | 伦理电影免费视频| 少妇被粗大的猛进出69影院 | 少妇人妻精品综合一区二区| 伊人亚洲综合成人网| 最近2019中文字幕mv第一页| 国产有黄有色有爽视频| 成人漫画全彩无遮挡| 宅男免费午夜| 多毛熟女@视频| 一个人免费看片子| 精品一区二区三区四区五区乱码 | 97人妻天天添夜夜摸| 免费看光身美女| 黄色怎么调成土黄色| 久久久久久久久久成人| 国产亚洲最大av| 秋霞伦理黄片| 成人国语在线视频| 久久久国产欧美日韩av| 国产一区二区在线观看av| 久久久久久久大尺度免费视频| 两性夫妻黄色片 | 午夜免费观看性视频| 女人精品久久久久毛片| 飞空精品影院首页| 欧美精品人与动牲交sv欧美| 精品久久久精品久久久| 人体艺术视频欧美日本| 国产免费一区二区三区四区乱码| 黄色一级大片看看| 欧美日韩视频高清一区二区三区二| 日韩在线高清观看一区二区三区| 欧美少妇被猛烈插入视频| 在线观看免费视频网站a站| 美女国产视频在线观看| 激情视频va一区二区三区| 国产极品天堂在线| 欧美成人午夜精品| 亚洲天堂av无毛| 亚洲av综合色区一区| 国产一区二区三区av在线| 国产69精品久久久久777片| 国产免费一级a男人的天堂| 亚洲精品日本国产第一区| 久久免费观看电影| 亚洲五月色婷婷综合| 国产黄频视频在线观看| 狂野欧美激情性bbbbbb| 99视频精品全部免费 在线| av在线播放精品| 欧美激情 高清一区二区三区| 色哟哟·www| 日韩视频在线欧美| 18禁裸乳无遮挡动漫免费视频| 纯流量卡能插随身wifi吗| 国产一区二区三区av在线| 国产精品国产三级国产专区5o| 欧美xxⅹ黑人| 一本久久精品| 久久久久久久久久人人人人人人| 国产成人免费无遮挡视频| 久久久精品免费免费高清| av又黄又爽大尺度在线免费看| 新久久久久国产一级毛片| 亚洲av成人精品一二三区| 中文字幕亚洲精品专区| 中文欧美无线码| 建设人人有责人人尽责人人享有的| 亚洲精品乱码久久久久久按摩| 97人妻天天添夜夜摸| 熟女电影av网| 毛片一级片免费看久久久久| 亚洲中文av在线| 黄色毛片三级朝国网站| 亚洲经典国产精华液单| 亚洲综合精品二区| 高清黄色对白视频在线免费看| 精品一区二区三区视频在线| 中文欧美无线码| 国产色爽女视频免费观看| 美女xxoo啪啪120秒动态图| 精品国产露脸久久av麻豆| 一二三四在线观看免费中文在 | 亚洲五月色婷婷综合| 精品久久久久久电影网| 亚洲欧美成人精品一区二区| 精品国产国语对白av| 91午夜精品亚洲一区二区三区| 丝瓜视频免费看黄片| 欧美少妇被猛烈插入视频| 亚洲成色77777| 亚洲五月色婷婷综合| 亚洲国产精品专区欧美| 亚洲,欧美精品.| 亚洲欧美清纯卡通| 如日韩欧美国产精品一区二区三区| 久久久久久久亚洲中文字幕| 日本爱情动作片www.在线观看| 亚洲国产精品一区二区三区在线| 国产一级毛片在线| 九色成人免费人妻av| 伦理电影大哥的女人| 国产一区二区在线观看av| 人妻 亚洲 视频| 在线观看免费高清a一片| 日韩人妻精品一区2区三区| 亚洲美女搞黄在线观看| 多毛熟女@视频| 欧美最新免费一区二区三区| 青春草国产在线视频| av免费在线看不卡| 精品少妇黑人巨大在线播放| av女优亚洲男人天堂| av福利片在线| 欧美变态另类bdsm刘玥| 午夜老司机福利剧场| 亚洲美女黄色视频免费看| 久久国产精品男人的天堂亚洲 | 免费女性裸体啪啪无遮挡网站| 国产精品久久久久久精品古装| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情极品国产一区二区三区 | 国产一区二区在线观看日韩| 久久这里有精品视频免费| 好男人视频免费观看在线| 一区二区三区精品91| 国产日韩欧美在线精品| 一二三四中文在线观看免费高清| 亚洲精品视频女| 久久久a久久爽久久v久久| 看免费av毛片| 日韩av不卡免费在线播放| 丁香六月天网| 亚洲 欧美一区二区三区| a级毛片在线看网站| 国产日韩欧美亚洲二区| 日本av手机在线免费观看| 美女大奶头黄色视频| 亚洲少妇的诱惑av| 午夜免费鲁丝| 22中文网久久字幕| 丁香六月天网| 一区二区三区四区激情视频| 男女啪啪激烈高潮av片| 在线观看人妻少妇| 国精品久久久久久国模美| 午夜日本视频在线| 亚洲欧美色中文字幕在线| 一二三四中文在线观看免费高清| freevideosex欧美| 国产免费又黄又爽又色| 99久久综合免费| 欧美精品一区二区免费开放| 久久婷婷青草| 美国免费a级毛片| 99香蕉大伊视频| 国产不卡av网站在线观看| 亚洲四区av| 精品国产一区二区久久| 国产毛片在线视频| 国产 精品1| 一本—道久久a久久精品蜜桃钙片| 九草在线视频观看| 日韩一区二区三区影片| 午夜激情久久久久久久| 久久国产精品大桥未久av| 美女视频免费永久观看网站| 男女高潮啪啪啪动态图| 全区人妻精品视频| 天天躁夜夜躁狠狠躁躁| 亚洲情色 制服丝袜| 国产女主播在线喷水免费视频网站| 日日啪夜夜爽|