• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural,elastic,and electronic properties of topological semimetal WC-type MX family by first-principles calculation?

    2019-08-06 02:06:04SamiUllahLeiWang王磊JiangxuLi李江旭RonghanLi李榮漢andXingQiuChen陳星秋
    Chinese Physics B 2019年7期
    關(guān)鍵詞:王磊

    Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李榮漢), and Xing-Qiu Chen(陳星秋)

    1Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,China

    Keywords: topological semimetals,WC-type materials,MX family,elastic properties

    1. Introduction

    All types of topological materials-such as topological insulators[1-3]and topological semimetals[4-8]-have attracted the attention of researchers because their nontrivial topological phases and unique transport properties, which could establish a fertile ground for quantum computers and spintronic applications. The topological semimetals play a leading role to pinpoint numerous fermions phenomena in solid crystal systems. Moreover, due to its protection mechanism and diverse band crossing points in the electronic band structure near the Fermi level, the topological semimetals family can be classified into different groups, such as threedimensional Dirac semimetals,[9-25]Weyl semimetals,[26-48]Dirac nodal lines semimetals,[49-67]and semimetals with triply degenerate nodal points(TDNPs).[68-79,81]Furthermore,in the field of high energy physics, their realizations are also essential in solid crystals to establish a productive ground to study fundamental particles.

    The non-centrosymmetric WC-type hexagonal structural MX family(MX =TaN,ZrTe,WC,MoP,TaS,TiS,TiSe,TiTe,ZrS,ZrSe,HfS,HfSe,and HfTe)compounds have raised extensive attention due to the incredible innovation of two coexisted phenomenon of fermions: (i)three-component fermions(TDNPs), and (ii) two-component Weyl fermions (WPs) in their bulk phases around the Fermi level.[70-75,78,79]The existence of triply degenerated nodal points (TDNPs) can differentiate the MX family from other renowned topological semimetal candidates. Meanwhile,the properties related with the electronic TDNPs and WPs have been already discussed in detail by using theoretical and experimental approaches in the literature.[68-79]Interestingly,we have recently found that several WC-type compounds commonly host the unique phononic triply degenerate nodal points (TDNPs) and phononic Weyl nodes(WPs)[79,80]in their phonon spectra.

    Following these advances in topological electronic and phononic properties of these MX compounds, further interests have been motivated to see which of the other compounds are isoelectronic and isostructural WC-type systems. Therefore,we have further analyzed the MX compounds,which are the combination of group IVB elements (Ti, Zr, and Hf) and VIA elements(S,Se,and Te)of the periodic table. This family contains nine compounds, in which five compounds (TiS,ZrS, ZrSe0.9, ZrTe, and Hf0.92Se) have been experimentally reported by Harry and Steiger, Sodeck, Orlygsson, Schewe-Miller et al.[82-89]However, the remaining four compounds(TiSe, TiTe, HfS, and HfTe) have not been reported experimentally to date. Nowadays, because of the advances in experimental synthesis techniques-such as,chemical vapor deposition(CVD),physical vapor deposition(PVD),and molecular beam epitaxy (MBE)-it is possible to synthesize these materials. In this sense,here we have assumed that these four unknown compounds of TiSe,TiTe,HfS,and HfTe also crystallize in the same WC-type structure.

    Within this context, through first-principles calculations,we have used the WC-type structure to explore systematically their structural stability, enthalpy of formation, elastic and electronic properties. The MX family has a simple WCtype structure(space group of P 6m2 and No. 187). We have investigated several detailed properties, such as structural parameters,enthalpies of formation,and elastic properties,such as bulk modulus B, shear modulus G, and Young’s modulus E. The Poisson’s ratio v, B/G ratio, electronic structure, and the effects of bond distance and unit cell volume on the elastic properties of the MX family were also evaluated. Interestingly, all of the compounds of the MX family have low enthalpies of formation and no negative frequency was noticed in the phonon dispersion. These results indicate their thermodynamically and dynamical stabilities,respectively.[79]These calculated results will provide basic structural,mechanical,and electronic properties for the MX family.

    2. Computational methods

    2.1. DFT calculations

    In this work, all of the results of the density functional theory (DFT)[90,91]have been obtained by employing Vienna ab-initio simulation package (VASP) code[92-94]with the projector augmented wave(PAW)technique[95,96]through generalized gradient approximations (GGA) of the Perdew-Burke-Ernzerhof(PBE)exchange-correlation function.[97,98]The implemented PAW-PBE pseudo-potentials of all elements(i.e.,Ti,Zr,Hf,S,Se,and Te)are chosen by valence electrons states (i.e., 3p4s3d, 4s4p5s4d, 5p6s5d, and s2p4) and proper cutoff energy is selected according to their ENMAX parameters of elements in each compound. The Γ-centered grid is applied for significantly fasten energy converges for hexagonal structures with a proper set of k-points (21×21×21), and a very precise criterion of forces(below 0.0001 eV/?A)is used for structural optimizations.

    2.2. Elastic constant calculations

    In the literature,[99]the Voigt proposed a scheme for the determination of average elastic moduli of a single crystal to be established by assuming uniform strain throughout a lattice orientation of the crystal,and its values indicate the upper range of the actual moduli. Furthermore,in 1929,Reuss proposed another scheme to obtain the average elastic moduli of a single crystal by the assumption of uniform stress, and the values of resultant moduli indicate the lower frontier of the actual moduli of the crystals.[100]Both of these schemes are based on the assumption of uniform strain and stress in the crystal respectively and show the upper and lower limits of the actual elastic moduli but not the actual values of the elastic moduli of the crystal phase. To obtain the actual values of the elastic moduli (B&G) for a crystal phase, the R. Hill approximations[101]are used,and the resultant elastic moduli are equal to the arithmetic average value of the elastic moduli of the Voigt and Reuss schemes.[102]In addition,these elastic moduli were also used to determine the Poisson’s ratio ν and Young’s modulus E of the crystal phase.[103]

    3. Structural and elastic properties of the MX family

    3.1. Structural properties

    The WC-type crystal structure of the MX family contains two atoms per unit cell,which is non-centrosymmetric without inversion center as shown in Fig. 1. The Wyckoff sites show the occupancy of atom X at the 1a Wyckoff site(0, 0, 0)and the M atom at the 1d Wyckoff site(1/3,2/3,1/2).

    Fig.1. WC-type crystal structure of MX family(M=Ti,Zr,Hf;X=S,Se,Te).

    We have optimized the lattice structures of nine MX compounds with the WC-type structure. Table 1 summarizes all of the optimized lattice constants as compared with the available experimental data. Our DFT calculated lattice constants for five experimentally known compounds(TiS,ZrS,ZrSe0.9,ZrTe, and Hf0.92Se) are in good agreement with the experimentally reported lattice constants with an error less than 1%.Furthermore, we have derived their enthalplies of formation(ΔH)at 0 K using the following equation:

    where EDFT(MX) is the total DFT-derived ground-state energy of the stoichiometric MX compound and both EDFT(M)and EDFT(X) are the DFT-derived energies at their referred solid phases of M and X at their ground states, respectively. The structure optimization to their equilibrium states has been achieved at zero pressure for each elemental solid(Ti, Zr, Hf, S, Se, and Te) of the MX family to derive the ground-state energy.[104,105]The experimentally reported crystal structures such as Ti(hcp,P63/mmc,194),[106-108]Zr(hcp,P63/mmc, 194),[109-112]Hf (hcp, P63/mmc, 194),[113-115]S (orthorhombic, Pnm, 58),[116]Se (rhombohedral, R-3m,166),[117]and Te (hcp, P3121)[118,119]were used to calculate the ground state energy of each individual candidate. The results are further complied in Table 1 and these nine compounds have highly negative enthalpies of formation,indicating their thermodynamic stabilities. Furthermore,in our latest publication,[79]we have calculated the phonon spectra of these nine MX compounds, revealing no negative branches and noimaginary frequencies,which confirm their dynamical stabilities.

    Table 1. DFT-derived lattice constants a and c and enthalpy of formation of single crystals,in comparison with available experimental data.

    3.2. Elastic properties

    The elastic constants are crucial because they allow us to investigate the stability of a crystal phase. They are also associated with numerous basic solid-state phenomenons such as,phonon dispersion,thermal properties,inter-atomic potentials,mechanical properties, and hardness.[120,121]Most recently,the elastic properties of WC-type topological semimetals of MoP, ZrTe, and TaN have been theoretically investigated by Guo et al.[122-124]To elucidate the elastic properties of these MX compounds in this work,we have first repeated the calculations of the elastic properties of ZrTe which is isostructural to the MX family, and the accomplished results were comparable with the previous work.[123]Theoretically,our proposed nine compounds of the MX family have a hexagonal structure phase and they require four-order tensors of 3×3×3×3 order matrix of 81 elements.[125]Due to the hexagonal symmetry of the MX compounds,the number of elastic constants Cijis reduced from 81 to 5, which are C11, C12, C13, C33,and C44.[103,123]For these nine compounds,the derived elastic constants are compiled in Table 2. In terms of these five independent elastic constants, we have found that all these MX compounds meet the mechanical criteria for hexagonal lattice,C44>0,C11>|C12|,and(C11+2C12)C33>2C213.[102,126]Furthermore,according to the R.Hill approximation,we have derived the elastic moduli of the polycrystalline MX compounds in Table 2.

    Table 2. The DFT-derived elastic constants Cij in GPa,C66=C11-C12/2,bulk modulus B in GPa,shear modulus G in GPa,Young’s modulus E in GPa,Poisson’s ratio v,B/G ratio,and hardness Hv in GPa at their equilibrium states.

    From Fig.2,it can be seen that the bulk modulus B,shear modulus G, and Young’s modulus E follow the zigzag path from TiX to ZrX to HfX compounds. From MS to MSe to MTe, the data show a decreasing tendency against from Ti to Zr to Hf with increasing the atomic number of M. Among these compounds, the TiS compound has the highest bulk modulus (141.3 GPa), shear modulus (100.7 GPa), Young’s modulus (244.1 GPa) and the lowest Poisson ratio (0.21) as shown in Figs.2(a)and 2(b)respectively. The only exception is HfS, which has a bulk modulus of 153 GPa. Figure 2(c)illustrates the B/G ratio. According to the Pugh’s criteria[127]for the brittle or ductile mechanical properties of materials,eight compounds(TiS,TiSe,TiTe,ZrS,ZrSe,ZrTe,HfS,and HfSe) are in brittle because of their B/G values smaller than 1.75, whereas the compound HfTe is in the ductile manner.Because of the lowest Poisson’s ratio and B/G value, TiS would be the most brittle one among them. Furthermore, we have derived their theoretical Vickers’ hardness according to the proposed hardness model(Hv=2(k2G)0.585-3[128]using the inputs of both B and G.

    Fig.2. DFT-derived(a)elastic moduli,(b)Poisson’s ratio,and(c)B/G.

    4. Electronic properties of MX compounds

    Furthermore,we have derived the total densities of states(DOSs)and the partial DOSs of the MX compounds in Fig.3,indicating that they share quite similar electronic structures.At first, they are typically metallic and their common feature is the existence of the pseudogaps at the Fermi level, mainly featured by the 3d, 4d, and 5d orbitals of the metallic components Ti, Zr, and Hf in the MX compounds. In Fig. 3, we have noticed obvious hybridization between 3d-Ti,4d-Zr,5d-Hf and 3p-S,4p-Se, 5p-Te in different energy ranges, but not at the Fermi level. In the total DOSs and partial DOSs of these compounds, the energy range decreases and shrinks towards the Fermi level due to the increasing atomic number of 3p-S,4p-Se,5p-Te with 3d-Ti,4d-Zr,5d-Hf,respectively. The presence of the pseudogap valley in the total TDOS at the Fermi level is a useful factor for the illustration of the electronic stabilities of these MX compounds.

    Fig.3. The DFT-derived total densities of states and the partial density of states of MX (M=Ti,Zr,Hf;X =S,Se,Te). The Fermi level is set to the zero energy.

    We have derived the electronic band structures of these nine MX compounds in Figs.4-6 with and without the spinorbital coupling (SOC). First, it can be seen that we have reproduced the electronic band structure of ZrTe, which is exactly consistent to that in Ref.[64],indicating that our current calculations are reliable. Second, the electronic structures of all these nine MX compounds look highly similar. When the SOC effect is ignored, two main features are observable (see panels (a)-(c) in Figs. 4-6). (i) Surrounding each K point in the bulk BZ, there is a Dirac nodal line (DNL) in the Kz=0 plane,as shown in Fig.7(a). These DNLs are clearly formed around the Fermi level due to the linear band crossing of their several inverted orbitals between the M dxz+ dyzorbitals and M dx2-y2+ dxyorbitals (M=Ti, Zr, Hf) surrounding each K point. (ii)A sixfold degenerate nodal point(sixfold DNP)locates at the position on the Γ-A direction around the Fermi level due to another type of band inversion between the doubly degenerate M dxz+ dyzand the M dz2-like orbitals at the A point of the bulk BZ (in Fig. 7(a)). Taking HfSe as an example, it can be clearly seen that without the SOC inclusion at the K point in the BZ the band inversion occurs between Hf dxz+dyzorbitals and Hf dx2-y2+dxyorbitals, resulting in the formation of the DNL surrounding the K point in the kz=0 plane(Fig.8(a)). At the A point in the BZ,the band inversion between the doubly degenerate Hf dxz+ dyzand dz2-like orbitals indicates the sixfold DNP occurring along the Γ-A line(Fig.8(a)).

    Fig.4. The DFT-derived electronic band structures of TiX (X =S,Se,Te): (a)-(c)without the SOC effect and(d)-(f)with the SOC effect. The Fermi level is set to the zero energy.

    Because the masses of these elemental solids M and X are not very light, their SOC interactions should be considered. Once the SOC has been contained in their electronic band structures,we can see the highly apparent changes,particularly around the Fermi level. The only exception is the case TiS.Because TiS exhibits the weakest SOC effect among these nine compounds, as shown in Fig.4(a), the SOC inclusion does not obviously change its electronic band structure,indicating the coexisted six DNLs surrounding the K point and two sixfold DNPs along the Γ-A direction. Nevertheless,for other eight MX compounds, the SOC-induced modifications of the electronic band structures are relatively obvious. Because the MX lattice is lack of the inversion symmetry, each doubly-degenerate band in the case of SOC inclusion exhibits the so-called spin splitting. This results in two facts. First,each DNL around the K point in the kz=0 plane has to be broken into gap or WPs. After a careful search of the whole BZ, in our current cases for all MX compounds, each DNL is broken into a pair of WPs with opposite chirality, as illustrated in Fig.7(b). Therefore,in their BZ,there exist six pairs of WPs locating at the positions which are just slightly above and below the kz=0 plane. Second,the SOC inclusion splits each sixfold DNP into two TDNP [TDNP1 and TDNP2] as marked in Fig. 7(b) along the Γ-A direction. For instance,still for HfSe in Fig. 8(b), the SOC inclusion certainly splits the band around the Fermi level. This fact leads to two features:(i)the DNLs are split into the WPs at(0.27871,0.27871,±0.0100), as marked in Fig. 8(d). All these WPs have the same energy level of 33 meV above the Fermi level. (ii)Due to the SOC effect, the sixfold DNP along the Γ-A direction is split into two TDNPs, TDNP1(0, 0, 0.29081)and TDNP2(0,0,0.33169),as shown in the zoom-in plot of Fig.8(c). All these compounds indeed share the same behaviors. For ZrSe,a pair of WPs at (0.27314, 0.27314, ±0.01628) and TDNP1 at(0,0,0.2904)and TDNP2 at(0,0,0.3146)[79]and for ZrTe WPs at (0.2698, 0.2698, ±0.00655)[71]and TDNP1 at (0, 0,0.2834) and TDNP2 at (0, 0, 0.3313) appear. Of course, it should be emphasized that the appearances of TDNPs(TDNP1& TDNP2) are indeed protected by the C3zrotation and mirror symmetries,which are the same as those in both ZrTe and ZrSe cases.[71,79]

    Fig.5. The DFT-derived electronic band structures of ZrX (X =S,Se,Te): (a)-(c)without the SOC effect and(d)-(f)with the SOC effect. The Fermi level is set to the zero energy.

    Fig.6. The DFT-derived electronic band structures of HfX (X =S, Se, Te): (a)-(c)without the SOC effect and(d)-(f)with the SOC effect.The Fermi level is set to the zero energy.

    Fig.7. Illustrations of BZ of MX. (a)Without the SOC inclusion,six DNLs surround the K point in the kz =0 plane and two sixfold degenerate nodal points (sixfold DNPs) locate at the Γ-A path of the BZ. (b) With the SOC inclusion, each DNL surrounding the k point will be broken into WPs with the opposite chirality, as marked by WP+and WP-. The sixfold DNPs will be broken into two TDNPs still on the Γ-A path.

    Furthermore,as for ZrTe in Ref.[71],we can illustrate the topological property of the electronic structure using the Wilson loop method. Here,we have selected HfSe as a prototypical example to show the non-trivial topological feature of its electronic structure. We have first plot the DFT-derived electronic structure around one of the WPs for HfSe in Figs.9(a)-9(c)to illustrate the evolution of the electronic band structure around the WP.It can be seen that these WPs are clearly away from the kz=0 plane. Meanwhile, for HfSe it can be identified that all WPs have the same energy of 33 meV above the Fermi level. In addition,we also show the evolution of the socalled Wannier centers created along the kydirection in the two kz=0 and kz=π planes in Figs.9(d)and 9(e). Accordingly,the Z2numbers(namely,counting the times of Wannier center crosses a reference line)of both these planes are odd,signifying their topological non-trivial electronic feature. Of course,the other members including ZrTe in this family are similar to each other with the coexisted WPs and TDNPs in their bulk electronic structures. Of course, because of their non-trivial topological nature on some certain surface,there would exhibit some topologically protected surface states. These non-trivial surface states of both ZrTe and ZrSe have been discussed in details in Refs.[71]and[79],respectively.

    Fig. 8. Electronic structures of HfSe. (a) Band structure without the SOC inclusion shows the band inversion between dxz+dyz and dx2-y2+dxy at K and the band inversion between dz2 and dxz+dyz orbitals at the A point. (b) Band structure with the SOC inclusion. (c)The zoom-in visualization of TDNP1 and TDNP2 along the Γ-A direction in panel (b). (d) The zoom-in bands crossing one WP (0.27871,0.27871,±0.0100)around the Fermi level with the SOC inclusion.

    Fig.9. DFT-derived band structures around the WP node at(a)kz =0.003, (b)kz =0.007, and(c)kz =0.010(exactly corresponding to the WP node)for HfSe. The derived Wilson loops along the ky evaluation of the Berry phases of all occupied bands along the kx direction in both(d)kz=0 and(e)kz=π planes.

    5. Conclusion

    By employing the first-principles calculations, we have studied the structural, thermodynamic, elastic, and electronic properties of nine WC-type MX compounds(TiS,TiSe,TiTe,ZrS, ZrSe, ZrTe, HfS, HfSe, and HfTe). Five of them (TiS,ZrS,ZrSe0.9, ZrTe, and Hf0.92Se)have been theoretically derived to have comparable results with known experimental reported data. We have also predicted four new compounds of TiSe,TiTe,HfS,and HfTe which are thermodynamically and dynamically stable. All these compounds satisfy the mechanical criteria of hexagonal crystal phase, their bulk and shear moduli are obtained by R.Hill approximation. In addition,all these compounds have been theoretically proposed to be topological semimetals and revealed the analogous electronic band structures with the coexisted Weyl nodes and triply degenerate nodal points in their bulk phases like ZrTe compound,excluding TiS,due to the weak SOC effect.

    猜你喜歡
    王磊
    Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
    First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
    Differentiable programming and density matrix based Hartree–Fock method?
    逼近人性
    我愛你,中國(guó)
    Carriage to eternity: image of death in Dickinson and Donne
    青年生活(2019年29期)2019-09-10 06:46:01
    作品選登
    不再被“圓”困住
    “根本停不下來”
    Exact analytical solutions for moving boundary problems of one-dimensional flow in semi-infinite porous media with consideration of threshold pressure gradient*
    亚洲 国产 在线| 亚洲国产精品成人久久小说| 妹子高潮喷水视频| 国产精品香港三级国产av潘金莲 | 两人在一起打扑克的视频| 国产高清videossex| 黑人猛操日本美女一级片| 丝袜美足系列| 成年av动漫网址| 亚洲视频免费观看视频| 日韩av不卡免费在线播放| e午夜精品久久久久久久| 青青草视频在线视频观看| 亚洲一区中文字幕在线| 午夜影院在线不卡| 国产亚洲精品久久久久5区| 久9热在线精品视频| 久久午夜综合久久蜜桃| 777久久人妻少妇嫩草av网站| 免费看av在线观看网站| 国产一卡二卡三卡精品| 亚洲av欧美aⅴ国产| 亚洲av成人精品一二三区| 丰满迷人的少妇在线观看| 人妻人人澡人人爽人人| 午夜免费成人在线视频| 大香蕉久久网| 精品国产乱码久久久久久小说| 精品一区在线观看国产| 午夜激情av网站| av线在线观看网站| 中文字幕人妻丝袜一区二区| 国产成人精品无人区| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇久久久久久888优播| 女性被躁到高潮视频| 久久久久久久大尺度免费视频| 日韩欧美一区视频在线观看| 亚洲一码二码三码区别大吗| 十分钟在线观看高清视频www| 高潮久久久久久久久久久不卡| 国语对白做爰xxxⅹ性视频网站| 晚上一个人看的免费电影| 蜜桃在线观看..| 肉色欧美久久久久久久蜜桃| 亚洲av男天堂| 精品少妇内射三级| 欧美日韩亚洲高清精品| 日韩,欧美,国产一区二区三区| 亚洲国产欧美一区二区综合| xxx大片免费视频| 高清不卡的av网站| 18禁观看日本| 国产精品.久久久| 老鸭窝网址在线观看| 在线av久久热| 亚洲欧美清纯卡通| 亚洲av成人不卡在线观看播放网 | a级毛片在线看网站| 日韩中文字幕视频在线看片| 一区二区三区乱码不卡18| 亚洲国产成人一精品久久久| 色94色欧美一区二区| 制服诱惑二区| 久久热在线av| 韩国高清视频一区二区三区| 欧美老熟妇乱子伦牲交| 国产精品国产三级专区第一集| 午夜福利乱码中文字幕| 女性生殖器流出的白浆| 国产成人av教育| 国产免费视频播放在线视频| 欧美成人精品欧美一级黄| 80岁老熟妇乱子伦牲交| 亚洲精品日韩在线中文字幕| 夫妻午夜视频| 午夜两性在线视频| a级片在线免费高清观看视频| 日本a在线网址| 女警被强在线播放| 亚洲欧美一区二区三区久久| 免费少妇av软件| 午夜福利在线免费观看网站| 首页视频小说图片口味搜索 | 在线看a的网站| 七月丁香在线播放| 99久久99久久久精品蜜桃| 亚洲精品国产av蜜桃| 看免费成人av毛片| 日本wwww免费看| 国产av国产精品国产| 蜜桃国产av成人99| 女性生殖器流出的白浆| 十分钟在线观看高清视频www| 咕卡用的链子| 国产在线观看jvid| 久久久久久久久久久久大奶| xxx大片免费视频| 国产精品久久久久成人av| 男人舔女人的私密视频| 人体艺术视频欧美日本| 国产97色在线日韩免费| 超碰成人久久| 久久精品熟女亚洲av麻豆精品| 国产成人精品久久久久久| 国产97色在线日韩免费| 超碰成人久久| 考比视频在线观看| 后天国语完整版免费观看| 中文字幕最新亚洲高清| 另类精品久久| 国产精品.久久久| bbb黄色大片| 欧美黄色淫秽网站| 成在线人永久免费视频| 又紧又爽又黄一区二区| 在线观看www视频免费| 极品少妇高潮喷水抽搐| 欧美黑人精品巨大| 另类亚洲欧美激情| 久久久久精品人妻al黑| 成人国产一区最新在线观看 | 男人操女人黄网站| 午夜福利视频精品| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 国产成人啪精品午夜网站| 亚洲精品成人av观看孕妇| 18禁国产床啪视频网站| 天天躁夜夜躁狠狠久久av| 欧美少妇被猛烈插入视频| 免费在线观看视频国产中文字幕亚洲 | 国产在视频线精品| 久久国产精品男人的天堂亚洲| 少妇裸体淫交视频免费看高清 | 后天国语完整版免费观看| 校园人妻丝袜中文字幕| 欧美 日韩 精品 国产| 精品少妇黑人巨大在线播放| 国产成人91sexporn| 在线观看免费高清a一片| 男人舔女人的私密视频| 亚洲七黄色美女视频| 一本—道久久a久久精品蜜桃钙片| 欧美人与性动交α欧美软件| 午夜福利一区二区在线看| 男的添女的下面高潮视频| 欧美少妇被猛烈插入视频| 日韩中文字幕欧美一区二区 | 丰满少妇做爰视频| 精品一品国产午夜福利视频| 男人操女人黄网站| 在线 av 中文字幕| 日韩精品免费视频一区二区三区| 久久免费观看电影| 中文字幕高清在线视频| 久久精品熟女亚洲av麻豆精品| 日韩av在线免费看完整版不卡| 中文字幕色久视频| 性色av一级| 九草在线视频观看| 熟女少妇亚洲综合色aaa.| 久久久久网色| 国产真人三级小视频在线观看| 久久中文字幕一级| xxx大片免费视频| 9热在线视频观看99| 97精品久久久久久久久久精品| 成年人免费黄色播放视频| 国产一区二区在线观看av| 久久久久网色| 国产免费现黄频在线看| 一边亲一边摸免费视频| 乱人伦中国视频| 高清黄色对白视频在线免费看| 亚洲av电影在线观看一区二区三区| 午夜视频精品福利| 母亲3免费完整高清在线观看| 国产一区二区 视频在线| 天天躁夜夜躁狠狠躁躁| 亚洲精品日韩在线中文字幕| 又黄又粗又硬又大视频| 看免费成人av毛片| 亚洲欧洲精品一区二区精品久久久| 在线亚洲精品国产二区图片欧美| 亚洲av欧美aⅴ国产| xxxhd国产人妻xxx| 久久亚洲精品不卡| 十分钟在线观看高清视频www| 亚洲专区国产一区二区| 狠狠婷婷综合久久久久久88av| 国产精品人妻久久久影院| 亚洲专区国产一区二区| 黄频高清免费视频| 亚洲 欧美一区二区三区| 搡老岳熟女国产| 精品国产乱码久久久久久男人| 夫妻午夜视频| 国产日韩欧美亚洲二区| 成人手机av| 一本大道久久a久久精品| 亚洲成人国产一区在线观看 | 电影成人av| 少妇粗大呻吟视频| 天堂8中文在线网| 日本wwww免费看| av天堂久久9| 丰满迷人的少妇在线观看| 在线观看免费高清a一片| 精品国产国语对白av| 我要看黄色一级片免费的| 9热在线视频观看99| 999久久久国产精品视频| 国产在线一区二区三区精| 国产成人欧美| 国产成人欧美| 91字幕亚洲| 嫩草影视91久久| 侵犯人妻中文字幕一二三四区| 日韩一区二区三区影片| 蜜桃国产av成人99| 亚洲图色成人| 久久精品熟女亚洲av麻豆精品| 人妻一区二区av| 久久精品国产亚洲av涩爱| 免费高清在线观看日韩| 男女之事视频高清在线观看 | 国产精品偷伦视频观看了| 亚洲专区国产一区二区| 一区二区三区乱码不卡18| 国产精品免费视频内射| 另类精品久久| 亚洲 国产 在线| 亚洲欧美精品综合一区二区三区| 欧美成人午夜精品| 国产片特级美女逼逼视频| 久久影院123| 真人做人爱边吃奶动态| 高清欧美精品videossex| 国产高清视频在线播放一区 | 国产成人一区二区在线| 日本一区二区免费在线视频| 女人爽到高潮嗷嗷叫在线视频| 中文字幕制服av| 久久鲁丝午夜福利片| 欧美精品一区二区免费开放| 亚洲欧美日韩高清在线视频 | 亚洲av成人不卡在线观看播放网 | 50天的宝宝边吃奶边哭怎么回事| 国产成人精品久久二区二区免费| 一本综合久久免费| 波多野结衣av一区二区av| 99精国产麻豆久久婷婷| 少妇的丰满在线观看| 欧美国产精品va在线观看不卡| 天天躁狠狠躁夜夜躁狠狠躁| av有码第一页| 国产精品一区二区免费欧美 | 99国产精品一区二区三区| 精品少妇黑人巨大在线播放| 久久人妻熟女aⅴ| av在线播放精品| 国产视频一区二区在线看| www.999成人在线观看| 国产成人啪精品午夜网站| 亚洲成人免费电影在线观看 | 久久午夜综合久久蜜桃| 亚洲伊人色综图| 欧美xxⅹ黑人| 中文字幕最新亚洲高清| 国产精品麻豆人妻色哟哟久久| 狠狠婷婷综合久久久久久88av| 国产av国产精品国产| 狠狠精品人妻久久久久久综合| 婷婷色麻豆天堂久久| 欧美日韩亚洲国产一区二区在线观看 | 久久性视频一级片| 好男人视频免费观看在线| 日韩欧美一区视频在线观看| 国产色视频综合| 精品国产国语对白av| 久久久久精品人妻al黑| 国产成人啪精品午夜网站| 日韩 亚洲 欧美在线| 国产av精品麻豆| 日韩大片免费观看网站| 丝瓜视频免费看黄片| 99精国产麻豆久久婷婷| 男女国产视频网站| 老司机亚洲免费影院| 老司机影院毛片| 精品一区二区三区四区五区乱码 | 亚洲天堂av无毛| 亚洲欧洲日产国产| 18禁观看日本| 精品福利永久在线观看| 精品一区在线观看国产| 亚洲国产看品久久| 日韩伦理黄色片| 国产成人a∨麻豆精品| 在线亚洲精品国产二区图片欧美| 成人手机av| 中文字幕av电影在线播放| av在线app专区| 免费女性裸体啪啪无遮挡网站| 69精品国产乱码久久久| 另类精品久久| 欧美日韩综合久久久久久| 18禁裸乳无遮挡动漫免费视频| 久久久久国产精品人妻一区二区| 亚洲视频免费观看视频| 多毛熟女@视频| 啦啦啦啦在线视频资源| 精品国产乱码久久久久久男人| 中文字幕高清在线视频| 亚洲人成网站在线观看播放| 国产成人一区二区三区免费视频网站 | 久久国产精品人妻蜜桃| av天堂在线播放| av网站免费在线观看视频| 国产成人av激情在线播放| 精品人妻一区二区三区麻豆| 精品久久久久久久毛片微露脸 | 国产福利在线免费观看视频| 狂野欧美激情性xxxx| 秋霞在线观看毛片| 午夜福利免费观看在线| √禁漫天堂资源中文www| 99国产精品99久久久久| 久久人人爽av亚洲精品天堂| www.av在线官网国产| 国产av精品麻豆| 香蕉国产在线看| 精品欧美一区二区三区在线| 美女福利国产在线| 国产视频一区二区在线看| 精品人妻1区二区| 国产午夜精品一二区理论片| 国产在线免费精品| 国产亚洲精品久久久久5区| 别揉我奶头~嗯~啊~动态视频 | 97在线人人人人妻| 日韩 欧美 亚洲 中文字幕| 涩涩av久久男人的天堂| 精品人妻熟女毛片av久久网站| 满18在线观看网站| 啦啦啦在线观看免费高清www| 亚洲欧美日韩另类电影网站| 女性生殖器流出的白浆| 免费av中文字幕在线| 在线观看www视频免费| 1024视频免费在线观看| 亚洲成人手机| 日韩电影二区| 在线观看免费午夜福利视频| 脱女人内裤的视频| 在线观看人妻少妇| 亚洲成av片中文字幕在线观看| 成人国产av品久久久| 久久久国产精品麻豆| 国产精品人妻久久久影院| 国产精品久久久久久精品古装| 国产真人三级小视频在线观看| 亚洲av国产av综合av卡| 国产精品99久久99久久久不卡| 人人妻人人爽人人添夜夜欢视频| 十分钟在线观看高清视频www| 2021少妇久久久久久久久久久| 国产不卡av网站在线观看| 69精品国产乱码久久久| 9热在线视频观看99| 亚洲九九香蕉| 欧美日韩视频高清一区二区三区二| av线在线观看网站| 国产精品 国内视频| 久久人人爽av亚洲精品天堂| 欧美人与善性xxx| 极品人妻少妇av视频| 午夜激情av网站| 国产在线视频一区二区| 午夜免费鲁丝| av欧美777| 日韩av免费高清视频| 999久久久国产精品视频| 老鸭窝网址在线观看| 九草在线视频观看| 久久久久久久久免费视频了| 国产伦理片在线播放av一区| 欧美黄色淫秽网站| 国产精品一二三区在线看| 你懂的网址亚洲精品在线观看| 日韩中文字幕视频在线看片| 国产淫语在线视频| 最黄视频免费看| 好男人电影高清在线观看| 精品福利永久在线观看| 国产成人av教育| 美女视频免费永久观看网站| 精品国产乱码久久久久久小说| 欧美 日韩 精品 国产| 午夜激情av网站| 亚洲av国产av综合av卡| 亚洲精品中文字幕在线视频| 欧美激情极品国产一区二区三区| xxxhd国产人妻xxx| 日本91视频免费播放| 男人舔女人的私密视频| 国产精品亚洲av一区麻豆| 色视频在线一区二区三区| 19禁男女啪啪无遮挡网站| 免费久久久久久久精品成人欧美视频| 一区二区日韩欧美中文字幕| 七月丁香在线播放| 在现免费观看毛片| 久久精品人人爽人人爽视色| 亚洲人成电影免费在线| 欧美+亚洲+日韩+国产| 国产女主播在线喷水免费视频网站| 久久99精品国语久久久| 亚洲精品成人av观看孕妇| 成人手机av| 国产欧美日韩一区二区三区在线| 亚洲欧美成人综合另类久久久| 久久久久国产精品人妻一区二区| 制服诱惑二区| 自线自在国产av| 美女大奶头黄色视频| 国产视频一区二区在线看| 欧美激情高清一区二区三区| 国产精品熟女久久久久浪| 国产欧美亚洲国产| 女人精品久久久久毛片| 男人添女人高潮全过程视频| 99精品久久久久人妻精品| 黄色视频在线播放观看不卡| 99国产综合亚洲精品| 久久ye,这里只有精品| 老司机靠b影院| 中国美女看黄片| 国产精品一二三区在线看| 久久亚洲国产成人精品v| 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 国产高清不卡午夜福利| 人人澡人人妻人| 国产xxxxx性猛交| 成人黄色视频免费在线看| 精品福利观看| 国产亚洲欧美在线一区二区| 日本欧美国产在线视频| 亚洲一区二区三区欧美精品| 在线 av 中文字幕| 国产精品国产三级专区第一集| 成年人午夜在线观看视频| 精品人妻熟女毛片av久久网站| 丰满迷人的少妇在线观看| 欧美av亚洲av综合av国产av| 国产人伦9x9x在线观看| 啦啦啦啦在线视频资源| 亚洲伊人久久精品综合| 欧美成人精品欧美一级黄| 两人在一起打扑克的视频| 狠狠精品人妻久久久久久综合| 最新在线观看一区二区三区 | 欧美+亚洲+日韩+国产| 桃花免费在线播放| 亚洲熟女毛片儿| 纵有疾风起免费观看全集完整版| av天堂久久9| 国产精品国产三级国产专区5o| 美女脱内裤让男人舔精品视频| 黑丝袜美女国产一区| 亚洲七黄色美女视频| 多毛熟女@视频| 免费在线观看影片大全网站 | 国产男女超爽视频在线观看| 久久人人爽av亚洲精品天堂| 成人午夜精彩视频在线观看| 国产成人免费观看mmmm| 久久久久久久大尺度免费视频| 午夜av观看不卡| 精品少妇一区二区三区视频日本电影| 少妇裸体淫交视频免费看高清 | 999久久久国产精品视频| 99热网站在线观看| 在线观看免费视频网站a站| 在线观看国产h片| 国产一区二区激情短视频 | 韩国精品一区二区三区| 最新在线观看一区二区三区 | 国产一卡二卡三卡精品| 啦啦啦视频在线资源免费观看| 亚洲中文av在线| 高清欧美精品videossex| 51午夜福利影视在线观看| 我的亚洲天堂| 狠狠婷婷综合久久久久久88av| 中文字幕精品免费在线观看视频| 天天操日日干夜夜撸| 婷婷成人精品国产| 久久精品久久久久久噜噜老黄| 国产成人欧美| e午夜精品久久久久久久| av在线app专区| 777米奇影视久久| 久久久久久久国产电影| 777米奇影视久久| 国产精品香港三级国产av潘金莲 | 久久天堂一区二区三区四区| 亚洲国产精品一区三区| 日韩熟女老妇一区二区性免费视频| 久久精品久久精品一区二区三区| 一本一本久久a久久精品综合妖精| 国产成人a∨麻豆精品| 免费高清在线观看日韩| 97精品久久久久久久久久精品| 亚洲精品自拍成人| 亚洲专区中文字幕在线| e午夜精品久久久久久久| 91成人精品电影| 欧美国产精品一级二级三级| 1024香蕉在线观看| 一级毛片我不卡| 亚洲国产精品一区二区三区在线| 色婷婷久久久亚洲欧美| 观看av在线不卡| 亚洲 国产 在线| 亚洲国产中文字幕在线视频| 两个人免费观看高清视频| 91麻豆av在线| 80岁老熟妇乱子伦牲交| 天堂8中文在线网| 国产伦人伦偷精品视频| 黄色视频在线播放观看不卡| 国产成人精品久久久久久| 国产精品久久久久久精品古装| 最黄视频免费看| 成年动漫av网址| 男女高潮啪啪啪动态图| 色94色欧美一区二区| 亚洲专区国产一区二区| 日本午夜av视频| 男女无遮挡免费网站观看| av一本久久久久| 国产精品国产av在线观看| 9191精品国产免费久久| 亚洲欧美一区二区三区黑人| 另类精品久久| 在线观看免费午夜福利视频| 十八禁高潮呻吟视频| 免费久久久久久久精品成人欧美视频| 国产又色又爽无遮挡免| 王馨瑶露胸无遮挡在线观看| 国产三级黄色录像| 成人国语在线视频| 久久狼人影院| 热re99久久国产66热| 久久人妻熟女aⅴ| 免费在线观看影片大全网站 | 国产精品亚洲av一区麻豆| av欧美777| 青青草视频在线视频观看| 看免费成人av毛片| 真人做人爱边吃奶动态| 亚洲国产欧美一区二区综合| 一级黄色大片毛片| 国产成人91sexporn| 日韩电影二区| 亚洲av电影在线观看一区二区三区| 欧美激情高清一区二区三区| a 毛片基地| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品高潮呻吟av久久| 国产99久久九九免费精品| 亚洲av日韩精品久久久久久密 | 黑人巨大精品欧美一区二区蜜桃| 亚洲一区中文字幕在线| 美国免费a级毛片| 亚洲男人天堂网一区| 丰满人妻熟妇乱又伦精品不卡| 午夜视频精品福利| 操美女的视频在线观看| 欧美日韩亚洲高清精品| 国产黄频视频在线观看| 久久久久久久国产电影| 日本午夜av视频| 亚洲成人免费电影在线观看 | 久久久久久久久久久久大奶| 日韩 亚洲 欧美在线| 久久久久久久久久久久大奶| 美女国产高潮福利片在线看| 久久人妻熟女aⅴ| 人妻人人澡人人爽人人| 亚洲国产欧美一区二区综合| 亚洲国产精品成人久久小说| 男女免费视频国产| 天堂8中文在线网| 亚洲国产精品国产精品| 精品国产一区二区三区久久久樱花| 在线观看免费高清a一片| 看十八女毛片水多多多| xxx大片免费视频| 亚洲欧美精品综合一区二区三区| 国产三级黄色录像| 国产激情久久老熟女| 欧美变态另类bdsm刘玥| 亚洲精品乱久久久久久| 久久久国产欧美日韩av| av片东京热男人的天堂| 男人添女人高潮全过程视频| 国产成人欧美在线观看 | 久久久久久久久久久久大奶| 热99国产精品久久久久久7| 国产男女超爽视频在线观看| 国产av国产精品国产|