• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR?

    2019-08-06 02:07:30QeematGulWeiHe何為YanLi李巖RuiSun孫瑞NaLi李娜
    Chinese Physics B 2019年7期
    關(guān)鍵詞:李巖弓子李陽

    Qeemat Gul, Wei He(何為), Yan Li(李巖), Rui Sun(孫瑞), Na Li(李娜),

    Xu Yang(楊旭)1,2, Yang Li(李陽)1,2, Zi-Zhao Gong(弓子召)1,2, Zong-Kai Xie(謝宗凱)1,2,Xiang-Qun Zhang(張向群)1, and Zhao-Hua Cheng(成昭華)1,2,3,?

    1State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: oblique angle deposition,iron film thickness,magnetic anisotropy,ferromagnetic resonance

    1. Introduction

    Ferromagnetic thin films can exhibit extensively modified magnetic properties from their bulk counterparts,[1]including magnetic anisotropy, magnetic homogeneity, and intrinsic magnetic damping properties,[2]thus they have potential applications in microscale actuators and sensors,magnetic recording media components,[3]current-induced magnetization switching devices,[4]and high-density magnetic random access memory.[5]It is not easy to use conventional tools to determine the magnetic anisotropy that controls the operation of these films. The ferromagnetic resonance(FMR)technique is a very sensitive tool for studying the magnetic anisotropy,spin dynamics,and homogeneity of ferromagnetic thin films.

    Magnetic anisotropy is one of the basic properties of ferromagnetic materials. In general, there are several ways to enhance in-plane uniaxial magnetic anisotropy (UMA) in ferromagnetic films, such as oblique deposition,[6-8]magnetic annealing,[9-13]and exchange bias.[14-18]Among these,oblique deposition is easy to handle and thus is widely used in practice to increase the ferromagnetic resonance frequency of ferromagnetic thin films.[19,20]Due to the self-shadowing effect,the oblique deposition of ferromagnetic thin films on flat rigid substrates can result in elongated grains perpendicular to the direction of the incident atomic flux. Therefore,during the growth of the ferromagnetic film,UMA with an easy axis perpendicular to the direction of the incident flux is induced.[21]

    For decades, FMR has been one of the most effective techniques to determine the crystallinity of ferromagnetic materials and to measure the phenomenological magnetic anisotropy constants. With the increasing interest in research on ferromagnetic thin films, FMR has been used more and more in research into single crystal ferromagnetic thin films.[22-27]The FMR technique has also proven to be a powerful technique for measuring the magnetic properties of oblique anisotropic films.[2]At gigahertz(GHz), FMR accurately measures the static characteristics of large magnetic field saturated magnetic films.[28-30]In these experiments,magnetic resonance was detected by scanning an applied magnetic field. The resonant magnetic field provides a measure of the effective field excited by a uniform magnetic field in a uniform precession mode. The effective field includes contributions from external magnetic fields,demagnetizing fields,and magnetocrystalline energy. The standard FMR technique provides very high sensitivity because the high-quality coefficient of the cavity at the operating frequency is determined by the geometry of the cavity. It is proved that this method can accurately measure the static characteristics of a ferromagnetic film, which are given by the magnetic anisotropy constant.The dynamic characteristics are usually determined by the resonance linewidth ΔH, which provides information about the relaxation process. At present, the magnetic anisotropy behavior of the relaxation mechanism, such as the two-magnon processes at the GHz frequency, is studied using the FMR technique.[31,32]

    In this paper,we focus on the static properties of epitaxial Fe(001)/Pd thin film bilayers, which are highly attractive due to the increased switching speed of the magnetic cells in magnetic random access memory(M-RAM)devices.[32,33]In previous studies on similar Fe/MgO(001)thin films with fourfold magnetocrystalline anisotropy (MCA) and a UMA superimposed, the latter is very likely to be along an easy direction, that is, β = 0°or 90°. It is reported that at small Fe thickness, the uniaxial component dominates, and as the thickness increases,the relative anisotropy of cubic anisotropy increases. Therefore, controlling uniaxial anisotropy is important because it facilitates device applications such as magnetic tunnel junctions and spin torque oscillators.[34]In this work, we present results of thickness-dependent magnetic anisotropy of obliquely deposited Fe(001)/Pd thin films on Mg(001) via field-dependent resonant field measurements.Our experimental results are compared with the previous ones obtained from the quasistatic transverse biased inverse susceptibility (TBIS) measurements,[28,35]and high-frequency FMR measurements,[28]as well as the magneto-optical Kerr effect (MOKE) and anisotropic magnetoresistance (AMR)systems,[36]which indicates that in addition to the fourfold MCA due to the body-center cubic (bcc) structure of Fe, an additional UMA is found in the[100]easy direction.

    2. Experiment

    Using ultra-high vacuum (UHV) molecular beam epitaxy, thin magnetic films of Fe(001)/Pd bilayers were prepared on cleaned MgO(001) substrates via oblique deposition at a base pressure of 2.0×10-10mbar. The substrates were put into a special template-holder and were heated up to 700°C for 2 h. Our previous study showed that this temperature range is the best choice for producing high quality samples. Detailed information on sample preparation and characterization has been provided elsewhere.[36]In this paper,three samples of Fe film thicknesses 50 monolayer(ML),45 ML,and 32 ML,which were 0°normally,and 45°,and 55°obliquely deposited, respectively, were adopted for the study.The magnetic anisotropy was analyzed using an in-plane vector network analyzer ferromagnetic resonance (VNA-FMR)technique. The measurements were performed by placing the samples with film side facing the coplanar waveguide(CPW)at room temperature. A gaussmeter was used to measure the magnetic field at each field. Microwave excitations were generated by connecting one end of the CPW to the output port of the vector network analyzer(VNA).The input port of the VNA was connected to the other end of the CPW,and the complex transmission parameter S21through the CPW was measured at a fixed frequency as the external magnetic field was swept.[37]The field-dependent resonant field measurements were performed by rotating the sample in-plane while sweeping the applied magnetic field.

    3. Results and analysis

    Figure 1(a) schematically illustrates the sample stacking and measurement configuration. FMR field Hrvalues are obtained by fitting each spectrum to a Lorentzian profile. The FMR spectra (fitted red lines) of the 0°-Fe(50 ML)/Pd sample at φH=0°in the frequency range 12-21 GHz showing the real part of the transmission parameter (ReS21) are illustrated in Fig. 2. For the samples, the magnetic field H was applied along the sample plane. In order to avoid small misalignment between the applied magnetic field and the magnetic anisotropy (the hard axis may cause a large change in resonance response),we used a fixed magnetic field H to measure, but changed the direction of the applied magnetic field φH. In this method,small misalignment is no longer a source of error, as it is now a fitting parameter. In addition, the field-dependent resonant field Hrprovides a simple illustration of the magnetic anisotropy symmetry and the values of the magnetic anisotropy constants that can be extracted from the field-dependent resonant field measurements. The magnetic anisotropy constants are extracted by fitting the resonance field Hrvalues to the following Kittel equation derived from the Landau Lifshitz equation:[38]

    Here f =ω/2π is the microwave frequency,γ =gμB/ˉh is the gyromagnetic ratio, and Hdis the demagnetization field. In addition,we have

    where Msis the saturation magnetization,μ0is the permeability of free space, and Koutis the out-of-plane uniaxial magnetic anisotropy constant. The surface/interface term is very important for ultrathin films (a few monolayers), but it becomes negligible for films exceeding several tens of monolayers. For the thickness dependence, Hdshould satisfy the condition Hd=Msas thickness t →∞.[39]Also, the samples are single crystals, and no significant Koutis present in the samples so can,therefore,be neglected in the analysis.

    Fig.1. (a)Sample stacking and the measurement configuration. Ferromagnetic resonance field Hr as a function of the in-plane azimuthal angle φH of the samples with Fe films of(b)50 ML,(c)45 ML,and(d)32 ML thicknesses and 0°,45°,and 55°deposition angles,respectively.Measurements were carried out at 16 GHz at room temperature. The red lines are theoretical fits to the experimental data using the Kittel equation.

    We also evaluate the equilibrium magnetization angle φMduring sample rotation based on numerical calculation using the following equation:[38]

    where φMdenotes the equilibrium azimuthal angle of magnetization.

    For the special case where the magnetic field is oriented along the [100]-easy or [110]-hard direction and the in-plane uniaxial term is ignored, equation (1) respectively simplifies to

    It should be noted that equations (4) and (5) are valid only if external magnetic field H is large enough to align the magnetization M parallel to its direction(φH=φM).

    In order to evaluate the magnetic anisotropy constants,the field-dependent resonant field measurement via the Kittel equation was performed at a fixed frequency. The experimental data are fitted with Eq.(1)to obtain a magnetic anisotropy field. The field-dependent resonant field Hrat a fixed frequency f of 16 GHz is plotted in Figs. 1(b), 1(c), and 1(d)for the samples with Fe films of 50 ML, 45 ML, and 32 ML thicknesses and 0°, 45°, and 55°deposition angles, respectively.The dependence Hr(φH)demonstrates that the variation of the deposition angle leads to a significant change of magnetic anisotropy. A rather regular fourfold pattern is clearly observed in the 0°normally deposited sample with 50 ML Fe film, confirming the classical behavior. So, in this case,fourfold MCA is stronger, though it has a character closer to bulk Fe. In addition to the fourfold MCA, an in-plane UMA that is easily magnetized in the[100]direction is observed. It has been reported that UMA components dominate at small Fe thickness,and the relative strength of MCA increases with increasing thickness. Apparently,the 45°deposited sample with 45 ML Fe film shows a contribution from the in-plane weak UMA in the easy direction.However,in the case of the 32 ML Fe film sample with 55°deposition angle, a strong in-plane UMA is induced comparatively in the same easy direction.Different amplitudes of maxima and minima show the manifestation of an additional UMA induced by oblique deposition.Its hard axis lies between the[100]and[010]directions. This UMA is interpreted as the shadowing effect of the evaporated beam away from the normal incidence.[6-8]By fitting the experimental data with Eq.(1),we obtain the in-plane magnetic anisotropy field values of UMA(twofold)H2=0 Oe,40 Oe,and 100 Oe with fourfold MCA field H4= 625 Oe, whileμ0Hd=2.18 T, and Land′e g-factor =2.07 for the samples with Fe films of 50 ML, 45 ML, and 32 ML thicknesses and 0°, 45°, and 55°deposition angles, respectively. It should be noted that the 45 ML Fe film sample with 45°deposition angle shows a poor fitting only for the conspicuousness of in-plane weak UMA along the easy direction. The anisotropy fields Hiare defined in terms of the magnetic anisotropy energy constants Ki(in units of J/m3) according to Hi=2Ki/μ0Ms.From these measurements,we obtain the magnetic anisotropy constants Kuand K1using the bulk Msvalue of Fe (Ms=1.74×106A/m). The in-plane MCA constant is found to be K1=5.4×104J/m3. The in-plane UMA constants are quantitatively determined and Ku= 0 J/m3, 3.4×103J/m3, and 8.6×103J/m3for the samples with Fe films of 50 ML,45 ML,and 32 ML thicknesses and 0°,45°,and 55°deposition angles,respectively.Table 1 is a summary of magnetic parameters obtained by VNA-FMR.For comparison, we also measured the same samples in Ref. [36] by anisotropic magnetoresistance(AMR)to cross-check the measured anisotropy constants obtained by FMR. Both techniques give almost the same value of K1, while the values of Kuobtained by FMR are slightly smaller. Indeed,stripe-like defects that may be caused by the shadow effect are known to induce such UMA in thin films by means of dipolar interactions among the defects.[40,41]The low value of Kumay suggest a low density of these defects.Moreover, it can be clearly seen in Table 1 that Kuincreases with the increase of the deposition angle,while K1has a constant value. The oblique deposition is a typical method to tune the magnetic anisotropy. In the previous study, the magnetic shape anisotropy induced by thickness-dependent oblique deposition in Fe/Si films was established.[42]Samples of Fe film(dFe=20 ML, 40 ML, 60 ML, and 70 ML) were deposited obliquely at 70°with respect to the surface normal. All samples showed twofold symmetry,which is typical for films with UMA. As the thickness of the Fe layer increases, the UMA constant Kuincreases. In our current study,the deposition angles and thicknesses are all different for the three samples. As the deposition angle increases,the UMA constant Kualso increases while the thickness of the Fe layer decreases. Conversely, as the thickness of the Fe layer increases, the UMA constant Kudecreases. These behaviors are consistent with previous experiments conducted on the AMR system, which showed an additional UMA in addition to the fourfold MCA caused by the bcc Fe structure. The hysteresis loops, measured by ex-situ MOKE,[36]are squares for the external field applied in the[100]easy direction.For the external field in the[110]hard direction,the hysteresis loops clearly show a twojump magnetic switching process,while for the external field in the[-110]hard direction,the hysteresis loops clearly show a three-jump magnetic switching process. A clearer description of the induced UMA can be seen in the ex-situ MOKE polar plots. Let us first elaborate on the expected evolution of magnetization. If H is applied strictly in the[110]hard direction and H2=0,we expect a soft mode to appear at H =H4.If we consider the measured in-plane UMA, the soft mode is not expected due to the fourfold symmetry of the system being destroyed. In this case,when H >H4,the magnetization starts to rotate in the easy[100]direction,and the minimum value in the resonance field should be observed.

    Fig.2. FMR spectra(fitted red lines)of the 0°-Fe(50 ML)/Pd sample at φH =0°in the frequency range 12-21 GHz showing the real part of the transmission parameter(ReS21).

    Table 1. Summarized magnetic parameters of Fe(001)/Pd thin films with different Fe-thicknesses and deposition angles. The error bars of the magnetic anisotropy field terms are 10%and are mainly given by the uncertainty of the sample volume.

    Note that the resonance field Hraround the [100] easy axis changes more slowly with angle than that around the[110]hard axis. This behavior may be caused by dragging the saturation magnetization behind the external magnetic field due to a strong in-plane fourfold MCA. In general, dragging enhances the damping and only drags along the easy and hard axes of magnetization, but where M and H are parallel, the dragging contribution vanishes. Figure 3 shows the experimental data (circles) of the equilibrium magnetization angle φMas a function of the angular position φHof the applied magnetic field H of the three samples. The equilibrium azimuthal angle of magnetization φMis obtained from Eq. (3)using the magnetic anisotropy field values obtained by fitting the field-dependent resonant field curves using the Kittel equation. It can be seen that the equilibrium magnetization is not always perfectly aligned with the external magnetic field. In fact, due to the existence of MCA, when the magnetic field is weaker than the saturated magnetic field, its magnetization direction does not always align with the direction of the external magnetic field, that is, φM/=φH. The red dashed line represents the case where the magnetization M and the external magnetic field H are completely collinear. Note that the experimental misalignments are in perfect agreement with the theoretical angular position.

    Fig.3. Experimental data(circles)of the equilibrium magnetization angle φM as a function of the angular position φH of the applied magnetic field H for the samples with Fe films of 50 ML, 45 ML, and 32 ML thicknesses and 0°, 45°, and 55° deposition angles, respectively. The red dashed line represents the case of perfect collinearity between magnetization and external field.

    Fig.4. The squared resonance frequency f2 versus resonance field Hr of the samples with Fe films of 50 ML,45 ML,and 32 ML thicknesses and 0°,45°,and 55°deposition angles,respectively,along the Fe〈100〉-easy and Fe〈110〉-hard directions. The solid lines are theoretical fits to the experimental data.

    Figure 4 shows the relationship between the squared resonance frequency f2and the resonance field Hrof the three samples along the Fe 〈100〉-easy and Fe 〈110〉-hard directions. The solid lines are fits according to Eqs. (4) and (5).The Land′e g-factor is accurately extracted from the quadratic term of the dependency because the term does not depend on the magnetic anisotropy field.[43,44]The measurement results in an isotropic Land′e g-factor of 2.07.In order to further study the dynamic properties of the obliquely deposited Fe(001)/Pd thin film bilayers,a detailed FMR experiment must be carried out to arrive at a firm conclusion.

    4. Conclusion

    We study the thickness-dependent magnetic anisotropy of obliquely deposited Fe(001)/Pd thin film bilayer samples using the VNA-FMR technique. The magnetic anisotropy constants are obtained by fitting the field-dependent resonant field curves at 16 GHz using the Kittel equation. Though the normally deposited sample does not show an intrinsic UMA,it is reported that oblique deposition could cause in-plane UMA.A consequence of this is that an FMR data-fitting analysis yields precise measurement of smaller contributions to the magnetic anisotropy, such as in-plane UMA. This UMA is inferred to be the shadow effect of the evaporation flux rate deviating from the normal incidence.This study shows that the magnetic anisotropy of the Pd/Fe(001)/Mg(001)system can be modified via oblique deposition,opening up a way to control the magnetic anisotropy, which might be significant for the switching of spintronic devices. The oblique deposition method may be applicable to other systems composed of two or more elements and can be of interest in the application because the crystal quality and magnetostatic parameters are not affected by changing the growth conditions and, furthermore,the film interfaces are not involved in this procedure.[29]

    猜你喜歡
    李巖弓子李陽
    求MDS 碼權(quán)多項(xiàng)式的組合方法
    李巖國畫選
    天竺取經(jīng)之二
    金秋(2021年24期)2021-12-01 11:15:21
    特殊的考卷
    李陽 讓品茶成為視覺藝術(shù)
    海峽姐妹(2020年11期)2021-01-18 06:16:06
    紀(jì)念照片
    紀(jì)念照片
    李巖繪畫作品選登
    開在心頭的花
    小小說月刊(2017年1期)2017-01-13 17:53:46
    那一夜(短篇小說)
    午夜激情欧美在线| 波多野结衣巨乳人妻| 精品久久久久久久久久免费视频| 日日夜夜操网爽| 黄色一级大片看看| 最新中文字幕久久久久| 一个人观看的视频www高清免费观看| 色视频www国产| 午夜精品一区二区三区免费看| 女同久久另类99精品国产91| 他把我摸到了高潮在线观看| 亚洲精品久久国产高清桃花| 99久国产av精品| 亚洲无线观看免费| 国产乱人视频| 国产精品自产拍在线观看55亚洲| 99在线视频只有这里精品首页| 亚洲天堂国产精品一区在线| h日本视频在线播放| 一级a爱片免费观看的视频| 嫩草影院精品99| 18禁黄网站禁片午夜丰满| 乱码一卡2卡4卡精品| 免费av不卡在线播放| 男女下面进入的视频免费午夜| 一级毛片久久久久久久久女| 欧美3d第一页| 黄色一级大片看看| 午夜a级毛片| 女人十人毛片免费观看3o分钟| 美女高潮的动态| 色综合婷婷激情| 老熟妇仑乱视频hdxx| 亚洲熟妇中文字幕五十中出| 简卡轻食公司| 真人做人爱边吃奶动态| 日韩欧美国产一区二区入口| 丰满乱子伦码专区| 国产精品一区www在线观看 | 成年女人永久免费观看视频| 最近最新免费中文字幕在线| 精品午夜福利在线看| 亚洲久久久久久中文字幕| 此物有八面人人有两片| 看十八女毛片水多多多| 精品不卡国产一区二区三区| 亚洲最大成人中文| 精品人妻熟女av久视频| 国产淫片久久久久久久久| 国产精品美女特级片免费视频播放器| 欧美中文日本在线观看视频| 久久久久精品国产欧美久久久| 国产精品永久免费网站| 国产欧美日韩精品一区二区| 免费一级毛片在线播放高清视频| 亚洲国产精品合色在线| 三级国产精品欧美在线观看| 中文亚洲av片在线观看爽| 一区二区三区高清视频在线| 亚洲专区中文字幕在线| a级一级毛片免费在线观看| 午夜久久久久精精品| 免费一级毛片在线播放高清视频| 99精品在免费线老司机午夜| 日韩,欧美,国产一区二区三区 | 欧美日本视频| 真人做人爱边吃奶动态| 国产亚洲精品av在线| 美女被艹到高潮喷水动态| 精品一区二区三区av网在线观看| av黄色大香蕉| 观看免费一级毛片| 国产成人a区在线观看| av在线亚洲专区| 神马国产精品三级电影在线观看| 少妇被粗大猛烈的视频| 成人av一区二区三区在线看| .国产精品久久| 亚洲专区中文字幕在线| 日韩欧美三级三区| 精品久久久久久久久av| 免费观看人在逋| 少妇猛男粗大的猛烈进出视频 | 欧美xxxx性猛交bbbb| 直男gayav资源| 亚洲国产精品合色在线| 女同久久另类99精品国产91| 久久久午夜欧美精品| 美女黄网站色视频| 午夜亚洲福利在线播放| 国产伦人伦偷精品视频| 国模一区二区三区四区视频| 亚洲四区av| 中出人妻视频一区二区| 免费人成在线观看视频色| 成人永久免费在线观看视频| .国产精品久久| 一a级毛片在线观看| 十八禁网站免费在线| 九九热线精品视视频播放| 琪琪午夜伦伦电影理论片6080| АⅤ资源中文在线天堂| 俄罗斯特黄特色一大片| 日本一二三区视频观看| 给我免费播放毛片高清在线观看| av专区在线播放| 国产单亲对白刺激| 久久久国产成人精品二区| 午夜福利在线观看吧| 男人和女人高潮做爰伦理| 性欧美人与动物交配| 亚洲精品456在线播放app | 国产老妇女一区| 97人妻精品一区二区三区麻豆| 国产成年人精品一区二区| 99久久精品热视频| 欧美精品国产亚洲| 免费电影在线观看免费观看| 琪琪午夜伦伦电影理论片6080| 91久久精品国产一区二区成人| 亚洲av免费高清在线观看| 免费黄网站久久成人精品| 亚洲av中文字字幕乱码综合| 欧美精品啪啪一区二区三区| 日韩,欧美,国产一区二区三区 | 成年女人看的毛片在线观看| 久久人人精品亚洲av| 亚洲性夜色夜夜综合| 成人无遮挡网站| 桃色一区二区三区在线观看| 老女人水多毛片| 一个人看视频在线观看www免费| 欧美最新免费一区二区三区| 国产精品综合久久久久久久免费| 美女黄网站色视频| 在线观看美女被高潮喷水网站| 午夜免费激情av| xxxwww97欧美| 国产v大片淫在线免费观看| 色尼玛亚洲综合影院| 国产精品一区二区三区四区免费观看 | 亚洲精品久久国产高清桃花| 简卡轻食公司| 男女那种视频在线观看| 欧美精品啪啪一区二区三区| 九九在线视频观看精品| 成人国产一区最新在线观看| 精品久久久久久,| 欧美日韩精品成人综合77777| 日本 av在线| av在线天堂中文字幕| 久久久久久久精品吃奶| 俄罗斯特黄特色一大片| 99九九线精品视频在线观看视频| 亚洲欧美日韩高清专用| 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院| 婷婷精品国产亚洲av在线| 成人国产麻豆网| 俺也久久电影网| 免费人成在线观看视频色| 2021天堂中文幕一二区在线观| 亚洲黑人精品在线| 中文字幕高清在线视频| 久久精品久久久久久噜噜老黄 | xxxwww97欧美| 欧美区成人在线视频| 此物有八面人人有两片| 欧美性猛交黑人性爽| 最近在线观看免费完整版| 久久久久久久久久久丰满 | 99久久九九国产精品国产免费| 国产男靠女视频免费网站| 国内毛片毛片毛片毛片毛片| 在线免费十八禁| 九九爱精品视频在线观看| 一个人看的www免费观看视频| av中文乱码字幕在线| 国产国拍精品亚洲av在线观看| 成人无遮挡网站| 精品久久久久久成人av| av专区在线播放| 九九热线精品视视频播放| 亚洲性夜色夜夜综合| 国产欧美日韩一区二区精品| 成熟少妇高潮喷水视频| av在线亚洲专区| 色在线成人网| 日日啪夜夜撸| 99在线人妻在线中文字幕| 一区二区三区免费毛片| 亚洲男人的天堂狠狠| 精品福利观看| 一级a爱片免费观看的视频| 免费看美女性在线毛片视频| 热99re8久久精品国产| 国产激情偷乱视频一区二区| 麻豆久久精品国产亚洲av| 欧美黑人欧美精品刺激| 国产亚洲精品久久久com| 老女人水多毛片| 999久久久精品免费观看国产| 欧美bdsm另类| 18禁在线播放成人免费| 国产精品美女特级片免费视频播放器| 99精品在免费线老司机午夜| 一区二区三区高清视频在线| 九色成人免费人妻av| 亚洲欧美日韩高清专用| 国产探花在线观看一区二区| 22中文网久久字幕| 久久亚洲精品不卡| 狠狠狠狠99中文字幕| 啦啦啦啦在线视频资源| 在线观看舔阴道视频| 舔av片在线| 嫩草影院新地址| 成人二区视频| 91狼人影院| 亚洲精品在线观看二区| 男插女下体视频免费在线播放| 亚洲图色成人| 亚洲国产高清在线一区二区三| av在线天堂中文字幕| 亚洲图色成人| 亚洲av中文av极速乱 | 欧美色欧美亚洲另类二区| 成人高潮视频无遮挡免费网站| 波多野结衣高清无吗| 免费人成视频x8x8入口观看| 亚洲精华国产精华液的使用体验 | 无遮挡黄片免费观看| 嫁个100分男人电影在线观看| 色5月婷婷丁香| 亚洲一级一片aⅴ在线观看| 久久99热6这里只有精品| 一级黄色大片毛片| 在线观看美女被高潮喷水网站| 又黄又爽又刺激的免费视频.| av天堂在线播放| videossex国产| 日韩欧美在线乱码| 久久人人爽人人爽人人片va| 午夜久久久久精精品| 国产精品福利在线免费观看| 国产成人aa在线观看| 人妻制服诱惑在线中文字幕| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 亚洲成人中文字幕在线播放| 97超级碰碰碰精品色视频在线观看| 免费观看在线日韩| 久久天躁狠狠躁夜夜2o2o| 免费av观看视频| 91麻豆精品激情在线观看国产| 亚洲一区高清亚洲精品| 欧美又色又爽又黄视频| 在线免费十八禁| 黄色日韩在线| 国内毛片毛片毛片毛片毛片| 久久久久久久久中文| 免费电影在线观看免费观看| 欧美国产日韩亚洲一区| av国产免费在线观看| 亚洲成人久久爱视频| 精品不卡国产一区二区三区| 在线观看美女被高潮喷水网站| 免费在线观看日本一区| 久久99热这里只有精品18| 日本撒尿小便嘘嘘汇集6| 永久网站在线| 亚洲精品影视一区二区三区av| 中文字幕久久专区| 久久欧美精品欧美久久欧美| 日日啪夜夜撸| 波多野结衣巨乳人妻| 日韩国内少妇激情av| 91av网一区二区| 最近最新免费中文字幕在线| 真实男女啪啪啪动态图| 久久精品人妻少妇| 国产高清有码在线观看视频| 别揉我奶头 嗯啊视频| 亚洲精品一卡2卡三卡4卡5卡| 男人舔女人下体高潮全视频| 性插视频无遮挡在线免费观看| 中出人妻视频一区二区| 中国美白少妇内射xxxbb| 神马国产精品三级电影在线观看| 亚洲熟妇中文字幕五十中出| 最后的刺客免费高清国语| 久久久久久久久久久丰满 | 亚洲精品亚洲一区二区| 乱人视频在线观看| 欧美成人免费av一区二区三区| 变态另类成人亚洲欧美熟女| 99热网站在线观看| 可以在线观看的亚洲视频| 一级黄色大片毛片| 最近最新免费中文字幕在线| 婷婷精品国产亚洲av| 国产伦人伦偷精品视频| 国产伦在线观看视频一区| 国产一区二区激情短视频| 中文字幕人妻熟人妻熟丝袜美| 欧美bdsm另类| 午夜福利成人在线免费观看| 精华霜和精华液先用哪个| 免费在线观看成人毛片| 亚洲 国产 在线| 久久久色成人| 欧美三级亚洲精品| 天天躁日日操中文字幕| 欧美精品啪啪一区二区三区| 我要搜黄色片| 欧美高清成人免费视频www| АⅤ资源中文在线天堂| 男女那种视频在线观看| 国产精品国产三级国产av玫瑰| 精品久久久久久成人av| 日韩精品有码人妻一区| 成人亚洲精品av一区二区| 无遮挡黄片免费观看| 国产中年淑女户外野战色| 1000部很黄的大片| 久久久国产成人免费| 日本成人三级电影网站| 99riav亚洲国产免费| 伦理电影大哥的女人| 嫩草影院新地址| 亚洲国产日韩欧美精品在线观看| 极品教师在线免费播放| 91狼人影院| or卡值多少钱| 在线观看舔阴道视频| 成年女人永久免费观看视频| av专区在线播放| 精品午夜福利在线看| 最近最新中文字幕大全电影3| 在线观看一区二区三区| 特大巨黑吊av在线直播| 一级a爱片免费观看的视频| 麻豆精品久久久久久蜜桃| 国内少妇人妻偷人精品xxx网站| 亚洲最大成人手机在线| 成人特级黄色片久久久久久久| 亚洲精品久久国产高清桃花| 99视频精品全部免费 在线| 亚洲五月天丁香| 欧美日韩瑟瑟在线播放| 男女之事视频高清在线观看| 亚洲欧美日韩东京热| 国产黄色小视频在线观看| 91狼人影院| 亚洲最大成人av| 色综合婷婷激情| 欧美日韩中文字幕国产精品一区二区三区| 99精品在免费线老司机午夜| 国产一区二区亚洲精品在线观看| 亚洲中文日韩欧美视频| 综合色av麻豆| 国产亚洲精品av在线| 亚洲最大成人av| 人人妻人人看人人澡| 成人特级av手机在线观看| 99热精品在线国产| 成年女人永久免费观看视频| 在线国产一区二区在线| 偷拍熟女少妇极品色| 亚洲国产日韩欧美精品在线观看| 99九九线精品视频在线观看视频| 成人二区视频| eeuss影院久久| 人妻久久中文字幕网| 精品久久久久久久久亚洲 | avwww免费| 色视频www国产| 国产午夜精品久久久久久一区二区三区 | 免费观看人在逋| 日本黄色片子视频| 黄色配什么色好看| 美女高潮喷水抽搐中文字幕| 国产亚洲av嫩草精品影院| 久久人妻av系列| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产av玫瑰| 亚洲国产欧美人成| 一卡2卡三卡四卡精品乱码亚洲| 91午夜精品亚洲一区二区三区 | 日本三级黄在线观看| 日韩人妻高清精品专区| 一本久久中文字幕| 午夜日韩欧美国产| 国产精品,欧美在线| 成人鲁丝片一二三区免费| 国产极品精品免费视频能看的| 69人妻影院| 欧美高清成人免费视频www| 久久中文看片网| 精品日产1卡2卡| 亚洲精品在线观看二区| 久久久色成人| 婷婷亚洲欧美| 免费观看人在逋| 亚洲国产精品久久男人天堂| 日本免费一区二区三区高清不卡| 国国产精品蜜臀av免费| 久久草成人影院| 黄色一级大片看看| 88av欧美| 国产亚洲欧美98| 日韩一本色道免费dvd| 亚洲人成伊人成综合网2020| 少妇人妻一区二区三区视频| 亚洲avbb在线观看| 99久久中文字幕三级久久日本| 精品久久久久久久久久免费视频| 99在线人妻在线中文字幕| a级一级毛片免费在线观看| 久久久精品欧美日韩精品| 中文资源天堂在线| 亚洲av第一区精品v没综合| 不卡视频在线观看欧美| 欧美成人a在线观看| 在线观看免费视频日本深夜| 久久久国产成人免费| 久久热精品热| 女人被狂操c到高潮| 少妇丰满av| 午夜久久久久精精品| 天堂动漫精品| 日韩一区二区视频免费看| or卡值多少钱| 看免费成人av毛片| 一本久久中文字幕| 22中文网久久字幕| 最新在线观看一区二区三区| avwww免费| 九色国产91popny在线| 波多野结衣高清作品| 成人精品一区二区免费| 超碰av人人做人人爽久久| 又黄又爽又免费观看的视频| 97热精品久久久久久| 亚洲中文字幕一区二区三区有码在线看| 久99久视频精品免费| 亚洲真实伦在线观看| 91麻豆av在线| 久久中文看片网| 99热精品在线国产| 丰满乱子伦码专区| 欧美绝顶高潮抽搐喷水| 最近最新免费中文字幕在线| 免费在线观看影片大全网站| 99riav亚洲国产免费| 国产视频一区二区在线看| 国产淫片久久久久久久久| 波多野结衣高清无吗| 91麻豆av在线| 国产精品免费一区二区三区在线| 小蜜桃在线观看免费完整版高清| 嫩草影院新地址| 在线a可以看的网站| 久久国内精品自在自线图片| 黄色一级大片看看| 天天躁日日操中文字幕| 精品久久久久久久人妻蜜臀av| 国产91精品成人一区二区三区| 亚洲最大成人手机在线| 精品一区二区三区av网在线观看| 一a级毛片在线观看| 91精品国产九色| av中文乱码字幕在线| 热99re8久久精品国产| 久久精品91蜜桃| 国产成人影院久久av| 国产精品98久久久久久宅男小说| 一夜夜www| 国产成人一区二区在线| 九九热线精品视视频播放| 国产精品电影一区二区三区| 日本精品一区二区三区蜜桃| 久久国产精品人妻蜜桃| 久久中文看片网| 中文字幕高清在线视频| 日韩av在线大香蕉| 亚洲第一区二区三区不卡| 在线免费观看不下载黄p国产 | 久久精品国产99精品国产亚洲性色| 一区福利在线观看| 真实男女啪啪啪动态图| 欧美日韩中文字幕国产精品一区二区三区| 国产午夜精品论理片| 天天躁日日操中文字幕| 1000部很黄的大片| 亚洲一区高清亚洲精品| 国产精品一及| 人人妻人人看人人澡| 亚洲av熟女| 全区人妻精品视频| 在线免费观看不下载黄p国产 | 精品久久久久久久久久免费视频| or卡值多少钱| av福利片在线观看| 久99久视频精品免费| 97人妻精品一区二区三区麻豆| 精品人妻一区二区三区麻豆 | 国产精品女同一区二区软件 | 成人av在线播放网站| 美女大奶头视频| 国产精品永久免费网站| 国产成人福利小说| 欧美日韩瑟瑟在线播放| 好男人在线观看高清免费视频| 村上凉子中文字幕在线| av在线老鸭窝| 免费大片18禁| 成年女人看的毛片在线观看| 99热这里只有是精品在线观看| 国产精品久久久久久精品电影| 亚洲av中文字字幕乱码综合| 免费人成视频x8x8入口观看| 22中文网久久字幕| 精品久久久久久成人av| 国国产精品蜜臀av免费| 成年版毛片免费区| 国产精品美女特级片免费视频播放器| avwww免费| 国产欧美日韩精品一区二区| 免费人成视频x8x8入口观看| 日本免费一区二区三区高清不卡| 日韩欧美在线二视频| 亚洲内射少妇av| 国产精品一区二区三区四区免费观看 | 色5月婷婷丁香| a在线观看视频网站| 2021天堂中文幕一二区在线观| 天堂影院成人在线观看| 俄罗斯特黄特色一大片| 亚洲中文字幕日韩| 女人被狂操c到高潮| 亚洲精品色激情综合| 日韩国内少妇激情av| 精品欧美国产一区二区三| 精品久久久久久,| 国产精品一区二区免费欧美| 国产精品女同一区二区软件 | 很黄的视频免费| 日韩欧美一区二区三区在线观看| 中文字幕高清在线视频| 午夜福利在线观看吧| 午夜免费成人在线视频| 国产大屁股一区二区在线视频| 嫩草影院精品99| 中文亚洲av片在线观看爽| 欧美3d第一页| 波多野结衣高清作品| 日韩精品中文字幕看吧| 国产精品美女特级片免费视频播放器| 久久这里只有精品中国| 亚洲成av人片在线播放无| 男人的好看免费观看在线视频| 国产午夜精品久久久久久一区二区三区 | 久久99热6这里只有精品| 国产精品,欧美在线| 欧美日韩国产亚洲二区| 日韩亚洲欧美综合| 午夜a级毛片| 波多野结衣巨乳人妻| 久久久久国内视频| 午夜福利18| 免费在线观看日本一区| 性插视频无遮挡在线免费观看| 麻豆一二三区av精品| 久久天躁狠狠躁夜夜2o2o| av在线观看视频网站免费| 国产在线精品亚洲第一网站| 偷拍熟女少妇极品色| 老熟妇乱子伦视频在线观看| 亚洲精品久久国产高清桃花| 婷婷精品国产亚洲av在线| 国产高清三级在线| 免费大片18禁| 亚洲第一区二区三区不卡| 极品教师在线视频| 久久久久久久午夜电影| 少妇熟女aⅴ在线视频| 女人十人毛片免费观看3o分钟| 欧美日韩综合久久久久久 | 久久香蕉精品热| 午夜精品在线福利| 亚洲真实伦在线观看| 观看免费一级毛片| 在线观看美女被高潮喷水网站| 精品一区二区三区人妻视频| 一进一出抽搐动态| 婷婷色综合大香蕉| 久久国产精品人妻蜜桃| 久久久久久大精品| 少妇高潮的动态图| 午夜精品在线福利| 免费观看精品视频网站| 婷婷色综合大香蕉| 毛片女人毛片| 深夜a级毛片| 男女那种视频在线观看| 国产一区二区亚洲精品在线观看| 成人永久免费在线观看视频| 亚洲av熟女| 人妻夜夜爽99麻豆av| 免费看av在线观看网站| 精品一区二区免费观看| 欧美最黄视频在线播放免费| 美女xxoo啪啪120秒动态图| 国产精品一区二区三区四区免费观看 |