• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    4,5-二氨基-2-硫脲嘧啶膜氯化鈉溶液中對(duì)銅緩蝕性能的研究

    2019-06-10 02:57劉澤群范娟娟姜月月周洋應(yīng)葉郭小玉楊海峰
    關(guān)鍵詞:極化曲線

    劉澤群 范娟娟 姜月月 周洋 應(yīng)葉 郭小玉 楊海峰

    摘 要: 通過(guò)自組裝方法將4,5-二氨基-2-硫脲嘧啶(MPD)分子吸附在銅(Cu)表面,應(yīng)用電化學(xué)極化、電化學(xué)阻抗譜(EIS)和拉曼光譜方法,研究其在質(zhì)量分?jǐn)?shù)為3.5%的氯化鈉(NaCl)溶液中的緩蝕能力.在最佳裝配條件下,MPD膜的最大緩蝕效率達(dá)到98.1%.拉曼光譜研究表明:MPD分子通過(guò)N9-H10和S7-H8吸附在Cu表面上.

    關(guān)鍵詞: 銅; 緩蝕; 電化學(xué)阻抗譜(EIS); 極化曲線; 拉曼光譜

    1 Introduction

    As one of the most usual metals,copper and its alloys are being widely used in electronic manufacturers,marine industries,power stations,and heat exchangers due to their good corrosion resistance,high electrical and thermal conductivity,and strong malleability[1-3].Copper offers relevant corrosion resistance in the atmosphere and in neutral or alkalescent solutions due to the formation of a passive oxide film or nonconductive layer of corrosion products on its surface[4-5].However,pitting corrosion could occur on the surface when copper is exposed to oxygen or other oxidants,which would therefore cause serious economic loss and casualties[6-7].Hence,using organic and inorganic corrosion inhibitors,one of the most practical and effective methods among different corrosion protection methods,has been widely studied[8-9].The heteroatoms (such as N,O and S) in the organic compounds which acted as the adsorption sites could be adsorbed on the metal surface via π-π and Van der Waals interactions [10-11].

    Unfortunately,most of the corrosion inhibitors,such as triazines[8],imidazoles[12],and benzotriazole[13] are toxic,which hinder their applications in the sea environment[14].Therefore,numerous studies are now focused on eco-friendly drug compounds to reduce the pollution problems[15-16].

    Thiouracil and its derivatives,potent and safe pharmaceutical intermediates for anti-thyroid drugs and melanoma detection agents,have been widely used in medical and chemical fields.As corrosion inhibitors,they have been proved to have high corrosion inhibition efficiency.For instance,the marine paint formulations based on soluble resin which contain 6-amino-2-thiouracil and their derivatives can protect unprimed steel panels from sea water corrosion for more than two months[17].ISSA et al.[18] calculated the corrosion inhibition efficiency for dithiouracil,thiouracil,uracil and dihydrouracil against the copper corrosion.AL-ANDIS et al.[19] examined thiouracil derivatives on protecting carbon steel corrosion in sulfuric acid using gasometry and potentiometry,whilst HEAKAL et al.[20] measured their impedance data combing with density functional theory (DFT) calculations.

    In this work,the corrosion inhibition efficiency of one eco-friendly corrosion inhibitor,4,5-diamino-6-hydroxy-2-mercapto-pyrimidine (MPD),against copper corrosion in 3.5% (mass fraction) NaCl solution is carefully studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques and its molecular structure is shown in Figure 1.Besides,Raman spectroscopy was used to verify the adsorption site of MPD on the copper surface.

    2 Experimental

    2.1 Materials

    MPD (85% mass fraction) was purchased from Sigma-Aldrich Corporation.Sulfuric acid,sodium chloride,and ethanol were obtained from Sinopharm Chemical Reagent,Shanghai,China.All chemicals were of analytical grade reagents,and were used without further purification.All solutions were prepared with Milli-Q water (18 MΩ·cm).

    2.2 Pretreatment of the copper electrode

    Teflon sheathed copper rod (99.999% mass fraction,0.031 4 cm2 geometric area) was firstly rubbed with 500- and 1 000-grit papers,then polished by 0.3 μm alumina powder until a shiny mirror-like surface with less oxides and pits was visible.After that,such electrode was rinsed with Milli-Q water,pure ethanol and again with Milli-Q water to entirely remove the alumina particles and loose copper rust.

    2.3 Assembling MPD layer

    The pretreated copper electrodes were immersed immediately into the MPD aqueous solutions with different molar concentrations (i.e.5×10-5,1×10-4,5×10-4,1×10-3 mol·L-1),with different assembly times (1,3,5,8,12 h),respectively.Each MPD solution was firstly deoxygenated via purging nitrogen for 20 min before being used.After then,the MPD modified electrodes were taken out,rinsed with Milli-Q water,and dried under flowing nitrogen gas.

    2.4 Electrochemical experiments

    CHI750C electrochemistry workstation (CH Instruments,Inc.) was used to determine the electrochemical behavior of a traditional three-electrode cell (a saturated calomel electrode (SCE),a platinum foil electrode,and a copper electrode were used as reference,counter,and working electrode,respectively) in 3.5% (mass fraction),NaCl aqueous solution.Prior to every test,the copper electrodes with and without MPD modification were immersed in 3.5% NaCl aqueous solution for 3 000 s until a stable open circuit potential(OCP) (OCP vs.SCE) was achieved.EIS results were acquired under OCP with a 5 mV amplitude perturbing signal in the frequency range from 100 kHz to 10 mHz.The EIS data were then analyzed using Zsimpwin software.The electrochemical polarization curves were recorded with a voltage range from -0.4 to -0.05 V vs.SCE,a scan rate of 1 mV·s-1,and a sensitivity of 10-3.

    2.5 Surface characterization

    2.5.1 Scanning electron microscopy (SEM) test

    SEM images were taken by scanning electron microscopy (SEM,Hitachi S-4800 scanning electron microscope).For SEM test,the copper surfaces with or without MPD modification were examined before and after immersed in 3.5% NaCl aqueous solution for 5 h (corrosion time).

    2.5.2 Raman spectroscopy

    The pretreated copper electrode was roughened by the oxidation-reduction cycle (ORC) method[21] to obtain the surface enhance Raman scatting (SERS) active surface.Generally,the electrode was cycled in 2 mol·L-1 H2SO4 solution from -0.55 to +0.45 V vs.SCE (initial from -0.55 V) at 20 mV·s-1 for 10 scans,then washed thoroughly with Milli-Q water.

    The Raman equipment was a confocal micro-Raman spectrometer (Super LabRam II system,Dilor,F(xiàn)rance).A multichannel air cooled 1024 pixel ×800 pixel charge-coupled device was employed as a detector.The objective was with 50× long-working-length,and the laser power for 632.8 nm He-Ne laser was 5 mW.The pinhole and slit were 1000 μm and 100 μm,respectively.Each spectrum was average of 3 scans,and each scan time was 8 s.All spectra were calibrated with silicon at 519 cm-1.

    3 Results and discussion

    3.1 EIS measurements

    EIS,as an effective and nondestructive testing technique,was used to investigate the inhibition efficiency of MPD at the copper surface without destroying the protection layer.Figure 2 and Figure 3 are the Nyquist,Bode and phase angle plots of the copper electrodes modified with different MPD of molar concentrations and with different assembly time after corroded in 3.5% NaCl aqueous solution,respectively.In Fig.2(b),a straight line at low frequency range in the Nyquist plot of bare copper indicated the Warburg impedance and was due to either the soluble copper species (CuCl-2,CuCl-4) or the copper oxides diffused from the copper surface to the bulk solution or the dissolved oxygen transported to the copper surface[22].A small semicircle at high frequencies was owing to the surface inhomogeneity.Compared with bare copper,MPD covered copper electrodes [Fig.2(a)] showed much larger semicircles in the Nyquist plots.With the increasing MPD molar concentration,the diameter of the capacitance loops increased sharply at the beginning and reached its maximum value when the MPD molar concentration was 5×10-4 mol·L-1.However,as the molar concentration of MPD was higher than 5×10-4 mol·L-1,the semicircle of impedance value became smaller.The results suggested that the corrosion inhibition performance of MPD layer on the copper surface was molar concentration-dependent.Increasing its molar concentration could cause more MPD molecules to be adsorbed on the copper surface.When the molar concentration reached 5×10-4 mol·L-1,MPD molecules adsorbed on the copper surface were dense and compact,preventing the corrosion media to attack the copper interface and thus providing good corrosion inhibition efficiency.Nevertheless,further raising the MPD molar concentration would result in the accumulation of MPD molecules on the copper surface,leading to rough surfaces or shedding of the protection,hence causing intensified corrosion.

    concentrations in 3.5% mass fraction of NaCl aqueous solution,(b) is the magnification Nyquist plot of bare copper

    EIS measurements of 5×10-4 mol·L-1 MPD modified copper with different assembly times were then conducted.In Fig.3(a),diameters of the semicircles in the Nyquist plots gave similar trend:increased and then decreased with the increasing assembly time.The optimized assembly time was 8 h.It indicated that MPD molecules adsorbed on the copper surface were not dense enough if the assembly time was less than 8 h,while if the assembly time was more than 8 h,the accumulation of MPD would occur on the copper surface,leading to defects which hindered the corrosion inhibition effect.

    According to the Bode plots [shown in Fig.2(c) and Fig.3(b)],the same trend could also be found:the logZ values rose and then fell with the increasing MPD molar concentration and assembly time.The peak value was obtained with a MPD molar concentration of 5×10-4 mol·L-1 and an assembly time of 8 h.

    In addition,as shown in Fig.2(d) and Fig.3(c),the phase angle values were up and then down with the increasing MPD molar concentration and assembly time,and the maximum phase angle was ca.80° referring to the optimal assembly condition.

    The EIS data were then fitted by Zsimpwin software for a more detailed analysis.The main criterion for best fitting model selection is least error and chi-square value (χ2).As shown in Fig.4,R(Q(RW)) is the equivalent circuit mode for the Nyquist plots of bare copper,while for MPD modified copper electrode,R(Q(RW))(QR) was more suitable.In which,Rs,Rf,and Rct represent the solution resistance,the resistance of MPD film formed on the copper surface,and the charge transfer resistance,respectively.W is the Warburg impedance.Q is the constant phase elements (CPE),where Qf,Qdl are the film capacitance and double layer capacitance,respectively [23].

    The corresponding impedance parameters for R(Q(RW)) and R(Q(RW))(QR) are listed in Table 1 and Table 2,respectively.And Q can be described as below[24]:

    Potentiodynamic polarization curves of the copper electrodes with and without MPD modifications recorded in 3.5% NaCl aqueous solution are shown in Fig.5 and Fig.6,respectively.And the related electrochemical parameters obtained from the extrapolation of the Tafel curves,such as cathodic and anodic Tafel slopes (βc and βa),corrosion potential (Ecorr),and corrosion current density (jcorr) are listed in Table 3 and Table 4,respectively.

    As presented in Table 3 and Table 4,both cathodic and anodic Tafel slopes shifted to much lower current density values after the MPD modifications,compared with bare electrode.Besides,cathodic potion shifted more,indicating that MPD layer acted as a cathode-dominated mixed inhibitor on the copper surface.Moreover,the jcorr value decreased and the Ecorr value increased with MPD assembly on the copper surface.Furthermore,the lowest jcorr value was obtained in optimized coating condition.

    3.3 SERS analysis

    SERS was used to investigate the molecular surface interaction due to its high sensitivity.Figure 7(a) and 7(b) displayed the normal Raman spectrum of MPD powder and SERS spectrum of MPD modified copper formed under optimized condition.For better understanding of the spectral information,the vibrational assignments which were calculated from density functional theory (DFT) calculations based on UB3LYP/LANL2DZ were summarized in Table 5.According to Figure 7(a) and Table 5,the strongest peak at 1639 cm-1 and 488 cm-1 belonged to C4-C5 rocking vibration and N12-H13 stretching vibration,respectively.Peak at 1101 cm-1 was assigned to C4-C5 in-plane bending,while band at 886 cm-1 was S7-H8 rocking vibration.Based on the surface selection rule[26],SERS signal would be enhanced when the vibration mode was perpendicular to or getting close to the metal surface.Otherwise,if the vibration was parallel or away from the surface,SERS signal would be weakened.Therefore,it could be concluded that the MPD molecule was physisorbed on the copper surface via N9-H10 and S7-H8.Besides,with high MPD molar concentration,the vertical adsorbed MPD molecules would form π-π interaction between heterocyclic rings in pyrimidine molecules.Such π-π interaction would ensure that the coating formed on the copper surface would be dense and compact,providing excellent corrosion inhibition ability.The suggested adsorption fashion for MPD on the copper surface was displayed in Figure 8.

    3.4 Adsorption isotherm

    To further verify the MPD adsorption fashion on the copper surface,adsorption isotherm plot along with the standard Gibbs free energy was determined.θ (the degree of surface coverage) at different MPD molar concentrations in 3.5% NaCl solutions was obtained from EIS measurement according to:

    Assuming that the adsorption of MPD molecule on the copper surface obeys Langmuir adsorption isothermal,then the correlation between θ and c can be? represented as:

    where c is MPD molar concentration,and Kads is the equilibrium constant [27].The plot of c/θ against c gave a straight line (y=1.025x+0.007) as shown in Figure 9.Both the linear correlation coefficient (R2=0.9993) and the slope (value is 1.025) are close to 1,indicating the adsorption of MPD molecules on the copper surface in NaCl solution obeys the Langmuir adsorption isotherm.

    Generally,if ΔG0ads value is above -20 kJ·mol-1,adsorption behavior is assumed to be physisorption,dominated via electrostatic interactions between inhibitor molecules and the charged metal surface,whilst if ΔG0ads value is lower than 40 kJ·mol-1,chemisorption controlled where coordination bond is formed based on charge sharing or transfer from organic molecules to the metal surface[29].The calculated ΔG0adsvalue was -22.25 kJ·mol-1,suggesting that the adsorption mechanism of MPD molecule on the copper surface is mainly physisorption.

    SEM images of copper electrodes without and with optimized MPD modifications were observed before and after 5 h (corrosion time) immersion in 3.5% NaCl solution.Figure 10(a) and 10(b) exhibited the surface morphologies of the bare copper before and after immersion in NaCl solution,respectively,while Fig.10(c) and 10(d) demonstrated the MPD modified copper surface before and after immersion in NaCl solution,respectively.Obviously,as shown in Fig.10(b),seriously corrosion occurred on the bare copper surface after immersion in NaCl solution for 5 h.In contrast,in the presence of MPD [Fig.10(d)],the copper surface corroded barely.

    4 Conclusion

    In this work,MPD was prepared for the corrosion inhibition of copper in 3.5% mass fraction of NaCl aqueous solution.Under optimal assembly condition,5×10-4 mol·L-1 MPD assembly for 8 h,the MPD modified copper surface exhibited the greatest inhibition efficiency,98.1%.SERS spectrum indicated that MPD molecule was adsorbed on copper surface with N9-H10 and S7-H8.

    Acknowledgement

    This work is supported by International Joint Laboratory on Resource Chemistry (IJLRC),Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors.

    References:

    [1] FAN Y H,CHEN Z J,LIANG J,et al.Preparation of superhydrophobic films on copper substrate for corrosion protection [J].Surface and Coatings Technology,2014,244:1-8.

    [2] YANG Z,LIU X,TIAN Y.Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electrodeposition process [J].Colloids and Surfaces A,2019,560:205-212.

    [3] HERNNDEZ R DEL P B,AOKI I V,TRIBOLLET B,et al.Electrochemical impedance spectroscopy investigation of the electrochemical behaviour of copper coated with artificial patina layers and submitted to wet and dry cycles [J].Electrochimica Acta,2011,56(7):2801-2814.

    [4] PAREEK S,JAIN D,HUSSAIN S,et al.A new insight into corrosion inhibition mechanism of copper in aerated 3.5 wt.% NaCl solution by eco-friendly imidazopyrimidine dye:experimental and theoretical approach [J].Chemical Engineering Journal,2019,358:725-742.

    [5] ADELOJU S,HUGHES H.The corrosion of copper pipes in high chloride-low carbonate mains water [J].Corrosion Science,1986,26(10):851-870.

    [6] FATEH A,ALIOFKHAZRAEI M,REZVANIAN A R.Review of corrosive environments for copper and its corrosion inhibitors [J/OL].Arabian Journal of Chemistry,2017 [2019-01-01].http://dx.doi.org/10.1016/j.arabjc.2017.05.021.

    [7] ATTIA A A,ELMELEGY E M,EL-BATOUTI M,et al.Anodic corrosion inhibition in presence of protic solvents [J].Asian Journal of Chemistry,2016,28(2):267-272.

    [8] CHEN W,HONG S,LUO H Q,et al.Inhibition effect of 2,4,6-trimercapto-1,3,5-triazine self-assembled monolayers on copper corrosion in NaCl solution [J].Journal of Materials Engineering and Performance,2014,23 (2):527-537.

    [9] ZHOU Y,XU S,GUO L,et al.Evaluating two new Schiff bases synthesized on the inhibition of corrosion of copper in NaCl solutions [J].RSC Advances,2015,5:14804-14813.

    [10] YADAV M,BEHERA D,KUMAR S,et al.Experimental and quantum chemical studies on the corrosion inhibition performance ofbenzimidazole derivatives for mild steel in HCl [J].Industrial & Engineering Chemistry Research,2013,52(19):6318-6328.

    [11] WEI N,JIANG Y,LIU Z,et al.4-Phenylpyrimidine monolayer protection of a copper surface from salt corrosion [J].RSC Advances,2018,8:7340-7349.

    [12] WANG Z L,ZHANG J,WANG Z M,et al.Emulsification reducing the corrosion risk of mild steel in oil-brine mixtures [J].Corrosion Science,2014,86:310-317.

    [13] KHAN P F,SHANTHI V,BABU R K,et al.Effect of benzotriazole on corrosion inhibition of copper under flow conditions [J].Journal of Environmental Chemical Engineering,2015,3 (1):10-19.

    [14] FOUDA A S,WAHED H A A.Corrosion inhibition of copper in HNO3 solution using thiophene and its derivatives [J].Arabian Journal of Chemistry,2016,9(Suppl.1):S91-S99.

    [15] ABDALLAH M,ZAAFARANY I,AL-KARANEE S O,et al.Antihypertensive drugs as an inhibitors for corrosion of aluminum and aluminum silicon alloys in aqueous solutions [J].Arabian Journal of Chemistry,2012,5:225-234.

    [16] ALDANA-GONZALEZ J,ESPINOZA-VAZQUEZ A,ROMERO-ROMO M,et al.Electrochemical evaluation of cephalothin as corrosion inhibitor for API 5L X52 steel immersed in an acid medium [J/OL].Arabian Journal of Chemistry,2015[2019-01-01].https://doi.org/10.1016/j.arabjc.2015.08.033.

    [17] TADROS A B,ABD EL NABEY B A.Marine anti-corrosion paints based on thiouracil compounds [J].Anti-Corrosion Methods and Materials,2000,47(4):211-214.

    [18] ISSA R M,AWAD M K,ATLAM F M.Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils [J].Applied Surface Science,2008,255:2433-2441.

    [19] AL-ANDIS N,KHAMIS E,AL-MAYOUF A.Kinetics of steel dissolution in the presence of some thiouracil derivatives [J].Corrosion Prevention and Control,1995,42:13-20.

    [20] EL-TAIB HEAKAL F,F(xiàn)OUDA A S,ZAHRAN S S.Environmentally safe protection of carbon steel corrosion in sulfuric acid by thiouracil compounds [J].International Journal of Electrochemical Science,2015,10(2):1595-1615.

    [21] PAN Y C,WEN Y,XUE L Y,et al.Adsorption behavior of methimazole monolayers on a copper surface and its corrosion inhibition [J].The Journal of Physical Chemistry C,2012,116(5):3532-3538.

    [22] AMIN M A,KHALED K F.Copper corrosion inhibition in O2-saturated H2SO4 solutions [J].Corrosion Science,2010,52:1194-1204.

    [23] WINIARSKI J,CIES'LIKOWSKA B,TYLUS W,et al.Corrosion of nanocrystalline nickel coatings electrodeposited from choline chloride:ethylene glycol deep eutectic solvent exposed in 0.05 M NaCl solution [J].Applied Surface Science,2019,470:331-339.

    [24] LI X,DENG S,LIN T,et al.Inhibition action of triazolyl blue tetrazolium bromide on cold rolled steel corrosion in three chlorinated acetic acids [J].Journal of Molecular Liquids,2019,274:77-89.

    [25] MOURYA P,BANERJEE S,SINGH M M.Corrosion inhibition of mild steel in acidic solution by Tageteserecta (Marigold flower) extract as a green inhibitor [J].Corrosion Science,2014,85:352-363.

    [26] MCFARLAND A D,YOUNG M A,DIERINGER J A,et al.Wavelength-scanned surface-enhanced Raman excitation spectroscopy [J].The Journal of Physical Chemistry B,2005,109(22):11279-11285.

    [27] KRISHNEGOWDA P M,VENKATESHA V T,KRISHNEGOWDA P K M,et al.Acalyphatorta leaf extract as green corrosion inhibitor for mild steel in hydrochloric acid solution [J].Industrial & Engineering Chemistry Research,2013,52:722-728.

    [28] BAHRAMI M J,HOSSEINI S M A,PILVAR P.Experimental and theoretical investigation of organic compounds as inhibitors for mild steel corrosion in sulfuric acid medium [J].Corrosion Science,2013,52:2793-2803.

    [29] HEGAZY M A,BADAWI A M,ABD EL REHIM S S,et al.Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy)ethyl)-N,N-dimethyldodecan-1-aminium bromide during acid pickling [J].Corrosion Science,2013,69:110-122.

    (責(zé)任編輯:郁 慧)

    猜你喜歡
    極化曲線
    含氮不銹鋼在不同溫度下的電化學(xué)腐蝕行為研究
    路譜激勵(lì)對(duì)于燃料電池極化曲線特征參數(shù)影響研究
    物理化學(xué)中極化曲線的測(cè)定實(shí)驗(yàn)改革
    電化學(xué)實(shí)驗(yàn)教學(xué)中極化曲線的測(cè)量與應(yīng)用
    給水球墨鑄鐵管腐蝕特性及腐蝕對(duì)水質(zhì)的影響
    油酸咪唑啉季銨鹽的合成及緩蝕性能的研究
    電化學(xué)合成聚苯胺涂層防護(hù)性能的研究
    鎂水泥混凝土中鋼筋的電化學(xué)腐蝕研究
    光亮劑對(duì)酸性中磷化學(xué)鍍鎳層性能的影響
    緩蝕劑在鎂合金化學(xué)機(jī)械拋光過(guò)程中的作用
    久久久久人妻精品一区果冻| 中文字幕色久视频| 日韩制服骚丝袜av| 久久久久精品国产欧美久久久 | 亚洲久久久国产精品| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美精品济南到| 亚洲av福利一区| 久久韩国三级中文字幕| 一区二区三区激情视频| 久久婷婷青草| 中文字幕另类日韩欧美亚洲嫩草| av福利片在线| 免费久久久久久久精品成人欧美视频| 中文字幕高清在线视频| 少妇 在线观看| 国产又爽黄色视频| 啦啦啦 在线观看视频| 国产精品国产三级专区第一集| 亚洲国产欧美在线一区| 王馨瑶露胸无遮挡在线观看| 999精品在线视频| 亚洲国产看品久久| 欧美最新免费一区二区三区| 欧美人与性动交α欧美精品济南到| 国产亚洲午夜精品一区二区久久| 亚洲欧美一区二区三区久久| 丝袜在线中文字幕| 秋霞伦理黄片| 99精国产麻豆久久婷婷| 一区在线观看完整版| 亚洲精品国产色婷婷电影| 免费日韩欧美在线观看| 人人妻,人人澡人人爽秒播 | 考比视频在线观看| 久久99一区二区三区| av片东京热男人的天堂| xxxhd国产人妻xxx| 韩国av在线不卡| 在线观看免费视频网站a站| 美女脱内裤让男人舔精品视频| av在线观看视频网站免费| 色婷婷av一区二区三区视频| 黑人猛操日本美女一级片| 嫩草影院入口| 亚洲三区欧美一区| 亚洲国产毛片av蜜桃av| 高清视频免费观看一区二区| 国产成人精品久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av福利一区| 啦啦啦在线免费观看视频4| 少妇人妻精品综合一区二区| 亚洲精品一区蜜桃| 亚洲,欧美精品.| 国产成人精品久久久久久| 人人妻人人澡人人看| 丰满乱子伦码专区| netflix在线观看网站| 日韩 亚洲 欧美在线| 午夜福利视频在线观看免费| 国产成人一区二区在线| 国产成人精品久久久久久| 亚洲欧美成人综合另类久久久| 国产男人的电影天堂91| 日韩成人av中文字幕在线观看| 热99国产精品久久久久久7| 欧美日韩亚洲高清精品| avwww免费| 欧美最新免费一区二区三区| 国产精品偷伦视频观看了| av又黄又爽大尺度在线免费看| 啦啦啦中文免费视频观看日本| 下体分泌物呈黄色| 国产深夜福利视频在线观看| 亚洲欧美成人精品一区二区| 国产免费福利视频在线观看| 亚洲国产av新网站| 日韩精品有码人妻一区| 免费高清在线观看视频在线观看| 99国产精品免费福利视频| 老鸭窝网址在线观看| 国产97色在线日韩免费| 黄色怎么调成土黄色| 下体分泌物呈黄色| 999久久久国产精品视频| 欧美精品高潮呻吟av久久| 波多野结衣av一区二区av| 中文字幕最新亚洲高清| 亚洲精品一二三| 亚洲久久久国产精品| 亚洲熟女毛片儿| 欧美日韩亚洲国产一区二区在线观看 | 丝袜脚勾引网站| 免费观看a级毛片全部| 亚洲av日韩精品久久久久久密 | 久久精品久久久久久噜噜老黄| 久久久国产精品麻豆| 国产成人午夜福利电影在线观看| 韩国精品一区二区三区| av福利片在线| 狠狠精品人妻久久久久久综合| 日韩不卡一区二区三区视频在线| 欧美日韩av久久| 久久久精品国产亚洲av高清涩受| 久久免费观看电影| 成人亚洲精品一区在线观看| 少妇被粗大的猛进出69影院| 久久久久久久国产电影| 亚洲国产精品成人久久小说| av在线播放精品| 2021少妇久久久久久久久久久| 侵犯人妻中文字幕一二三四区| 麻豆乱淫一区二区| 热re99久久国产66热| av又黄又爽大尺度在线免费看| 成人手机av| 你懂的网址亚洲精品在线观看| 巨乳人妻的诱惑在线观看| 国产精品99久久99久久久不卡 | av视频免费观看在线观看| 美女视频免费永久观看网站| 久久 成人 亚洲| 国产一区亚洲一区在线观看| 国产 一区精品| 国产免费福利视频在线观看| 赤兔流量卡办理| 老熟女久久久| 老司机在亚洲福利影院| 王馨瑶露胸无遮挡在线观看| 一级毛片电影观看| 国产精品一国产av| 久久精品国产亚洲av高清一级| 国产午夜精品一二区理论片| www.自偷自拍.com| 亚洲熟女毛片儿| 女性被躁到高潮视频| 国产99久久九九免费精品| 狂野欧美激情性xxxx| 国产黄色免费在线视频| 亚洲七黄色美女视频| 国产精品香港三级国产av潘金莲 | 欧美日韩国产mv在线观看视频| 国产片内射在线| 中文字幕色久视频| 国产欧美日韩综合在线一区二区| 免费人妻精品一区二区三区视频| 亚洲国产精品一区二区三区在线| 国产欧美亚洲国产| 精品国产一区二区三区四区第35| 男女国产视频网站| 亚洲美女视频黄频| 免费在线观看黄色视频的| 18在线观看网站| 国产有黄有色有爽视频| 一级毛片黄色毛片免费观看视频| 久久久国产精品麻豆| 久久精品人人爽人人爽视色| 十八禁网站网址无遮挡| 国产伦理片在线播放av一区| 国产精品香港三级国产av潘金莲 | 亚洲熟女毛片儿| 欧美精品亚洲一区二区| 超碰成人久久| 亚洲国产最新在线播放| 丰满迷人的少妇在线观看| 在线观看三级黄色| 久久久久精品久久久久真实原创| 黄片无遮挡物在线观看| 免费女性裸体啪啪无遮挡网站| 黄色一级大片看看| 亚洲男人天堂网一区| avwww免费| 国产乱人偷精品视频| 三上悠亚av全集在线观看| 韩国高清视频一区二区三区| 亚洲欧美日韩另类电影网站| 超碰成人久久| 婷婷色综合www| 欧美国产精品va在线观看不卡| 亚洲精品国产av成人精品| 丝袜美足系列| 91精品国产国语对白视频| 国产一区二区 视频在线| 国产精品亚洲av一区麻豆 | 免费日韩欧美在线观看| www日本在线高清视频| 一区二区三区乱码不卡18| 午夜福利视频精品| 91老司机精品| 精品一区二区三区av网在线观看 | 国产精品一国产av| 18禁裸乳无遮挡动漫免费视频| 亚洲av电影在线观看一区二区三区| 午夜91福利影院| 韩国av在线不卡| 精品亚洲乱码少妇综合久久| 另类亚洲欧美激情| 欧美日韩一区二区视频在线观看视频在线| 如日韩欧美国产精品一区二区三区| 国产成人av激情在线播放| 天天躁日日躁夜夜躁夜夜| 国产精品99久久99久久久不卡 | 亚洲免费av在线视频| 久久人人爽av亚洲精品天堂| 亚洲一区中文字幕在线| 国产成人欧美| 日韩电影二区| 秋霞伦理黄片| 精品亚洲乱码少妇综合久久| 亚洲视频免费观看视频| 国产有黄有色有爽视频| 亚洲熟女精品中文字幕| 在线观看三级黄色| 丰满少妇做爰视频| 老汉色∧v一级毛片| 美女中出高潮动态图| 女人久久www免费人成看片| 大香蕉久久成人网| 国产精品 欧美亚洲| 中文字幕精品免费在线观看视频| 黄网站色视频无遮挡免费观看| 久热这里只有精品99| 亚洲中文av在线| 亚洲av日韩在线播放| 久久精品久久久久久噜噜老黄| 国产亚洲最大av| 女人爽到高潮嗷嗷叫在线视频| 啦啦啦啦在线视频资源| 久热这里只有精品99| 欧美日韩一区二区视频在线观看视频在线| av在线观看视频网站免费| 亚洲国产中文字幕在线视频| 国产精品久久久久成人av| 天天躁夜夜躁狠狠躁躁| 亚洲成av片中文字幕在线观看| 国产成人精品无人区| 日本wwww免费看| 久久青草综合色| 亚洲欧美激情在线| 美女中出高潮动态图| 欧美最新免费一区二区三区| 一区二区三区精品91| 久久久精品94久久精品| 精品久久久精品久久久| 亚洲图色成人| 十八禁网站网址无遮挡| 亚洲精品久久久久久婷婷小说| 精品午夜福利在线看| 中文字幕高清在线视频| 婷婷成人精品国产| kizo精华| 1024视频免费在线观看| 十八禁高潮呻吟视频| 黄色视频不卡| 日韩av不卡免费在线播放| xxx大片免费视频| 精品久久久精品久久久| 高清在线视频一区二区三区| 人人妻人人爽人人添夜夜欢视频| 视频在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 一本久久精品| 亚洲国产精品国产精品| 大香蕉久久网| 超色免费av| 两个人看的免费小视频| 韩国av在线不卡| av视频免费观看在线观看| 男的添女的下面高潮视频| 日本vs欧美在线观看视频| 亚洲精品av麻豆狂野| 天天躁夜夜躁狠狠躁躁| 深夜精品福利| 男女边摸边吃奶| 国产男女内射视频| 日韩免费高清中文字幕av| 下体分泌物呈黄色| 老司机亚洲免费影院| 国产一区有黄有色的免费视频| 在线天堂最新版资源| 桃花免费在线播放| 毛片一级片免费看久久久久| 狠狠精品人妻久久久久久综合| 国产成人一区二区在线| 天天躁夜夜躁狠狠久久av| 一本色道久久久久久精品综合| 日韩欧美精品免费久久| 黑人巨大精品欧美一区二区蜜桃| 在线精品无人区一区二区三| 汤姆久久久久久久影院中文字幕| 丰满迷人的少妇在线观看| 国产乱来视频区| 国产av一区二区精品久久| 中文字幕另类日韩欧美亚洲嫩草| 日韩制服骚丝袜av| 美女福利国产在线| 九九爱精品视频在线观看| 人妻一区二区av| 青草久久国产| 久久综合国产亚洲精品| 另类精品久久| 高清视频免费观看一区二区| 最黄视频免费看| 日本av手机在线免费观看| 国产精品久久久久久久久免| 国产一区二区三区综合在线观看| 日本午夜av视频| 丁香六月欧美| 婷婷色av中文字幕| 男女床上黄色一级片免费看| 国产黄色免费在线视频| 欧美国产精品一级二级三级| 国产精品免费视频内射| kizo精华| 亚洲人成电影观看| 我的亚洲天堂| 18禁观看日本| 欧美日韩综合久久久久久| 色婷婷av一区二区三区视频| 美女福利国产在线| 乱人伦中国视频| 大话2 男鬼变身卡| 国产亚洲午夜精品一区二区久久| 女性被躁到高潮视频| 考比视频在线观看| 伊人亚洲综合成人网| www.熟女人妻精品国产| 韩国高清视频一区二区三区| 亚洲成av片中文字幕在线观看| 午夜av观看不卡| 啦啦啦在线免费观看视频4| 九九爱精品视频在线观看| 国产成人精品在线电影| 操出白浆在线播放| 最近手机中文字幕大全| 日韩精品免费视频一区二区三区| 一级,二级,三级黄色视频| 国产视频首页在线观看| 蜜桃国产av成人99| 女性生殖器流出的白浆| 成人国语在线视频| 老司机影院成人| 国产精品久久久人人做人人爽| 中文欧美无线码| 精品第一国产精品| 亚洲精品乱久久久久久| 亚洲国产欧美网| 精品一区二区三卡| 黄片无遮挡物在线观看| 国产99久久九九免费精品| 国产精品久久久久久久久免| 日韩熟女老妇一区二区性免费视频| 99热网站在线观看| 亚洲国产精品一区三区| 欧美成人午夜精品| 91精品三级在线观看| 99热国产这里只有精品6| 日韩欧美精品免费久久| 日韩视频在线欧美| 男女边摸边吃奶| 人人妻人人添人人爽欧美一区卜| 18禁观看日本| 人体艺术视频欧美日本| 亚洲精品乱久久久久久| 免费日韩欧美在线观看| 国产不卡av网站在线观看| 1024视频免费在线观看| 啦啦啦在线免费观看视频4| 亚洲伊人色综图| 天堂中文最新版在线下载| 国产人伦9x9x在线观看| 免费看av在线观看网站| 久久精品人人爽人人爽视色| 爱豆传媒免费全集在线观看| 成年人午夜在线观看视频| 欧美黄色片欧美黄色片| 国产国语露脸激情在线看| 久久97久久精品| 嫩草影视91久久| 51午夜福利影视在线观看| svipshipincom国产片| 午夜精品国产一区二区电影| 久久国产精品大桥未久av| 亚洲国产欧美在线一区| 9热在线视频观看99| 99re6热这里在线精品视频| 又大又黄又爽视频免费| 一本大道久久a久久精品| 亚洲成人国产一区在线观看 | 亚洲av中文av极速乱| 亚洲,一卡二卡三卡| 国产一区有黄有色的免费视频| 久久精品亚洲av国产电影网| 精品国产国语对白av| 久热这里只有精品99| 制服诱惑二区| 中文字幕精品免费在线观看视频| 国产精品久久久人人做人人爽| 精品国产乱码久久久久久小说| av电影中文网址| 成人午夜精彩视频在线观看| 91aial.com中文字幕在线观看| 亚洲国产欧美网| 赤兔流量卡办理| 日本wwww免费看| 韩国高清视频一区二区三区| 老司机影院毛片| 国产97色在线日韩免费| 国产 精品1| 国产精品.久久久| 国产成人啪精品午夜网站| 悠悠久久av| 男女免费视频国产| 久久ye,这里只有精品| 伊人久久大香线蕉亚洲五| 日韩人妻精品一区2区三区| 人人澡人人妻人| 波多野结衣av一区二区av| 久久天躁狠狠躁夜夜2o2o | 啦啦啦在线免费观看视频4| 国产日韩欧美亚洲二区| 亚洲精品日韩在线中文字幕| 午夜日韩欧美国产| 成年动漫av网址| 亚洲美女视频黄频| 国产亚洲av高清不卡| 午夜福利在线免费观看网站| 欧美精品av麻豆av| 国产精品蜜桃在线观看| 男的添女的下面高潮视频| 啦啦啦在线免费观看视频4| 国产xxxxx性猛交| 看非洲黑人一级黄片| 在线观看免费日韩欧美大片| 美女扒开内裤让男人捅视频| 精品亚洲乱码少妇综合久久| 1024视频免费在线观看| 99九九在线精品视频| 国产成人午夜福利电影在线观看| 极品人妻少妇av视频| 一边摸一边做爽爽视频免费| 亚洲人成77777在线视频| 亚洲欧洲精品一区二区精品久久久 | 侵犯人妻中文字幕一二三四区| 免费观看av网站的网址| 国产成人av激情在线播放| 嫩草影视91久久| 国产伦人伦偷精品视频| 久久精品久久精品一区二区三区| 一区二区日韩欧美中文字幕| 性少妇av在线| 在线免费观看不下载黄p国产| 国产精品.久久久| 亚洲欧洲精品一区二区精品久久久 | 午夜精品国产一区二区电影| 欧美精品人与动牲交sv欧美| 99久久99久久久精品蜜桃| 1024香蕉在线观看| 午夜激情久久久久久久| 999久久久国产精品视频| 最新的欧美精品一区二区| 高清欧美精品videossex| 亚洲国产日韩一区二区| 日本猛色少妇xxxxx猛交久久| 男人舔女人的私密视频| 欧美日韩成人在线一区二区| www日本在线高清视频| 亚洲av日韩精品久久久久久密 | 日韩大码丰满熟妇| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 免费观看性生交大片5| 赤兔流量卡办理| 最近最新中文字幕免费大全7| 如何舔出高潮| 一区二区三区精品91| av女优亚洲男人天堂| 99精国产麻豆久久婷婷| 精品一区二区三区av网在线观看 | 狠狠精品人妻久久久久久综合| 日韩大码丰满熟妇| 亚洲一区中文字幕在线| 欧美激情高清一区二区三区 | 亚洲,欧美,日韩| 黑人猛操日本美女一级片| 久久久国产欧美日韩av| 日本色播在线视频| 下体分泌物呈黄色| 你懂的网址亚洲精品在线观看| 一区二区三区四区激情视频| 巨乳人妻的诱惑在线观看| 免费观看a级毛片全部| 一区二区三区乱码不卡18| 欧美黑人精品巨大| 岛国毛片在线播放| 69精品国产乱码久久久| 国精品久久久久久国模美| 美女国产高潮福利片在线看| 亚洲精品国产区一区二| 久久av网站| 人人妻人人澡人人看| 一边摸一边做爽爽视频免费| 成年美女黄网站色视频大全免费| 9191精品国产免费久久| 国产欧美亚洲国产| 天堂8中文在线网| 赤兔流量卡办理| 午夜激情久久久久久久| 国产日韩欧美亚洲二区| 女人久久www免费人成看片| www.熟女人妻精品国产| h视频一区二区三区| 精品久久蜜臀av无| 亚洲国产精品国产精品| 观看av在线不卡| 国产黄色视频一区二区在线观看| 久久99一区二区三区| 国产在视频线精品| 欧美最新免费一区二区三区| 啦啦啦视频在线资源免费观看| 99re6热这里在线精品视频| 大话2 男鬼变身卡| 午夜日韩欧美国产| 看免费成人av毛片| 亚洲情色 制服丝袜| 80岁老熟妇乱子伦牲交| 成年女人毛片免费观看观看9 | 看十八女毛片水多多多| 午夜免费鲁丝| 精品人妻在线不人妻| 十分钟在线观看高清视频www| 老汉色∧v一级毛片| 日韩av在线免费看完整版不卡| 国产老妇伦熟女老妇高清| 亚洲人成77777在线视频| 久久 成人 亚洲| 国产在线免费精品| 精品少妇久久久久久888优播| 18禁国产床啪视频网站| 成人三级做爰电影| 男女午夜视频在线观看| 成人国产麻豆网| 999久久久国产精品视频| 久久久久精品久久久久真实原创| 18禁动态无遮挡网站| 欧美人与性动交α欧美精品济南到| 晚上一个人看的免费电影| 亚洲精品日韩在线中文字幕| 少妇人妻精品综合一区二区| 麻豆av在线久日| 亚洲欧美日韩另类电影网站| 欧美精品一区二区大全| 亚洲精品日本国产第一区| 最近最新中文字幕大全免费视频 | 亚洲,一卡二卡三卡| 日本黄色日本黄色录像| xxxhd国产人妻xxx| 看免费成人av毛片| 日本爱情动作片www.在线观看| 高清视频免费观看一区二区| 人人澡人人妻人| 不卡视频在线观看欧美| 精品一区二区三区av网在线观看 | 伊人久久国产一区二区| 日本wwww免费看| 韩国精品一区二区三区| 在线观看免费午夜福利视频| 天天躁夜夜躁狠狠躁躁| 操出白浆在线播放| 国产深夜福利视频在线观看| 久久久久精品久久久久真实原创| 自线自在国产av| e午夜精品久久久久久久| 午夜福利视频在线观看免费| av片东京热男人的天堂| 亚洲av在线观看美女高潮| 久久久久精品久久久久真实原创| 亚洲精品中文字幕在线视频| 观看av在线不卡| 亚洲专区中文字幕在线 | 亚洲精品在线美女| 国产精品偷伦视频观看了| 韩国高清视频一区二区三区| 如日韩欧美国产精品一区二区三区| 国产无遮挡羞羞视频在线观看| 日本av免费视频播放| 丰满饥渴人妻一区二区三| 亚洲av日韩在线播放| 国产在视频线精品| 久久99一区二区三区| 老司机在亚洲福利影院| 美女大奶头黄色视频| 免费黄色在线免费观看| 国产精品偷伦视频观看了| 欧美成人精品欧美一级黄| 日本av免费视频播放| 自线自在国产av| 国产成人欧美在线观看 | 国产人伦9x9x在线观看| 亚洲,欧美,日韩| 国产成人a∨麻豆精品| 人体艺术视频欧美日本| 我要看黄色一级片免费的| 亚洲av欧美aⅴ国产| 国产精品国产三级国产专区5o| 成人手机av| 婷婷成人精品国产| 少妇人妻 视频| 波多野结衣av一区二区av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品美女久久久久99蜜臀 | 精品国产国语对白av| 99国产综合亚洲精品| 国产片特级美女逼逼视频|