• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study

    2022-11-21 09:27:42YueshuiZhang張?jiān)剿?/span>andLeiWang王磊
    Chinese Physics B 2022年11期
    關(guān)鍵詞:王磊

    Yueshui Zhang(張?jiān)剿? and Lei Wang(王磊)

    1Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    We study the structure of the continuous matrix product operator (cMPO)[1] for the transverse field Ising model(TFIM).We prove TFIM’s cMPO is solvable and has the form. ?HF is a non-local free fermionic Hamiltonian on a ring with circumference β, whose ground state is gapped and non-degenerate even at the critical point. The full spectrum of ?HF is determined analytically. At the critical point,our results verify the state–operator-correspondence[2] in the conformal field theory(CFT).We also design a numerical algorithm based on Bloch state ansatz to calculate the lowlying excited states of general(Hermitian)cMPO.Our numerical calculations coincide with the analytic results of TFIM.In the end,we give a short discussion about the entanglement entropy of cMPO’s ground state.

    Keywords: continuous matrix product operator,transverse field Ising model,state–operator-correspondence

    1. Introduction

    Tensor network approaching thermal states has a long history. Back in the age of the density matrix renormalization group, the transfer matrix renormalization group[3]based on Trotter decomposition has been developed to calculate thermodynamic quantities of low-dimensional strongly correlated systems. Recently, a new tensor structure named continuous matrix product operator (cMPO)[1]has been developed. Different from previous methods, cMPO eliminates imaginarytime discretization error.

    Before going to the theme,we should give a brief review of cMPO to familiarize readers with the relevant notations and more importantly,to show the mechanism behind cMPO.For simplicity,we consider a Hamiltonian with nearest interaction(although in general,cMPO method is suitable for more complex interactions,even for long-range interactions[1])

    whereiis the label of lattice site.Qi,Li,andRiare local operators living on the Hilbert space of the single sitei. Considering the evolution operator e-τ?H,the first-order approximation 1-τ?Hcan be represented as a matrix product operator(MPO)whose unit cell is an infinitesimal tensor parameterized byτ,as shown in Figs.1(a)and 1(b),

    which can be viewed as a continuous transfer matrix without discretization error. The corresponding partition function is the product of cMPO:Z=Tr[TL], if we assume the system hasLsites. In the thermodynamic limitL →∞, the free energy per sitefis determined by the dominate eigenvalueΛ0of cMPO:β f=-lnΛ0.

    In cMPO’s framework, the key point is, under the assumption the dominate eigenstate|Φ〉(we name it the ground state in the following) of transfer matrixTcan be approximated by a matrix product state (MPS) in some sense, when taking discretization stepτto be zero, the overlap〈Φ|T|Φ〉is well-defined and at the same time the ground state|Φ〉is parameterized as a cMPS,as we have explained above.

    Fig.1. The graphic representation of cMPO.(a)The unit cell of cMPO can be constructed from the corresponding infinitesimal evolution operator e-τ ?H. (b)The graphic representation of cMPO’s unit cell tensor t,where{i j}is the virtual index,while{αβ}is the physical index.(c)By introducing a cMPS|Φ〉with unit cell tensor φ,the sandwich structure〈Φ|T|Φ〉is well-defined when τ →0 in cMPO method. The auxiliary hHamiltonian ?Haux is independent of τ. (d)cMPO is a transfer matrix by taking τ →0 if the continuum limit truly exists.

    However,strictly speaking,although the existence of the overlap〈Φ|T|Φ〉at continuum limitτ →0 is enough for numerical calculation in cMPO method, the existence of cMPOTat the operator level as the continuum limit of certain(discrete)MPO,which has been defined in Eq.(3),remains to be verified. In another word, we could ask whether the transfer matrixTis a well-defined(continuous)operator when taking discretization error to be zero? As we have pointed out in the last paragraph,cMPO seems to be an intermediate notation in practical calculation: if we assume|Φ〉is a cMPS, then the overlap〈Φ|T|Φ〉is well-defined,no matter whetherTcan exist individually as an operator or not when discretization stepτto be zero.

    We leave the tedious technical details in the Appendix.In Appendix A, we review the diagonalization procedure of the transfer matrix for arbitrary trotter stepτ. In Appendix B,we show how to take the continuum limit to get the operator formalism of TFIM’s cMPO.In Appendix C,we show the detailed calculation of the correlation matrix and the corresponding integral equation as its continuum limit. In Appendix D,we give the analytic expressions of the ground state’s correlations at the continuum limit for TFIM’s cMPO.In Appendix E,we prove at classical Ising limith=0, cMPO’s ground state has a simple cMPS representation. In Appendix F,we explain the explicit tensor constructions for our numerical algorithm.

    2. Operator formalism of cMPO

    The Hamiltonian of the 1D transverse field Ising model is

    where ?HFis a free fermionic Hamiltonian living on a ring of lengthβ. ?HFis diagonal in{ηk}representation, which is the momentum space representation following a Bogoliubov transformation. The explicit expression of ?HFis given in Eq.(14). The corresponding spectrum and Bogoliubov angle are given in Eqs. (15)–(17). We can use Eq. (19) to find the coordinate space representation of ?HF, which is a non-local QFT.

    We prove Eq.(6)in two steps. In the first step,we solve the transfer matrixTunder arbitrary trotter stepτ. In the second step,we takeτto be zero to find the continuum limit ofT.While in the first step,an important trick is employed: instead of usingtin Eq.(5),we can use ?tin Eq.(11)as the unit cell of cMPO,since ?tandtare the same infinitesimal tensor up to the first order ofτ: ?t=t+O(τ2). Whenτ →0,T=Tr[?t]and ?T=Tr[??t]will correspond to the same cMPO,if the continuum limit truly exists.

    We divide this section into two parts. In part I, we construct ?t, which is the same infinitesimal tensor astwhenτ →0, from the MPO representation of infinitesimal evolution operator e-τ?Hand prove the solvability of transfer matrix ?T=Tr[??t]at arbitrary trotter stepτ. In part II, we show the operator formalism of cMPOTtruly exists at the continuum limit and give its explicit form analytically.

    2.1. Solvability at arbitrary trotter step τ

    2.1.1. construct unit cell ?t

    Motivated by the paper,[8]we consider the second order trotter approximation e-τ?H=V(ˉK1,K2)+O(τ3),with

    where the trotter stepτis defined byβ=Nτ, and ˉK1=τh,K2=τJ. The functional relation betweenKand ˉKis defined

    Whenτ →0, using Taylor expansion aboutτ, we find tensor ?tcoincides withtup to the first order ofτ,

    Since ?tandtare the same infinitesimal tensor,TFIM’s cMPO can be rewritten as ?T=limτ→0Tr[??t].

    2.1.2. Map ?T to be free fermion

    The solvability of ?Tis based on the following algebraic identity:[8]

    In Eq.(11), ?Tis factorized into operatorV(ˉK2,K1)and a scalar factor. SinceV(ˉK2,K1)is also the transfer matrix of the two-dimensional Ising model,[10]V(ˉK2,K1),and ?Tat the same time,can be mapped to free fermion and exactly solvable.

    To prove Eq. (11), we need the following dual relation,which can be easily checked from Eq.(9),

    Technical details about the diagonalization ofV(ˉK2,K1)can be found in the classic paper[10]or Appendix A.

    2.2. Operator formalism at the continuum limit

    We can also use Eqs. (15) and (16) to calculate the partition functionZ(L,β) on a torus. Furthermore, to compare with the formula calculated by diagonalization of the physical Hamiltonian, we can explicitly verify the modular invariance of Ising CFT for critical TFIM in the scaling limit. A calculation can be found in Appendix B.

    Finally, we should point out that, the spectrum in Eqs. (15) and (16) suggests that, for any finiteβ, even at the critical pointJ=h, there always exists a finite energy gap of order 1/β,which indicates the finite entanglement entropy of the ground state.

    3. Hamiltonian structure at the scaling limit

    We divide this section into two parts. In the first subsection,we show that the Hamiltonian ?HFis equivalent to the familiar free Majorana QFT at the scaling limit. Although,in general, the Hamiltonian is non-local as explained in Section 2. In the second subsection,we verify the state–operatorcorrespondence from the Hamiltonian structure explicitly.

    3.1. Map to Majorana QFT

    In the scaling limit,the short-distance feature washes out.We only care about the behavior at the low-energy scale of order 1/βcorresponding to the long-wavelength limit. We can expand the excitation spectrum and phase angle in Eqs. (16)and(17)atβ →∞to the first order of 1/β,

    It is well-known that the effective theory of TFIM is the Majorana QFT. We find the Hamiltonian ?HFof cMPO in Eq.(22)is also the Majorana QFT.This fact reflects the rotation symmetry of Euclidean field theory.

    3.2. State–operator-correspondence at m=0

    Whenm= 0, ?HFis critical and restores the conformal symmetry, which can be described by Ising CFT on a cylinder.[13,14]

    In the cMPO’s framework, we exchange the space and time, where we viewβas space while the time direction is discrete and labeled by the index of lattice sitei. Because of the discretion of time, the continuous evolution operator becomes the discrete cMPO:T= e-λ?HF, whereλis some non-universal normalization factor. In the TFIM case,we will seeλ=1/2 in the following as already shown in Eq.(6). To see the conformal structure of cMPO, we first determine the central chargecand critical exponentxσfrom vacuum energy shift in Eq.(15),where the identity corresponds to ground state|0〉NSand the spin operator corresponds to zero mode state in the R sectorη?0|0〉R(Remember in R sector,only odd particle number state is allowed). We will also show the energy operator corresponds to the first excited state in the NS sector.Furthermore, since the operator formalism of the free Majorana field in Eq. (22) (withm=0) is well known,[13,14]the entire conformal tower structure is obvious. Using transformation relation Eq. (19), we can build a dictionary between fermion representation in Eq.(14)and CFT’s operator formalism explicitly.

    3.2.1. Determine c and xσ from vacuum energy shift

    Using the transformation relation between{ηn}and{bn},we list the one-to-one map between the fermion representation in Eq.(14)and CFT’s operator formalism in Eq.(26)in a dictionary.

    Structure of Hilbert space of ?HF Primary states: Fermion Virasoro|pˉp〉,xp=p+ ˉp representation algebra|1〉≡|0ˉ0〉 |0〉NS |0〉NS|ε〉≡|1 2 ˉ1 2|0〉NS|σ〉≡| 1 2〉 η?12η?-1 2ˉb-12|0〉NS b-1 16 ˉ1 16〉 η?0|0〉R (ˉb0-ib0)|0〉R Other ∏{k}η?k|0〉NS/R ∏{n},{ˉn}L-nL-ˉn|pˉp〉excited #{k}=even in NS; n,ˉn ∈Z+,states #{k}=odd in R |pˉp〉∈{|1〉,|ε〉,|σ〉}Energy E=∑εk E= 2π β (xp+∑n+∑ˉn)Momentum P= π β ∑k P= 2π β (∑n-∑ˉn)

    Additionally, according to the above analysis, to make ?HF±?Pbe holomorphic (anti-holomorphic) in Eq. (26), the non-universal factorλshould be 1/2 in TFIM’s cMPO as shown in Eq.(6).

    4. Numerical algorithm for excitation

    Motivated by the analytic results of TFIM’s cMPO and field theoretical prediction of CFT, which has been detailed discussed in previous sections, in this section, we show how to numerically calculate the low-lying excited states of cMPO for the general lattice model (with the assumption the corresponding cMPO is Hermitian)and extract critical information from numerical data. (In history,there already exist some numerical works to verify the state–operator-correspondence by studying the low-lying excited states of the lattice Hamiltonian ?Hlatt.[15–17])

    We first briefly review the variational cMPS method for cMPO’s ground state search, which has a detailed discussion in the original paper for the cMPO method.[1]Next, we explain the method for excited states’ calculation based on the Bloch state ansatz. Finally,we show the numerical results for TFIM’s cMPO as a benchmark.

    4.1. The cMPS ansatz for ground state

    4.2. Bloch state ansatz for excited state

    However, technically,Nkis singular because of gauge freedom. To resolve the problem, we can fix the gauge to reduce the parameter space’s dimension to bed×D2and thus makeNkbe full rank.[18]Under the gauge fixing,the solution of the above eigen-equation Eq.(31)gives thedD2lowest excited states parameterized by{Vn,Wn}with the corresponding excitation energies{ΔEn},n ∈1,2,...,dD2. The explicit expressions ofρkandNkcan be found in Appendix F.

    4.3. Benchmark for TFIM

    4.3.1. Excitation at the critical point

    To test our algorithm for excitation,we show the numerical results of TFIM’s cMPO at the critical pointhc=Jc=1.

    Fig.2. (a)The first three excitations spectrum as function of β in P=0 sector, where the ground state energy is set to be zero. The curves are analytic results and points are numerical data.The lowest spectrum corresponds to the primary field of spin ΔER0; the second spectrum corresponds to the primary field of energy ΔEε.(b)The first three excitations spectrum as the functions of β in P=1 sector.

    Fig.3. Structure of conformal tower for TFIM’s cMPO at β =28. The variational cMPS has bond dimension bondD=24.

    We first verify the formulas of spectrum in Eqs.(15)and(16). We plot the excitation spectrum as the function ofβin the momentum sectorsP=0 andP=1, as shown in Fig. 2,

    where the curves are analytic results and the points are numerical data.

    We can also verify the conformal data of Ising CFT atβ ?1. In Fig.3,we plot the low-lying excitation spectrum atβ=28, which has the structure of conformal tower of Ising CFT,agreeing with the analytic calculation in Section 3. Using finite size scaling, at the numerical level, we confirm the central chargec=1/2 and critical exponents for three primary fieldsx1=0,xσ=1/8 andxε=1 in Fig.4.

    Fig. 4. (a) The central charge c=1/2 from finite size scaling of the free energy. (b) The critical exponents from finite size scaling of the excitation spectrum. The superscript‘num’ means numerical data and‘a(chǎn)na’means analytic results. The first two exponents correspond to spin and energy: x1 ≡xσ,x2 ≡xε. The identity is trivial,which is set to be zero. The λ =1/2 is the non-universal factor in Eq.(6).

    Fig. 5. Two-point correlation functions of the ground state of TFIM’s cMPO.The curves are analytic solutions while the points are numerical results. We choose parameters β =16, h=J =1. The cMPS’s bond dimension is bondD=16. (a)〈ψF(x)ψF(y)〉and(b)〈ψ?F(x)ψF(y)〉.

    4.3.2. Correlation for ground state

    To finish this subsection, we also comment to explain why the underlying fieldψ(x) of cMPS is bosonic. Since we could view the cMPO as the continuum limit of a discrete spin model, when we take the continuum limit, the local spin (hard-core boson) operatorσ+jcorresponds to the

    where|Φ〉is the variational cMPS ground state in Eq. (27).We compare the numerical results with the analytic results in Fig.5,which coincides with our prediction. Additionally,results in Fig.5 also show that the variational cMPS ground state truly captures the exact ground state of TFIM’s cMPO,which is a fermionic Gaussian state and thus is completely captured by its two-point correlations.

    The analytic expressions of the fermionic correlation functions can be found in Eqs.(D2)and(D3)in Appendix D.The technical details of calculating cMPS’s expectation values about operators with a Jordan–Wigner string have been explained in Appendix F.

    5. Entanglement entropy

    In this section,we discuss the ground state entanglement entropy of cMPO based on the analysis of TFIM.

    Although we cannot find the exact cMPS representation of the ground state for TFIM’s cMPO,at the limit caseh=0,the ground state is a simple cMPS with bond dimension two,see Appendix E,

    Its entanglement entropy is independent of the subsystem’s sizeβ′as shown in Eq.(E16):S=ln2+δS(β),which tends to beS=ln2 whenβ →∞. The correction termδS(β)~e-2β(1-2ln2)<0 is exponential small. (We set the coupling constant to beJ=1 by absorbingJintoβ).

    In the following, we first verify the finite entanglement entropy for TFIM by diagonalizing the subsystem’s correlation matrix under a small trotter step[6,7]in the first subsection.We also give an integral equation as the continuum limit of the correlation matrix in the second subsection.

    5.1. Entanglement entropy for TFIM:numerical results

    Fig.6. (a)The critical entanglement entropy with h=J=1 for different β. (b) The off-critical entanglement entropy at β =10, which has a lower bound S=ln2. The x-axis labels the ratio x=β′/β, where β′ is the subsystem’s size. (c)The critical entanglement entropy as the function of β. We verify the central charge c=1/2 from the scaling of the critical entanglement entropy.

    5.2. Integral equation for correlation matrix

    6. Conclusions and outlook

    Motivated by the Hamiltonian structure of TFIM’s cMPO and the theoretical predictions of CFT,we also design an algorithm to calculate the critical exponents for the general lattice model through the excitation spectrum of the corresponding cMPO.We use the analytic results of TFIM as the benchmark.Our numerical algorithm may also be used to calculate the excited states for the continuous model on a ring.

    Although the solvability of TFIM’s cMPO is heavily on the special structure of the two-dimensional Ising model, we tend to believe that the Hamiltonian structure for cMPO is universal to some extent. In fact, in the bethe ansatz techniques for thermodynamics, apart form the traditional Yang–Yang approach,[24]there also exists the quantum transfer matrix approach,[25,26]which may be viewed as the (integrable)cMPO in some sense.

    The derivation in this work is based on taking the continuum limit of a certain lattice model.However,it is not difficult to show that the cMPO has a very similar(lattice independent)integral formalism to the cMPS case,

    It is also possible to construct a series of solvable models sharing the same ground states with the corresponding cMPOs,whose ground states have the cMPS structure. Detailed analysis will appear in the late.

    Appendix A:Diagonalization ofV

    In this section, for the reader’s convenience, we review the procedure of the diagonalization of the transfer matrixVin Eq.(7),following the classic paper,[10]where the slight difference is the exchange ofV1andV2in our definition. We map the transfer matrix to the free fermion and then diagonalize it using the Bogoliubov transformation.

    For simplicity,we define 1=β=Nτand letNbe even.We need to diagonalize the following transfer matrix:

    Appendix B:Spectrum at the continuum limit

    We first summarize the above formulas using parametersKandΓ. The following identity proves to be useful:k

    C5. Derive integral equation

    With the preparation of the above subsections,we can finally derive the integral equation of the correlation matrix in the continuum limit. We consider the subsystem with ratioΛ=β′/β ∈[0,1]. The continuum limit can be realized as follows. We assume under certain trotter stepτ,the total system hasNfermion modes and subsystemMfermion modes,which satisfies

    As the result, the eigen-equation of the correlation matrix becomes an integral equation in the continuum limit. The corresponding entanglement entropy is given by Eq. (36), as described in the main text.

    Appendix D:Ground state correlation at the continuum limit

    The ground state of TFIM’s cMPO is a fermion Gaussian state, which is completely captured by its two-point correlation functions:〈ψ(x)ψ(y)〉,〈ψ?(x)ψ(y)〉,〈ψ?(x)ψ?(y)〉and〈ψ(x)ψ?(y)〉.

    where, in the second equality, we use the transform relation Eq. (C1) between the fermion and Majorana representation;while in the last equality,we use the 1/Nexpansion ofg(l)in Eq.(C38).

    To substitute the definition off(θ,x)into the above equation,we finally have

    We can calculate〈ψ?(x)ψ?(y)〉and〈ψ(x)ψ?(y)〉following the same routine. However, using the commutation relations, we can easily find〈ψ?(x)ψ?(y)〉=-〈ψ(x)ψ(y)〉and〈ψ(x)ψ?(y)〉=δ(x-y)-〈ψ?(x)ψ(y)〉.

    Appendix E:Exact cMPS representation ath=0

    E1. Exact cMPS

    Ath=0,TFIM reduces to the classical 1D Ising model

    Acknowledgements

    Y S. Z would like to thank Wei Tang for making me aware of the inspiring paper[8]and enlightening conversations. This project is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000) and the National Natural Science Foundation of China(Grant Nos.11774398 and T2121001).

    猜你喜歡
    王磊
    Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
    First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
    Differentiable programming and density matrix based Hartree–Fock method?
    逼近人性
    我愛你,中國(guó)
    Carriage to eternity: image of death in Dickinson and Donne
    青年生活(2019年29期)2019-09-10 06:46:01
    作品選登
    不再被“圓”困住
    “根本停不下來(lái)”
    Exact analytical solutions for moving boundary problems of one-dimensional flow in semi-infinite porous media with consideration of threshold pressure gradient*
    身体一侧抽搐| 亚洲最大成人av| 尤物成人国产欧美一区二区三区| 亚洲成人中文字幕在线播放| 少妇人妻精品综合一区二区 | 最近最新中文字幕大全电影3| 搡老岳熟女国产| 男人狂女人下面高潮的视频| 精华霜和精华液先用哪个| 欧美中文日本在线观看视频| 亚洲精品亚洲一区二区| 麻豆成人午夜福利视频| 12—13女人毛片做爰片一| 好男人在线观看高清免费视频| 在线a可以看的网站| 亚洲精品久久国产高清桃花| 欧美不卡视频在线免费观看| 亚洲欧美日韩卡通动漫| 国产精品一区二区三区四区免费观看 | 能在线免费观看的黄片| 日本免费一区二区三区高清不卡| 禁无遮挡网站| 身体一侧抽搐| bbb黄色大片| 男人舔奶头视频| 欧美中文日本在线观看视频| 黄片wwwwww| 国内久久婷婷六月综合欲色啪| 国产蜜桃级精品一区二区三区| 欧美高清性xxxxhd video| 99久久精品热视频| 国产 一区 欧美 日韩| 我的女老师完整版在线观看| 久久国产精品人妻蜜桃| 久久久久久久久久黄片| 国产探花在线观看一区二区| 成年女人永久免费观看视频| 小蜜桃在线观看免费完整版高清| 最近视频中文字幕2019在线8| 国产免费男女视频| 亚洲精华国产精华精| 别揉我奶头 嗯啊视频| 丰满的人妻完整版| 日本一本二区三区精品| 亚洲av成人av| 亚洲av中文字字幕乱码综合| 黄色视频,在线免费观看| 又黄又爽又免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 夜夜看夜夜爽夜夜摸| 麻豆成人午夜福利视频| 亚洲乱码一区二区免费版| aaaaa片日本免费| 日韩精品青青久久久久久| 久久99热6这里只有精品| 日本色播在线视频| 亚洲精品乱码久久久v下载方式| 99九九线精品视频在线观看视频| 男女下面进入的视频免费午夜| 亚洲一区二区三区色噜噜| 中文资源天堂在线| 尤物成人国产欧美一区二区三区| 俺也久久电影网| 男人舔奶头视频| 午夜久久久久精精品| 少妇的逼好多水| 国产激情偷乱视频一区二区| 69人妻影院| 午夜福利在线观看免费完整高清在 | 99riav亚洲国产免费| 他把我摸到了高潮在线观看| 亚洲欧美日韩无卡精品| 久久精品91蜜桃| 成人永久免费在线观看视频| 亚洲天堂国产精品一区在线| 麻豆精品久久久久久蜜桃| 精品人妻1区二区| av在线老鸭窝| 在线观看美女被高潮喷水网站| 亚洲电影在线观看av| 一级av片app| 国产亚洲91精品色在线| 日本熟妇午夜| 一本一本综合久久| 久久精品久久久久久噜噜老黄 | 97热精品久久久久久| 日韩精品青青久久久久久| 精品久久久久久久久久久久久| 成年女人永久免费观看视频| 国语自产精品视频在线第100页| 精品欧美国产一区二区三| 欧美日本亚洲视频在线播放| 日韩欧美在线二视频| 国产一区二区三区在线臀色熟女| 欧美日韩综合久久久久久 | 校园春色视频在线观看| 国产精品三级大全| 网址你懂的国产日韩在线| a级毛片免费高清观看在线播放| 高清在线国产一区| 国产精品自产拍在线观看55亚洲| 两个人视频免费观看高清| 22中文网久久字幕| 乱码一卡2卡4卡精品| 免费看美女性在线毛片视频| 久久精品91蜜桃| 内地一区二区视频在线| 淫秽高清视频在线观看| 成人特级黄色片久久久久久久| 国产69精品久久久久777片| 99在线人妻在线中文字幕| 欧美高清成人免费视频www| 日本欧美国产在线视频| 3wmmmm亚洲av在线观看| 成人精品一区二区免费| 美女cb高潮喷水在线观看| 五月伊人婷婷丁香| 在线播放无遮挡| 成人性生交大片免费视频hd| 一a级毛片在线观看| 午夜免费男女啪啪视频观看 | 国产国拍精品亚洲av在线观看| 白带黄色成豆腐渣| xxxwww97欧美| 国产国拍精品亚洲av在线观看| 精品不卡国产一区二区三区| 久久99热6这里只有精品| 九色成人免费人妻av| 在线观看免费视频日本深夜| 极品教师在线视频| 久久久久久大精品| ponron亚洲| 国产aⅴ精品一区二区三区波| 日日干狠狠操夜夜爽| 国产三级中文精品| 美女被艹到高潮喷水动态| a在线观看视频网站| 久久精品久久久久久噜噜老黄 | 精品无人区乱码1区二区| 国产国拍精品亚洲av在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲美女搞黄在线观看 | 精品久久久久久久久亚洲 | 色综合亚洲欧美另类图片| 成年版毛片免费区| 精品日产1卡2卡| 免费大片18禁| 亚洲精品亚洲一区二区| 国产精品野战在线观看| 午夜精品在线福利| 国产91精品成人一区二区三区| 少妇高潮的动态图| 变态另类成人亚洲欧美熟女| 国内精品一区二区在线观看| av在线亚洲专区| 日韩欧美在线乱码| a级一级毛片免费在线观看| 中文字幕av在线有码专区| 99热这里只有是精品在线观看| 亚洲狠狠婷婷综合久久图片| 嫩草影视91久久| 人人妻人人看人人澡| 国产亚洲欧美98| 日本a在线网址| 最新中文字幕久久久久| 变态另类成人亚洲欧美熟女| 尤物成人国产欧美一区二区三区| 亚洲精品久久国产高清桃花| 深夜精品福利| a级毛片免费高清观看在线播放| 久久久久久大精品| 听说在线观看完整版免费高清| 亚洲无线在线观看| 亚洲精品国产成人久久av| 国国产精品蜜臀av免费| 国产男靠女视频免费网站| 国产免费男女视频| 亚洲图色成人| 俺也久久电影网| 国产黄a三级三级三级人| 久久热精品热| 国产伦在线观看视频一区| 最新在线观看一区二区三区| 超碰av人人做人人爽久久| 成人三级黄色视频| 婷婷精品国产亚洲av| 观看免费一级毛片| 久久国内精品自在自线图片| 国产老妇女一区| 中文字幕av成人在线电影| 日日夜夜操网爽| 日韩 亚洲 欧美在线| 狂野欧美激情性xxxx在线观看| 亚洲精品在线观看二区| 日日摸夜夜添夜夜添av毛片 | 国产高清不卡午夜福利| 亚洲在线观看片| 精品人妻熟女av久视频| 俄罗斯特黄特色一大片| 精华霜和精华液先用哪个| 国产精品1区2区在线观看.| 国产aⅴ精品一区二区三区波| 国产欧美日韩一区二区精品| 国产av不卡久久| 亚洲专区中文字幕在线| 久久久久久久久久成人| 欧美另类亚洲清纯唯美| 久久久久国内视频| 麻豆国产97在线/欧美| 亚洲成人精品中文字幕电影| 欧美日本视频| 成人亚洲精品av一区二区| 狠狠狠狠99中文字幕| 色综合亚洲欧美另类图片| 色哟哟哟哟哟哟| 尾随美女入室| 亚洲第一电影网av| 99在线视频只有这里精品首页| 日韩强制内射视频| www日本黄色视频网| 免费观看在线日韩| 中国美白少妇内射xxxbb| 国产精品久久电影中文字幕| 国产亚洲精品久久久com| 久久久久久大精品| 一a级毛片在线观看| 麻豆久久精品国产亚洲av| 免费av观看视频| 国产精品永久免费网站| 国产成人aa在线观看| 精品免费久久久久久久清纯| 国产精品国产三级国产av玫瑰| 神马国产精品三级电影在线观看| 少妇熟女aⅴ在线视频| 观看免费一级毛片| 色视频www国产| 一本久久中文字幕| 深爱激情五月婷婷| 国产91精品成人一区二区三区| 神马国产精品三级电影在线观看| 亚洲av二区三区四区| 成人一区二区视频在线观看| 婷婷丁香在线五月| 久久午夜亚洲精品久久| 天美传媒精品一区二区| 亚洲av成人av| 国内揄拍国产精品人妻在线| 成人av一区二区三区在线看| 一个人看视频在线观看www免费| 国产大屁股一区二区在线视频| 啦啦啦啦在线视频资源| 18禁裸乳无遮挡免费网站照片| a级毛片a级免费在线| 国产精品,欧美在线| 国产一区二区三区av在线 | 亚洲18禁久久av| av国产免费在线观看| 国产爱豆传媒在线观看| 亚洲经典国产精华液单| 在线播放无遮挡| 国产在线精品亚洲第一网站| 久久精品国产99精品国产亚洲性色| 亚洲精品久久国产高清桃花| 一级毛片久久久久久久久女| 天堂√8在线中文| 九九久久精品国产亚洲av麻豆| 欧美又色又爽又黄视频| 亚洲电影在线观看av| 国产精品一区二区三区四区免费观看 | x7x7x7水蜜桃| 黄色丝袜av网址大全| 欧美日本视频| 精品欧美国产一区二区三| 色精品久久人妻99蜜桃| 日本免费a在线| 亚洲最大成人av| 国产一区二区在线av高清观看| 亚洲一级一片aⅴ在线观看| 精品久久久久久久久亚洲 | 精品久久久久久久末码| 日本爱情动作片www.在线观看 | 国产真实伦视频高清在线观看 | 亚洲黑人精品在线| 日本a在线网址| 免费在线观看成人毛片| 一本精品99久久精品77| 国产精品不卡视频一区二区| 日韩中文字幕欧美一区二区| 人人妻人人澡欧美一区二区| 99热网站在线观看| 99久久无色码亚洲精品果冻| 成人午夜高清在线视频| а√天堂www在线а√下载| 亚洲性夜色夜夜综合| 亚洲国产欧美人成| 床上黄色一级片| 99热只有精品国产| 日日撸夜夜添| 高清日韩中文字幕在线| 丰满的人妻完整版| 黄色女人牲交| 国产免费av片在线观看野外av| 色噜噜av男人的天堂激情| 五月伊人婷婷丁香| 一级a爱片免费观看的视频| 国产精品福利在线免费观看| 91午夜精品亚洲一区二区三区 | 两个人视频免费观看高清| 校园人妻丝袜中文字幕| 制服丝袜大香蕉在线| 乱人视频在线观看| 成人特级av手机在线观看| a级毛片免费高清观看在线播放| 床上黄色一级片| 亚洲精品粉嫩美女一区| 床上黄色一级片| 国产精品日韩av在线免费观看| 久久精品影院6| 国产黄a三级三级三级人| 床上黄色一级片| 久久久久久国产a免费观看| 琪琪午夜伦伦电影理论片6080| 成年女人永久免费观看视频| 久久久久久国产a免费观看| 色哟哟·www| 琪琪午夜伦伦电影理论片6080| 国国产精品蜜臀av免费| 亚洲最大成人av| 一级毛片久久久久久久久女| 一个人免费在线观看电影| 亚洲av一区综合| 日日干狠狠操夜夜爽| 99久久无色码亚洲精品果冻| 国产精品久久视频播放| 嫩草影院入口| a在线观看视频网站| 男人和女人高潮做爰伦理| 好男人在线观看高清免费视频| 成人av在线播放网站| 熟女人妻精品中文字幕| 午夜爱爱视频在线播放| 国产中年淑女户外野战色| 日本撒尿小便嘘嘘汇集6| 99热这里只有是精品在线观看| 国产精品伦人一区二区| 特大巨黑吊av在线直播| 精品久久久久久成人av| 国产aⅴ精品一区二区三区波| 99热这里只有是精品50| 日日摸夜夜添夜夜添小说| 亚洲国产日韩欧美精品在线观看| 亚洲午夜理论影院| 欧美日韩瑟瑟在线播放| 国内精品一区二区在线观看| 在线观看66精品国产| 亚洲国产高清在线一区二区三| 两个人的视频大全免费| 亚洲 国产 在线| 97人妻精品一区二区三区麻豆| 热99在线观看视频| 国产男人的电影天堂91| 听说在线观看完整版免费高清| 最近中文字幕高清免费大全6 | 国内精品宾馆在线| 亚洲人成伊人成综合网2020| 成人亚洲精品av一区二区| 真实男女啪啪啪动态图| av专区在线播放| 亚洲性久久影院| av福利片在线观看| 国产av在哪里看| av天堂在线播放| 精品久久久久久久久亚洲 | 无人区码免费观看不卡| 91麻豆av在线| 老师上课跳d突然被开到最大视频| 日韩大尺度精品在线看网址| 尾随美女入室| 国产视频一区二区在线看| 欧美在线一区亚洲| 亚洲av中文av极速乱 | 日本 欧美在线| 春色校园在线视频观看| 老女人水多毛片| 一a级毛片在线观看| 午夜精品在线福利| 直男gayav资源| 三级男女做爰猛烈吃奶摸视频| 男女下面进入的视频免费午夜| 亚洲专区国产一区二区| 免费电影在线观看免费观看| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| 88av欧美| 久99久视频精品免费| av在线亚洲专区| 国产精品一区二区三区四区久久| 国产亚洲av嫩草精品影院| 国产精品乱码一区二三区的特点| 国产精品久久久久久精品电影| 性插视频无遮挡在线免费观看| 成人精品一区二区免费| 婷婷六月久久综合丁香| 久久国内精品自在自线图片| 国产精品99久久久久久久久| 国产欧美日韩精品亚洲av| 蜜桃久久精品国产亚洲av| 日本黄大片高清| 亚洲最大成人中文| 久久精品夜夜夜夜夜久久蜜豆| 国产人妻一区二区三区在| 久久香蕉精品热| 黄色视频,在线免费观看| 成人美女网站在线观看视频| avwww免费| 国产日本99.免费观看| 三级男女做爰猛烈吃奶摸视频| 99九九线精品视频在线观看视频| 成人美女网站在线观看视频| 国产蜜桃级精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 精品不卡国产一区二区三区| 午夜亚洲福利在线播放| 大又大粗又爽又黄少妇毛片口| 久久人人精品亚洲av| 可以在线观看的亚洲视频| 18+在线观看网站| 免费高清视频大片| 高清在线国产一区| 国产精品福利在线免费观看| 最近在线观看免费完整版| 国产精品98久久久久久宅男小说| 欧美一区二区国产精品久久精品| 久久精品国产99精品国产亚洲性色| 亚洲va日本ⅴa欧美va伊人久久| 草草在线视频免费看| 18禁黄网站禁片午夜丰满| 免费无遮挡裸体视频| 久久精品久久久久久噜噜老黄 | 日韩一本色道免费dvd| 18禁黄网站禁片午夜丰满| 日本五十路高清| 蜜桃亚洲精品一区二区三区| 搡女人真爽免费视频火全软件 | 日日夜夜操网爽| 琪琪午夜伦伦电影理论片6080| 免费av观看视频| 日韩欧美免费精品| 精品福利观看| 午夜免费激情av| 1000部很黄的大片| 日本撒尿小便嘘嘘汇集6| 精品久久久久久,| 女的被弄到高潮叫床怎么办 | 啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| 欧美高清成人免费视频www| 日韩欧美免费精品| 小说图片视频综合网站| 久久久国产成人免费| 亚洲 国产 在线| 美女高潮的动态| 色噜噜av男人的天堂激情| 中文字幕人妻熟人妻熟丝袜美| 精品午夜福利在线看| 精品久久久久久久人妻蜜臀av| 亚洲性夜色夜夜综合| 久久久久国产精品人妻aⅴ院| 久久天躁狠狠躁夜夜2o2o| 不卡一级毛片| 97超级碰碰碰精品色视频在线观看| 少妇被粗大猛烈的视频| 九色国产91popny在线| 床上黄色一级片| 在线观看舔阴道视频| 欧美成人性av电影在线观看| 亚洲成人免费电影在线观看| 熟女人妻精品中文字幕| 精华霜和精华液先用哪个| 亚洲第一电影网av| 有码 亚洲区| 亚洲性久久影院| 性插视频无遮挡在线免费观看| 色哟哟哟哟哟哟| 夜夜夜夜夜久久久久| 在线观看一区二区三区| 国产成人a区在线观看| 久久久精品欧美日韩精品| 国内精品一区二区在线观看| 男人的好看免费观看在线视频| 国产女主播在线喷水免费视频网站 | 我的女老师完整版在线观看| 国产欧美日韩精品一区二区| 18禁在线播放成人免费| 国产黄片美女视频| 99精品久久久久人妻精品| 国产精品福利在线免费观看| 午夜久久久久精精品| 国产一区二区在线av高清观看| 亚洲无线观看免费| 99riav亚洲国产免费| 亚洲av中文av极速乱 | 国产欧美日韩精品亚洲av| 欧美日韩国产亚洲二区| 久久午夜福利片| 日韩一本色道免费dvd| 亚洲av不卡在线观看| 免费电影在线观看免费观看| 国产精品不卡视频一区二区| 欧美成人a在线观看| av在线蜜桃| 日本黄色片子视频| 久久久久久伊人网av| 国产激情偷乱视频一区二区| 亚洲av熟女| 国产午夜福利久久久久久| 韩国av在线不卡| 热99在线观看视频| 日日夜夜操网爽| 久久6这里有精品| 午夜福利在线观看免费完整高清在 | 床上黄色一级片| 成人高潮视频无遮挡免费网站| 嫁个100分男人电影在线观看| 亚洲精品亚洲一区二区| 国产精品久久电影中文字幕| 变态另类丝袜制服| 伦理电影大哥的女人| 好男人在线观看高清免费视频| 亚洲国产精品sss在线观看| 国产 一区 欧美 日韩| 亚洲狠狠婷婷综合久久图片| .国产精品久久| 久99久视频精品免费| 最新中文字幕久久久久| 99精品在免费线老司机午夜| 欧美zozozo另类| 精品一区二区三区人妻视频| 欧美中文日本在线观看视频| 久久久久久久久久黄片| 国产午夜精品论理片| 日本一二三区视频观看| 少妇人妻一区二区三区视频| 十八禁国产超污无遮挡网站| 欧美性感艳星| 永久网站在线| 老司机福利观看| 国产国拍精品亚洲av在线观看| 亚洲va日本ⅴa欧美va伊人久久| 日韩亚洲欧美综合| 精华霜和精华液先用哪个| 中文字幕久久专区| 丝袜美腿在线中文| 91久久精品电影网| 成人亚洲精品av一区二区| 天堂√8在线中文| 人妻制服诱惑在线中文字幕| 最近在线观看免费完整版| eeuss影院久久| 亚洲三级黄色毛片| 夜夜爽天天搞| 亚洲精品在线观看二区| 久久人妻av系列| 欧美一区二区亚洲| 免费观看在线日韩| 免费看日本二区| 国产成人福利小说| 看十八女毛片水多多多| 中文字幕精品亚洲无线码一区| 精品一区二区免费观看| 日韩在线高清观看一区二区三区 | 两性午夜刺激爽爽歪歪视频在线观看| 毛片女人毛片| 美女大奶头视频| 中文字幕久久专区| 毛片一级片免费看久久久久 | 给我免费播放毛片高清在线观看| 亚洲精品日韩av片在线观看| 亚洲欧美日韩高清在线视频| 欧美成人性av电影在线观看| 日韩一本色道免费dvd| 天堂影院成人在线观看| 极品教师在线免费播放| 亚洲电影在线观看av| 国产v大片淫在线免费观看| 免费高清视频大片| h日本视频在线播放| 我要搜黄色片| 国产黄片美女视频| 两人在一起打扑克的视频| 88av欧美| 伦理电影大哥的女人| 亚洲欧美激情综合另类| 深夜精品福利| 看免费成人av毛片| 国产美女午夜福利| 久久中文看片网| 国产亚洲精品综合一区在线观看| 午夜福利在线观看吧| 欧美日本亚洲视频在线播放| 亚洲在线自拍视频| 女人十人毛片免费观看3o分钟| 亚洲av中文av极速乱 | 欧美性感艳星| 三级国产精品欧美在线观看| 欧美另类亚洲清纯唯美| 噜噜噜噜噜久久久久久91| 国产一区二区三区视频了| 午夜福利成人在线免费观看| 亚洲av日韩精品久久久久久密| 国产老妇女一区| 国产单亲对白刺激| 国国产精品蜜臀av免费| 又紧又爽又黄一区二区| 免费在线观看成人毛片|