• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    4,5-二氨基-2-硫脲嘧啶膜氯化鈉溶液中對(duì)銅緩蝕性能的研究

    2019-06-10 02:57劉澤群范娟娟姜月月周洋應(yīng)葉郭小玉楊海峰
    關(guān)鍵詞:極化曲線

    劉澤群 范娟娟 姜月月 周洋 應(yīng)葉 郭小玉 楊海峰

    摘 要: 通過(guò)自組裝方法將4,5-二氨基-2-硫脲嘧啶(MPD)分子吸附在銅(Cu)表面,應(yīng)用電化學(xué)極化、電化學(xué)阻抗譜(EIS)和拉曼光譜方法,研究其在質(zhì)量分?jǐn)?shù)為3.5%的氯化鈉(NaCl)溶液中的緩蝕能力.在最佳裝配條件下,MPD膜的最大緩蝕效率達(dá)到98.1%.拉曼光譜研究表明:MPD分子通過(guò)N9-H10和S7-H8吸附在Cu表面上.

    關(guān)鍵詞: 銅; 緩蝕; 電化學(xué)阻抗譜(EIS); 極化曲線; 拉曼光譜

    1 Introduction

    As one of the most usual metals,copper and its alloys are being widely used in electronic manufacturers,marine industries,power stations,and heat exchangers due to their good corrosion resistance,high electrical and thermal conductivity,and strong malleability[1-3].Copper offers relevant corrosion resistance in the atmosphere and in neutral or alkalescent solutions due to the formation of a passive oxide film or nonconductive layer of corrosion products on its surface[4-5].However,pitting corrosion could occur on the surface when copper is exposed to oxygen or other oxidants,which would therefore cause serious economic loss and casualties[6-7].Hence,using organic and inorganic corrosion inhibitors,one of the most practical and effective methods among different corrosion protection methods,has been widely studied[8-9].The heteroatoms (such as N,O and S) in the organic compounds which acted as the adsorption sites could be adsorbed on the metal surface via π-π and Van der Waals interactions [10-11].

    Unfortunately,most of the corrosion inhibitors,such as triazines[8],imidazoles[12],and benzotriazole[13] are toxic,which hinder their applications in the sea environment[14].Therefore,numerous studies are now focused on eco-friendly drug compounds to reduce the pollution problems[15-16].

    Thiouracil and its derivatives,potent and safe pharmaceutical intermediates for anti-thyroid drugs and melanoma detection agents,have been widely used in medical and chemical fields.As corrosion inhibitors,they have been proved to have high corrosion inhibition efficiency.For instance,the marine paint formulations based on soluble resin which contain 6-amino-2-thiouracil and their derivatives can protect unprimed steel panels from sea water corrosion for more than two months[17].ISSA et al.[18] calculated the corrosion inhibition efficiency for dithiouracil,thiouracil,uracil and dihydrouracil against the copper corrosion.AL-ANDIS et al.[19] examined thiouracil derivatives on protecting carbon steel corrosion in sulfuric acid using gasometry and potentiometry,whilst HEAKAL et al.[20] measured their impedance data combing with density functional theory (DFT) calculations.

    In this work,the corrosion inhibition efficiency of one eco-friendly corrosion inhibitor,4,5-diamino-6-hydroxy-2-mercapto-pyrimidine (MPD),against copper corrosion in 3.5% (mass fraction) NaCl solution is carefully studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques and its molecular structure is shown in Figure 1.Besides,Raman spectroscopy was used to verify the adsorption site of MPD on the copper surface.

    2 Experimental

    2.1 Materials

    MPD (85% mass fraction) was purchased from Sigma-Aldrich Corporation.Sulfuric acid,sodium chloride,and ethanol were obtained from Sinopharm Chemical Reagent,Shanghai,China.All chemicals were of analytical grade reagents,and were used without further purification.All solutions were prepared with Milli-Q water (18 MΩ·cm).

    2.2 Pretreatment of the copper electrode

    Teflon sheathed copper rod (99.999% mass fraction,0.031 4 cm2 geometric area) was firstly rubbed with 500- and 1 000-grit papers,then polished by 0.3 μm alumina powder until a shiny mirror-like surface with less oxides and pits was visible.After that,such electrode was rinsed with Milli-Q water,pure ethanol and again with Milli-Q water to entirely remove the alumina particles and loose copper rust.

    2.3 Assembling MPD layer

    The pretreated copper electrodes were immersed immediately into the MPD aqueous solutions with different molar concentrations (i.e.5×10-5,1×10-4,5×10-4,1×10-3 mol·L-1),with different assembly times (1,3,5,8,12 h),respectively.Each MPD solution was firstly deoxygenated via purging nitrogen for 20 min before being used.After then,the MPD modified electrodes were taken out,rinsed with Milli-Q water,and dried under flowing nitrogen gas.

    2.4 Electrochemical experiments

    CHI750C electrochemistry workstation (CH Instruments,Inc.) was used to determine the electrochemical behavior of a traditional three-electrode cell (a saturated calomel electrode (SCE),a platinum foil electrode,and a copper electrode were used as reference,counter,and working electrode,respectively) in 3.5% (mass fraction),NaCl aqueous solution.Prior to every test,the copper electrodes with and without MPD modification were immersed in 3.5% NaCl aqueous solution for 3 000 s until a stable open circuit potential(OCP) (OCP vs.SCE) was achieved.EIS results were acquired under OCP with a 5 mV amplitude perturbing signal in the frequency range from 100 kHz to 10 mHz.The EIS data were then analyzed using Zsimpwin software.The electrochemical polarization curves were recorded with a voltage range from -0.4 to -0.05 V vs.SCE,a scan rate of 1 mV·s-1,and a sensitivity of 10-3.

    2.5 Surface characterization

    2.5.1 Scanning electron microscopy (SEM) test

    SEM images were taken by scanning electron microscopy (SEM,Hitachi S-4800 scanning electron microscope).For SEM test,the copper surfaces with or without MPD modification were examined before and after immersed in 3.5% NaCl aqueous solution for 5 h (corrosion time).

    2.5.2 Raman spectroscopy

    The pretreated copper electrode was roughened by the oxidation-reduction cycle (ORC) method[21] to obtain the surface enhance Raman scatting (SERS) active surface.Generally,the electrode was cycled in 2 mol·L-1 H2SO4 solution from -0.55 to +0.45 V vs.SCE (initial from -0.55 V) at 20 mV·s-1 for 10 scans,then washed thoroughly with Milli-Q water.

    The Raman equipment was a confocal micro-Raman spectrometer (Super LabRam II system,Dilor,F(xiàn)rance).A multichannel air cooled 1024 pixel ×800 pixel charge-coupled device was employed as a detector.The objective was with 50× long-working-length,and the laser power for 632.8 nm He-Ne laser was 5 mW.The pinhole and slit were 1000 μm and 100 μm,respectively.Each spectrum was average of 3 scans,and each scan time was 8 s.All spectra were calibrated with silicon at 519 cm-1.

    3 Results and discussion

    3.1 EIS measurements

    EIS,as an effective and nondestructive testing technique,was used to investigate the inhibition efficiency of MPD at the copper surface without destroying the protection layer.Figure 2 and Figure 3 are the Nyquist,Bode and phase angle plots of the copper electrodes modified with different MPD of molar concentrations and with different assembly time after corroded in 3.5% NaCl aqueous solution,respectively.In Fig.2(b),a straight line at low frequency range in the Nyquist plot of bare copper indicated the Warburg impedance and was due to either the soluble copper species (CuCl-2,CuCl-4) or the copper oxides diffused from the copper surface to the bulk solution or the dissolved oxygen transported to the copper surface[22].A small semicircle at high frequencies was owing to the surface inhomogeneity.Compared with bare copper,MPD covered copper electrodes [Fig.2(a)] showed much larger semicircles in the Nyquist plots.With the increasing MPD molar concentration,the diameter of the capacitance loops increased sharply at the beginning and reached its maximum value when the MPD molar concentration was 5×10-4 mol·L-1.However,as the molar concentration of MPD was higher than 5×10-4 mol·L-1,the semicircle of impedance value became smaller.The results suggested that the corrosion inhibition performance of MPD layer on the copper surface was molar concentration-dependent.Increasing its molar concentration could cause more MPD molecules to be adsorbed on the copper surface.When the molar concentration reached 5×10-4 mol·L-1,MPD molecules adsorbed on the copper surface were dense and compact,preventing the corrosion media to attack the copper interface and thus providing good corrosion inhibition efficiency.Nevertheless,further raising the MPD molar concentration would result in the accumulation of MPD molecules on the copper surface,leading to rough surfaces or shedding of the protection,hence causing intensified corrosion.

    concentrations in 3.5% mass fraction of NaCl aqueous solution,(b) is the magnification Nyquist plot of bare copper

    EIS measurements of 5×10-4 mol·L-1 MPD modified copper with different assembly times were then conducted.In Fig.3(a),diameters of the semicircles in the Nyquist plots gave similar trend:increased and then decreased with the increasing assembly time.The optimized assembly time was 8 h.It indicated that MPD molecules adsorbed on the copper surface were not dense enough if the assembly time was less than 8 h,while if the assembly time was more than 8 h,the accumulation of MPD would occur on the copper surface,leading to defects which hindered the corrosion inhibition effect.

    According to the Bode plots [shown in Fig.2(c) and Fig.3(b)],the same trend could also be found:the logZ values rose and then fell with the increasing MPD molar concentration and assembly time.The peak value was obtained with a MPD molar concentration of 5×10-4 mol·L-1 and an assembly time of 8 h.

    In addition,as shown in Fig.2(d) and Fig.3(c),the phase angle values were up and then down with the increasing MPD molar concentration and assembly time,and the maximum phase angle was ca.80° referring to the optimal assembly condition.

    The EIS data were then fitted by Zsimpwin software for a more detailed analysis.The main criterion for best fitting model selection is least error and chi-square value (χ2).As shown in Fig.4,R(Q(RW)) is the equivalent circuit mode for the Nyquist plots of bare copper,while for MPD modified copper electrode,R(Q(RW))(QR) was more suitable.In which,Rs,Rf,and Rct represent the solution resistance,the resistance of MPD film formed on the copper surface,and the charge transfer resistance,respectively.W is the Warburg impedance.Q is the constant phase elements (CPE),where Qf,Qdl are the film capacitance and double layer capacitance,respectively [23].

    The corresponding impedance parameters for R(Q(RW)) and R(Q(RW))(QR) are listed in Table 1 and Table 2,respectively.And Q can be described as below[24]:

    Potentiodynamic polarization curves of the copper electrodes with and without MPD modifications recorded in 3.5% NaCl aqueous solution are shown in Fig.5 and Fig.6,respectively.And the related electrochemical parameters obtained from the extrapolation of the Tafel curves,such as cathodic and anodic Tafel slopes (βc and βa),corrosion potential (Ecorr),and corrosion current density (jcorr) are listed in Table 3 and Table 4,respectively.

    As presented in Table 3 and Table 4,both cathodic and anodic Tafel slopes shifted to much lower current density values after the MPD modifications,compared with bare electrode.Besides,cathodic potion shifted more,indicating that MPD layer acted as a cathode-dominated mixed inhibitor on the copper surface.Moreover,the jcorr value decreased and the Ecorr value increased with MPD assembly on the copper surface.Furthermore,the lowest jcorr value was obtained in optimized coating condition.

    3.3 SERS analysis

    SERS was used to investigate the molecular surface interaction due to its high sensitivity.Figure 7(a) and 7(b) displayed the normal Raman spectrum of MPD powder and SERS spectrum of MPD modified copper formed under optimized condition.For better understanding of the spectral information,the vibrational assignments which were calculated from density functional theory (DFT) calculations based on UB3LYP/LANL2DZ were summarized in Table 5.According to Figure 7(a) and Table 5,the strongest peak at 1639 cm-1 and 488 cm-1 belonged to C4-C5 rocking vibration and N12-H13 stretching vibration,respectively.Peak at 1101 cm-1 was assigned to C4-C5 in-plane bending,while band at 886 cm-1 was S7-H8 rocking vibration.Based on the surface selection rule[26],SERS signal would be enhanced when the vibration mode was perpendicular to or getting close to the metal surface.Otherwise,if the vibration was parallel or away from the surface,SERS signal would be weakened.Therefore,it could be concluded that the MPD molecule was physisorbed on the copper surface via N9-H10 and S7-H8.Besides,with high MPD molar concentration,the vertical adsorbed MPD molecules would form π-π interaction between heterocyclic rings in pyrimidine molecules.Such π-π interaction would ensure that the coating formed on the copper surface would be dense and compact,providing excellent corrosion inhibition ability.The suggested adsorption fashion for MPD on the copper surface was displayed in Figure 8.

    3.4 Adsorption isotherm

    To further verify the MPD adsorption fashion on the copper surface,adsorption isotherm plot along with the standard Gibbs free energy was determined.θ (the degree of surface coverage) at different MPD molar concentrations in 3.5% NaCl solutions was obtained from EIS measurement according to:

    Assuming that the adsorption of MPD molecule on the copper surface obeys Langmuir adsorption isothermal,then the correlation between θ and c can be? represented as:

    where c is MPD molar concentration,and Kads is the equilibrium constant [27].The plot of c/θ against c gave a straight line (y=1.025x+0.007) as shown in Figure 9.Both the linear correlation coefficient (R2=0.9993) and the slope (value is 1.025) are close to 1,indicating the adsorption of MPD molecules on the copper surface in NaCl solution obeys the Langmuir adsorption isotherm.

    Generally,if ΔG0ads value is above -20 kJ·mol-1,adsorption behavior is assumed to be physisorption,dominated via electrostatic interactions between inhibitor molecules and the charged metal surface,whilst if ΔG0ads value is lower than 40 kJ·mol-1,chemisorption controlled where coordination bond is formed based on charge sharing or transfer from organic molecules to the metal surface[29].The calculated ΔG0adsvalue was -22.25 kJ·mol-1,suggesting that the adsorption mechanism of MPD molecule on the copper surface is mainly physisorption.

    SEM images of copper electrodes without and with optimized MPD modifications were observed before and after 5 h (corrosion time) immersion in 3.5% NaCl solution.Figure 10(a) and 10(b) exhibited the surface morphologies of the bare copper before and after immersion in NaCl solution,respectively,while Fig.10(c) and 10(d) demonstrated the MPD modified copper surface before and after immersion in NaCl solution,respectively.Obviously,as shown in Fig.10(b),seriously corrosion occurred on the bare copper surface after immersion in NaCl solution for 5 h.In contrast,in the presence of MPD [Fig.10(d)],the copper surface corroded barely.

    4 Conclusion

    In this work,MPD was prepared for the corrosion inhibition of copper in 3.5% mass fraction of NaCl aqueous solution.Under optimal assembly condition,5×10-4 mol·L-1 MPD assembly for 8 h,the MPD modified copper surface exhibited the greatest inhibition efficiency,98.1%.SERS spectrum indicated that MPD molecule was adsorbed on copper surface with N9-H10 and S7-H8.

    Acknowledgement

    This work is supported by International Joint Laboratory on Resource Chemistry (IJLRC),Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors.

    References:

    [1] FAN Y H,CHEN Z J,LIANG J,et al.Preparation of superhydrophobic films on copper substrate for corrosion protection [J].Surface and Coatings Technology,2014,244:1-8.

    [2] YANG Z,LIU X,TIAN Y.Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electrodeposition process [J].Colloids and Surfaces A,2019,560:205-212.

    [3] HERNNDEZ R DEL P B,AOKI I V,TRIBOLLET B,et al.Electrochemical impedance spectroscopy investigation of the electrochemical behaviour of copper coated with artificial patina layers and submitted to wet and dry cycles [J].Electrochimica Acta,2011,56(7):2801-2814.

    [4] PAREEK S,JAIN D,HUSSAIN S,et al.A new insight into corrosion inhibition mechanism of copper in aerated 3.5 wt.% NaCl solution by eco-friendly imidazopyrimidine dye:experimental and theoretical approach [J].Chemical Engineering Journal,2019,358:725-742.

    [5] ADELOJU S,HUGHES H.The corrosion of copper pipes in high chloride-low carbonate mains water [J].Corrosion Science,1986,26(10):851-870.

    [6] FATEH A,ALIOFKHAZRAEI M,REZVANIAN A R.Review of corrosive environments for copper and its corrosion inhibitors [J/OL].Arabian Journal of Chemistry,2017 [2019-01-01].http://dx.doi.org/10.1016/j.arabjc.2017.05.021.

    [7] ATTIA A A,ELMELEGY E M,EL-BATOUTI M,et al.Anodic corrosion inhibition in presence of protic solvents [J].Asian Journal of Chemistry,2016,28(2):267-272.

    [8] CHEN W,HONG S,LUO H Q,et al.Inhibition effect of 2,4,6-trimercapto-1,3,5-triazine self-assembled monolayers on copper corrosion in NaCl solution [J].Journal of Materials Engineering and Performance,2014,23 (2):527-537.

    [9] ZHOU Y,XU S,GUO L,et al.Evaluating two new Schiff bases synthesized on the inhibition of corrosion of copper in NaCl solutions [J].RSC Advances,2015,5:14804-14813.

    [10] YADAV M,BEHERA D,KUMAR S,et al.Experimental and quantum chemical studies on the corrosion inhibition performance ofbenzimidazole derivatives for mild steel in HCl [J].Industrial & Engineering Chemistry Research,2013,52(19):6318-6328.

    [11] WEI N,JIANG Y,LIU Z,et al.4-Phenylpyrimidine monolayer protection of a copper surface from salt corrosion [J].RSC Advances,2018,8:7340-7349.

    [12] WANG Z L,ZHANG J,WANG Z M,et al.Emulsification reducing the corrosion risk of mild steel in oil-brine mixtures [J].Corrosion Science,2014,86:310-317.

    [13] KHAN P F,SHANTHI V,BABU R K,et al.Effect of benzotriazole on corrosion inhibition of copper under flow conditions [J].Journal of Environmental Chemical Engineering,2015,3 (1):10-19.

    [14] FOUDA A S,WAHED H A A.Corrosion inhibition of copper in HNO3 solution using thiophene and its derivatives [J].Arabian Journal of Chemistry,2016,9(Suppl.1):S91-S99.

    [15] ABDALLAH M,ZAAFARANY I,AL-KARANEE S O,et al.Antihypertensive drugs as an inhibitors for corrosion of aluminum and aluminum silicon alloys in aqueous solutions [J].Arabian Journal of Chemistry,2012,5:225-234.

    [16] ALDANA-GONZALEZ J,ESPINOZA-VAZQUEZ A,ROMERO-ROMO M,et al.Electrochemical evaluation of cephalothin as corrosion inhibitor for API 5L X52 steel immersed in an acid medium [J/OL].Arabian Journal of Chemistry,2015[2019-01-01].https://doi.org/10.1016/j.arabjc.2015.08.033.

    [17] TADROS A B,ABD EL NABEY B A.Marine anti-corrosion paints based on thiouracil compounds [J].Anti-Corrosion Methods and Materials,2000,47(4):211-214.

    [18] ISSA R M,AWAD M K,ATLAM F M.Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils [J].Applied Surface Science,2008,255:2433-2441.

    [19] AL-ANDIS N,KHAMIS E,AL-MAYOUF A.Kinetics of steel dissolution in the presence of some thiouracil derivatives [J].Corrosion Prevention and Control,1995,42:13-20.

    [20] EL-TAIB HEAKAL F,F(xiàn)OUDA A S,ZAHRAN S S.Environmentally safe protection of carbon steel corrosion in sulfuric acid by thiouracil compounds [J].International Journal of Electrochemical Science,2015,10(2):1595-1615.

    [21] PAN Y C,WEN Y,XUE L Y,et al.Adsorption behavior of methimazole monolayers on a copper surface and its corrosion inhibition [J].The Journal of Physical Chemistry C,2012,116(5):3532-3538.

    [22] AMIN M A,KHALED K F.Copper corrosion inhibition in O2-saturated H2SO4 solutions [J].Corrosion Science,2010,52:1194-1204.

    [23] WINIARSKI J,CIES'LIKOWSKA B,TYLUS W,et al.Corrosion of nanocrystalline nickel coatings electrodeposited from choline chloride:ethylene glycol deep eutectic solvent exposed in 0.05 M NaCl solution [J].Applied Surface Science,2019,470:331-339.

    [24] LI X,DENG S,LIN T,et al.Inhibition action of triazolyl blue tetrazolium bromide on cold rolled steel corrosion in three chlorinated acetic acids [J].Journal of Molecular Liquids,2019,274:77-89.

    [25] MOURYA P,BANERJEE S,SINGH M M.Corrosion inhibition of mild steel in acidic solution by Tageteserecta (Marigold flower) extract as a green inhibitor [J].Corrosion Science,2014,85:352-363.

    [26] MCFARLAND A D,YOUNG M A,DIERINGER J A,et al.Wavelength-scanned surface-enhanced Raman excitation spectroscopy [J].The Journal of Physical Chemistry B,2005,109(22):11279-11285.

    [27] KRISHNEGOWDA P M,VENKATESHA V T,KRISHNEGOWDA P K M,et al.Acalyphatorta leaf extract as green corrosion inhibitor for mild steel in hydrochloric acid solution [J].Industrial & Engineering Chemistry Research,2013,52:722-728.

    [28] BAHRAMI M J,HOSSEINI S M A,PILVAR P.Experimental and theoretical investigation of organic compounds as inhibitors for mild steel corrosion in sulfuric acid medium [J].Corrosion Science,2013,52:2793-2803.

    [29] HEGAZY M A,BADAWI A M,ABD EL REHIM S S,et al.Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy)ethyl)-N,N-dimethyldodecan-1-aminium bromide during acid pickling [J].Corrosion Science,2013,69:110-122.

    (責(zé)任編輯:郁 慧)

    猜你喜歡
    極化曲線
    含氮不銹鋼在不同溫度下的電化學(xué)腐蝕行為研究
    路譜激勵(lì)對(duì)于燃料電池極化曲線特征參數(shù)影響研究
    物理化學(xué)中極化曲線的測(cè)定實(shí)驗(yàn)改革
    電化學(xué)實(shí)驗(yàn)教學(xué)中極化曲線的測(cè)量與應(yīng)用
    給水球墨鑄鐵管腐蝕特性及腐蝕對(duì)水質(zhì)的影響
    油酸咪唑啉季銨鹽的合成及緩蝕性能的研究
    電化學(xué)合成聚苯胺涂層防護(hù)性能的研究
    鎂水泥混凝土中鋼筋的電化學(xué)腐蝕研究
    光亮劑對(duì)酸性中磷化學(xué)鍍鎳層性能的影響
    緩蝕劑在鎂合金化學(xué)機(jī)械拋光過(guò)程中的作用
    极品教师在线视频| 日韩三级伦理在线观看| 亚洲欧洲日产国产| 国产高清有码在线观看视频| 国产亚洲欧美98| 亚洲av中文字字幕乱码综合| 三级国产精品欧美在线观看| 深夜精品福利| 国模一区二区三区四区视频| 内地一区二区视频在线| 国产黄片美女视频| 久久精品国产自在天天线| 国产一区二区三区在线臀色熟女| 国产精品久久久久久精品电影小说 | 亚洲成人精品中文字幕电影| 久久久久久久午夜电影| 国产淫片久久久久久久久| 观看免费一级毛片| 寂寞人妻少妇视频99o| 久久久久久久久大av| 最近中文字幕高清免费大全6| 麻豆精品久久久久久蜜桃| 天堂av国产一区二区熟女人妻| 免费观看在线日韩| 色吧在线观看| 日韩亚洲欧美综合| 男女那种视频在线观看| 三级国产精品欧美在线观看| АⅤ资源中文在线天堂| 午夜激情欧美在线| 亚洲av中文字字幕乱码综合| 日本与韩国留学比较| 久久久久久大精品| 国产亚洲欧美98| 在线播放无遮挡| 亚洲激情五月婷婷啪啪| 免费大片18禁| 中文字幕免费在线视频6| 精品少妇黑人巨大在线播放 | 中文字幕熟女人妻在线| 欧美3d第一页| 色综合色国产| 免费电影在线观看免费观看| 好男人在线观看高清免费视频| 观看免费一级毛片| 22中文网久久字幕| 成人特级av手机在线观看| 亚洲欧美日韩高清专用| 少妇的逼水好多| 国产精品综合久久久久久久免费| 激情 狠狠 欧美| 51国产日韩欧美| 成人美女网站在线观看视频| 男女啪啪激烈高潮av片| 一级毛片久久久久久久久女| 国产精品久久电影中文字幕| 日本-黄色视频高清免费观看| 色吧在线观看| 99久国产av精品国产电影| 久久人妻av系列| 中文亚洲av片在线观看爽| 高清日韩中文字幕在线| 国产片特级美女逼逼视频| 午夜福利高清视频| 深夜精品福利| 国产精品嫩草影院av在线观看| 99热这里只有是精品50| 又粗又爽又猛毛片免费看| 久久久久久久午夜电影| 亚洲成人久久爱视频| 国产欧美日韩精品一区二区| 久久热精品热| a级毛片a级免费在线| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区四那| 国产精品综合久久久久久久免费| 免费观看人在逋| 亚洲精品456在线播放app| 成人高潮视频无遮挡免费网站| 久久国产乱子免费精品| 性色avwww在线观看| 乱码一卡2卡4卡精品| 插逼视频在线观看| 丰满人妻一区二区三区视频av| 最近手机中文字幕大全| 美女被艹到高潮喷水动态| 国产爱豆传媒在线观看| 免费大片18禁| 日韩欧美国产在线观看| 边亲边吃奶的免费视频| 有码 亚洲区| 最近2019中文字幕mv第一页| 日韩国内少妇激情av| 婷婷色综合大香蕉| 毛片女人毛片| 亚洲成av人片在线播放无| 自拍偷自拍亚洲精品老妇| 成人漫画全彩无遮挡| 免费看av在线观看网站| 亚洲成人av在线免费| 久久精品国产清高在天天线| 国产成人aa在线观看| 国产在线男女| 看非洲黑人一级黄片| 久久韩国三级中文字幕| 日韩大尺度精品在线看网址| 久久99蜜桃精品久久| av视频在线观看入口| 亚洲美女搞黄在线观看| 成年女人看的毛片在线观看| 欧美性感艳星| 精品人妻一区二区三区麻豆| 国产精品一区二区性色av| 精品久久国产蜜桃| 色视频www国产| 成人高潮视频无遮挡免费网站| 亚洲美女视频黄频| 久久国内精品自在自线图片| 成人永久免费在线观看视频| 美女黄网站色视频| 简卡轻食公司| 国内精品一区二区在线观看| 久久人人爽人人爽人人片va| 蜜桃亚洲精品一区二区三区| 亚洲电影在线观看av| 国产av不卡久久| 午夜激情福利司机影院| 免费av不卡在线播放| 亚洲一级一片aⅴ在线观看| 麻豆国产av国片精品| 国产午夜精品一二区理论片| 国产伦精品一区二区三区视频9| 国产成人影院久久av| 日韩大尺度精品在线看网址| 日韩欧美精品v在线| 夜夜爽天天搞| 欧美变态另类bdsm刘玥| 男女做爰动态图高潮gif福利片| 日韩高清综合在线| 国产精品不卡视频一区二区| 久久亚洲精品不卡| 熟女人妻精品中文字幕| 久久久久久久久久久免费av| 爱豆传媒免费全集在线观看| 啦啦啦啦在线视频资源| 成年女人看的毛片在线观看| 天美传媒精品一区二区| 国产高清三级在线| 国产三级中文精品| 一区二区三区四区激情视频 | 亚洲无线在线观看| 国内久久婷婷六月综合欲色啪| 天堂中文最新版在线下载 | 天堂网av新在线| 又粗又爽又猛毛片免费看| 搡老妇女老女人老熟妇| 欧美一级a爱片免费观看看| 久久精品人妻少妇| 六月丁香七月| 国产成人午夜福利电影在线观看| 国产蜜桃级精品一区二区三区| 久久久久网色| 看免费成人av毛片| 床上黄色一级片| 久久久国产成人精品二区| 国产高清不卡午夜福利| 99九九线精品视频在线观看视频| 久久人妻av系列| 国产精品久久久久久亚洲av鲁大| 亚洲高清免费不卡视频| 91精品一卡2卡3卡4卡| 在线观看一区二区三区| 国产精品一区www在线观看| 欧美人与善性xxx| 久久99热这里只有精品18| 一本一本综合久久| 蜜桃久久精品国产亚洲av| 国产免费男女视频| 久久人人精品亚洲av| 嫩草影院精品99| 国产精品嫩草影院av在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲无线观看免费| 三级国产精品欧美在线观看| 亚洲综合色惰| 99久久精品国产国产毛片| 国产成人精品一,二区 | 99riav亚洲国产免费| 亚洲久久久久久中文字幕| 欧美日韩综合久久久久久| 国产午夜精品久久久久久一区二区三区| 听说在线观看完整版免费高清| 嘟嘟电影网在线观看| 亚洲最大成人手机在线| 老司机福利观看| 亚洲在久久综合| 深夜a级毛片| 搡老妇女老女人老熟妇| 麻豆av噜噜一区二区三区| 久久久欧美国产精品| 亚洲精品日韩av片在线观看| 欧美激情在线99| 美女高潮的动态| 可以在线观看毛片的网站| .国产精品久久| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区三区在线臀色熟女| 狂野欧美白嫩少妇大欣赏| 欧美变态另类bdsm刘玥| 亚洲精品亚洲一区二区| 麻豆国产97在线/欧美| av女优亚洲男人天堂| 国产色婷婷99| 国产精品久久久久久久电影| 久久精品国产清高在天天线| 毛片女人毛片| 亚洲成av人片在线播放无| 丰满的人妻完整版| 久久草成人影院| 99久久久亚洲精品蜜臀av| 亚洲av第一区精品v没综合| 天堂网av新在线| 五月伊人婷婷丁香| 欧美色欧美亚洲另类二区| 在线天堂最新版资源| 亚洲av一区综合| 亚洲在线自拍视频| 一区二区三区高清视频在线| 色哟哟·www| 午夜激情欧美在线| 内射极品少妇av片p| 国产高清视频在线观看网站| 99久久成人亚洲精品观看| 久久久午夜欧美精品| 亚洲精品久久国产高清桃花| 欧美激情久久久久久爽电影| 免费大片18禁| 国产精品人妻久久久久久| 色吧在线观看| 日本在线视频免费播放| 国产精品福利在线免费观看| 狂野欧美白嫩少妇大欣赏| 一级黄色大片毛片| 狠狠狠狠99中文字幕| 亚洲丝袜综合中文字幕| 深夜精品福利| 一本精品99久久精品77| 精品久久久久久久久亚洲| 可以在线观看的亚洲视频| 在线a可以看的网站| 最近视频中文字幕2019在线8| 国产在视频线在精品| 只有这里有精品99| 国产精品一区www在线观看| 国产精品一区二区在线观看99 | 神马国产精品三级电影在线观看| 在现免费观看毛片| 全区人妻精品视频| 美女内射精品一级片tv| 国内精品一区二区在线观看| 免费大片18禁| 在线播放无遮挡| 久久99热这里只有精品18| 亚洲最大成人手机在线| 麻豆一二三区av精品| 午夜a级毛片| 日本撒尿小便嘘嘘汇集6| 国内精品美女久久久久久| 99国产精品一区二区蜜桃av| 伦精品一区二区三区| 有码 亚洲区| 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 免费看日本二区| 久久精品人妻少妇| 久99久视频精品免费| 九九在线视频观看精品| 国产成人a∨麻豆精品| 亚洲性久久影院| 有码 亚洲区| 国产亚洲av片在线观看秒播厂 | 久久久久国产网址| 超碰av人人做人人爽久久| 免费人成在线观看视频色| 久久久久久伊人网av| 亚洲欧美精品综合久久99| 日韩一本色道免费dvd| 国产亚洲av嫩草精品影院| 亚洲国产精品合色在线| 一夜夜www| 日韩欧美在线乱码| 国产视频首页在线观看| 国产日韩欧美在线精品| 99久久中文字幕三级久久日本| 女的被弄到高潮叫床怎么办| 日日啪夜夜撸| 日本一二三区视频观看| 小蜜桃在线观看免费完整版高清| 日韩欧美精品v在线| 久久久久九九精品影院| 黄色日韩在线| 99久久无色码亚洲精品果冻| 伦理电影大哥的女人| 在线观看美女被高潮喷水网站| a级一级毛片免费在线观看| 免费电影在线观看免费观看| 国产综合懂色| 美女国产视频在线观看| 亚洲国产精品国产精品| 久久精品国产自在天天线| 桃色一区二区三区在线观看| 亚洲真实伦在线观看| 亚洲国产色片| 插逼视频在线观看| 高清毛片免费观看视频网站| 在线a可以看的网站| 亚洲国产精品成人综合色| 亚洲无线观看免费| 狂野欧美激情性xxxx在线观看| 青春草视频在线免费观看| av免费在线看不卡| 国产综合懂色| 日韩欧美三级三区| 亚洲在线自拍视频| 久久精品影院6| 国产又黄又爽又无遮挡在线| 91麻豆精品激情在线观看国产| 中文字幕免费在线视频6| 国产精品福利在线免费观看| 性欧美人与动物交配| 日日啪夜夜撸| 桃色一区二区三区在线观看| 亚洲自拍偷在线| 人妻系列 视频| 国产精品综合久久久久久久免费| 久99久视频精品免费| 成人毛片60女人毛片免费| 久久国内精品自在自线图片| 亚洲中文字幕日韩| 给我免费播放毛片高清在线观看| av.在线天堂| 国产成人影院久久av| 国产黄片美女视频| 久久午夜福利片| 国产白丝娇喘喷水9色精品| 91在线精品国自产拍蜜月| 国产伦在线观看视频一区| 黄色视频,在线免费观看| 午夜视频国产福利| 噜噜噜噜噜久久久久久91| 国产在线男女| 黄色视频,在线免费观看| 国产精品人妻久久久久久| 亚洲无线在线观看| 免费一级毛片在线播放高清视频| 97在线视频观看| 亚洲丝袜综合中文字幕| 久久久精品94久久精品| kizo精华| 日韩成人av中文字幕在线观看| 精品一区二区三区视频在线| 亚洲中文字幕一区二区三区有码在线看| 一本久久精品| 国内精品美女久久久久久| 国内精品宾馆在线| 悠悠久久av| 国产淫片久久久久久久久| 国产免费一级a男人的天堂| 日本一二三区视频观看| 悠悠久久av| 亚洲国产精品成人久久小说 | 免费看日本二区| 国产真实伦视频高清在线观看| 人妻系列 视频| 人人妻人人澡欧美一区二区| 午夜激情福利司机影院| 日韩人妻高清精品专区| 日本撒尿小便嘘嘘汇集6| av在线观看视频网站免费| 国产亚洲欧美98| 91aial.com中文字幕在线观看| 干丝袜人妻中文字幕| 黄片无遮挡物在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人中文字幕在线播放| 国产久久久一区二区三区| 少妇被粗大猛烈的视频| 亚洲不卡免费看| 男女做爰动态图高潮gif福利片| 色尼玛亚洲综合影院| 国产蜜桃级精品一区二区三区| 又爽又黄a免费视频| 亚洲av.av天堂| 乱码一卡2卡4卡精品| 久久久久久久久久黄片| 啦啦啦观看免费观看视频高清| 长腿黑丝高跟| 日韩在线高清观看一区二区三区| 欧美日韩乱码在线| 老熟妇乱子伦视频在线观看| 亚洲精品久久国产高清桃花| 国产精品一区二区性色av| 欧美色视频一区免费| 日韩欧美 国产精品| 成人性生交大片免费视频hd| 欧美又色又爽又黄视频| 91精品国产九色| 男女下面进入的视频免费午夜| 日本三级黄在线观看| 国产精品久久久久久精品电影| 又爽又黄a免费视频| 亚州av有码| 亚洲欧美日韩高清在线视频| 国产精品爽爽va在线观看网站| 国产伦理片在线播放av一区 | 人人妻人人看人人澡| 欧美性感艳星| 老熟妇乱子伦视频在线观看| 禁无遮挡网站| 亚洲精品亚洲一区二区| 亚洲精品456在线播放app| 男女下面进入的视频免费午夜| 久久久久久久久久久丰满| 91麻豆精品激情在线观看国产| 国产成人a区在线观看| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频| 国产精品女同一区二区软件| 久久鲁丝午夜福利片| 亚洲国产精品成人综合色| 三级男女做爰猛烈吃奶摸视频| 免费观看的影片在线观看| 精品一区二区三区人妻视频| 少妇人妻精品综合一区二区 | 午夜爱爱视频在线播放| 久久人人精品亚洲av| 成人亚洲精品av一区二区| 精品一区二区免费观看| 午夜精品一区二区三区免费看| 久久精品综合一区二区三区| 久久久久久久久久成人| 一区二区三区免费毛片| 12—13女人毛片做爰片一| 国产黄色视频一区二区在线观看 | 欧美日韩乱码在线| 在线观看66精品国产| 禁无遮挡网站| 日日啪夜夜撸| 亚洲久久久久久中文字幕| 亚洲一级一片aⅴ在线观看| 啦啦啦韩国在线观看视频| a级毛片a级免费在线| 国产成人freesex在线| 欧美成人a在线观看| 夜夜看夜夜爽夜夜摸| 乱人视频在线观看| 波多野结衣巨乳人妻| 久久久精品欧美日韩精品| 人妻制服诱惑在线中文字幕| 观看美女的网站| 欧美最新免费一区二区三区| 亚洲欧美日韩高清专用| 国产精品福利在线免费观看| 国产精品久久久久久久久免| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产一区二区在线观看日韩| 老女人水多毛片| 亚洲内射少妇av| 亚洲无线观看免费| 欧美成人一区二区免费高清观看| 91久久精品电影网| 性欧美人与动物交配| www.色视频.com| 成人综合一区亚洲| 久久综合国产亚洲精品| 国产精品1区2区在线观看.| 久久久久网色| 亚洲国产精品sss在线观看| 国产日本99.免费观看| 精品人妻偷拍中文字幕| 午夜激情福利司机影院| 最好的美女福利视频网| 麻豆av噜噜一区二区三区| 国产真实伦视频高清在线观看| 亚洲一区高清亚洲精品| 久久久午夜欧美精品| 国产美女午夜福利| 亚洲中文字幕一区二区三区有码在线看| 18禁裸乳无遮挡免费网站照片| 97超碰精品成人国产| 噜噜噜噜噜久久久久久91| 麻豆一二三区av精品| 国国产精品蜜臀av免费| 久久这里有精品视频免费| 国产亚洲91精品色在线| 精品久久久久久久久久免费视频| 国产精品,欧美在线| 午夜久久久久精精品| 国产精品久久久久久精品电影| 久久久久久久久久久丰满| 男女做爰动态图高潮gif福利片| 蜜桃久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 亚洲av不卡在线观看| 97人妻精品一区二区三区麻豆| 男人狂女人下面高潮的视频| 黄片无遮挡物在线观看| 国产精品永久免费网站| 欧美性猛交黑人性爽| 老熟妇乱子伦视频在线观看| 成人性生交大片免费视频hd| eeuss影院久久| 成人美女网站在线观看视频| 欧美性猛交╳xxx乱大交人| 变态另类成人亚洲欧美熟女| 在线免费观看不下载黄p国产| 黄片wwwwww| 日韩大尺度精品在线看网址| а√天堂www在线а√下载| 夜夜看夜夜爽夜夜摸| 麻豆精品久久久久久蜜桃| 久久婷婷人人爽人人干人人爱| 国产精品电影一区二区三区| 丝袜美腿在线中文| 22中文网久久字幕| 午夜福利成人在线免费观看| 床上黄色一级片| 看免费成人av毛片| 国产成人a∨麻豆精品| 变态另类成人亚洲欧美熟女| 日本一二三区视频观看| 在线天堂最新版资源| 午夜福利视频1000在线观看| 免费观看在线日韩| 麻豆国产av国片精品| 天天躁夜夜躁狠狠久久av| 欧美xxxx性猛交bbbb| av在线观看视频网站免费| 国产单亲对白刺激| av免费观看日本| 免费黄网站久久成人精品| 久久这里只有精品中国| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品色激情综合| 欧美最黄视频在线播放免费| 色综合站精品国产| a级一级毛片免费在线观看| 乱人视频在线观看| 日本熟妇午夜| 99久久无色码亚洲精品果冻| 欧美日韩综合久久久久久| 一级二级三级毛片免费看| 日韩,欧美,国产一区二区三区 | 国产在线精品亚洲第一网站| 少妇裸体淫交视频免费看高清| 欧美日韩一区二区视频在线观看视频在线 | 简卡轻食公司| 2022亚洲国产成人精品| 婷婷色av中文字幕| 久久精品国产亚洲av香蕉五月| 午夜久久久久精精品| 午夜a级毛片| 老女人水多毛片| 亚洲自偷自拍三级| 中文字幕av在线有码专区| 欧美性猛交╳xxx乱大交人| 看免费成人av毛片| 一边摸一边抽搐一进一小说| 欧美三级亚洲精品| 99在线视频只有这里精品首页| 22中文网久久字幕| 久久精品久久久久久久性| 日韩中字成人| 又爽又黄a免费视频| АⅤ资源中文在线天堂| 日韩欧美在线乱码| av视频在线观看入口| 国产亚洲精品久久久久久毛片| 午夜精品在线福利| 久久欧美精品欧美久久欧美| 蜜桃亚洲精品一区二区三区| 久久婷婷人人爽人人干人人爱| 黄色欧美视频在线观看| 成人特级av手机在线观看| 欧美人与善性xxx| 性插视频无遮挡在线免费观看| 国产成人精品久久久久久| 狂野欧美白嫩少妇大欣赏| 日本色播在线视频| 99久久成人亚洲精品观看| 国产成年人精品一区二区| 日韩国内少妇激情av| 国产成人aa在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久久久久久免费av| 99热6这里只有精品| 久久久久久久久久黄片| 国产精品国产高清国产av| 三级毛片av免费| 亚洲av免费在线观看| 人妻制服诱惑在线中文字幕| 三级毛片av免费| 爱豆传媒免费全集在线观看| 日本熟妇午夜| 非洲黑人性xxxx精品又粗又长| 亚洲av免费在线观看| 99久久九九国产精品国产免费| 少妇熟女欧美另类| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品影院6| 一级黄色大片毛片| 久久精品久久久久久久性| 精品久久久久久久久av| 插逼视频在线观看| 中文字幕制服av|