• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microanalysis of a ductile iron by microchip laser-induced breakdown spectroscopy

    2021-10-31 08:15:36WeiWANG汪為LanxiangSUN孫蘭香PengZHANG張鵬LimingZHENG鄭黎明LifengQI齊立峰andJinchiWANG王金池
    Plasma Science and Technology 2021年10期
    關(guān)鍵詞:張鵬黎明

    Wei WANG(汪為),Lanxiang SUN(孫蘭香),Peng ZHANG(張鵬),Liming ZHENG(鄭黎明),Lifeng QI(齊立峰) and Jinchi WANG(王金池)

    1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,Shenyang 110016, People’s Republic of China

    2 Key Laboratory of Networked Control System, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China

    3 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169,People’s Republic of China

    4 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

    Abstract Laser beams with ns pulse width are generally employed as an excitation source in the process of detecting inclusions and elemental segregation on a workpiece surface by microanalysis of the laser-induced breakdown spectroscopy.In addition,the ablation crater interval of laser sampling on the sample surface is generally 20 μm or more.It is difficult to detect the morphology of inclusions smaller than 50 μm in diameter and the micro-segregation of elements.However, in this work,when the laser ablation crater is 10 μm and the sampling resolution of the laser on the sample surface is 5 μm, the morphology and distribution of spherical inclusions (20–60 μm) in ductile iron can be detected according to the difference of the Fe spectrum on the Fe matrix and the spheroidal inclusions.Moreover,the distribution of micro-segregation of Mg and Ti elements in ductile iron was also studied.

    Keywords: micro-laser-induced breakdown spectroscopy, micro-LIBS, mapping, inclusion,segregation, ductile iron

    1.Introduction

    Inclusions and elemental segregation in metals can reduce their plasticity,toughness and fatigue life,which have a direct impact on the metal’s workability, surface finish and welding performance.With the concept of pure steel being put forward, more stringent requirements are put forward for the control of inclusions and element segregation in the steel production process[1].To research the influence of the distribution of inclusions on metal properties,a metallographic microscope is usually applied to observe the area to be measured, and the composition of the inclusions in the sample is determined according to the shape of the mineral observed.However, this method often relies on the testers’ experience, and the examination accuracy is hard to guarantee.In addition, adopting the spark optical emission(OES)method termed pulse distribution analysis(PDA)[2]can provide rapid,quantitative analysis for non-metallic inclusions in steels, but it cannot provide spatially resolved analysis.Although, Energy-dispersive x-ray spectroscopy [3] (EDS or EDX) and electron probe microanalyzer [4] can accurately analyze the composition of inclusions in metals, both methods are time consuming and environment strict (require a high vacuum environment), complicated in sample processing, and restricted on sample size.In the study of metal element segregation, the spark OES method termed PDA method is often used.However,this method can only give the macro-segregation degree of the element, and cannot detect the micro-segregation in the sample.On the contrary, micro-laser-induced breakdown spectroscopy (μLIBS or micro-LIBS) could compensate these problems [5–8].

    Figure 1.Experimental setup.The left and right plots are the LIBS component and the mechanical structure diagram, respectively.

    The micro-LIBS technology cannot only detect the inclusion existing in the material, but also qualitatively analyze the elemental composition of the material surface.Besides, it has strong adaptability to environment, fast analysis speed and high degree of automation [9].Syoko Nakahataet al[10] studied Al element inclusions in ferritic stainless steel with a sampling interval between ablation craters of 40 μm.The emission signal from the plasma was transferred to a spectrometer system, comprising a Czerny–Turner-mounting spectrograph and an ICCD detector.With the similar spectrometer described above, Cabalínet al[11]utilized a cylindrical lens to focus the laser beam, and presented the distribution of MnS and TiN inclusions in stainless steel in the range of 6 mm2scanning area with spatial resolution of 50 μm between adjacent craters and 4.8 μm along the microline.Moreover, this team [1, 6] also characterized the silicate inclusions in steel by mapping the spectral distribution of Mg, Ca, Si, Al and Ti.However, due to the relatively slow response rate of ICCD device, which restricts the improvement of system sampling efficiency, researchers tend to apply Paschen–Runge structure spectrometers to collect plasma emission spectra.Yong Zhanget al[12]adopted a spectrometer of Paschen–Runge structure to detect acid-infused aluminum inclusions in steel in an argon environment.The obtained diameter of the ablation crater is approximately 150 μm and the sampling resolution of the laser on the sample surface is 300 μm.Also, using the same equipment,this team[13–15]analyzed spherical oxides,MnS inclusions, and Si–Al–Ca–Mg composite inclusions in the steel, with a laser sampling interval of 100 μm.To further improve the sampling efficiency of the laser,a high-frequency laser source is also adopted.Reinhard Nollet al[5, 16, 17]performed a scanning analysis of steel samples in the range of 1 cm2under argon atmosphere, and inclusions of MnS, AlN and Al2O3, as well as inclusions composed of elements such as C, N, O, P and S were observed.The ablated crater in the experiment was approximately 15 μm in diameter and the distance between adjacent laser ablation craters is 20 μm.Under the same sampling interval of ablation crater, Heinz-Martin Kusset al[7, 18] performed a scanning imaging analysis on a synthetic steel sample containing AlN inclusions in the range of 1 cm2in an argon atmosphere.Furthermore,Fabienne Boué-Bigne[19]discussed the distribution of SiO2,MgO,Al2O3,MnO,CaO and TiO2inclusions in the rail with a laser ablation crater of approximately 13 μm in an argon atmosphere.

    Figure 2.The ablative craters on the surface of a sample when the stage is running at 12.5 μm ms?1.

    The above analysis system employs a lamp pump or a semiconductor pumped laser as the excitation source.Because the laser pulse width is ns level, the interaction time between laser and material is long and is difficult to obtain smaller ablative craters.Therefore, it is not conducive to improving the spatial resolution of laser sampling on the target.Moreover, in the above methods, the sampling intervals of the ablation craters are 20 μm or more.For small-scale inclusions, the existence of inclusions can only be roughly estimated, and it is difficult to effectively detect the shape of inclusions in materials.

    Figure 3.Experimental sample (a) and metallographic diagram of sample surface (b).

    Figure 4.Spectra collected on the surface of ductile iron.

    The microchip laser has been favored by many researchers for its characteristics of small size,good beam quality,compact structure,pulse width of the laser beam in the order of ps,and small damage to the sample [20–27].John J Zayhowski [20]proposed that the microchip laser has good prospects in the application of LIBS.I B Gornushkinet al[21] studied the possibility of using microchip lasers for LIBS analysis.Andrew Freedmanet al[23] and C Lopez-Morenoet al[25]analyzed aluminum alloy and low alloy steel samples respectively using microchip laser.For its excellent performance, in this study,a microchip laser is employed as the excitation light source.After the light beam is tightly focused through the objective lens, the obtained diameter of the ablation crater is approximately 10 μm.To further improve the sampling resolution on the target surface,the ablation crater overlap method is adopted to collect spectrum, and each time a spectrum is gathered, the length of the laser scan is 5 μm.Moreover, the shape and distribution of the spheroidal inclusions on the ductile iron surface and the distribution of micro-segregation of Mg and Ti elements in ductile iron are studied in a 1 mm2area.Furthermore,the grade of the ductile iron is determined and the result is consistent with the area where the ductile iron is observed by an optical microscope.

    2.Experiment

    The experimental setup is shown in figure 1.The equipment mainly consisted of a microchip laser, a trigger, a spectrometer and a three-dimensional stage.The output frequency of microchip laser (Beijing RealLight Technology, MCO-1064-120) is 1 kHz.The pulse width of this laser is 550 ps and operating wavelength is 1064 nm.Moreover, the adopted laser energy is 80 μJ and the laser beam diameter is 1 mm.A laser beam expander with a beam expansion ratio of 1:5 was employed to minimize the divergence angle of the beam and enhance the effect when the beam was focused.After the beam passes through the expander, a 1064 nm reflector reflects the beam to a 20X microscope objective (f=30 mm).The obtained ablation crater diameter is approximately 10 μm, as shown in figure 2.Moreover, a microscopic imaging optical system was constituted by a charge coupled device (CCD) camera and the objective.The CCD camera maintained a constant height from a target surface to the objective by identifying a focused laser pointer beam spot size [28].Besides, the plasma spectrum was collected using a quartz lens with a focal length of 12 mm.Spectral acquisition employed a compact spectrometer (AvaSpec-ULS2048, resolution:0.15 nm, slit width is 25 μm) with a wavelength range of 240–360 nm.The integration time of the spectrometer and the trigger frequency was set to 50 ms and 10 Hz respectively, considering the weak laser emission spectrum and spectral storage rate.In addition, a trigger board was used to achieve a pulse output with a fundamental frequency of 1 kHz and 10 Hz after frequency division to control the laser and spectrometer to work together.Besides, the three-dimensional stage applied has an operational accuracy of 1 μm.

    Figure 5.Spectral fluctuation graph obtained when the laser scans the sample by the black line.

    Figure 6.Distribution diagram of spherical inclusions in ductile iron.(a)The distribution of spherical inclusions obtained by scanning the surface of the sample with a metallurgical microscope.(b) A graph obtained by performing the μLIBS device to scan on the area shown in(a)and plotting the intensity distribution of the Fe spectral line.The red area in the figure corresponds to the area shown in figure 3(b).The blue area indicates the area where the spherical inclusions topography was not detected by the μLIBS device.

    Figure 7.Laser scanning method.

    Figure 8.Spectrum intensity distribution of Fe 259.9 nm.

    Figure 9.The left picture shows the 3×3 smoothing filter mask,and the right picture shows the coordinate values corresponding to the mask.

    The test sample is a piece of ductile iron, as shown in figure 3(a).In order to observe the sample surface clearly under the optical microscope, sandpapers of 500#, 800#,1000# and 1500# were used to polish the sample surface.The polished sample surface observed by a microscope(Chongqing UOP Optoelectronic Technology, UM203i) is shown in figure 3(b).Besides, the obtained sample surface roughness is approximately 0.07 μm.

    Figure 10.Elemental micro-segregation maps.The bright spot areas in(a)and(b)represent the segregation maps of Mg and Ti on the surface of a 1 mm2 ductile iron sample.

    Table 1.Spherical inclusion grade.

    3.Results and discussion

    3.1.Compositional mapping of ductile iron

    The integrated spectrometer was used to collect spectra with overlapping ablation craters to improve the sampling spatial resolution of the laser.The stability and intensity of the spectral signal in the case of different overlapping laser ablation craters have been explored in previously published articles [27].In this paper, we set the operating speed of the stage to 50 μm s?1to obtain the distribution information of the spheroidal inclusions on the surface of the sample with high precision.Because the period of the spectrometer is 10 Hz, each time the spectrometer acquires a spectrum, the running distance of the stage is 5 μm.Eventually, the sampling interval of 5 μm is achieved on the sample.The spectrum collected on the ductile iron is shown in figure 4.

    In the analysis of the ductile iron spectra, it was found that when the laser is focused on the spherical inclusions of the ductile iron,the intensity of the collected plasma spectrum is significant different from the iron matrix.As shown by the black line on the ductile iron in figure 5, when the laser is scanned, the spherical inclusions distribution corresponding to the red region is consistent with the intensity fluctuation of Fe 259.9 nm as illustrated in the blue region.This phenomenon indicates the possibility to analyze the distribution of spherical inclusions in ductile iron through the intensity distribution of iron spectrum.

    To verify the accuracy of the above experimental analysis,an area of 1 mm×1 mm is first marked on the surface of the sample, and then scanned with an optical microscope.Each picture taken by the microscope is bright in the middle area and is relatively dark in the edge, which causes uneven brightness in the composed image, as shown in figure 6(a).Besides, The LIBS mapping is performed in the cyclic scanning manner in figure 7.

    The intensity of the line of Fe 259.9 nm in the spectra is sequentially arranged according to the position information of the sampling points, and the intensity distribution of the spectrum is shown in figure 8.Due to the uneven content of each element in the ductile iron, stronger or weaker spectral intensities are inevitable in the scanned spectral distribution.To reduce the impact of these ‘salt and pepper’noises on the spectral profile, figure 8 was processed with a smoothing filter.The specific filtering process is as follows.

    Assuming figure 8 is anM×Nmatrix,each pixel value isf(x,y),xandyrepresent the number of rows and columns of the matrix,respectively.A 3×3 smoothing filter ω is used for filtering, as shown in figure 9.The pixel value of the filtered point is supposed asg(x,y) which can be expressed by formula (1).Also, to cause the spherical inclusions obvious in the distribution map, the filtered image is normalized and the resulting spherical inclusions distribution is shown in figure 6(b).

    where,a=1 andb=1,x=0,1,2,3,...,M?1,y=0,1,2,3,...,N?1.

    Table 2.The diameter of spherical inclusions corresponding to Nos.1–10 in figure 3(b).

    Comparing figure 6(b)with figure 6(a),the results of the laser scanning analysis are consistent with those of the microscopic scanning analysis.Three reasons may explain the similarity in the results.First, the microchip laser applied has weak energy and a pulse width in the ps level, which tinily modifies the surface of the material.Second, it is obvious different between the plasma excited by the laser on the spherical inclusions and the plasma emitted by the iron matrix(shown in figure 5),which creates favorable conditions for the experimental results.Third, sampling at intervals of 5 μm on the sample surface provides a high spatial resolution for the laser scanning results.

    Using the above method,the intensity distributions of the two spectral lines of Mg 285.2 nm and Ti 334.9 nm in the scanning area were used to explore the micro-segregation of these two elements.The obtained micro-segregation maps of Mg and Ti elements are shown in bright spot areas in figures 10(a) and (b), respectively.Comparing figures 10(a)and(b),it is found that the area of micro-segregation of Mg is basically the same as that of Ti.In addition, the distribution area of the dark black spots in figure 10 is basically the same as the morphology and distribution of the spherical inclusions observed by the metallurgical microscope in figure 6(a),which can explain the accuracy of the micro-segregation analysis of Mg and Ti elements to a certain extent.

    3.2.Determination of spherical inclusions grade in ductile iron

    Grade of the spherical inclusions is judged according to standards of the People’s Republic of China for ductile iron(GB/T 9441-2009).Steps are as follows: firstly, observing the entire surface of ductile iron with a microscope; second,selecting a representative area and calculating the average value of the diameter of the spherical inclusions whose diameter is larger than the radius of the largest spherical inclusion; finally, evaluating the spherical inclusions grade according to the corresponding rating chart.The rating chart is shown in table 1.

    The red area shown in figure 6(a) was selected, and its enlarged plot is shown in figure 3(b).The diameter of spherical inclusions labelled 1–10 is measured with an optical microscope.The intensity distribution of the Fe spectrum corresponding to figure 6(a) is shown in figure 6(b).The diameter of the spherical inclusions labelled 1–10 in figure 6(b) is calculated by multiplying the pixel resolution(5 μm) by the number of pixels whose gray value is greater than the average gray value of the blue square region in figure 6(b).The calculation results are shown in table 2.

    According to the national standards, the reference value of spherical inclusions grade calculated by metallographic chart and laser scanning mapping analysis are 35.55 μm and 41.25 μm, respectively.From table 2, the grade of the spherical inclusions obtained by the two methods is same,which is 6.The method of LIBS mapping gives larger diameters for spherical inclusions with a large diameter compared with the metallographic analysis method.However, for spherical inclusions with a small diameter, the obtained inclusions generally have a smaller diameter.On one hand,it may be because the laser scanning distribution analysis method has a lower spatial resolution than metallographic analysis.On the other hand, when using the smoothing filtering to filter the ‘salt and pepper’ noise of the generated picture,it is possible to enlarge the spherical inclusions with a larger diameter and reduce the spherical inclusions with a smaller diameter.In addition,by comparing the sizes of No.9 and No.10 spherical inclusions detected in table 2,the results also show that the laser scanning method can basically analyze the shape of spherical inclusions with a diameter greater than 20 μm.

    4.Conclusion

    A microchip laser is employed to scan and analyze a 1 mm2area of a ductile iron sample with the sampling resolution of 5 μm.The Fe 259.9 nm was selected as the observation line for the different spectral intensities of the Fe element acquired on the spherical inclusion and the iron matrix when the laser is scanning on the sample.The intensity distribution of the drawn spectral line is consistent with the result of scanning under a metallographic microscope.Moreover, the grade of spherical inclusions in ductile iron was evaluated based on the size of the spherical inclusion reflected in the intensity distribution chart, and the results are consistent with those of metallographic microscope.In addition, the intensity distributions of Mg 285.2 nm and Ti 334.9 nm were used to analyze the micro-segregation of these two elements, and it was found that the area of micro-segregation of Mg is basically the same as that of Ti.

    This study validated the possibility of LIBS for highresolution mapping of sample surfaces using a low-frequency,small integrated spectrometer.However,due to the limitation of the current experimental hardware storage rate (the spectrometer and the computer communicate with USB2.0 and the data are stored directly on the disk in real time during the sampling process of the spectrometer) and the realization of spatial sampling resolution of 5 μm on the sample surface,the speed of scanning the sample surface is relatively slow.In this research, when the spectrometer’ sampling frequency is 10 Hz and the scan speed is 50 μm s?1(as shown in figure 7),it takes nearly 67 min for a sample area of 1×1 mm2.The next step is to increase the sampling resolution while increasing the sampling frequency of the spectrometer,and to research the segregation and inclusions of large-scale metal workpieces.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China(No.2017YFF0106202),the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No.QYZDJ-SSW-JSC037), the Liaoning Revitalization Talents Program(No.XLYC1807110),and the Youth Innovation Promotion Association, Chinese Academy of Sciences.

    猜你喜歡
    張鵬黎明
    Quantitative analysis of the main components in ceramic raw materials based on the desktop LIBS analyzer
    Competitive effect between roughness and mask pattern on charging phenomena during plasma etching
    張鵬、文靜伉儷的內(nèi)畫情緣
    金橋(2022年1期)2022-02-12 01:37:18
    黎明之光
    基于PLC控制的平移式自動(dòng)門設(shè)計(jì)
    黎明之子
    趣味(語文)(2020年5期)2020-11-16 01:34:56
    美若黎明
    青年歌聲(2019年9期)2019-09-17 09:02:54
    誰家的可可④ 這里的黎明靜悄悄
    幽默大師(2018年4期)2018-11-02 05:38:54
    理發(fā)風(fēng)波
    黎明
    讀者(2017年8期)2017-03-29 20:11:49
    久久久国产成人免费| 在线观看一区二区三区| 天天躁夜夜躁狠狠久久av| 美女脱内裤让男人舔精品视频 | 干丝袜人妻中文字幕| 国产麻豆成人av免费视频| 精品久久久久久久末码| 亚洲国产精品成人综合色| 日韩强制内射视频| 97在线视频观看| 国国产精品蜜臀av免费| 麻豆国产97在线/欧美| 欧美性感艳星| 欧美一区二区亚洲| 亚洲熟妇中文字幕五十中出| 国产成人91sexporn| 97超视频在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 少妇被粗大猛烈的视频| 亚洲成人精品中文字幕电影| 日韩av不卡免费在线播放| av天堂在线播放| 国产精品久久久久久亚洲av鲁大| 99视频精品全部免费 在线| 三级男女做爰猛烈吃奶摸视频| 日本熟妇午夜| 搞女人的毛片| 亚洲成av人片在线播放无| 国产欧美日韩精品一区二区| 亚洲人成网站在线观看播放| 日日摸夜夜添夜夜添av毛片| 国产精品99久久久久久久久| 不卡视频在线观看欧美| 国内精品一区二区在线观看| 一个人看的www免费观看视频| 国产精品1区2区在线观看.| 亚洲人成网站在线播放欧美日韩| 夜夜看夜夜爽夜夜摸| 亚洲国产高清在线一区二区三| 日韩欧美 国产精品| 永久网站在线| 一区二区三区高清视频在线| 久久99精品国语久久久| 精华霜和精华液先用哪个| 久久99热这里只有精品18| 麻豆国产97在线/欧美| 日本爱情动作片www.在线观看| 欧美在线一区亚洲| 一本久久精品| 国产麻豆成人av免费视频| 夜夜夜夜夜久久久久| 国产久久久一区二区三区| 最近最新中文字幕大全电影3| av在线老鸭窝| 国产伦在线观看视频一区| 婷婷亚洲欧美| 亚洲第一区二区三区不卡| 免费看a级黄色片| 久久精品国产亚洲av香蕉五月| 国产精品人妻久久久影院| 国产一区二区亚洲精品在线观看| 久久6这里有精品| 亚洲av免费高清在线观看| 精品无人区乱码1区二区| 久久精品国产99精品国产亚洲性色| 久久精品国产鲁丝片午夜精品| 日本一本二区三区精品| 色5月婷婷丁香| 亚洲经典国产精华液单| 麻豆久久精品国产亚洲av| 日韩欧美精品v在线| 久久精品夜夜夜夜夜久久蜜豆| 久久人人爽人人爽人人片va| 美女xxoo啪啪120秒动态图| 欧美成人一区二区免费高清观看| 乱系列少妇在线播放| 久久亚洲国产成人精品v| 在线国产一区二区在线| 免费无遮挡裸体视频| 91久久精品电影网| 亚洲真实伦在线观看| 在线观看一区二区三区| 国产成人精品婷婷| 岛国在线免费视频观看| 国产精品久久久久久av不卡| 午夜爱爱视频在线播放| 国产v大片淫在线免费观看| 日韩大尺度精品在线看网址| 熟妇人妻久久中文字幕3abv| 国产午夜福利久久久久久| 91aial.com中文字幕在线观看| 97超视频在线观看视频| 天美传媒精品一区二区| 插阴视频在线观看视频| 中文字幕精品亚洲无线码一区| 中文字幕免费在线视频6| 国产色婷婷99| 99久久九九国产精品国产免费| 在线观看av片永久免费下载| 日韩中字成人| 五月玫瑰六月丁香| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产精品成人久久小说 | av在线蜜桃| av免费观看日本| 亚洲国产欧美在线一区| 美女xxoo啪啪120秒动态图| 毛片一级片免费看久久久久| 国产精品美女特级片免费视频播放器| 嘟嘟电影网在线观看| 天堂网av新在线| 婷婷亚洲欧美| 日本免费一区二区三区高清不卡| 久久热精品热| 国产三级在线视频| 亚洲国产欧美在线一区| 岛国在线免费视频观看| 国产精品久久久久久精品电影小说 | 国产色婷婷99| www.av在线官网国产| 国产极品精品免费视频能看的| 91av网一区二区| 久久久精品94久久精品| 好男人视频免费观看在线| 夜夜夜夜夜久久久久| 成人美女网站在线观看视频| 99久久九九国产精品国产免费| 男人舔奶头视频| 在线免费观看的www视频| 偷拍熟女少妇极品色| 久久国内精品自在自线图片| 亚洲精品456在线播放app| 一级毛片aaaaaa免费看小| 人人妻人人澡人人爽人人夜夜 | 国产一区亚洲一区在线观看| 两个人视频免费观看高清| 国产亚洲av嫩草精品影院| 夜夜夜夜夜久久久久| 大又大粗又爽又黄少妇毛片口| 99久久九九国产精品国产免费| 免费看a级黄色片| 亚洲熟妇中文字幕五十中出| 亚洲精品影视一区二区三区av| 久久人人爽人人片av| 国产大屁股一区二区在线视频| 亚洲国产精品合色在线| 久久欧美精品欧美久久欧美| 久久精品夜夜夜夜夜久久蜜豆| 舔av片在线| 久久午夜亚洲精品久久| 国产精品蜜桃在线观看 | 日本黄大片高清| www日本黄色视频网| 成人特级av手机在线观看| 男插女下体视频免费在线播放| 欧美极品一区二区三区四区| kizo精华| 欧美日韩综合久久久久久| 亚洲精品成人久久久久久| 欧美性猛交黑人性爽| 一本一本综合久久| 欧美另类亚洲清纯唯美| 亚洲精华国产精华液的使用体验 | 日日摸夜夜添夜夜爱| 日韩一区二区三区影片| 亚洲国产精品国产精品| 亚洲最大成人中文| 人人妻人人澡欧美一区二区| 国产一区二区在线av高清观看| 亚洲精品久久国产高清桃花| 99热这里只有是精品在线观看| 日韩视频在线欧美| 三级经典国产精品| 日本五十路高清| 亚州av有码| av在线播放精品| 色视频www国产| 美女被艹到高潮喷水动态| 国内精品美女久久久久久| 婷婷六月久久综合丁香| 91久久精品国产一区二区三区| 亚洲国产色片| 黄色欧美视频在线观看| 插逼视频在线观看| www.色视频.com| 两个人视频免费观看高清| 级片在线观看| 亚洲最大成人中文| 日产精品乱码卡一卡2卡三| 麻豆国产97在线/欧美| 老司机影院成人| 亚洲av成人精品一区久久| 波野结衣二区三区在线| 亚洲成人中文字幕在线播放| 中国国产av一级| 午夜激情欧美在线| 99热精品在线国产| 亚洲中文字幕日韩| eeuss影院久久| 天美传媒精品一区二区| 久久99热6这里只有精品| 亚洲三级黄色毛片| 国内精品美女久久久久久| 91麻豆精品激情在线观看国产| 好男人视频免费观看在线| 欧美另类亚洲清纯唯美| 国产毛片a区久久久久| 亚洲精品日韩av片在线观看| 狂野欧美激情性xxxx在线观看| 可以在线观看的亚洲视频| 国产伦精品一区二区三区四那| 成人毛片a级毛片在线播放| 亚洲综合色惰| 久久午夜福利片| 亚洲第一电影网av| 变态另类成人亚洲欧美熟女| 成人国产麻豆网| 毛片一级片免费看久久久久| 午夜精品国产一区二区电影 | 国产黄色视频一区二区在线观看 | 成人综合一区亚洲| 亚洲无线观看免费| 亚洲精品久久久久久婷婷小说 | 亚洲欧美日韩无卡精品| 国产一区二区三区在线臀色熟女| 日韩 亚洲 欧美在线| 精品久久久噜噜| 成人毛片60女人毛片免费| 中文精品一卡2卡3卡4更新| 国产成人影院久久av| 人妻久久中文字幕网| 熟妇人妻久久中文字幕3abv| 成人三级黄色视频| av在线播放精品| 欧美极品一区二区三区四区| 日本熟妇午夜| 亚洲成人精品中文字幕电影| 舔av片在线| 日本撒尿小便嘘嘘汇集6| 免费一级毛片在线播放高清视频| 日韩欧美 国产精品| 国产成人福利小说| 日韩一区二区三区影片| 伦精品一区二区三区| 精华霜和精华液先用哪个| 亚洲av.av天堂| 日日摸夜夜添夜夜爱| 亚洲人成网站在线播| 欧美日韩国产亚洲二区| 日本五十路高清| 淫秽高清视频在线观看| 最近2019中文字幕mv第一页| 久久这里有精品视频免费| 国内少妇人妻偷人精品xxx网站| 色哟哟·www| 99热全是精品| 亚洲在久久综合| 在线观看一区二区三区| 欧美zozozo另类| 亚洲久久久久久中文字幕| 国产精品.久久久| 婷婷六月久久综合丁香| 好男人视频免费观看在线| 国产在视频线在精品| 日本黄色视频三级网站网址| 国产成人精品婷婷| 最近的中文字幕免费完整| 国产精品人妻久久久久久| 国产精品久久久久久亚洲av鲁大| 偷拍熟女少妇极品色| 蜜桃亚洲精品一区二区三区| 久久鲁丝午夜福利片| 最新中文字幕久久久久| 性插视频无遮挡在线免费观看| 午夜精品国产一区二区电影 | 亚洲精品456在线播放app| 久久精品国产亚洲av涩爱 | 国产精品伦人一区二区| 国产成人freesex在线| 男人舔女人下体高潮全视频| 亚洲高清免费不卡视频| 国产大屁股一区二区在线视频| 天堂中文最新版在线下载 | 国产真实伦视频高清在线观看| 69av精品久久久久久| 亚洲久久久久久中文字幕| 波多野结衣巨乳人妻| 在线观看av片永久免费下载| 国产成人91sexporn| 成人午夜高清在线视频| 国产精品永久免费网站| 成年女人看的毛片在线观看| 丰满乱子伦码专区| a级毛色黄片| 国产精品乱码一区二三区的特点| 成人国产麻豆网| 久久九九热精品免费| 精品国内亚洲2022精品成人| 91午夜精品亚洲一区二区三区| 中国国产av一级| 一卡2卡三卡四卡精品乱码亚洲| 黄色日韩在线| 亚洲国产欧美在线一区| 午夜激情欧美在线| 国内精品一区二区在线观看| 亚洲欧美成人综合另类久久久 | 啦啦啦啦在线视频资源| 欧美日韩国产亚洲二区| 少妇被粗大猛烈的视频| 日本欧美国产在线视频| 亚洲丝袜综合中文字幕| 久久99蜜桃精品久久| av在线播放精品| 99久久人妻综合| 亚洲欧美精品自产自拍| 久久精品综合一区二区三区| 人妻系列 视频| 久久久久国产网址| 久久99热这里只有精品18| 1024手机看黄色片| 亚洲精华国产精华液的使用体验 | 成人av在线播放网站| 日韩欧美在线乱码| 欧美日韩在线观看h| 丝袜美腿在线中文| 日本一本二区三区精品| 日韩精品青青久久久久久| 日日干狠狠操夜夜爽| 国产乱人偷精品视频| 22中文网久久字幕| 日韩成人av中文字幕在线观看| 国产精品久久电影中文字幕| av.在线天堂| 久久久久久大精品| 如何舔出高潮| 亚洲电影在线观看av| or卡值多少钱| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频 | 麻豆国产av国片精品| 91狼人影院| 亚洲av男天堂| 久久久国产成人免费| 久久久久久久久久成人| 99热网站在线观看| 熟女人妻精品中文字幕| 精品少妇黑人巨大在线播放 | 草草在线视频免费看| 简卡轻食公司| 国内精品一区二区在线观看| 日韩欧美三级三区| 人妻系列 视频| .国产精品久久| 亚洲无线在线观看| 内地一区二区视频在线| 日本免费一区二区三区高清不卡| 美女xxoo啪啪120秒动态图| 日韩欧美国产在线观看| 男的添女的下面高潮视频| 免费看美女性在线毛片视频| 亚洲久久久久久中文字幕| 午夜福利高清视频| 毛片一级片免费看久久久久| 大又大粗又爽又黄少妇毛片口| 久久99蜜桃精品久久| 色播亚洲综合网| 99精品在免费线老司机午夜| 免费观看a级毛片全部| 一本久久中文字幕| 18+在线观看网站| 少妇被粗大猛烈的视频| 日韩亚洲欧美综合| av在线亚洲专区| 99久久中文字幕三级久久日本| 国产成人aa在线观看| 国产精品一区二区在线观看99 | 能在线免费看毛片的网站| 欧美高清成人免费视频www| 国产成人91sexporn| 秋霞在线观看毛片| 久久鲁丝午夜福利片| 久久精品影院6| 99热全是精品| 免费无遮挡裸体视频| 99在线人妻在线中文字幕| 精品日产1卡2卡| 全区人妻精品视频| 青春草亚洲视频在线观看| 高清在线视频一区二区三区 | 国产精品99久久久久久久久| 国产成人91sexporn| 狂野欧美白嫩少妇大欣赏| 男人和女人高潮做爰伦理| 国产成人午夜福利电影在线观看| 亚洲精品成人久久久久久| 欧美色视频一区免费| 搞女人的毛片| 精品午夜福利在线看| 中出人妻视频一区二区| 免费观看在线日韩| 一个人免费在线观看电影| 国产色爽女视频免费观看| 亚洲成人精品中文字幕电影| 毛片女人毛片| 国产精品不卡视频一区二区| 久久久久久久久大av| 欧美色欧美亚洲另类二区| 在线天堂最新版资源| 一个人免费在线观看电影| 亚洲av成人精品一区久久| 精品久久久久久久久亚洲| 国产真实乱freesex| av天堂中文字幕网| 亚洲最大成人av| 中文字幕制服av| 日韩av不卡免费在线播放| 男女视频在线观看网站免费| 赤兔流量卡办理| 国产私拍福利视频在线观看| 性欧美人与动物交配| 成人特级黄色片久久久久久久| 精品免费久久久久久久清纯| 国产又黄又爽又无遮挡在线| 深夜a级毛片| 国产精华一区二区三区| 日韩,欧美,国产一区二区三区 | 久久热精品热| 毛片一级片免费看久久久久| 亚洲国产日韩欧美精品在线观看| 97超视频在线观看视频| 国产精品蜜桃在线观看 | 五月玫瑰六月丁香| 欧美成人免费av一区二区三区| 91午夜精品亚洲一区二区三区| 成人无遮挡网站| 天天一区二区日本电影三级| 亚州av有码| 91精品国产九色| 亚洲激情五月婷婷啪啪| 18禁裸乳无遮挡免费网站照片| 日韩成人伦理影院| 国产精品人妻久久久影院| 亚洲不卡免费看| 2021天堂中文幕一二区在线观| 美女cb高潮喷水在线观看| 久久久久国产网址| 成人特级av手机在线观看| 一本精品99久久精品77| 亚洲自拍偷在线| 乱系列少妇在线播放| 你懂的网址亚洲精品在线观看 | 麻豆国产97在线/欧美| 亚洲第一电影网av| 国产精品福利在线免费观看| 国产老妇伦熟女老妇高清| av福利片在线观看| 欧美日韩乱码在线| 午夜视频国产福利| 久久精品国产自在天天线| 亚洲婷婷狠狠爱综合网| 色5月婷婷丁香| 中文精品一卡2卡3卡4更新| 亚洲国产精品国产精品| 欧美日韩精品成人综合77777| 简卡轻食公司| 亚洲国产高清在线一区二区三| 日本爱情动作片www.在线观看| 久久人妻av系列| 永久网站在线| 国产精品一及| 日韩成人av中文字幕在线观看| 国产亚洲av嫩草精品影院| 亚洲成a人片在线一区二区| 尤物成人国产欧美一区二区三区| 久久久久久久亚洲中文字幕| 国产精品麻豆人妻色哟哟久久 | 亚洲av成人av| 欧美成人免费av一区二区三区| 国产精品福利在线免费观看| 国产人妻一区二区三区在| 欧美日韩综合久久久久久| 久久韩国三级中文字幕| 亚洲成av人片在线播放无| АⅤ资源中文在线天堂| 久久人妻av系列| 一区福利在线观看| 中出人妻视频一区二区| 国产精品福利在线免费观看| 99热6这里只有精品| 一进一出抽搐gif免费好疼| 一本一本综合久久| 身体一侧抽搐| 亚洲欧美清纯卡通| 日本成人三级电影网站| 嫩草影院新地址| 搞女人的毛片| av在线天堂中文字幕| 在线播放无遮挡| АⅤ资源中文在线天堂| 99热这里只有是精品50| 日韩制服骚丝袜av| 欧洲精品卡2卡3卡4卡5卡区| 五月伊人婷婷丁香| 最近的中文字幕免费完整| 久久久国产成人精品二区| 1000部很黄的大片| 一边摸一边抽搐一进一小说| 亚洲最大成人中文| 嫩草影院新地址| 欧美激情国产日韩精品一区| 一级毛片久久久久久久久女| 亚洲欧美成人精品一区二区| 少妇的逼好多水| 精品国内亚洲2022精品成人| 欧美精品国产亚洲| 久久久久久久亚洲中文字幕| 热99在线观看视频| 如何舔出高潮| 哪个播放器可以免费观看大片| 干丝袜人妻中文字幕| 亚洲乱码一区二区免费版| 国产视频内射| 最好的美女福利视频网| 一级黄片播放器| 亚洲激情五月婷婷啪啪| 久久久国产成人免费| 国内精品美女久久久久久| 亚洲四区av| 悠悠久久av| 亚洲国产色片| 身体一侧抽搐| 男人的好看免费观看在线视频| 在线天堂最新版资源| 高清毛片免费观看视频网站| 全区人妻精品视频| 国产精华一区二区三区| 免费观看在线日韩| 麻豆成人午夜福利视频| 日本免费一区二区三区高清不卡| 国产精品美女特级片免费视频播放器| 国产爱豆传媒在线观看| 一级黄片播放器| 蜜臀久久99精品久久宅男| 日本黄色片子视频| 日本色播在线视频| 亚洲av不卡在线观看| 久久亚洲精品不卡| 在线播放国产精品三级| 色综合亚洲欧美另类图片| av黄色大香蕉| 国产精品一及| 国产色婷婷99| 国产一区二区在线av高清观看| 国产伦精品一区二区三区四那| 久久久久久国产a免费观看| 人人妻人人看人人澡| 免费观看人在逋| 日本熟妇午夜| 男女视频在线观看网站免费| 变态另类成人亚洲欧美熟女| 亚洲精品国产av成人精品| 国内精品美女久久久久久| 亚洲国产色片| 日韩一本色道免费dvd| a级毛色黄片| 精品人妻视频免费看| 精品日产1卡2卡| 亚洲欧美成人综合另类久久久 | 极品教师在线视频| 26uuu在线亚洲综合色| 亚洲精品乱码久久久v下载方式| 久久精品国产亚洲av香蕉五月| 天堂影院成人在线观看| 黑人高潮一二区| 99热精品在线国产| a级毛片a级免费在线| 亚洲在久久综合| 一个人观看的视频www高清免费观看| 网址你懂的国产日韩在线| 欧美成人一区二区免费高清观看| 亚洲欧美精品自产自拍| 国产成人aa在线观看| 久久99蜜桃精品久久| 欧美极品一区二区三区四区| 久久久成人免费电影| 精品久久久久久久久久免费视频| 变态另类丝袜制服| 久久久久久久久中文| 免费观看人在逋| 亚洲经典国产精华液单| 国产亚洲av嫩草精品影院| 男女啪啪激烈高潮av片| 免费看日本二区| 久久久成人免费电影| 免费观看精品视频网站| 最近视频中文字幕2019在线8| 亚洲欧美日韩东京热| 亚洲五月天丁香| 亚洲中文字幕一区二区三区有码在线看| 99在线视频只有这里精品首页| 2022亚洲国产成人精品| 特大巨黑吊av在线直播| 久久久久久伊人网av| 亚洲欧美日韩高清在线视频| 狂野欧美激情性xxxx在线观看| 特级一级黄色大片| 久久午夜福利片| 亚洲成人久久性| 美女高潮的动态| 草草在线视频免费看| 国产色婷婷99| 乱人视频在线观看| 免费无遮挡裸体视频| 亚洲欧美日韩高清专用| 国产三级在线视频|