• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In fluence of low-temperature sul fidation on the structure of ZnS thin films?

    2019-02-25 07:22:52ShuzhenChen陳書(shū)真LigangSong宋力剛PengZhang張鵬XingzhongCao曹興忠RunshengYu于潤(rùn)升BaoyiWang王寶義LongWei魏龍andRengangZhang張仁剛
    Chinese Physics B 2019年2期
    關(guān)鍵詞:張鵬

    Shuzhen Chen(陳書(shū)真),Ligang Song(宋力剛),Peng Zhang(張鵬),Xingzhong Cao(曹興忠),Runsheng Yu(于潤(rùn)升),Baoyi Wang(王寶義),Long Wei(魏龍),and Rengang Zhang(張仁剛)

    1 Department of Applied Physics,Wuhan University of Science and Technology,Wuhan 430081,China

    2 Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    3 University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords:ZnS thin films,low-temperature sul fidation,Doppler broadening measurements

    1.Introduction

    Zinc sul fide(ZnS)is a typical II-VI group compound semiconductor with a direct wide bandgap,for the bulk cubic and hexagonal phases of ZnS,Egis 3.72 eV and 3.77 eV,respectively.[1]ZnS films have a high index of refraction(2.35),high effective dielectric constant(9),and high transmittance in the visible range.[2]ZnS exhibits good biocompatibility and chemical stability in the physiological environment,hence,it can also act as a probe in the medical field.[3,4]ZnS has a high negative conduction band potential,which can effectively reduce water to produce hydrogen;therefore,it can be used as a photocatalytic material.[5,6]ZnS can also decrease window absorption losses and improve the cell short circuit current,and is hence applicable as a buffer layer in solar cells.[2,7]Furthermore,ZnS is widely used in electroluminescent devices such as light-emitting diodes(LED)and flat panel displays.[8-12]

    ZnS can be deposited as a thin film by physical or chemical methods.These methods include magnetron sputtering,pulsed laser deposition(PLD),metal-organic chemical vapor deposition(MOCVD),molecular beam epitaxy(MBE),thermal evaporation,electrodeposition,atomic layer deposition(ALD),spray pyrolysis,spin coating,and chemical bath deposition.[13-24]Among these methods,magnetron sputtering has high efficiency and causes no pollution.Films prepared by magnetron sputtering exhibit good interfacial adhesion with the substrate,high compactness,and can be prepared on a large-area substrate.[25,26]

    The ZnS film deposited by Du et al.[27]on an indium tin oxide(ITO)substrate by radio-frequency(RF)magnetron sputtering exhibited a characteristic orientation along the(111)crystal plane and no pinhole-like voids.Chalana et al.[28]studied the effects of different substrates on the properties of ZnS-deposited films by RF magnetron sputtering.It was concluded that the metal layer on the substrate had an important in fluence on the deposited ZnS film.Thus,by changing the substrate type,controlled growth of the graded ZnS structure can be achieved using ordinary RF sputtering techniques.Faiazul Haque et al.[25]prepared ZnS thin films by RF magnetron sputtering at different sputtering powers,and found that ZnS thin films grown at 80 W are most suitable for use as buffer layers for photovoltaic applications.Zhang et al.[29,30]successfully prepared ZnS thin films through the vulcanization of ZnO thin films which were prepared by magnetron sputtering in H2S or sulfur vapor atmosphere at 500°C.However,the preparation of ZnS by low-temperature vulcanization and the study of its properties by positron technology has not been reported in the literature.Hence,this study is of significance because it advances knowledge of the vulcanization mecha-nism and explores preparation methods for high-quality ZnS films.

    In a previous study where ZnS was prepared by sulfuring Zn,[31]when the temperature was lower than 400°C,Zn did not completely react with S to form ZnS.When the temperature was 500°C,Zn reacted with sulfur to form ZnS.Therefore,the reaction between Zn and S occurs above 400°C.In addition,S has a melting point of 115°C and boiling point of 444.6°C,hence,S melts at 410°C-440°C but is not completely vaporized.Due to this,the remaining sulfur will be more easily solidified during cooling.Therefore,we prepared ZnS films by vulcanizing Zn metal films at a low temperature(below 444.6°C).

    2.Experimental details

    ZnS thin films were prepared by sulfurizing zinc thin films in sulfur vapor.The zinc thin films were grown on glass substrates from a 99.99%zinc target of diameter 60 mm and thickness 5 mm by RF magnetron sputtering at room temperature.High-purity argon was used as the sputtering gas,and the distance between the target and substrate was 6 cm.The RF power,deposition time,and total pressure were maintained constant at 90 W,2 min,and 1 Pa,respectively.The base of the sputtering chamber was pumped down to a pressure of 1×10-4Pa before the 15-min pre-sputtering to clean the target surface.After sputter deposition,the as-deposited zinc thin films,together with 20-mg sulfur powder(99.5%of purity),were vacuum-sealed in quartz-glass ampules that had been pumped down to 1×10-5Pa.These sealed quartz-glass ampules were kept at 200°C for 1 h to enable melting and sufficient diffusion of the sulfur powder throughout the ampules.This was followed by heating 2 h at 410°C,420°C,430°C,and 440°C,the samples for which are labeled A,B,C,and D,respectively.Subsequently,these sealed quartz-glass ampules were cooled in a furnace.After cooling,the remaining sulfur collected at one end of the ampule in the cold zones.The ZnS films were approximately 100-nm thick.

    The crystallinity and phase of the thin films were characterized by x-ray diffraction(XRD)using an x-ray diffractometer with CuKα radiation.The surface morphology of the thin films was investigated by scanning electron microscopy(SEM).The microstructure of the thin films was investigated by positron annihilation Doppler broadening measurements with a magnetically guided variable-energy positron beam(0-20 keV).The optical transmission spectra of the films were determined by UV-Vis spectrophotometer in the wavelength range of 200 nm-800 nm.

    3.Results and discussion

    Figure 1 shows the relative peak intensity of the ZnS(200)and ZnS(111)crystalline planes for samples prepared at various sulfuration temperatures.The respective positions of the diffraction peaks are in agreement with standard data for sphalerite ZnS powders(refer to PDF#05-0566).The diffraction peaks of the ZnS(111)and ZnS(200)crystalline planes are observed at 28.6°and 33.1°,respectively.Figure 1 indicates that the preferred orientation of the ZnS thin films transforms from(200)crystalline planes into(111)crystalline planes with increasing temperature.

    Fig.1.XRD patterns of samples prepared at different sulfuration temperatures.

    The grain size of the crystallites was estimated using the Scherrer formula[32]

    where D is the average grain size,λ is the incident x-ray wavelength(λ=1.54?A,Kα(Cu)),B is the full width at half maximum(FWHM),and θ is the diffraction angle.

    The results are presented in Table 1.

    Table 1.Variation in the crystallite size of the samples.

    Below the phase transition temperature,the growth structure ofthe ZnS thin film is generally sphalerite,as shown in the XRD spectra.The preferred orientation for sample A is(200)-plane due to its high growth rate.According to the growth theory for an anionic coordination polyhedron,[33]zinc ions in a ZnS crystal which fill the tetrahedral gaps formed by sulfur ions constitute the tetrahedron coordination Zn-S4,including(111)as the anode surface,whose crystal growth rate is the lowest.During the reaction,as the grain size increases,the crystal plane with a high growth rate may disappear.Hence,the low-growth-rate plane becomes prominent.When the sulfuration temperature reaches 440°C,the particles obtain more energy,and the holes shown in Figs.2(b)and 2(c)provide enough space for the particles to move freely.The particles are more likely to aggregate and merge,allowing the film to grow rapidly along the lower direction of free energy.Thus,the(111)crystalline plane replaces the(200)crystalline plane during crystal growth.The grain size of the(111)-plane in Table 1 suddenly drops at 440-°C,indicating that the film grows more densely and the structure tends to be intact.

    Figure 2 shows the surface morphology of the ZnS films produced at different temperatures.It is clear that the average grain size of the ZnS films increases with increasing sulfuration temperature.This trend is in agreement with the results presented in Table 1.When the sulfuration temperature is 420°C,the grain size increases and numerous holes begin to appear on the surface,which may be introduced by the melting of zinc.As the melting point of bulk zinc is 419°C,the melting temperature of nanosized metal particles or films is generally lower than the equilibrium point of the corresponding bulk material and decreases significantly as the particle diameter or film thickness decreases.[34]Therefore,the zinc film will melt when the vulcanization temperature is 420°C or higher.According to the vacancy model in the crystal defect model of a liquid metal structure,when a metal crystal melts,a large number of vacancies are formed in the lattice network,so that the liquid metal is easily deformed,and the number of holes increases with increasing temperature.[35]Therefore,at a vulcanization temperature of 420°C,the zinc atoms melt and generate a large number of vacancies,which continuously aggregate with the flow of the liquid metal zinc,eventually forming holes.These holes may lead to a decrease in the highest peak intensity observed by XRD,which is confirmed in Fig.1.Several grains grow along the direction of the holes in sample C when the temperature is 430°C,and the(111)crystalline plane begins to appear.Finally,for sample D,the holes are filled and the small-size grains almost disappear at 440°C.The conversion of Zn to ZnS is kinetically presumed to be a reactive diffusion process involving the surface reaction of Zn with sulfur vapor and boundary reaction of Zn with sulfur diffusing into the ZnS/Zn interface.At a low temperature,zinc may easily melt in the interface of ZnS/Zn.Subsequently,the melted zinc atoms gather at the boundary.Meanwhile,more sulfur tends to be absorbed near the boundary.Therefore up to 430°C,sulfur reacts in the holes originating from the clustering of Zn vacancies.A new ZnS crystal nucleus appears near the prior ZnS grains,which enables grain growth and leads to the preferred orientation ofthe(111)crystalline plane,because the cubic(111)lattice plane has the lowest surface energy.Finally,ZnS continuously fills the holes and the(111)crystalline plane replaces the(200)crystalline plane during crystal growth.

    Fig.2.SEM images of the ZnS films produced at(a)410 °C,(b)420 °C,(c)430 °C,and(d)440 °C.In Fig.2(b)and Fig.2(c),there is an accumulation of fluid,which may consist of remnant sulfur around the holes.

    Fig.3.EDS profiles of the ZnS films and elemental distribution.

    We obtained EDS profiles of the ZnS films prepared by vulcanization at 410°C,420°C,430°C,and 440°C.Our results show that the S/Zn atomic ratio of the ZnS thin films is higher than 1.Among the results,we selected a representative one,which is the EDS map of the ZnS film formed by vulcanization at 440°C(Fig.3).By calculation,we obtained an S/Zn atomic ratio of 7.83,indicating the existence of excess sulfur in the prepared sample.Even in our previous papers,[31,36,37]we have demonstrated the existence of residual sulfur on the grain surfaces of ZnS films prepared in sulfur vapor and H2S gas.

    Figures 4(a)and 4(b)plot the valence annihilation parameter S versus the incident positron energy,and the relationship between the core annihilation parameter W and incident positron energy of ZnS films deposited on the glass substrate.The implanted depth of the slow positron was calculated by the following equation[38]

    where R is the depth from the sample surface(in unit of nm),ρ is the density of ZnS(4.102 g/cm3),and E is the energy of the incident slow positron(in unit of keV).It can be seen that the S or W parameter indicates the formation of ZnS thin films in the positron energy region of 0.18 keV-4.18 keV.Figure 3 shows that the S parameters of the sample B and sample D are the highest and lowest,respectively,while the W parameters of the B-sample and D-sample are the lowest and highest,respectively.This indicates that the sample B has the highest defect concentration and the sample D has the lowest defect concentration.Taken together with Fig.2,at 410°C and only in the range of 0 nm-0.42268 nm on the surface of the film,zinc reacts with sulfur vapor.Hence,the S parameter increases only in the low positron energy region.For sample B,defects introduced by the reaction of surface zinc atoms with sulfur lead to an increase in S-parameters for incident positron energies of 0.18 keV-2.18 keV,and vacancies introduced by the melting of zinc atoms in the film at 420°C lead to an increase in S-parameters for incident positron energies of 2.18 keV-4.18 keV.At a high temperature of 430°C,the surface will transport S atoms,many defects(such as vacancies and interstitial atoms)are introduced,and as the internal reaction progresses,the surface topography constantly changes,thereby introducing more defects(this can be proved by the residual lique fied sulfur in Fig.2(c)).The internal atoms absorb enough energy to enable relatively free atomic migration,thereby allowing the internal reaction to complete.This leads to the formation of a compact and less defective sample.Consequently,the S parameter is very high on the surface of the sample C and drops sharply as the sample depth increases because of the formation of some large-size grains and the area reduction of holes.This can be confirmed from Fig.2(c).At 440°C,most holes are eliminated and the average grain size approaches 100 nm.This indicates that the zinc vacancies may promote the growth of ZnS thin films.The S parameter of the sample D is the lowest among these samples.This indicates that the reaction is complete,a dense film is grown,the microstructure and crystallinity of the film are greatly improved,and the concentration of defects is the lowest in these samples.These results are consistent with the strongest diffraction peak intensity at 440°C in the XRD spectrum.Meanwhile,the W parameter is high,demonstrating that the zinc vacancies are consumed during crystal growth.

    The slope of the S-W plot represents the mechanism of positron annihilation after trapping.The S-W plot has been used to determine the number of defect types in materials.[39]The slope of the S-W plot for these samples shows remarkable changes owing to the generation and filling of holes,and only a single type of defect exists in sample D(in Fig.5).

    Fig.4.Spectra of the valence electron annihilation parameter S versus the incident positron energy(a),and the core electron annihilation parameter W versus the incident positron energy(b)for ZnS films deposited on glass substrates.

    The transmission spectra of the ZnS films are shown in Fig.6.The optical transmission of samples is maintained at 60%-80%in the wavelength range of 400 nm-800 nm.The reduction in optical transmittance can be due to remnant sulfur adhering to the surface of the samples.Zhang et al.also demonstrated that residual sulfur on the surface of the grain causes widening of the absorption edge and a decrease in transmittance.[31]A sharp absorption edge around 340 nm is observed for the films,indicating the conversion of Zn to ZnS above 410°C.When the sulfurization temperature is 430°C,the optical transmission becomes lower than for other temperatures,mainly because of the incomplete growth of the grains.This shows that many defect levels are formed during film growth,and the absorption and scattering effectsare enhanced.After the formation of large grains at 440°C,the film grows more densely,the microstructure and crystallinity of the film greatly improve,the lattice defects reduce,and the absorption and scattering of light weaken,therefore the optical transmission of the ZnS films recovers.

    Fig.5.Spectra of the valence electron annihilation parameter S versus the core electron annihilation parameter W for ZnS films deposited on glass substrates.

    The transmittance of the film sample obtained by lowtemperature vulcanization in the visible light range is not lower than that of the previously reported ZnS film,which was vulcanized at 500°C;however,the residual sulfur of the former is significantly higher than that of the latter.This phenomenon is very interesting;hence,studying ZnS film materials prepared by low-temperature vulcanization will be our next research focus.

    The band energy for all samples from the transmittance spectra can be calculated by formula.[40]The absorption coefficient is given by:

    where T and d are the transmittance and thickness,respectively,of the ZnS thin films.Egcan be obtained using Tauc’s relationship:

    where A is a constant,hν is the photon energy,and Egis the band gap energy.The band energy is determined from the curve of the variation of(αhν)2with photon energy.The curves for all samples are shown in Fig.7.Thus,we can estimate Egas 3.490 eV,3.479 eV,3.479 eV,and 3.517 eV for ZnS thin films at 410°C,420°C,430°C,and 440°C respectively.Naturally,the band gap energy of the sample B is close to that of sample C.Moreover,in Fig.4(b),the W(E)plots of sample B and sample D are similar.This may signify that holes of different shapes and sizes have the same in fluence on the ZnS structure,which is decisive role of the band energy.The band gap energy of sample D is the highest among these samples.When holes are eliminated,the band energy will approach a normal value.

    Fig.6.Optical transmission spectra of samples A,B,C,D.

    Fig.7.The variation of(αhν)2 with photon energy of samples A,B,C,and D.

    4.Conclusion

    ZnS thin films were prepared by sulfuring zinc thin films on glass from 410°C to 440°C.Below the boiling point of sulfur,as the sulfuration temperature increases,the preferred orientation of ZnS thin films changes and holes are generated and filled thanks to the absorption of sulfur near the boundary and melting of Zn metal.The concentration of defects is the lowest when grain growth is nearly complete at 440°C.All of our samples show optical transmissivity over 60%in the visible region.The reduction in optical transmittance and band energy can be attributed to remnant sulfur adhering to the surface of the samples.The band energy of the thin films is the highest at 3.51 eV and decreases to 3.47 eV when there are holes.The findings of this study show that it is possible to produce less-defective ZnS films at a low temperature of 440°C.We will further optimize the structure and properties of ZnS films by changing the vulcanization time at 440°C.

    Acknowledgment

    The scientific contributions from all of the students in the positron group of the Institute of High Energy Physics are acknowledged here.

    猜你喜歡
    張鵬
    Quantitative analysis of the main components in ceramic raw materials based on the desktop LIBS analyzer
    Competitive effect between roughness and mask pattern on charging phenomena during plasma etching
    張鵬、文靜伉儷的內(nèi)畫(huà)情緣
    金橋(2022年1期)2022-02-12 01:37:18
    一個(gè)噴嚏
    Microanalysis of a ductile iron by microchip laser-induced breakdown spectroscopy
    基于PLC控制的平移式自動(dòng)門(mén)設(shè)計(jì)
    A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy
    理發(fā)風(fēng)波
    帕布巴升座慶典在芒市舉行
    今日民族(2017年4期)2017-05-13 06:28:03
    張鵬產(chǎn)品設(shè)計(jì)作品
    小蜜桃在线观看免费完整版高清| 亚洲欧美日韩卡通动漫| 色噜噜av男人的天堂激情| 又紧又爽又黄一区二区| 久久午夜综合久久蜜桃| 午夜福利视频1000在线观看| 亚洲av成人av| 午夜影院日韩av| 国产视频一区二区在线看| 毛片女人毛片| 成人18禁在线播放| 国产亚洲av嫩草精品影院| 亚洲九九香蕉| 欧美午夜高清在线| 国产99白浆流出| 亚洲午夜理论影院| 国产单亲对白刺激| 亚洲aⅴ乱码一区二区在线播放| 在线免费观看的www视频| av天堂在线播放| 亚洲专区国产一区二区| 国产1区2区3区精品| 成人三级做爰电影| tocl精华| 国产伦人伦偷精品视频| 欧美午夜高清在线| 亚洲真实伦在线观看| 九九在线视频观看精品| 黑人操中国人逼视频| 国产aⅴ精品一区二区三区波| 午夜激情福利司机影院| 岛国在线免费视频观看| 岛国视频午夜一区免费看| 午夜免费成人在线视频| 国产精品亚洲一级av第二区| 亚洲中文日韩欧美视频| 久久伊人香网站| 久久久久性生活片| 欧美黑人巨大hd| 琪琪午夜伦伦电影理论片6080| 亚洲片人在线观看| 我的老师免费观看完整版| av福利片在线观看| 亚洲av片天天在线观看| 亚洲欧洲精品一区二区精品久久久| 午夜激情欧美在线| 精品久久久久久久末码| 哪里可以看免费的av片| 舔av片在线| 欧美一区二区国产精品久久精品| 久久久久久久午夜电影| 国产黄a三级三级三级人| 国产精品久久久久久亚洲av鲁大| 国内精品一区二区在线观看| 伦理电影免费视频| 国产成人aa在线观看| 亚洲精品美女久久久久99蜜臀| 在线a可以看的网站| 亚洲欧洲精品一区二区精品久久久| 中文字幕精品亚洲无线码一区| av在线天堂中文字幕| 欧美av亚洲av综合av国产av| 不卡一级毛片| 免费在线观看视频国产中文字幕亚洲| 久久久国产成人免费| 午夜福利免费观看在线| 亚洲片人在线观看| 国产成人系列免费观看| 国产三级中文精品| www日本黄色视频网| av国产免费在线观看| 免费看a级黄色片| 他把我摸到了高潮在线观看| 久久久成人免费电影| 美女免费视频网站| 色噜噜av男人的天堂激情| 国产成人福利小说| 亚洲国产欧洲综合997久久,| 国产成年人精品一区二区| 在线观看美女被高潮喷水网站 | 伦理电影免费视频| 真实男女啪啪啪动态图| 久久久精品大字幕| 99久久99久久久精品蜜桃| 亚洲午夜精品一区,二区,三区| 午夜视频精品福利| 波多野结衣高清无吗| 欧美在线黄色| 好男人电影高清在线观看| 国产视频一区二区在线看| 特级一级黄色大片| 窝窝影院91人妻| 日本黄色片子视频| 国产亚洲精品久久久com| 最近最新中文字幕大全免费视频| 99精品欧美一区二区三区四区| 精品国产三级普通话版| 婷婷精品国产亚洲av在线| 老汉色∧v一级毛片| 亚洲电影在线观看av| 国产精品98久久久久久宅男小说| 国产单亲对白刺激| bbb黄色大片| 别揉我奶头~嗯~啊~动态视频| 桃红色精品国产亚洲av| 欧美黑人巨大hd| 日韩av在线大香蕉| 91在线精品国自产拍蜜月 | 亚洲狠狠婷婷综合久久图片| 一二三四社区在线视频社区8| 丁香欧美五月| 久久久国产欧美日韩av| 此物有八面人人有两片| 午夜福利高清视频| 国产高潮美女av| 麻豆久久精品国产亚洲av| 国产午夜福利久久久久久| 国产视频一区二区在线看| 黑人巨大精品欧美一区二区mp4| 日本熟妇午夜| 特级一级黄色大片| 欧美高清成人免费视频www| 中文字幕高清在线视频| 波多野结衣巨乳人妻| 99国产精品99久久久久| 99久久精品一区二区三区| 国产激情欧美一区二区| 人妻丰满熟妇av一区二区三区| 精品久久久久久久久久免费视频| 最近最新中文字幕大全电影3| 国产又黄又爽又无遮挡在线| 中文在线观看免费www的网站| 国产人伦9x9x在线观看| 级片在线观看| 国产又黄又爽又无遮挡在线| 九色国产91popny在线| 久久热在线av| 看免费av毛片| 国产av麻豆久久久久久久| 中文字幕久久专区| 欧美最黄视频在线播放免费| 国内精品久久久久精免费| 脱女人内裤的视频| 日日摸夜夜添夜夜添小说| 少妇的逼水好多| 中文资源天堂在线| 国产黄片美女视频| 麻豆成人av在线观看| 欧美三级亚洲精品| 国产99白浆流出| 亚洲成人久久性| 伊人久久大香线蕉亚洲五| 亚洲av成人不卡在线观看播放网| 97碰自拍视频| 日本五十路高清| 色哟哟哟哟哟哟| 我的老师免费观看完整版| 悠悠久久av| 国产爱豆传媒在线观看| 国产精品久久久久久亚洲av鲁大| 国产av在哪里看| 五月伊人婷婷丁香| 国内揄拍国产精品人妻在线| 久久精品国产亚洲av香蕉五月| 国产精品一及| 深夜精品福利| АⅤ资源中文在线天堂| 欧美一区二区国产精品久久精品| 精品久久久久久久毛片微露脸| 90打野战视频偷拍视频| 最近视频中文字幕2019在线8| 久久中文字幕一级| 搡老妇女老女人老熟妇| 母亲3免费完整高清在线观看| 最近最新免费中文字幕在线| a在线观看视频网站| 两性夫妻黄色片| 成人av在线播放网站| 老司机午夜十八禁免费视频| 久久精品国产99精品国产亚洲性色| 欧美一级毛片孕妇| 亚洲国产中文字幕在线视频| 在线播放国产精品三级| 级片在线观看| 怎么达到女性高潮| 看片在线看免费视频| 成人精品一区二区免费| 熟妇人妻久久中文字幕3abv| 精品福利观看| 精品国产亚洲在线| 欧美一区二区精品小视频在线| 男人舔女人的私密视频| 久久人人精品亚洲av| 色噜噜av男人的天堂激情| 精品乱码久久久久久99久播| 五月玫瑰六月丁香| 亚洲av成人av| 成年女人永久免费观看视频| 天天添夜夜摸| 国产成人精品久久二区二区91| 久久性视频一级片| 久久精品91无色码中文字幕| 国内精品美女久久久久久| 身体一侧抽搐| 久久精品91蜜桃| 欧美+亚洲+日韩+国产| 久久人人精品亚洲av| 精华霜和精华液先用哪个| 久久这里只有精品中国| 黄片小视频在线播放| 女生性感内裤真人,穿戴方法视频| 成在线人永久免费视频| 亚洲国产欧美一区二区综合| 毛片女人毛片| 97超级碰碰碰精品色视频在线观看| 蜜桃久久精品国产亚洲av| 男女那种视频在线观看| 亚洲午夜理论影院| 网址你懂的国产日韩在线| 老汉色∧v一级毛片| 亚洲自拍偷在线| 香蕉av资源在线| a级毛片a级免费在线| 毛片一级片免费看久久久久| 麻豆成人午夜福利视频| 欧美3d第一页| 观看免费一级毛片| 91精品一卡2卡3卡4卡| .国产精品久久| 又粗又爽又猛毛片免费看| 免费观看a级毛片全部| 色吧在线观看| 成人漫画全彩无遮挡| 亚洲国产最新在线播放| 亚洲欧美一区二区三区国产| 亚洲av电影不卡..在线观看| 啦啦啦观看免费观看视频高清| 亚洲,欧美,日韩| 成年女人看的毛片在线观看| 中文欧美无线码| 七月丁香在线播放| 国产精品精品国产色婷婷| 97热精品久久久久久| 中文字幕精品亚洲无线码一区| 别揉我奶头 嗯啊视频| 少妇的逼水好多| 亚洲av二区三区四区| 91午夜精品亚洲一区二区三区| 男女下面进入的视频免费午夜| 九色成人免费人妻av| 国产高清有码在线观看视频| 国产淫片久久久久久久久| 亚洲一区高清亚洲精品| 99久久成人亚洲精品观看| 看黄色毛片网站| av福利片在线观看| 日本五十路高清| 美女黄网站色视频| 日本免费a在线| 中文乱码字字幕精品一区二区三区 | 欧美日本亚洲视频在线播放| 国产私拍福利视频在线观看| 免费大片18禁| 99久国产av精品国产电影| 又爽又黄无遮挡网站| 日本一本二区三区精品| 免费看光身美女| 亚洲国产高清在线一区二区三| 深夜a级毛片| 国产亚洲午夜精品一区二区久久 | 亚洲性久久影院| 1000部很黄的大片| 久久久久精品久久久久真实原创| 精品久久久久久久久av| 亚洲精品影视一区二区三区av| 能在线免费观看的黄片| 亚洲图色成人| 亚洲无线观看免费| 1000部很黄的大片| 久久99热这里只有精品18| 青春草亚洲视频在线观看| 男插女下体视频免费在线播放| 非洲黑人性xxxx精品又粗又长| videos熟女内射| 久久久久国产网址| 欧美又色又爽又黄视频| 亚洲精品色激情综合| 日日摸夜夜添夜夜爱| 久久久久性生活片| 成人综合一区亚洲| 国产高清不卡午夜福利| 亚洲精品日韩av片在线观看| 男女边吃奶边做爰视频| 最后的刺客免费高清国语| 国产单亲对白刺激| 麻豆一二三区av精品| 天堂中文最新版在线下载 | 日韩高清综合在线| 久热久热在线精品观看| 国产又色又爽无遮挡免| 亚洲av日韩在线播放| 美女国产视频在线观看| 最近中文字幕高清免费大全6| 非洲黑人性xxxx精品又粗又长| 男女那种视频在线观看| 人人妻人人澡人人爽人人夜夜 | 色综合色国产| 国产午夜精品久久久久久一区二区三区| 亚洲内射少妇av| 欧美xxxx黑人xx丫x性爽| 亚洲成人精品中文字幕电影| 长腿黑丝高跟| 丰满少妇做爰视频| 国产精品蜜桃在线观看| 亚洲国产日韩欧美精品在线观看| 永久网站在线| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品美女特级片免费视频播放器| 久久人妻av系列| 久久久久久久久久久免费av| 免费观看a级毛片全部| 欧美性猛交╳xxx乱大交人| 午夜爱爱视频在线播放| 国产一区有黄有色的免费视频 | 亚洲天堂国产精品一区在线| 国产伦在线观看视频一区| 亚洲精品乱码久久久久久按摩| 国产男人的电影天堂91| 欧美xxxx黑人xx丫x性爽| 中文字幕免费在线视频6| 不卡视频在线观看欧美| 国产精品国产三级专区第一集| 国国产精品蜜臀av免费| 久久久久网色| 国产成人a区在线观看| 成人亚洲欧美一区二区av| 亚洲欧美成人综合另类久久久 | 欧美高清成人免费视频www| 午夜福利高清视频| 高清av免费在线| 日韩亚洲欧美综合| 国产一区有黄有色的免费视频 | 久久久久久久亚洲中文字幕| 欧美日韩综合久久久久久| 久久婷婷人人爽人人干人人爱| 丝袜美腿在线中文| 亚洲国产成人一精品久久久| 天天一区二区日本电影三级| 精品人妻视频免费看| 一级毛片久久久久久久久女| 成年免费大片在线观看| 中文资源天堂在线| 亚洲精品乱码久久久久久按摩| 久久久久久久午夜电影| 国产成人aa在线观看| 久久这里有精品视频免费| 午夜福利高清视频| 有码 亚洲区| 亚洲欧美一区二区三区国产| 国产激情偷乱视频一区二区| 日韩av不卡免费在线播放| 久久久久久久午夜电影| 少妇人妻精品综合一区二区| 国产又色又爽无遮挡免| 2022亚洲国产成人精品| 听说在线观看完整版免费高清| a级毛色黄片| 国产伦一二天堂av在线观看| 亚洲国产精品sss在线观看| 欧美一区二区亚洲| 久久精品国产99精品国产亚洲性色| 国产精品99久久久久久久久| 中文欧美无线码| 搡老妇女老女人老熟妇| 中文字幕制服av| 人人妻人人澡人人爽人人夜夜 | 亚洲电影在线观看av| av又黄又爽大尺度在线免费看 | 精品久久久噜噜| 欧美精品一区二区大全| 九色成人免费人妻av| 51国产日韩欧美| 国产伦理片在线播放av一区| 少妇人妻一区二区三区视频| 久久久精品欧美日韩精品| 干丝袜人妻中文字幕| 国产精品国产高清国产av| 草草在线视频免费看| 亚洲va在线va天堂va国产| 亚洲久久久久久中文字幕| 亚洲成人av在线免费| 国产一区亚洲一区在线观看| 在现免费观看毛片| 免费一级毛片在线播放高清视频| 久久欧美精品欧美久久欧美| 免费看美女性在线毛片视频| 欧美成人精品欧美一级黄| 国语自产精品视频在线第100页| 亚洲av男天堂| 精品一区二区三区视频在线| 国产精品野战在线观看| 国产av在哪里看| 日日干狠狠操夜夜爽| 免费黄网站久久成人精品| 九九在线视频观看精品| 天堂√8在线中文| 国产黄色视频一区二区在线观看 | 有码 亚洲区| 成年免费大片在线观看| 国产精品一区二区三区四区免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 大香蕉久久网| 久久综合国产亚洲精品| 国产大屁股一区二区在线视频| 91午夜精品亚洲一区二区三区| 18禁在线无遮挡免费观看视频| 亚洲三级黄色毛片| 永久免费av网站大全| 九色成人免费人妻av| 久久人人爽人人片av| 欧美激情久久久久久爽电影| 国产精品,欧美在线| 久久精品国产亚洲网站| 少妇熟女aⅴ在线视频| 九九久久精品国产亚洲av麻豆| 99久久精品国产国产毛片| 在线播放无遮挡| 久久精品夜夜夜夜夜久久蜜豆| 日韩高清综合在线| 国产 一区 欧美 日韩| 人妻夜夜爽99麻豆av| 精品久久久久久久久av| 少妇熟女欧美另类| 免费看光身美女| 九九久久精品国产亚洲av麻豆| 少妇熟女欧美另类| 久久精品熟女亚洲av麻豆精品 | 国产探花极品一区二区| 国产一级毛片七仙女欲春2| 国产精品国产三级国产av玫瑰| 亚洲国产色片| 日韩在线高清观看一区二区三区| 色吧在线观看| 国产黄色视频一区二区在线观看 | 国产精品爽爽va在线观看网站| 非洲黑人性xxxx精品又粗又长| 久久久久免费精品人妻一区二区| 日本与韩国留学比较| 欧美zozozo另类| 蜜桃久久精品国产亚洲av| 精品国产一区二区三区久久久樱花 | 亚洲av.av天堂| av免费观看日本| 国产高清视频在线观看网站| 一级爰片在线观看| 久久这里只有精品中国| 婷婷色av中文字幕| 边亲边吃奶的免费视频| 99国产精品一区二区蜜桃av| 国产探花在线观看一区二区| 免费观看a级毛片全部| 老司机影院成人| 久久鲁丝午夜福利片| 高清av免费在线| 精品99又大又爽又粗少妇毛片| 国产高潮美女av| 99国产精品一区二区蜜桃av| 欧美一级a爱片免费观看看| 美女大奶头视频| 国产人妻一区二区三区在| 亚洲国产高清在线一区二区三| 日本一二三区视频观看| 日本黄大片高清| 久久久久网色| 成人毛片a级毛片在线播放| 亚洲精品影视一区二区三区av| 国产精品电影一区二区三区| 久久国产乱子免费精品| 国产亚洲av嫩草精品影院| 中国美白少妇内射xxxbb| 国产成人91sexporn| 少妇人妻精品综合一区二区| 女人久久www免费人成看片 | 国产亚洲精品久久久com| 国产午夜精品论理片| 日韩大片免费观看网站 | 99久久精品一区二区三区| 色噜噜av男人的天堂激情| 亚洲国产色片| 国产毛片a区久久久久| 国产一区二区在线av高清观看| 欧美另类亚洲清纯唯美| 在线观看av片永久免费下载| 综合色丁香网| 国产成人精品一,二区| 免费观看a级毛片全部| 麻豆成人午夜福利视频| 精品国产一区二区三区久久久樱花 | 国产淫语在线视频| 精华霜和精华液先用哪个| 性插视频无遮挡在线免费观看| 美女被艹到高潮喷水动态| 国产乱人视频| 亚洲高清免费不卡视频| 国产精品永久免费网站| 国产高潮美女av| a级毛片免费高清观看在线播放| 蜜桃亚洲精品一区二区三区| 久久精品国产亚洲av涩爱| 人人妻人人澡欧美一区二区| 国产高清有码在线观看视频| 啦啦啦韩国在线观看视频| 边亲边吃奶的免费视频| 听说在线观看完整版免费高清| 级片在线观看| 国产高潮美女av| 少妇猛男粗大的猛烈进出视频 | 免费观看性生交大片5| 啦啦啦观看免费观看视频高清| 边亲边吃奶的免费视频| 一边摸一边抽搐一进一小说| 十八禁国产超污无遮挡网站| 黄色日韩在线| 九九热线精品视视频播放| 麻豆精品久久久久久蜜桃| 日本免费在线观看一区| 丰满人妻一区二区三区视频av| 一本久久精品| 国产精品99久久久久久久久| 在线观看一区二区三区| 在线免费观看不下载黄p国产| 免费一级毛片在线播放高清视频| 精品久久久久久电影网 | 日韩在线高清观看一区二区三区| 成年女人看的毛片在线观看| 噜噜噜噜噜久久久久久91| 久久久a久久爽久久v久久| 国产毛片a区久久久久| 午夜a级毛片| 青春草国产在线视频| 免费av观看视频| 亚洲18禁久久av| 一区二区三区四区激情视频| 国产淫语在线视频| 国产精品1区2区在线观看.| 久久欧美精品欧美久久欧美| 禁无遮挡网站| 久久久久免费精品人妻一区二区| 国产成人精品婷婷| 一级毛片我不卡| 老师上课跳d突然被开到最大视频| 亚洲精品自拍成人| 亚洲精品国产av成人精品| 十八禁国产超污无遮挡网站| 一级黄色大片毛片| 久久精品夜夜夜夜夜久久蜜豆| 97热精品久久久久久| 搞女人的毛片| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区在线av高清观看| 成人二区视频| 欧美最新免费一区二区三区| 美女国产视频在线观看| 国产69精品久久久久777片| 国产av码专区亚洲av| 91久久精品国产一区二区成人| 免费人成在线观看视频色| 高清日韩中文字幕在线| 麻豆乱淫一区二区| 亚洲av二区三区四区| 你懂的网址亚洲精品在线观看 | 国产精品一二三区在线看| 中文字幕av成人在线电影| 国产亚洲91精品色在线| 天堂影院成人在线观看| 日韩在线高清观看一区二区三区| 国产av不卡久久| 精品99又大又爽又粗少妇毛片| 亚洲欧美日韩无卡精品| 国产精品熟女久久久久浪| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 亚洲在线观看片| 最新中文字幕久久久久| 蜜桃亚洲精品一区二区三区| 国产免费一级a男人的天堂| 一区二区三区免费毛片| 亚洲丝袜综合中文字幕| 男女啪啪激烈高潮av片| 免费观看性生交大片5| 人妻少妇偷人精品九色| 欧美日韩综合久久久久久| 中文精品一卡2卡3卡4更新| 精品人妻一区二区三区麻豆| 久久热精品热| 亚洲av福利一区| 欧美另类亚洲清纯唯美| 日本午夜av视频| 亚洲国产色片| 亚洲av日韩在线播放| 青春草亚洲视频在线观看| 国产成人午夜福利电影在线观看| 高清日韩中文字幕在线| 精品久久久久久久久久久久久| 中文天堂在线官网| 国产精品久久久久久精品电影小说 | 少妇人妻一区二区三区视频| 嫩草影院精品99| 国产又色又爽无遮挡免| 国产成年人精品一区二区| 男女那种视频在线观看| 欧美日韩在线观看h| 成人鲁丝片一二三区免费| 日本免费一区二区三区高清不卡| 亚洲成人久久爱视频|