• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Differentiable programming and density matrix based Hartree–Fock method?

    2021-06-26 03:03:44HongBinRen任宏斌LeiWang王磊andXiDai戴希
    Chinese Physics B 2021年6期
    關(guān)鍵詞:王磊

    Hong-Bin Ren(任宏斌) Lei Wang(王磊) and Xi Dai(戴希)

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    4Department of Physics,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon 999077,Hong Kong,China

    Keywords: differentiable programming,quantum chemistry

    1. Introduction

    Hartree–Fock (HF) method[1]is one of the fundamental methods in many body physics. It has been widely applied in quantum chemistry to explore the ground state properties of molecules. Due to its simplicity, it is also considered as a good starting point for more accurate and expensive configuration interaction or perturbative calculations. In physics perspective, HF is a variational method whose variational space is determined by basis functions used to represent the molecular orbital. And we can achieve desired accuracy by including sufficient amount of basis functions. However,traditional HF method hasO(K4) (Kis the number of basis functions used to expand the molecular orbital) computational complexity,which suggests that calculation on large basis set is only manageable for molecules in restricted scale. Instead of monotonically increasing the amount of basis functions in basis set,researchers indicate that one could also augments the variational space of HF by treating basis function related parameters,such as exponents, contraction coefficents and centers of Gaussian type orbital (GTO),[2]as variational parameters, and updating their values during HF’s self consistent field (SCF).[3–7]Following this idea,Tachikawaet al.implemented fully variational HF method.[7]Their numerical results show that the augmented variational space can improve the total energy estimation with a small number of basis functions.

    In previously reported works, gradients of total energy with respect to basis set parameters are manually derived for particular basis set and for specific molecule.This prevents the generalization of fully variational approach to practical situations. With the advent of the modern algorithm and computer technology, especially the boom of deep learning,[8]the process of manual derivation of the gradients could be replaced by automatic differentiation (AD).[9]Popular AD frameworks include Pytorch, TensorFlow[10]in Python, and ForwardDiff.jl,[11]Zygote.jl[12]in Julia.By using the state-ofthe-art AD tools,Tamayo-Mendozaet al.[13]have successfully implemented the DiffiQult library. In DiffiQult,derivatives of HF energy with respect to GTO parameters can be obtained directly from AD,which greatly simplifies the heavy derivative evaluation process, and makes it possible to efficiently compare the effects of different basis sets.However,DiffiQult uses forward-mode AD,which is not efficient for taking derivative of a function whose input dimension is larger than the output (here, the output is energy, which is a scalar). Moreover,because the number of SCF cyclies needed for converged HF calculation is undetermined before calculation starts,their gradient evaluation may cost a large amount of computation resources.

    In this paper, we design a mixed mode AD method and use it to implement fully variational density matrix HF(DMHF)method proposed by Helgakeret al.[14]and Hoai.[15]Unlike the original DMHF which uses purification method[16]to guarantee the validity of one body density matrix, we use Thouless theorem[17]to directly represent the one body density matrix in a set of non-redundant parameters. In this way,we eliminate the need to perform fixed point iterations separately,and can update the density matrix and GTO parameters simultaneously in a single optimization step. Our paper is organized as follows. In Section 2, we introduce a theoretical description of DMHF method. In Section 3, we show results obtained from ground state calculation of some representative molecules, and compare the performance of our algorithm to previously published ones. At last, in Section 4, we present the conclusion and future perspective.

    2. Method

    2.1. Thouless theorem and parametrization of one body density matrix

    The one body density matrixρis defined as

    whereMjiis unconstrained and is an element of a(D?N)×NmatrixM(Dis the dimension of Hilbert space of the single particle wave function associated with those fermion operators). One could construct a Slater determinant|Φb〉which is equivalent to|Φ〉up to a normalization factor.

    Therefore, by substituting|Φ〉with|Φb〉in Eq. (1), we obtain

    whereS=I+M?Mis aN×Noverlap matrix between single particle wave functionsφbi(x) generated by?i, i ∈[1,N].Detailed derivation can be found in Appendix A.

    2.2. Variational density matrix based Hartree–Fock method

    In this paper, we focus on restricted HF (RHF) method,where the molecule is a closed-shell system with all orbitals doubly occupied. In this case, the one body density matrixρis spin independent, therefore, we could omit the spin label,and write the total energy of a molecule as

    whereθis the collection of parameters of GTOs,tijis the sum of matrix element of kinetic and external potential operators under GTO,andvil jkis the tensor element of electron–electron interaction operator under GTO,andEnuc-nucis the nuclear repulsion energy inside the molecule.

    From the above discussion,ρcan be parametrized byM.Therefore,by variationally optimizing Eq.(4)with respect toMandθ

    one could obtain GTOs and one body density matrix that are suitable for describing the ground state of a given molecule.

    We implemented our DMHF method in Julia with AD supported by Zygote.jl. Our computation graph is demonstrated in Fig. 1. As pointed out by Tamayo-Mendozaet al.,for most of the methods in quantum chemistry,one center integral matrixtand two-center integral tensorvare constructed by an element-wise array assignment, which is not feasible for reverse mode AD to manage. We solve this problem by wrapping the array assignment operation as a primitive function that mapsθtotandv. We define custom adjoint for this primitive that computes Jacobian matrix using forward mode AD inside,then pass the Jacobian to reverse mode AD to compute the vector-Jacobian product.And because we directly parameterize the density matrix, our calculation of energy only involves matrix multiplication,trace,and tensor contraction.

    Fig. 1. The computation graph for our DMHF method. Black arrows indicate the forward function evaluation from inputs to outputs,and red arrows indicate backward steps for derivative propogation.

    We demonstrate our method by the calculation of several small molecules. As a benchmark,we first perform fully variational (FV) calculation on hydrogen molecule, and compare our result to that obtained by DiffiQult. By FV,we can simultaneously optimize GTO parameters and the one body density matrix. The H–H bond length is set to 1.388 Bohr radius during the calculation. Figure 2(a)shows the variation of the ground state energy in the optimization process. We can see that our method converges much faster than DiffiQult,and could reaches a ground state energy comparable to that computed by 6-31G basis set which is two times larger than STO-3G basis we used in this case. If we switch off the variation of GTO centers,the ground state energy obtained by our method will be the same as that by DiffiQult,but still has a faster convergence rate. Figure 2(b) shows the change of ground state electron density during the optimization process. The initial electron density is calculated from a randomly initialized density matrix. After optimization, the electron density becomes reasonable and approaches the one calculated by SCF method in Ref.[18]using STO-3G basis. Since we allow the variation of GTO centers,we also find that two peaks get close to each other suggesting that FV method could partly address the polarization of molecular orbital even with a minimal basis set.

    Fig. 2. Fully variational calculation of ground state of hydrogen molecule. (a) Optimization of ground state energy. The green line is calculated by FV DMHF with STO-3G basis set,the blue line is obtained using Tamayo-Mendoza et al. DiffiQult package,the dashed red line corresponds to SCF calculation using 6-31G basis set. (b)Electron density variation during the DMHF calculation,blue line corresponds to the initial electron density of hydrogen molecule before optimization,the green line is the final electron density after optimization,the dashed red line shows the SCF result with STO-3G basis. (c)Electron density distribution in the yz plane obtained from DMHF calculation,same result calculated from SCF with STO-3G is shown in dashed red line.

    Fig.3. Ground state calculation of water(SCF calculation is done with PySCF).(a)Optimization process. The blue line is the result obtained by using non variational DMHF in which basis set parameters are fixed,the green line corresponds to fully variational DMHF where we optimize the basis set parameters together with density matrix, both of them are calculated use STO-3G basis set. We compare our results with those obtained from SCF calculation with STO-3G basis set (dashed orange line) and 3-21G basis set (dashed red line). (b) Difference between electron density calculated by SCF method with STO-3G basis set and 3-21G basis set. (c)Differences between electron density calculated by FV DMHF with STO-3G and SCF with 3-21G basis set.

    Table 1. GTO exponents of hydrogen and oxygen atoms in water, we compare the value in default setting of STO-3G and optimized STO-3G basis set to those in 3-21G basis set.

    We next apply DMHF method to determine the ground state of water molecule. Fully variational calculation of water using STO-3G basis requires simultaneously optimizing 73 parameters at different scales, compared to only 13 parameters in hydrogen molecule case. In Fig.3(a),we compare the ground state energy calculated by FV DMHF and DMHF with GTO related parameters being fixed (non-variational (NV)DMHF). After optimization, NV DMHF converges to the ground state energy obtained by SCF method in PySCF,which is what we expect, while FV DMHF converges to a lower ground state energy that approximates the result obtained by SCF with 3-21G basis. Since 3-21G basis is a double zeta basis, its result is expected to be more accurate. In Fig. 4,we illustrate the variation of GTO exponents during the optimization process. We observe that starting from the default values of STO-3G basis set,these exponents finally evolve to values that are close to the default exponents of 3-21G basis set. The above results suggest that our fully variational approach makes better use of limited basis set and could effectively learn information encoded in higher dimensional Hilbert space. We also list the default and optimized GTO exponents explicitly in Table 1. In addition, in most of the commonly used basis sets, usually the same GTO exponents are applied to 2s and 2p orbitals, while in FV method, these parameters can be tuned independently which allows much larger variational space.Ground state electron density calculated from FV method is also compared to that obtained by SCF method under 3-21G basis,and the difference between the two is shown in Fig. 3(c). Compared to the electron density calculated by the default STO-3G basis set (the difference between results of STO-3G and 3-21G basis set is shown in Fig. 3(b)), our method does not force electron to be on top of each atom,allows the electron density to adjust its spatial extent appropriate to each molecular.

    Fig.4. Evolution of GTO exponents of hydrogen(a)and oxygen(b)in water molecule during the FV DMHF optimization process. The initial value is set to the default value of STO-3G basis set,our FV approach finally sends them to a value close to the default value of 3-21G,which performs better than original STO-3G basis in computing ground state energy and electron density. These values are also listed in Table 1.

    Fig. 5. Benchmark of our DMHF program with popular PySCF on several small molecules. (a)Walltime comparison between optimization process of our Julia code and SCF iterations of PySCF.The PySCF time is normalized to one, and Julia time is presented as its ratio to PySCF time. The results were obtained on single thread Intel(R)Xeon(R)E5-1650 v2 3.50GHz CPU with 16GB RAM, running macOS. (b) Comparison of the ground state energy obtained by PySCF and our Julia DMHF method.

    We benchmark the performance of our DMHF implementation in non-variational setting against popular PySCF software on several small molecules,and show the benchmark results in Fig.5. We perform calculation of ground state energy of H2,HF,H2O,CH4,and CH3F on Intel(R)Xeon(R)E5-1650 v2 3.50 GHz CPU with 16GB RAM machine,running macOS,and record the time needed for converged SCF in PySCF and optimization in our Julia DMHF.We normalize the time used by PySCF calculations to 1,and show ratio of our implementation over PySCF time in Fig. 5(a). For calculation of H2and HF,our implementation surpasses PySCF,and is slightly slower than PySCF in H2O and CH4calculation. The worst case happens for CH3F,where our implementation is 10 times slower. Comparing to PySCF which derives the initial density matrix from atomic orbitals, our density matrix is randomly initialized,therefore,may require more optimization steps.

    3. Conclusion and perspective

    In this work,we show that one body density matrix within HF approximation can be constructed using Thouless theorem, based on which a DMHF method can be implemented.Using density matrix directly in HF helps us to remove the usual SCF that contains diagonalization of a Hamiltonian matrix in energy calculation,and enables us to use reverse mode AD for efficient gradient evaluation. When applied to calculate the ground state of small molecules, with default setting, our DMHF could achieve the same performance as traditional SCF base HF.If we allow GTO related parameters to vary, FV DMHF can be used to obtain more accurate ground state energy with a smaller basis set, which suggests the information hidden in high dimensional Hilbert space could be successfully learned by the FV approach. In future, we tend to bring the density matrix treatment to density functional theory (DFT),[19,20]which is much widely applied in the computational physics. Since we are able to extract real space electron density from density matrix, we could just replace the HF’s exchange energy calculation with the existing exchange–correlation functionals. By that, we could avoid solving Kohn–Sham equation,like what is done in orbital free DFT.

    Acknowledgment

    H.R.thanks Jinguo Liu for helpful discussion.

    Appendix A:Proof of Thouless theorem

    Consider theN-body Slater determinant|Ψ〉generated by fermion operator?1,...,?N,Thouless theorem states that

    Theorem AnyN-body Slater determinant|Φ〉which is not orthogonal to|Ψ〉can be written in the form

    whereDis the dimension of the Hilbert space of one particle wavefunction associated with?i,andMkiare coefficients that could be uniquely determined.

    To prove this, we introduce another set of fermion operator?i,the single particle wavefunctions generated by?iare in the same Hilbert space as those generated by?i. These two sets of fermion operators can be connected by a unitary transformationU

    We partitionUinto four blocks:

    in whichU11is aN×Nmatrix,U21is(D?N)×Nmatrix.

    If theNbody Slater determinant|Φ〉and|Ψ〉generated by these fermion operators

    are not orthogonal〈Φ|Ψ〉/=0.We can scale|Φ〉by the inverse of〈Φ|Ψ〉

    Equation(A2)is equivalent to Eq.(A1)since

    So,this proves the density matrix parameterization mentioned in Section 2.

    Appendix B: Detailed proof of density matrix representation

    Following notation in Section 2,the Laplace expansion of the determinant ofN×NmatrixSis known as

    which suggests that

    Expanding Eq.(2)and pluging in Eq.(B1),we obtain

    which suggests thatρis also an idempotent matrix.

    The electron number conservation can be proved with the help of cyclic property of matrix trace

    猜你喜歡
    王磊
    Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
    Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
    First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
    逼近人性
    我愛(ài)你,中國(guó)
    Carriage to eternity: image of death in Dickinson and Donne
    青年生活(2019年29期)2019-09-10 06:46:01
    作品選登
    不再被“圓”困住
    “根本停不下來(lái)”
    Exact analytical solutions for moving boundary problems of one-dimensional flow in semi-infinite porous media with consideration of threshold pressure gradient*
    人妻系列 视频| 国产亚洲5aaaaa淫片| .国产精品久久| 51国产日韩欧美| 日韩中字成人| 简卡轻食公司| 日韩欧美三级三区| 亚洲无线观看免费| 久久精品影院6| 久久鲁丝午夜福利片| 久久久a久久爽久久v久久| 国产黄色小视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产成人aa在线观看| 亚洲真实伦在线观看| 久久久久久久久久成人| 夜夜夜夜夜久久久久| 国产精品三级大全| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| 少妇熟女aⅴ在线视频| 成人二区视频| 女人十人毛片免费观看3o分钟| 国内揄拍国产精品人妻在线| 久久精品国产亚洲av涩爱 | 亚洲美女视频黄频| 中文亚洲av片在线观看爽| 青春草视频在线免费观看| 久久午夜福利片| 亚洲内射少妇av| 日韩一本色道免费dvd| 少妇熟女aⅴ在线视频| 真实男女啪啪啪动态图| 亚洲精品乱码久久久v下载方式| 成人无遮挡网站| 久久精品夜夜夜夜夜久久蜜豆| h日本视频在线播放| 国产精品电影一区二区三区| 麻豆av噜噜一区二区三区| 免费观看的影片在线观看| 中国国产av一级| 国国产精品蜜臀av免费| 日韩欧美一区二区三区在线观看| 国产在线男女| 高清毛片免费观看视频网站| 99热只有精品国产| 日韩欧美 国产精品| 亚洲成av人片在线播放无| 嘟嘟电影网在线观看| 毛片一级片免费看久久久久| 免费不卡的大黄色大毛片视频在线观看 | 中出人妻视频一区二区| 国产亚洲av嫩草精品影院| 婷婷精品国产亚洲av| 亚洲美女搞黄在线观看| 国产一区二区在线观看日韩| 欧美xxxx黑人xx丫x性爽| 最近中文字幕高清免费大全6| 欧美bdsm另类| 国产成人午夜福利电影在线观看| 麻豆成人午夜福利视频| 国国产精品蜜臀av免费| 有码 亚洲区| 亚洲自偷自拍三级| 国产精品综合久久久久久久免费| 久久久久免费精品人妻一区二区| 免费看av在线观看网站| 中国美女看黄片| 久久午夜福利片| av视频在线观看入口| 男人和女人高潮做爰伦理| 成人鲁丝片一二三区免费| 99热6这里只有精品| 日本一二三区视频观看| 欧美色视频一区免费| 1024手机看黄色片| 一区二区三区免费毛片| 变态另类丝袜制服| 国产一区二区三区av在线 | 久久精品久久久久久噜噜老黄 | 麻豆成人av视频| 亚洲性久久影院| 国产日韩欧美在线精品| 国产视频首页在线观看| 国产精品无大码| 亚洲精品乱码久久久久久按摩| 亚洲成人av在线免费| 人人妻人人澡人人爽人人夜夜 | 一级黄色大片毛片| 国产精品日韩av在线免费观看| 一级黄色大片毛片| 内射极品少妇av片p| 九九爱精品视频在线观看| 亚洲无线在线观看| 色噜噜av男人的天堂激情| 国产黄a三级三级三级人| 啦啦啦韩国在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲熟妇中文字幕五十中出| 黄色一级大片看看| 婷婷色av中文字幕| 国产视频首页在线观看| 久久99热这里只有精品18| 91av网一区二区| 99久久久亚洲精品蜜臀av| 亚洲国产精品国产精品| 亚洲成人久久爱视频| 午夜亚洲福利在线播放| 国产精品精品国产色婷婷| 国产一区二区亚洲精品在线观看| 2021天堂中文幕一二区在线观| 久久久久久久久中文| 欧美3d第一页| 日韩av在线大香蕉| 观看美女的网站| 一个人免费在线观看电影| 欧美zozozo另类| 麻豆国产97在线/欧美| 午夜福利在线观看免费完整高清在 | 欧美潮喷喷水| 精品人妻一区二区三区麻豆| 一级av片app| 亚洲国产精品成人久久小说 | 天堂av国产一区二区熟女人妻| 内地一区二区视频在线| 日本撒尿小便嘘嘘汇集6| 男插女下体视频免费在线播放| 一区二区三区四区激情视频 | 小蜜桃在线观看免费完整版高清| 在线免费十八禁| or卡值多少钱| 美女xxoo啪啪120秒动态图| 中文字幕熟女人妻在线| 国内精品一区二区在线观看| 国产精品永久免费网站| 午夜爱爱视频在线播放| 亚洲精品日韩在线中文字幕 | 蜜臀久久99精品久久宅男| 亚洲精品日韩在线中文字幕 | 99国产极品粉嫩在线观看| 日韩,欧美,国产一区二区三区 | 亚洲精品乱码久久久v下载方式| 欧美丝袜亚洲另类| 色播亚洲综合网| 欧美一区二区亚洲| 哪里可以看免费的av片| 久久久久久久久大av| 国产一区二区在线观看日韩| 欧美日本亚洲视频在线播放| av.在线天堂| 精品不卡国产一区二区三区| 人妻制服诱惑在线中文字幕| 国产午夜精品一二区理论片| av在线老鸭窝| 在线播放国产精品三级| 蜜桃亚洲精品一区二区三区| 久久人人爽人人片av| 能在线免费观看的黄片| 亚洲国产精品成人久久小说 | 99热这里只有是精品50| 狂野欧美白嫩少妇大欣赏| 少妇人妻精品综合一区二区 | 日韩高清综合在线| av免费在线看不卡| 麻豆久久精品国产亚洲av| 九九在线视频观看精品| 91午夜精品亚洲一区二区三区| 人妻制服诱惑在线中文字幕| 51国产日韩欧美| 国产精品三级大全| 波多野结衣高清作品| 最新中文字幕久久久久| 日韩国内少妇激情av| 欧美成人精品欧美一级黄| 乱系列少妇在线播放| 春色校园在线视频观看| 免费搜索国产男女视频| 亚洲精品国产成人久久av| 一级黄片播放器| 亚洲va在线va天堂va国产| 美女内射精品一级片tv| 日本免费a在线| 激情 狠狠 欧美| 国产视频首页在线观看| 天堂√8在线中文| 国产黄片美女视频| 一本精品99久久精品77| 久久久久久久久中文| 婷婷亚洲欧美| 国内少妇人妻偷人精品xxx网站| 国产av麻豆久久久久久久| 99热这里只有是精品在线观看| 色综合亚洲欧美另类图片| 欧美一区二区精品小视频在线| 久久欧美精品欧美久久欧美| eeuss影院久久| 亚洲自偷自拍三级| 91在线精品国自产拍蜜月| 在线观看美女被高潮喷水网站| 能在线免费看毛片的网站| 熟女人妻精品中文字幕| 久久午夜亚洲精品久久| 国产亚洲欧美98| 熟女人妻精品中文字幕| 99久久成人亚洲精品观看| 三级经典国产精品| 女同久久另类99精品国产91| 久久久午夜欧美精品| 人妻夜夜爽99麻豆av| 成年女人看的毛片在线观看| 亚洲美女视频黄频| av又黄又爽大尺度在线免费看 | 看黄色毛片网站| 熟妇人妻久久中文字幕3abv| 国产精品1区2区在线观看.| 久久热精品热| 久久国产乱子免费精品| av免费在线看不卡| 日韩精品有码人妻一区| 国产私拍福利视频在线观看| 亚洲自拍偷在线| 美女国产视频在线观看| 亚洲国产欧美人成| 99riav亚洲国产免费| 久久精品久久久久久久性| 99精品在免费线老司机午夜| 免费看光身美女| 身体一侧抽搐| 色综合色国产| 天堂中文最新版在线下载 | 日韩在线高清观看一区二区三区| 天天躁夜夜躁狠狠久久av| 免费不卡的大黄色大毛片视频在线观看 | 卡戴珊不雅视频在线播放| 精品久久国产蜜桃| 亚洲国产欧美人成| 国产精品伦人一区二区| 国产成人a区在线观看| 精品国内亚洲2022精品成人| 一个人看视频在线观看www免费| 伊人久久精品亚洲午夜| 在线观看av片永久免费下载| 91麻豆精品激情在线观看国产| 青青草视频在线视频观看| 国产精品美女特级片免费视频播放器| 国产日本99.免费观看| 免费观看精品视频网站| 国产白丝娇喘喷水9色精品| 国产乱人视频| 亚洲综合色惰| 一夜夜www| 麻豆乱淫一区二区| 欧美一级a爱片免费观看看| 亚洲色图av天堂| 神马国产精品三级电影在线观看| 五月伊人婷婷丁香| 成人国产麻豆网| 26uuu在线亚洲综合色| 亚洲国产欧美人成| 夜夜爽天天搞| 99热6这里只有精品| 国产麻豆成人av免费视频| 99热精品在线国产| 日韩大尺度精品在线看网址| 伦理电影大哥的女人| 亚洲,欧美,日韩| 精品熟女少妇av免费看| 色综合色国产| 国内少妇人妻偷人精品xxx网站| 91aial.com中文字幕在线观看| 亚洲乱码一区二区免费版| 中文精品一卡2卡3卡4更新| 欧美日韩乱码在线| 日韩 亚洲 欧美在线| 国产色爽女视频免费观看| 国产精品不卡视频一区二区| 身体一侧抽搐| 亚洲综合色惰| 亚洲七黄色美女视频| 欧美又色又爽又黄视频| www日本黄色视频网| 久久精品综合一区二区三区| 久久久色成人| 成人午夜精彩视频在线观看| 欧美+亚洲+日韩+国产| 亚洲最大成人av| 国产中年淑女户外野战色| 99久久精品一区二区三区| 亚洲精品日韩av片在线观看| 国产精品久久久久久av不卡| 国产精品永久免费网站| 日韩在线高清观看一区二区三区| 精品少妇黑人巨大在线播放 | 99热全是精品| 搞女人的毛片| 国产精品av视频在线免费观看| 国产精品人妻久久久影院| 亚洲欧美日韩卡通动漫| 国产黄色视频一区二区在线观看 | 国产日本99.免费观看| 久久久久久久亚洲中文字幕| 欧美激情久久久久久爽电影| 又粗又爽又猛毛片免费看| 少妇丰满av| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线播| 亚洲av成人精品一区久久| 小说图片视频综合网站| www.色视频.com| 全区人妻精品视频| 最新中文字幕久久久久| 少妇猛男粗大的猛烈进出视频 | 亚洲精品粉嫩美女一区| 日韩强制内射视频| 久久久久久大精品| 亚洲成人久久爱视频| 青春草视频在线免费观看| 日本黄色视频三级网站网址| 亚洲欧洲国产日韩| 99久久中文字幕三级久久日本| 12—13女人毛片做爰片一| 精品人妻视频免费看| 国产高清视频在线观看网站| 综合色丁香网| 久久久国产成人精品二区| 欧美一级a爱片免费观看看| 天堂网av新在线| 老熟妇乱子伦视频在线观看| 神马国产精品三级电影在线观看| 国国产精品蜜臀av免费| 最近手机中文字幕大全| 老师上课跳d突然被开到最大视频| 热99re8久久精品国产| 国产成人aa在线观看| 成年av动漫网址| 国产伦精品一区二区三区四那| 国产亚洲精品久久久久久毛片| 人妻夜夜爽99麻豆av| 亚洲精品成人久久久久久| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲网站| 麻豆成人av视频| 色吧在线观看| 色哟哟·www| 麻豆精品久久久久久蜜桃| 成人综合一区亚洲| 亚洲中文字幕日韩| 2021天堂中文幕一二区在线观| 亚洲精品色激情综合| 亚洲最大成人av| 最近的中文字幕免费完整| 亚洲国产精品久久男人天堂| 国产激情偷乱视频一区二区| 国产熟女欧美一区二区| 黄片wwwwww| a级毛片免费高清观看在线播放| 午夜福利在线观看吧| 亚洲欧美精品综合久久99| 赤兔流量卡办理| av在线蜜桃| 日日撸夜夜添| 亚洲aⅴ乱码一区二区在线播放| 免费看av在线观看网站| 可以在线观看毛片的网站| 国产高潮美女av| av在线播放精品| 老师上课跳d突然被开到最大视频| 欧美精品一区二区大全| 两个人的视频大全免费| 久久久久久伊人网av| 毛片一级片免费看久久久久| 欧美一级a爱片免费观看看| 午夜福利在线在线| 午夜福利在线观看吧| 国产亚洲av片在线观看秒播厂 | 天堂中文最新版在线下载 | 看十八女毛片水多多多| 99热网站在线观看| 午夜精品在线福利| 又爽又黄a免费视频| 国产精品一区二区性色av| 国产一区二区激情短视频| 欧美色视频一区免费| 日韩大尺度精品在线看网址| 天天躁夜夜躁狠狠久久av| 亚洲精品国产成人久久av| 如何舔出高潮| 一进一出抽搐gif免费好疼| or卡值多少钱| 国产黄色视频一区二区在线观看 | 婷婷亚洲欧美| 日韩av不卡免费在线播放| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久精品电影小说 | 直男gayav资源| 中文字幕免费在线视频6| 国产伦精品一区二区三区四那| 亚洲第一区二区三区不卡| 亚洲国产欧美在线一区| 国模一区二区三区四区视频| 国产精品伦人一区二区| 少妇高潮的动态图| 欧美日韩精品成人综合77777| 午夜福利在线观看吧| 精品久久久噜噜| 国产午夜福利久久久久久| 午夜a级毛片| 国产成人91sexporn| 丝袜美腿在线中文| 日本三级黄在线观看| 国产精品一区二区三区四区免费观看| 自拍偷自拍亚洲精品老妇| 国国产精品蜜臀av免费| 狂野欧美白嫩少妇大欣赏| 波多野结衣巨乳人妻| 国产精品久久久久久亚洲av鲁大| 成年女人永久免费观看视频| 三级毛片av免费| 中国美白少妇内射xxxbb| 欧美三级亚洲精品| 五月玫瑰六月丁香| 亚洲人成网站在线播| av女优亚洲男人天堂| 精品一区二区三卡| 欧美激情 高清一区二区三区| 交换朋友夫妻互换小说| 亚洲国产精品一区三区| 高清在线视频一区二区三区| 成年人免费黄色播放视频| 色吧在线观看| 午夜福利影视在线免费观看| 亚洲三级黄色毛片| 亚洲av欧美aⅴ国产| 国产片内射在线| 久久久久网色| 性色av一级| 美女中出高潮动态图| 人妻夜夜爽99麻豆av| 国产精品欧美亚洲77777| 亚洲欧美一区二区三区国产| 亚洲精品久久成人aⅴ小说 | 欧美人与善性xxx| 满18在线观看网站| 国产男人的电影天堂91| 国产精品一区www在线观看| 欧美激情 高清一区二区三区| 国产熟女午夜一区二区三区 | 99热全是精品| 欧美日本中文国产一区发布| 欧美bdsm另类| 国产精品一区www在线观看| 日韩一区二区视频免费看| 久久久久久久久久成人| 国产亚洲一区二区精品| 插逼视频在线观看| 亚洲,一卡二卡三卡| 久久这里有精品视频免费| 丁香六月天网| 日本黄大片高清| 一级毛片电影观看| 特大巨黑吊av在线直播| 日韩熟女老妇一区二区性免费视频| 亚洲国产欧美在线一区| 国产精品久久久久久久久免| 在线天堂最新版资源| 亚洲欧洲精品一区二区精品久久久 | 女人久久www免费人成看片| 精品久久国产蜜桃| 特大巨黑吊av在线直播| av.在线天堂| 校园人妻丝袜中文字幕| 午夜免费观看性视频| 日本wwww免费看| 亚洲欧美日韩另类电影网站| 欧美最新免费一区二区三区| 18禁在线播放成人免费| 丝袜脚勾引网站| www.av在线官网国产| 国产亚洲欧美精品永久| 超碰97精品在线观看| 国产av精品麻豆| 国产视频首页在线观看| videos熟女内射| 亚洲色图 男人天堂 中文字幕 | 亚洲天堂av无毛| 欧美日韩国产mv在线观看视频| 欧美丝袜亚洲另类| 在线天堂最新版资源| 国国产精品蜜臀av免费| 99热这里只有是精品在线观看| 制服丝袜香蕉在线| 免费久久久久久久精品成人欧美视频 | 国产亚洲av片在线观看秒播厂| 91久久精品电影网| 久久 成人 亚洲| 国产精品人妻久久久久久| 久久久久视频综合| 久久99热6这里只有精品| 99国产综合亚洲精品| 精品少妇久久久久久888优播| 成人午夜精彩视频在线观看| 十分钟在线观看高清视频www| 特大巨黑吊av在线直播| 亚洲精品日韩在线中文字幕| 欧美日韩国产mv在线观看视频| 国产精品99久久久久久久久| 亚洲欧洲精品一区二区精品久久久 | 国产熟女午夜一区二区三区 | 国产av码专区亚洲av| 精品少妇内射三级| 伦精品一区二区三区| av天堂久久9| 两个人免费观看高清视频| 精品国产一区二区久久| 国产69精品久久久久777片| 天天躁夜夜躁狠狠久久av| 成年人午夜在线观看视频| 九九在线视频观看精品| 毛片一级片免费看久久久久| 少妇高潮的动态图| 日日摸夜夜添夜夜爱| 人妻制服诱惑在线中文字幕| 丰满迷人的少妇在线观看| 免费人成在线观看视频色| 日韩精品有码人妻一区| 老司机亚洲免费影院| 免费大片黄手机在线观看| 国产精品人妻久久久影院| 三上悠亚av全集在线观看| 91aial.com中文字幕在线观看| 国产黄色视频一区二区在线观看| 波野结衣二区三区在线| 免费观看性生交大片5| 精品人妻在线不人妻| 我的女老师完整版在线观看| 另类精品久久| 成人毛片a级毛片在线播放| 亚洲国产最新在线播放| 人妻制服诱惑在线中文字幕| 在线观看国产h片| 国产淫语在线视频| 免费观看a级毛片全部| 亚洲欧美日韩另类电影网站| 在线看a的网站| 精品卡一卡二卡四卡免费| 久久久久久久久久成人| 欧美国产精品一级二级三级| 精品久久久噜噜| 成人国产av品久久久| 亚洲经典国产精华液单| 国产男人的电影天堂91| 丝瓜视频免费看黄片| 亚洲美女黄色视频免费看| 少妇 在线观看| 成年美女黄网站色视频大全免费 | 久久久欧美国产精品| 中文精品一卡2卡3卡4更新| 国产日韩欧美亚洲二区| 亚洲天堂av无毛| 美女视频免费永久观看网站| 18在线观看网站| 国产片特级美女逼逼视频| 国产精品一区二区在线观看99| 青青草视频在线视频观看| 免费看不卡的av| 精品久久久久久久久av| 日本欧美视频一区| 日韩三级伦理在线观看| 乱码一卡2卡4卡精品| 国产成人91sexporn| 亚洲av在线观看美女高潮| 国产精品秋霞免费鲁丝片| 18禁动态无遮挡网站| 91国产中文字幕| 秋霞在线观看毛片| 国产永久视频网站| 亚洲av免费高清在线观看| 99国产综合亚洲精品| 亚洲婷婷狠狠爱综合网| 大香蕉久久网| 大片免费播放器 马上看| 老司机影院毛片| 高清欧美精品videossex| 欧美日韩视频高清一区二区三区二| 国产欧美日韩一区二区三区在线 | 一本久久精品| 亚洲成人av在线免费| 美女内射精品一级片tv| 日韩熟女老妇一区二区性免费视频| 亚洲婷婷狠狠爱综合网| 人体艺术视频欧美日本| 国模一区二区三区四区视频| 国产成人精品在线电影| 啦啦啦中文免费视频观看日本| 久热这里只有精品99| 精品久久久久久久久av| 青春草视频在线免费观看| 亚洲av福利一区| 国产色爽女视频免费观看| 最近最新中文字幕免费大全7| 高清在线视频一区二区三区| 日本wwww免费看| 久久精品国产鲁丝片午夜精品| 免费大片18禁| 久热这里只有精品99| 国产亚洲午夜精品一区二区久久| 精品视频人人做人人爽| 日本vs欧美在线观看视频| 老熟女久久久| 少妇人妻久久综合中文| 新久久久久国产一级毛片| 亚洲国产av影院在线观看| 亚洲不卡免费看| 人人妻人人澡人人看| 亚洲图色成人|