• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Differentiable programming and density matrix based Hartree–Fock method?

    2021-06-26 03:03:44HongBinRen任宏斌LeiWang王磊andXiDai戴希
    Chinese Physics B 2021年6期
    關(guān)鍵詞:王磊

    Hong-Bin Ren(任宏斌) Lei Wang(王磊) and Xi Dai(戴希)

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    4Department of Physics,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon 999077,Hong Kong,China

    Keywords: differentiable programming,quantum chemistry

    1. Introduction

    Hartree–Fock (HF) method[1]is one of the fundamental methods in many body physics. It has been widely applied in quantum chemistry to explore the ground state properties of molecules. Due to its simplicity, it is also considered as a good starting point for more accurate and expensive configuration interaction or perturbative calculations. In physics perspective, HF is a variational method whose variational space is determined by basis functions used to represent the molecular orbital. And we can achieve desired accuracy by including sufficient amount of basis functions. However,traditional HF method hasO(K4) (Kis the number of basis functions used to expand the molecular orbital) computational complexity,which suggests that calculation on large basis set is only manageable for molecules in restricted scale. Instead of monotonically increasing the amount of basis functions in basis set,researchers indicate that one could also augments the variational space of HF by treating basis function related parameters,such as exponents, contraction coefficents and centers of Gaussian type orbital (GTO),[2]as variational parameters, and updating their values during HF’s self consistent field (SCF).[3–7]Following this idea,Tachikawaet al.implemented fully variational HF method.[7]Their numerical results show that the augmented variational space can improve the total energy estimation with a small number of basis functions.

    In previously reported works, gradients of total energy with respect to basis set parameters are manually derived for particular basis set and for specific molecule.This prevents the generalization of fully variational approach to practical situations. With the advent of the modern algorithm and computer technology, especially the boom of deep learning,[8]the process of manual derivation of the gradients could be replaced by automatic differentiation (AD).[9]Popular AD frameworks include Pytorch, TensorFlow[10]in Python, and ForwardDiff.jl,[11]Zygote.jl[12]in Julia.By using the state-ofthe-art AD tools,Tamayo-Mendozaet al.[13]have successfully implemented the DiffiQult library. In DiffiQult,derivatives of HF energy with respect to GTO parameters can be obtained directly from AD,which greatly simplifies the heavy derivative evaluation process, and makes it possible to efficiently compare the effects of different basis sets.However,DiffiQult uses forward-mode AD,which is not efficient for taking derivative of a function whose input dimension is larger than the output (here, the output is energy, which is a scalar). Moreover,because the number of SCF cyclies needed for converged HF calculation is undetermined before calculation starts,their gradient evaluation may cost a large amount of computation resources.

    In this paper, we design a mixed mode AD method and use it to implement fully variational density matrix HF(DMHF)method proposed by Helgakeret al.[14]and Hoai.[15]Unlike the original DMHF which uses purification method[16]to guarantee the validity of one body density matrix, we use Thouless theorem[17]to directly represent the one body density matrix in a set of non-redundant parameters. In this way,we eliminate the need to perform fixed point iterations separately,and can update the density matrix and GTO parameters simultaneously in a single optimization step. Our paper is organized as follows. In Section 2, we introduce a theoretical description of DMHF method. In Section 3, we show results obtained from ground state calculation of some representative molecules, and compare the performance of our algorithm to previously published ones. At last, in Section 4, we present the conclusion and future perspective.

    2. Method

    2.1. Thouless theorem and parametrization of one body density matrix

    The one body density matrixρis defined as

    whereMjiis unconstrained and is an element of a(D?N)×NmatrixM(Dis the dimension of Hilbert space of the single particle wave function associated with those fermion operators). One could construct a Slater determinant|Φb〉which is equivalent to|Φ〉up to a normalization factor.

    Therefore, by substituting|Φ〉with|Φb〉in Eq. (1), we obtain

    whereS=I+M?Mis aN×Noverlap matrix between single particle wave functionsφbi(x) generated by?i, i ∈[1,N].Detailed derivation can be found in Appendix A.

    2.2. Variational density matrix based Hartree–Fock method

    In this paper, we focus on restricted HF (RHF) method,where the molecule is a closed-shell system with all orbitals doubly occupied. In this case, the one body density matrixρis spin independent, therefore, we could omit the spin label,and write the total energy of a molecule as

    whereθis the collection of parameters of GTOs,tijis the sum of matrix element of kinetic and external potential operators under GTO,andvil jkis the tensor element of electron–electron interaction operator under GTO,andEnuc-nucis the nuclear repulsion energy inside the molecule.

    From the above discussion,ρcan be parametrized byM.Therefore,by variationally optimizing Eq.(4)with respect toMandθ

    one could obtain GTOs and one body density matrix that are suitable for describing the ground state of a given molecule.

    We implemented our DMHF method in Julia with AD supported by Zygote.jl. Our computation graph is demonstrated in Fig. 1. As pointed out by Tamayo-Mendozaet al.,for most of the methods in quantum chemistry,one center integral matrixtand two-center integral tensorvare constructed by an element-wise array assignment, which is not feasible for reverse mode AD to manage. We solve this problem by wrapping the array assignment operation as a primitive function that mapsθtotandv. We define custom adjoint for this primitive that computes Jacobian matrix using forward mode AD inside,then pass the Jacobian to reverse mode AD to compute the vector-Jacobian product.And because we directly parameterize the density matrix, our calculation of energy only involves matrix multiplication,trace,and tensor contraction.

    Fig. 1. The computation graph for our DMHF method. Black arrows indicate the forward function evaluation from inputs to outputs,and red arrows indicate backward steps for derivative propogation.

    We demonstrate our method by the calculation of several small molecules. As a benchmark,we first perform fully variational (FV) calculation on hydrogen molecule, and compare our result to that obtained by DiffiQult. By FV,we can simultaneously optimize GTO parameters and the one body density matrix. The H–H bond length is set to 1.388 Bohr radius during the calculation. Figure 2(a)shows the variation of the ground state energy in the optimization process. We can see that our method converges much faster than DiffiQult,and could reaches a ground state energy comparable to that computed by 6-31G basis set which is two times larger than STO-3G basis we used in this case. If we switch off the variation of GTO centers,the ground state energy obtained by our method will be the same as that by DiffiQult,but still has a faster convergence rate. Figure 2(b) shows the change of ground state electron density during the optimization process. The initial electron density is calculated from a randomly initialized density matrix. After optimization, the electron density becomes reasonable and approaches the one calculated by SCF method in Ref.[18]using STO-3G basis. Since we allow the variation of GTO centers,we also find that two peaks get close to each other suggesting that FV method could partly address the polarization of molecular orbital even with a minimal basis set.

    Fig. 2. Fully variational calculation of ground state of hydrogen molecule. (a) Optimization of ground state energy. The green line is calculated by FV DMHF with STO-3G basis set,the blue line is obtained using Tamayo-Mendoza et al. DiffiQult package,the dashed red line corresponds to SCF calculation using 6-31G basis set. (b)Electron density variation during the DMHF calculation,blue line corresponds to the initial electron density of hydrogen molecule before optimization,the green line is the final electron density after optimization,the dashed red line shows the SCF result with STO-3G basis. (c)Electron density distribution in the yz plane obtained from DMHF calculation,same result calculated from SCF with STO-3G is shown in dashed red line.

    Fig.3. Ground state calculation of water(SCF calculation is done with PySCF).(a)Optimization process. The blue line is the result obtained by using non variational DMHF in which basis set parameters are fixed,the green line corresponds to fully variational DMHF where we optimize the basis set parameters together with density matrix, both of them are calculated use STO-3G basis set. We compare our results with those obtained from SCF calculation with STO-3G basis set (dashed orange line) and 3-21G basis set (dashed red line). (b) Difference between electron density calculated by SCF method with STO-3G basis set and 3-21G basis set. (c)Differences between electron density calculated by FV DMHF with STO-3G and SCF with 3-21G basis set.

    Table 1. GTO exponents of hydrogen and oxygen atoms in water, we compare the value in default setting of STO-3G and optimized STO-3G basis set to those in 3-21G basis set.

    We next apply DMHF method to determine the ground state of water molecule. Fully variational calculation of water using STO-3G basis requires simultaneously optimizing 73 parameters at different scales, compared to only 13 parameters in hydrogen molecule case. In Fig.3(a),we compare the ground state energy calculated by FV DMHF and DMHF with GTO related parameters being fixed (non-variational (NV)DMHF). After optimization, NV DMHF converges to the ground state energy obtained by SCF method in PySCF,which is what we expect, while FV DMHF converges to a lower ground state energy that approximates the result obtained by SCF with 3-21G basis. Since 3-21G basis is a double zeta basis, its result is expected to be more accurate. In Fig. 4,we illustrate the variation of GTO exponents during the optimization process. We observe that starting from the default values of STO-3G basis set,these exponents finally evolve to values that are close to the default exponents of 3-21G basis set. The above results suggest that our fully variational approach makes better use of limited basis set and could effectively learn information encoded in higher dimensional Hilbert space. We also list the default and optimized GTO exponents explicitly in Table 1. In addition, in most of the commonly used basis sets, usually the same GTO exponents are applied to 2s and 2p orbitals, while in FV method, these parameters can be tuned independently which allows much larger variational space.Ground state electron density calculated from FV method is also compared to that obtained by SCF method under 3-21G basis,and the difference between the two is shown in Fig. 3(c). Compared to the electron density calculated by the default STO-3G basis set (the difference between results of STO-3G and 3-21G basis set is shown in Fig. 3(b)), our method does not force electron to be on top of each atom,allows the electron density to adjust its spatial extent appropriate to each molecular.

    Fig.4. Evolution of GTO exponents of hydrogen(a)and oxygen(b)in water molecule during the FV DMHF optimization process. The initial value is set to the default value of STO-3G basis set,our FV approach finally sends them to a value close to the default value of 3-21G,which performs better than original STO-3G basis in computing ground state energy and electron density. These values are also listed in Table 1.

    Fig. 5. Benchmark of our DMHF program with popular PySCF on several small molecules. (a)Walltime comparison between optimization process of our Julia code and SCF iterations of PySCF.The PySCF time is normalized to one, and Julia time is presented as its ratio to PySCF time. The results were obtained on single thread Intel(R)Xeon(R)E5-1650 v2 3.50GHz CPU with 16GB RAM, running macOS. (b) Comparison of the ground state energy obtained by PySCF and our Julia DMHF method.

    We benchmark the performance of our DMHF implementation in non-variational setting against popular PySCF software on several small molecules,and show the benchmark results in Fig.5. We perform calculation of ground state energy of H2,HF,H2O,CH4,and CH3F on Intel(R)Xeon(R)E5-1650 v2 3.50 GHz CPU with 16GB RAM machine,running macOS,and record the time needed for converged SCF in PySCF and optimization in our Julia DMHF.We normalize the time used by PySCF calculations to 1,and show ratio of our implementation over PySCF time in Fig. 5(a). For calculation of H2and HF,our implementation surpasses PySCF,and is slightly slower than PySCF in H2O and CH4calculation. The worst case happens for CH3F,where our implementation is 10 times slower. Comparing to PySCF which derives the initial density matrix from atomic orbitals, our density matrix is randomly initialized,therefore,may require more optimization steps.

    3. Conclusion and perspective

    In this work,we show that one body density matrix within HF approximation can be constructed using Thouless theorem, based on which a DMHF method can be implemented.Using density matrix directly in HF helps us to remove the usual SCF that contains diagonalization of a Hamiltonian matrix in energy calculation,and enables us to use reverse mode AD for efficient gradient evaluation. When applied to calculate the ground state of small molecules, with default setting, our DMHF could achieve the same performance as traditional SCF base HF.If we allow GTO related parameters to vary, FV DMHF can be used to obtain more accurate ground state energy with a smaller basis set, which suggests the information hidden in high dimensional Hilbert space could be successfully learned by the FV approach. In future, we tend to bring the density matrix treatment to density functional theory (DFT),[19,20]which is much widely applied in the computational physics. Since we are able to extract real space electron density from density matrix, we could just replace the HF’s exchange energy calculation with the existing exchange–correlation functionals. By that, we could avoid solving Kohn–Sham equation,like what is done in orbital free DFT.

    Acknowledgment

    H.R.thanks Jinguo Liu for helpful discussion.

    Appendix A:Proof of Thouless theorem

    Consider theN-body Slater determinant|Ψ〉generated by fermion operator?1,...,?N,Thouless theorem states that

    Theorem AnyN-body Slater determinant|Φ〉which is not orthogonal to|Ψ〉can be written in the form

    whereDis the dimension of the Hilbert space of one particle wavefunction associated with?i,andMkiare coefficients that could be uniquely determined.

    To prove this, we introduce another set of fermion operator?i,the single particle wavefunctions generated by?iare in the same Hilbert space as those generated by?i. These two sets of fermion operators can be connected by a unitary transformationU

    We partitionUinto four blocks:

    in whichU11is aN×Nmatrix,U21is(D?N)×Nmatrix.

    If theNbody Slater determinant|Φ〉and|Ψ〉generated by these fermion operators

    are not orthogonal〈Φ|Ψ〉/=0.We can scale|Φ〉by the inverse of〈Φ|Ψ〉

    Equation(A2)is equivalent to Eq.(A1)since

    So,this proves the density matrix parameterization mentioned in Section 2.

    Appendix B: Detailed proof of density matrix representation

    Following notation in Section 2,the Laplace expansion of the determinant ofN×NmatrixSis known as

    which suggests that

    Expanding Eq.(2)and pluging in Eq.(B1),we obtain

    which suggests thatρis also an idempotent matrix.

    The electron number conservation can be proved with the help of cyclic property of matrix trace

    猜你喜歡
    王磊
    Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
    Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
    First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
    逼近人性
    我愛(ài)你,中國(guó)
    Carriage to eternity: image of death in Dickinson and Donne
    青年生活(2019年29期)2019-09-10 06:46:01
    作品選登
    不再被“圓”困住
    “根本停不下來(lái)”
    Exact analytical solutions for moving boundary problems of one-dimensional flow in semi-infinite porous media with consideration of threshold pressure gradient*
    国产黄色小视频在线观看| 91精品一卡2卡3卡4卡| 热99在线观看视频| 欧美成人免费av一区二区三区| 18禁在线播放成人免费| 国产精品嫩草影院av在线观看| 2021天堂中文幕一二区在线观| 欧美成人免费av一区二区三区| 美女黄网站色视频| 国产精品,欧美在线| 六月丁香七月| 国产午夜福利久久久久久| 自拍偷自拍亚洲精品老妇| 欧美成人免费av一区二区三区| 校园人妻丝袜中文字幕| 美女大奶头视频| 寂寞人妻少妇视频99o| 内射极品少妇av片p| 99久国产av精品| 免费看日本二区| 国产一区二区三区在线臀色熟女| 国产在线精品亚洲第一网站| 麻豆成人午夜福利视频| 秋霞在线观看毛片| av在线天堂中文字幕| 精华霜和精华液先用哪个| 久久人人爽人人片av| 一级黄色大片毛片| 欧美日本视频| 国产在线精品亚洲第一网站| 午夜精品国产一区二区电影 | 九九热线精品视视频播放| 听说在线观看完整版免费高清| 在线观看午夜福利视频| 国产色婷婷99| 亚洲最大成人中文| 伊人久久精品亚洲午夜| 69av精品久久久久久| 日日撸夜夜添| 欧美区成人在线视频| 国产亚洲精品av在线| 一进一出抽搐gif免费好疼| 亚洲av免费在线观看| videossex国产| 少妇人妻精品综合一区二区 | 精品欧美国产一区二区三| 久久精品国产99精品国产亚洲性色| 成人午夜高清在线视频| 97人妻精品一区二区三区麻豆| 又粗又爽又猛毛片免费看| 亚洲第一区二区三区不卡| 国产成人精品久久久久久| 九九爱精品视频在线观看| 色播亚洲综合网| 波多野结衣高清无吗| 精品熟女少妇av免费看| 精品久久久久久久久久免费视频| 六月丁香七月| av天堂在线播放| 一卡2卡三卡四卡精品乱码亚洲| 深夜a级毛片| 91精品一卡2卡3卡4卡| 亚洲av不卡在线观看| 免费人成视频x8x8入口观看| 国产伦在线观看视频一区| 成人av在线播放网站| 午夜激情欧美在线| 国产亚洲欧美98| 日韩 亚洲 欧美在线| 精品一区二区三区视频在线| 此物有八面人人有两片| 亚洲av第一区精品v没综合| 看非洲黑人一级黄片| 国产精品久久久久久亚洲av鲁大| 久久精品91蜜桃| 只有这里有精品99| 国产精品嫩草影院av在线观看| 精品人妻视频免费看| 淫秽高清视频在线观看| 国产精品伦人一区二区| 三级经典国产精品| 欧美日本亚洲视频在线播放| 久久中文看片网| 欧美性感艳星| 村上凉子中文字幕在线| 国产 一区 欧美 日韩| av女优亚洲男人天堂| 男插女下体视频免费在线播放| 日本爱情动作片www.在线观看| 久久久久久大精品| 啦啦啦啦在线视频资源| 插逼视频在线观看| 国产亚洲91精品色在线| 日本av手机在线免费观看| 亚洲精品久久国产高清桃花| 久久午夜亚洲精品久久| h日本视频在线播放| 亚洲精华国产精华液的使用体验 | 亚洲中文字幕日韩| 精品国产三级普通话版| 我要看日韩黄色一级片| 禁无遮挡网站| 三级毛片av免费| 亚洲婷婷狠狠爱综合网| 国产一区二区三区在线臀色熟女| 中国国产av一级| 亚洲精品国产成人久久av| 亚州av有码| 淫秽高清视频在线观看| 亚洲国产精品久久男人天堂| 两个人的视频大全免费| 男人舔女人下体高潮全视频| 亚洲自偷自拍三级| 日产精品乱码卡一卡2卡三| 欧美日本视频| 亚洲成av人片在线播放无| 午夜免费男女啪啪视频观看| 午夜精品一区二区三区免费看| 国产老妇女一区| 美女国产视频在线观看| 丰满乱子伦码专区| 亚洲最大成人av| 搡女人真爽免费视频火全软件| av在线观看视频网站免费| 久久久久久伊人网av| 18禁黄网站禁片免费观看直播| 国产精品一区二区性色av| 国产免费男女视频| 成人综合一区亚洲| 国产高清三级在线| 日韩人妻高清精品专区| 亚洲国产精品成人综合色| 别揉我奶头 嗯啊视频| 久久久久久久亚洲中文字幕| 青春草视频在线免费观看| 老司机影院成人| 观看美女的网站| 深爱激情五月婷婷| 长腿黑丝高跟| 亚洲精品粉嫩美女一区| 国产麻豆成人av免费视频| 少妇的逼水好多| 欧美日韩在线观看h| 亚洲av一区综合| 最近手机中文字幕大全| 在线观看午夜福利视频| 岛国在线免费视频观看| 欧美日韩乱码在线| 国产老妇伦熟女老妇高清| 久久精品国产99精品国产亚洲性色| 99热全是精品| 成人av在线播放网站| 青春草国产在线视频 | 亚洲精品国产成人久久av| 精品久久久久久久末码| 天堂影院成人在线观看| 欧美激情国产日韩精品一区| 国产精品综合久久久久久久免费| 成年版毛片免费区| 天堂av国产一区二区熟女人妻| 97超碰精品成人国产| 国产精品人妻久久久久久| 亚洲av二区三区四区| 2022亚洲国产成人精品| av免费观看日本| 波多野结衣巨乳人妻| 小说图片视频综合网站| 亚洲欧美日韩无卡精品| 国产私拍福利视频在线观看| 色播亚洲综合网| 一卡2卡三卡四卡精品乱码亚洲| 99热全是精品| 少妇猛男粗大的猛烈进出视频 | 午夜福利在线观看吧| 日韩亚洲欧美综合| 色播亚洲综合网| 日本免费a在线| 中出人妻视频一区二区| 中文字幕精品亚洲无线码一区| 简卡轻食公司| 国产老妇伦熟女老妇高清| 特大巨黑吊av在线直播| 可以在线观看毛片的网站| 你懂的网址亚洲精品在线观看 | 精品午夜福利在线看| 亚洲aⅴ乱码一区二区在线播放| 美女 人体艺术 gogo| 99久久精品一区二区三区| 一进一出抽搐gif免费好疼| 亚洲精品色激情综合| 嫩草影院精品99| 99久国产av精品国产电影| 久久久久性生活片| 免费人成在线观看视频色| 人妻夜夜爽99麻豆av| 国产黄a三级三级三级人| 九九爱精品视频在线观看| 午夜福利成人在线免费观看| 国产伦精品一区二区三区四那| 成人亚洲欧美一区二区av| 精华霜和精华液先用哪个| 国产av不卡久久| 色综合站精品国产| 三级毛片av免费| 黄色欧美视频在线观看| 欧美激情久久久久久爽电影| 22中文网久久字幕| 精品久久久久久久久亚洲| 欧美日韩乱码在线| 成人无遮挡网站| 久久九九热精品免费| 久久久久久久久久久丰满| 亚洲丝袜综合中文字幕| 欧美精品一区二区大全| АⅤ资源中文在线天堂| 久久午夜福利片| 欧美极品一区二区三区四区| 国产午夜精品论理片| 午夜福利高清视频| 亚洲精品色激情综合| 亚洲最大成人手机在线| 亚洲美女搞黄在线观看| 欧美日韩国产亚洲二区| 神马国产精品三级电影在线观看| 久久这里只有精品中国| 69av精品久久久久久| 亚洲精品456在线播放app| 天天一区二区日本电影三级| 九九久久精品国产亚洲av麻豆| 性插视频无遮挡在线免费观看| 亚洲人与动物交配视频| 久久久久免费精品人妻一区二区| 一区福利在线观看| 午夜福利视频1000在线观看| 午夜免费男女啪啪视频观看| 国产av在哪里看| 欧美日韩乱码在线| 色尼玛亚洲综合影院| av天堂中文字幕网| 日韩精品有码人妻一区| 欧美xxxx黑人xx丫x性爽| 中出人妻视频一区二区| 国产成人freesex在线| 日本色播在线视频| 少妇猛男粗大的猛烈进出视频 | 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av涩爱 | a级毛色黄片| 久久亚洲国产成人精品v| 国产精品福利在线免费观看| 激情 狠狠 欧美| 国产精品久久久久久久久免| 亚洲在久久综合| 亚洲精品日韩av片在线观看| 男女边吃奶边做爰视频| 在线免费十八禁| 亚洲在线观看片| 国产精品一区二区在线观看99 | 国产视频首页在线观看| 美女cb高潮喷水在线观看| 欧美成人免费av一区二区三区| 久久精品国产亚洲av涩爱 | 99久国产av精品| 高清午夜精品一区二区三区 | 真实男女啪啪啪动态图| 亚洲中文字幕一区二区三区有码在线看| 97人妻精品一区二区三区麻豆| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产99精品国产亚洲性色| 国产成人freesex在线| 99久久精品热视频| 能在线免费观看的黄片| 精品久久久久久久人妻蜜臀av| 日产精品乱码卡一卡2卡三| а√天堂www在线а√下载| 亚洲av电影不卡..在线观看| 成人亚洲欧美一区二区av| 精品久久国产蜜桃| 国产一级毛片在线| 身体一侧抽搐| 国产成人福利小说| 亚洲人与动物交配视频| 日韩欧美在线乱码| 日本与韩国留学比较| 校园人妻丝袜中文字幕| 少妇熟女欧美另类| av在线亚洲专区| avwww免费| 亚洲va在线va天堂va国产| 丝袜喷水一区| 亚洲人成网站在线播放欧美日韩| 国产私拍福利视频在线观看| av女优亚洲男人天堂| 97超碰精品成人国产| 亚洲av成人av| 国产精品永久免费网站| 国产真实伦视频高清在线观看| 日韩 亚洲 欧美在线| 日本黄大片高清| 好男人视频免费观看在线| 不卡视频在线观看欧美| 嫩草影院精品99| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在 | 亚洲自偷自拍三级| 国产日本99.免费观看| 日本黄大片高清| 性色avwww在线观看| 国产精品一区二区三区四区免费观看| 一区二区三区四区激情视频 | 在线观看午夜福利视频| 国产精品.久久久| 我要搜黄色片| 久久久精品大字幕| 亚洲国产精品sss在线观看| 美女 人体艺术 gogo| 亚洲经典国产精华液单| 99在线人妻在线中文字幕| 亚洲国产精品久久男人天堂| 99久久精品热视频| 尤物成人国产欧美一区二区三区| 国产精品久久久久久精品电影| 欧美极品一区二区三区四区| avwww免费| 极品教师在线视频| 黄片wwwwww| 免费看av在线观看网站| 亚洲国产精品sss在线观看| 国产日本99.免费观看| 亚洲国产精品成人综合色| 国产午夜精品一二区理论片| 国产一区二区亚洲精品在线观看| 麻豆一二三区av精品| 国产精品人妻久久久影院| 级片在线观看| 丰满人妻一区二区三区视频av| 日本三级黄在线观看| 亚洲精品成人久久久久久| 青春草国产在线视频 | 日本欧美国产在线视频| 三级国产精品欧美在线观看| 在线免费十八禁| 三级男女做爰猛烈吃奶摸视频| 免费搜索国产男女视频| av福利片在线观看| 能在线免费看毛片的网站| 黄色日韩在线| 久久午夜福利片| 亚洲av二区三区四区| 久久韩国三级中文字幕| 网址你懂的国产日韩在线| 国产黄片视频在线免费观看| 国产精品乱码一区二三区的特点| 69av精品久久久久久| 欧美激情久久久久久爽电影| 欧美成人a在线观看| 国产毛片a区久久久久| 日本爱情动作片www.在线观看| 特级一级黄色大片| 深爱激情五月婷婷| 日韩,欧美,国产一区二区三区 | 免费看日本二区| 精品人妻视频免费看| 又爽又黄无遮挡网站| 国产真实伦视频高清在线观看| 欧美丝袜亚洲另类| 国产午夜精品久久久久久一区二区三区| 久久精品夜色国产| 亚洲真实伦在线观看| 久久久久性生活片| 亚洲精品日韩av片在线观看| 精品99又大又爽又粗少妇毛片| 婷婷色综合大香蕉| 免费黄网站久久成人精品| 久久精品久久久久久噜噜老黄 | 白带黄色成豆腐渣| 一边摸一边抽搐一进一小说| 日本-黄色视频高清免费观看| 国产亚洲av嫩草精品影院| 高清午夜精品一区二区三区 | 自拍偷自拍亚洲精品老妇| 麻豆av噜噜一区二区三区| 日本五十路高清| 麻豆乱淫一区二区| 18禁黄网站禁片免费观看直播| 亚洲欧美精品综合久久99| 2021天堂中文幕一二区在线观| 欧美3d第一页| 最新中文字幕久久久久| 久久精品国产鲁丝片午夜精品| 搡女人真爽免费视频火全软件| 亚洲第一电影网av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产真实伦视频高清在线观看| 91精品国产九色| 国产不卡一卡二| 国产91av在线免费观看| 99久久中文字幕三级久久日本| 国产高清三级在线| 成年女人永久免费观看视频| 免费av观看视频| 深爱激情五月婷婷| 白带黄色成豆腐渣| 日本一二三区视频观看| 久久热精品热| 青春草国产在线视频 | 一级黄片播放器| 2021天堂中文幕一二区在线观| 国产一级毛片在线| 色综合亚洲欧美另类图片| 精品人妻一区二区三区麻豆| 又粗又硬又长又爽又黄的视频 | 久久久久久久久久黄片| 国产成人a区在线观看| 一边亲一边摸免费视频| 国产伦精品一区二区三区四那| 色综合站精品国产| 久久精品国产亚洲av涩爱 | 欧美精品一区二区大全| 99热这里只有是精品在线观看| 成人三级黄色视频| 国产乱人偷精品视频| 亚洲av免费在线观看| 精品国内亚洲2022精品成人| 九色成人免费人妻av| 免费av观看视频| 精品免费久久久久久久清纯| 女同久久另类99精品国产91| 老司机影院成人| 日韩精品青青久久久久久| 欧美丝袜亚洲另类| 精品国产三级普通话版| 成人美女网站在线观看视频| or卡值多少钱| 99久久九九国产精品国产免费| 亚洲精品久久国产高清桃花| 国产精品综合久久久久久久免费| 色视频www国产| 久久精品久久久久久噜噜老黄 | 不卡一级毛片| 麻豆精品久久久久久蜜桃| 18禁黄网站禁片免费观看直播| 直男gayav资源| av又黄又爽大尺度在线免费看 | 国产精品1区2区在线观看.| 午夜福利视频1000在线观看| 又粗又爽又猛毛片免费看| 免费看av在线观看网站| 精品一区二区免费观看| 亚洲丝袜综合中文字幕| 观看美女的网站| 免费av不卡在线播放| 国产精品嫩草影院av在线观看| 国产三级中文精品| 晚上一个人看的免费电影| 男女做爰动态图高潮gif福利片| 老女人水多毛片| 99在线人妻在线中文字幕| 日韩成人伦理影院| 亚洲高清免费不卡视频| 精品久久国产蜜桃| 成人永久免费在线观看视频| 欧美成人一区二区免费高清观看| 欧美一区二区精品小视频在线| 国产69精品久久久久777片| 色噜噜av男人的天堂激情| 精品人妻一区二区三区麻豆| 成年女人永久免费观看视频| 成人高潮视频无遮挡免费网站| 日韩高清综合在线| 日韩一本色道免费dvd| 啦啦啦啦在线视频资源| 亚洲av男天堂| 看黄色毛片网站| 国产黄片视频在线免费观看| 免费观看在线日韩| 夜夜夜夜夜久久久久| 久久精品国产亚洲av香蕉五月| 国产色爽女视频免费观看| 亚洲国产欧美人成| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美清纯卡通| av在线观看视频网站免费| 内地一区二区视频在线| 哪里可以看免费的av片| 国产成人freesex在线| 亚洲精品国产av成人精品| 91午夜精品亚洲一区二区三区| 国产精品蜜桃在线观看 | 成人亚洲精品av一区二区| 我的女老师完整版在线观看| 成人午夜精彩视频在线观看| 精品免费久久久久久久清纯| 日本-黄色视频高清免费观看| 99热6这里只有精品| 精品久久久久久久久亚洲| 国产精品麻豆人妻色哟哟久久 | 精品久久国产蜜桃| 欧美激情久久久久久爽电影| 好男人在线观看高清免费视频| 久久人人精品亚洲av| 精品久久久久久久久久久久久| 亚洲国产欧美人成| 国产精品.久久久| 久久久国产成人免费| 成人三级黄色视频| 天堂网av新在线| 在线观看美女被高潮喷水网站| 女同久久另类99精品国产91| 日韩一区二区三区影片| 国产成人91sexporn| 99久久精品一区二区三区| 亚洲av熟女| 1000部很黄的大片| 精品日产1卡2卡| 长腿黑丝高跟| 黄色配什么色好看| 亚洲欧美日韩高清专用| 亚洲精品成人久久久久久| 午夜精品一区二区三区免费看| 在线观看美女被高潮喷水网站| 国产精品久久久久久久电影| 久久精品久久久久久久性| 精品99又大又爽又粗少妇毛片| 国产精品一区二区三区四区久久| 内射极品少妇av片p| 国产亚洲精品久久久com| 中文欧美无线码| 国产高清三级在线| 天美传媒精品一区二区| 麻豆久久精品国产亚洲av| 91精品国产九色| 亚洲熟妇中文字幕五十中出| 少妇熟女aⅴ在线视频| 亚洲欧美日韩高清专用| 日韩中字成人| 国产精品电影一区二区三区| 少妇猛男粗大的猛烈进出视频 | 亚洲人成网站在线播| 国产精品人妻久久久影院| 欧美激情国产日韩精品一区| 一本一本综合久久| eeuss影院久久| 99热精品在线国产| 欧美zozozo另类| 国产女主播在线喷水免费视频网站 | 午夜亚洲福利在线播放| 国内精品美女久久久久久| 亚洲欧美精品综合久久99| 哪里可以看免费的av片| 欧美不卡视频在线免费观看| 久久精品夜色国产| 草草在线视频免费看| 日韩一区二区视频免费看| 亚洲aⅴ乱码一区二区在线播放| 国产爱豆传媒在线观看| 国产精品永久免费网站| 国产精品精品国产色婷婷| 国产亚洲精品久久久久久毛片| 日韩一区二区三区影片| 日韩三级伦理在线观看| 特级一级黄色大片| 亚洲国产精品成人久久小说 | av专区在线播放| 欧美在线一区亚洲| 在线观看av片永久免费下载| 亚洲国产精品国产精品| 亚洲最大成人av| 亚洲国产高清在线一区二区三| 成人二区视频| 中文精品一卡2卡3卡4更新| 婷婷亚洲欧美| 精品无人区乱码1区二区| 国产精品免费一区二区三区在线| 特级一级黄色大片| 简卡轻食公司| 国产成人91sexporn| 久久久久久久久久成人| av女优亚洲男人天堂| 久久精品国产亚洲av香蕉五月| 亚洲国产日韩欧美精品在线观看| 国内精品宾馆在线| 最新中文字幕久久久久| 国产精品不卡视频一区二区| 99久国产av精品国产电影| 黄片wwwwww| 久久久久久久久中文| 春色校园在线视频观看| 精华霜和精华液先用哪个| 国产在线男女| 男插女下体视频免费在线播放| 18禁黄网站禁片免费观看直播| 精品久久久久久久人妻蜜臀av| 久久久久九九精品影院| 精品久久久久久久久亚洲| 中文字幕av在线有码专区| 日韩高清综合在线| www日本黄色视频网| 人人妻人人看人人澡| 久久九九热精品免费| 日韩精品有码人妻一区| 日韩成人伦理影院| 国产片特级美女逼逼视频| 菩萨蛮人人尽说江南好唐韦庄 | 你懂的网址亚洲精品在线观看 | 免费av不卡在线播放| 干丝袜人妻中文字幕| 国产成人福利小说| 人体艺术视频欧美日本| 免费看日本二区| a级毛片免费高清观看在线播放| av.在线天堂| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲5aaaaa淫片| 欧美性感艳星|