• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface treatment of titanium dioxide nanopowder using rotary electrode dielectric barrier discharge reactor

    2021-10-31 08:15:42NawRuthaPAWTakumaKIMURATatsuoISHIJIMAYasunoriTANAKAYusukeNAKANOYoshihikoUESUGIShioriSUEYASUShuWATANABEandKeitaroNAKAMURA
    Plasma Science and Technology 2021年10期

    Naw Rutha PAW, Takuma KIMURA, Tatsuo ISHIJIMA,Yasunori TANAKA, Yusuke NAKANO, Yoshihiko UESUGI,Shiori SUEYASU, Shu WATANABE and Keitaro NAKAMURA

    1 Faculty of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192,Japan

    2 Research Center for Production & Technology, Nisshin Seifun Group Inc., Fujimino 356-8511, Japan

    Abstract Titanium dioxide (TiO2) nanopowder (P-25; Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).After RE-DBD treatment, XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°, which can be attributed to the substitution of new functional groups in the TiO2 lattice.The FTIR results show that hydroxyl groups (OH) at 3400 cm?1 increased considerably.The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species, such as OH radical, ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.

    Keywords: dielectric barrier discharge, nanopowder, reactive species, rotary electrodes, surface treatment, titanium dioxide

    1.Introduction

    Among different semiconductors,titanium dioxide(TiO2)[1]has been regarded as a material with multifunctional applications [1–3] due to its diverse and unique properties.In particular, it is crucially important for photocatalytic applications due to its peculiar application prospects for humidity sensors [4], air treatment [5], air purification [6], water splitting [7], self-cleaning [8], super capacitors [9] and solar energy conversion [10, 11].However, a wide band gap and fast recombination of photo-generated electrons and holes are shortcomings that can reduce the efficiency of pure TiO2.To resolve this difficulty,one possible means of improving TiO2performance is efficient light harvesting.Another means is by obtaining a certain number of holes and photo-generated electrons on the surface before recombination.To achieve the desired performance using this technique, the surface structure is modified using metal doping and non-metal doping methods [12, 13].For metal doping methods, metallic elements, such as Fe [13], Ni [14] and Cu [15], are applied for surface treatment.When using the non-metal doping method,N [16], C [17] and S [13] are used as non-metallic dopants.For metal doping, some shortcomings related to thermal and chemical instability of TiO2remain.Although high doping enhances the band gap, the optical/photocatalytic performance is reduced due to increasing carrier recombination centers [18].Another technique for surface treatment is adding Ti3+[19] and defects of oxygen vacancies [20] in the band gap.In contrast to the case of high doping,instead of the recombination center,this method uses oxygen vacancies and Ti3+to construct a trap center to enhance the band gap.To create a trap center using defects of oxygen vacancies in the lattice of TiO2,vacuum activation[18],surface hydrogenation[9, 21, 22] and plasma treatment [23] have been reported as effective methods for TiO2surface treatment.Using the hydrogenation method, photocatalytic activity can be enhanced because the TiO2surface is functionalized by hydroxyl groups.However, a disadvantage of the hydrogenation method is that it necessitates the use of high temperatures.Moreover, the obtained sample becomes black,which is unsuitable for various optoelectronic applications.The vacuum activation method also increases absorption, but also color effect [18], which is not suitable for transparent electrode applications.

    Among the treatment methods, the plasma treatment has also been reported as an effective method for TiO2surface modification due to its diverse and beneficial properties[18, 24, 25].Recently, Liet al[26] modified anatase-TiO2using dielectric barrier discharge (DBD) argon plasma with 20 min treatment time to enhance photocatalytic degradation.Nevertheless, no report in the relevant literature describes a study of the application of air DBD treatment for commercial TiO2nanopowder modification.Moreover, some problems remain for powder and particulate materials.In the case of a fixed sample treatment method using nonthermal plasma, the process effectiveness is expected to decrease due to the shadow effect as a result of overlapped powders [27].To overcome powder surface overlapping and to treat it uniformly with nonthermal plasma, a rotary electrode dielectric barrier discharge reactor (RE-DBDR) was developed to treat and modify the particulate powder material uniformly during nonthermal plasma exposure on the powder surface.

    As described herein, we propose new devices to implement a simple method with low costs that reduce the treatment time for surface modification.With regard to cost effectiveness, gas treatment was conducted by air.Rotary electrodes were placed while dispersing the powder for uniform treatment.It has been reported that the chamber temperature increases concomitantly with increasing operational frequency [28], which would cause thermal damage to the particulate material and raise the cost of power sources and electrical assemblies.To overcome this difficulty, instead of high frequency,low operation frequency was used to generate nonthermal plasma during treatment.We treated the commercial TiO2nanopowder by taking advantage of the REDBDR using air DBD.The plasma treatment time was set to 3 min for this study.To clarify the time effect, the treatment time was varied with it being set at 3 and 10 min.A marked change in the surface properties was observed after treatment using air DBD.The results indicated that the DBD-treated TiO2nanoparticles enhanced hydroxyl groups on the TiO2nanopowder surface compared with the pure TiO2.Lowtemperature DBD might not only provide a new strategy for surface modification as our newly developed RE-DBD reactor can also engender fast and efficient treatment time for additional industrial applications.

    2.Materials and methods

    2.1.Experiment setup and procedures

    The RE-DBDR experiment setup for powder treatment is presented in figure 1.Two rectangular thin metal plates(68 mm in length, 20 mm in height and 1 mm in thickness)were mounted on a rotating axial rod placed at the center of a cylindrical chamber (70 mm in inner diameter, 80 mm in height and 2 mm in thickness) made of polyoxymethylene(POM) material.The two thin metal plates, with upper and lower sides separated by a distance of 20 mm, are connected to a motor axis using an insulated rod, which allows it to act as a floating electrode in a reactor.Two cylindrical aluminum electrodes (74 mm in diameter, 30 mm in height and 0.2 mm in thickness)were mounted on the outside wall of the reactor with the upper and lower electrodes separated by 10 mm by the cylindrical POM insulator to prevent surface discharge on the external surface between the outside electrodes.For this study,DBD was produced using a cylindrical POM reactor at a high voltage (Vpp=30 kV, frequency=60 Hz).The AC voltage power supply was controlled by a 0–130 V voltage regulator.A high-voltage power supply (Neon Transformer,

    Vop=15 kV;LECIP Holdings Corp.)was used to step up the AC voltage power supply.For voltage measurements, two high-voltage probes (P6015A, 40 kV, 4 ns; Tektronix Inc.)were used.High-voltage probe I was used to measure the output voltage of the transformer.Probe II was used to measure the discharge voltage; for discharge current measurement, a current probe (2877; Pearson Electronics) was used.A monitoring capacitor,Cm=2000 pF,was connected in series with the reactor to measure the transferred charge.Electrical characteristics were observed using a digital oscilloscope (MSO6054A, 500 MHz, 4 GSa/s; Agilent Technologies Inc.).An air compressor (10 L, ACP-10A; Earth Man)introduced air into the reactor.The gas flow rate was controlled to 1.5 slm using a mass flow controller(SEC-E40,Air,10 slm; Horiba Stec, Co., Ltd).A DC high-power motor(12 V, 18 800 rpm) was used for rotating and controlling the high-speed floating electrodes, to provide rotational speed of approximate 5000 rpm.Configurations of the RE-DBDR and an image of the DBD during electrode rotating are depicted in figure 2.

    2.2.Sample preparation

    For sample preparation, titanium dioxide (TiO2) nanopowder(CAS: 13463-67-7, P-25; Degussa AG) was used.The powder had an anatase and rutile ratio of 85:15 and purity of 99.9%.Two treatment samples of the TiO2nanopowder were prepared to study fluctuation of the DBD treatment effect.For DBD treatment, 300 mg of TiO2nanopowder was used for each sample.After the nanopowder was introduced to the inner wall of the cylindrical POM reactor, the reactor was enclosed by a PMMA flange with an O-ring seal and a filter for the powder.Then, the electrodes were rotated by the motor at 5000 rpm, while introducing the operational gas species.Before generating DBD, TiO2nanopowder was dispersed by the electrode rotation for about 30 s.The DBD treatment times of the TiO2nanopowder were,respectively,3 and 10 min.After DBD treatment, the DBD-treated TiO2nanopowder samples were prepared to investigate the crystal structure and surface functional groups using x-ray diffraction(XRD), and Fourier-transform infrared (FTIR) analysis.

    2.3.Crystal characterization

    To analyze the structure and composition of the crystalline phase of the treated TiO2, XRD measurements were taken.The crystal structure of the TiO2nanopowder was identified using an x-ray diffractometer (Miniflex600; Rigaku Corp.).The sample powder was scanned using Cu-Kα radiation with operating voltage of 40 kV and operating current of 15 mA.The surface functional groups of the TiO2nanopowder were characterized using an FTIR spectrometer (Nicolet iS5;Thermo Scientific).The scan number was 16.The resolution was 4.To specify the functional groups on the TiO2nanopowder surface, a transmission sampling method was used.The standard powder ratio (100:1) was prepared for thin transparent pellets.For each measurement, 30 mg of TiO2powder sample was compressed using a hydraulic press to produce a 7 mm diameter thin pellet sample.Three sample pellets were replicated to observe the reproducibility.The error bar was approximately 3%.

    3.Results and discussion

    3.1.Electrical characteristics

    The static electrode configuration and an image of its discharge generation during rotation are shown in figure 2.Electrical characteristics of the RE-DBDR are shown in figures 3(a)and(b).DBD was generated between the edges of the rotary plates and the inner wall surface of the reactor.The waveforms of the applied voltageVa(t),discharge currentI(t) and capacitance voltageVc(t) atfapp=60 Hz andVpp=30 kV and rotational speed=~5000 rpm are shown in figure 3(a).DBD in air is generally influenced by filamentary discharge in nature.Discharges can generate effective reactive species, such as atoms, radicals and excited species with high electron densities (1014–1015cm?3)[24, 29].These species are important for surface treatment.The formation mechanism and distribution of current filaments as surface discharge were discussed in earlier reports[24, 29, 30].The transported charge was measured using a 2000 pF monitoring capacitor connected in series with the reactor to calculate the discharge area.The charge voltage(Q–V)area,also known as the Lissajous figure,was obtained by plotting the applied voltage of the reactor on theX-axis and the transferred charge on theY-axis.In figure 3(b), the Lissajous figure atfapp=60 Hz,Vpp=30 kV and rotational speed=~5000 rpm is shown.Power consumption during the DBD generation can be estimated from the energy by multiplying the frequencyfappand area of the Lissajous figure:Pdis=fapp×area of the Lissajous figure.The discharge power consumption during the powder treatment was 0.75 W.The Lissajous figure resembles an ellipse, indicating the presence of residual ions at all times.The shape effect and characteristics of the Lissajous figure were discussed in the report of an earlier study [29].

    3.2.Optical characteristics

    The optical emission spectra (OES) at 5000 rpm rotational speed are shown in figure 4.To identify the reactive species present in the DBD air plasma, the optical emission spectra were observed at wavelengths of 300–450 nm,as presented in figure 4.The main contributions to the emission spectrum of the air DBD produced by rotary floating electrodes are the nitrogen molecular band spectra of the second positive system(C–B).Moreover, a small peak of OH radical at 308 nm wavelength can also be investigated.The SPS of nitrogen can engender the formation of oxygen atom, producing ozone[29,31,32].Ozone is an active species due to its long lifetime and high oxidation potential.The ozone concentration was monitored using a UV O3analyzer (Model 49i; Thermo Scientific, Inc.) during DBD air discharge.Results show that the average ozone concentration by DBD air plasma was 250 ppm.In general, the initial ozone can be created according to the following equation [32]:

    Therein, M is the third collision molecule, which can be O2,O3or N2.In addition, high UV radiation, oxygen atoms and nitrogen oxides contribute to the decomposition of ozone in the reactor [24, 32].Reactive atomic oxygen can be created from the ozone decomposition process, the surface layer of TiO2.The rotational and vibrational temperatures were 300 and 2500 K,respectively,based on the massive OES[33–35].Based on these results, the surface layer functional group mechanism can be changed by reactive species, such as OH radicals, ozone and atomic oxygen.These oxidative species can play a key role in improving surface properties.

    3.3.XRD analysis

    XRD patterns of pure TiO2nanopowder and DBD-treated TiO2are shown in figure 5(a).The phase theta structure in TiO2powder clearly illustrates the anatase and rutile phases.The phase peaks at 25.3°, 38°, 48°, 62.8° and 69° represent the anatase crystalline phase,whereas the peaks at 27.42°,36.2°,41.4°,54°and 55.4° are assigned to the rutile crystalline phase [36].The crystalline peaks remained the same,indicating that no heat effect caused by the DBD treatment exists on the crystalline structure.In figure 5(b), significant peak shift at anatase (101) and rutile(101) after DBD treatment is shown.Compared with the pure TiO2,the phase theta of anatase shifted from 25.3°to 25.1°.The rutile phase structure peak shifted in a similar way from 27.4°to 27.2° in the DBD-treated TiO2.However, no new peak can be observed in the XRD pattern.Because there was no change in the crystal phase of anatase and rutile peak performance,we assume that the peak shifting is attributed to the new functional group formed on the TiO2[37].

    3.4.FTIR analysis

    To confirm the fluctuation level, we produced three pellets of TiO2nanopowder using 0,3 and 10 min treatment.Figure 6(a)shows the FTIR spectra of pure TiO2at 3 and 10 min DBDtreated TiO2nanopowder at wavenumbers of 400–4000 cm?1.Figure 6(b) shows peaks at 1800–1200 cm?1.The obtained FTIR spectra had similar profiles for each treatment time,suggesting that uniform treatment of TiO2nanopowder surface was realized using RE-DBDR.Figure 6(a)shows transmittance in the vibrational band of 400–1250 cm?1, which is the result produced by the O–Ti–O lattice[38,39].Change in the O–Ti–O peak was observed after 3 min treatment.The peak at around 1630 cm?1was assigned to the Ti–O structure [36].Peaks at 350–3000 cm?1are denoted by bending vibration of the hydroxyl(OH)or H2O group.Formation of the OH groups has been reported [38, 39].This group has very high and strong oxidation capability.Results show that Ti–O–Ti and OH band did not appear clearly with increasing DBD treatment time,suggesting TiO2nanopowder modification.The DBD-treated TiO2nanopowder shows gas phase CO2band at 2348 cm?1,indicating CO2adsorption on the surface [40,41].Figure 6(b)shows a functional group peak at 1385 cm?1after DBD plasma treatment; the peak is assigned to C–H/COO groups.The C–H/COO group was detected due to the formation of CO2[26, 40, 42] on the TiO2surface.These results indicate a porous carbon layer formation on the TiO2nanopowder, presumably due to chemical and physical activation processes[42,43].The carbon source might be the air compressor or the reactor wall from the POM chamber by etching due to DBD.Identification of the carbon layer formation and its carbon source remains a subject for future work.Formation of the C–H/COO group and the gas phase CO2band at 2348 cm?1showed a stronger peak in both DBD treatments, indicating that the surface functional groups of commercial TiO2surface properties can be enhanced remarkably with the assistance of reactive species in DBD.

    Figure 1.Experiment setup for a RE-DBDR.

    Figure 2.Schematic diagram of a RE-DBDR.(a) Top view, (b) cross-sectional view and (c) photograph of a RE-DBDR with DBD generation while rotating.

    Figure 3.Electrical characteristic of RE-DBDR.(a) Voltage and current waveforms of RE-DBDR; I(t) is discharge current, Va(t) is applied voltage and Vc(t) is capacitance voltage; (b) Lissajous figure at fapp=60 Hz, Vpp=30 kV, rotational speed=5000 rpm.

    Figure 4.OES of RE-DBDR at fapp=60 Hz, Vpp=30 kV and 5000 rpm rotational speed.

    Figure 5.XRD patterns.(a)TiO2 nanoparticles,DBD-treated TiO2(3 min)and DBD-treated TiO2(10 min);(b)XRD pattern at anatase(101)and rutile (101) at fapp=60 Hz, Vpp=30 kV and 5000 rpm rotational speed.

    Figure 6.FTIR spectra of pure TiO2 nanoparticles.3 min and 10 min DBD-treated TiO2 in the wavenumber between (a) 400 cm?1 and 3800 cm?1 and (b) 1200 cm?1 and 1800 cm?1 at fapp=60 Hz,Vpp=30 kV and 5000 rpm rotational speed.

    4.Conclusion

    In conclusion, we processed and modified surface properties of RE-DBDR-treated P-25 TiO2nanopowders.Nonthermal barrier filamentary discharge was generated to treat and modify the TiO2nanoparticle surface in an air atmosphere using RE-DBDR.Using RE-DBDR, we treated the TiO2nanopowder at low temperatures for 3 and 10 min.It would be more interesting to apply RE-DBD in a continuous process, because the present study was conducted in a batch process.More detailed treatment time dependence is necessary as future work.Treatment with air DBD engenders remarkable modification of the TiO2nanopowder surface properties compared with untreated TiO2.The XRD patterns show that the peak shifted to a lower theta degree.Moreover,the FTIR results confirmed the surface functional groups and the porous carbon layer formation on the power surface.OES analyses elucidated the mechanism of the surface layer functional group.The main contributions to the emission spectrum of the air DBD produced by rotatable floating electrodes are the nitrogen molecular band spectra of the second positive system (C–B).Based on the OES results,reactive species, such as OH radical, ozone and atomic oxygen can play key roles in hydroxyl formation on TiO2nanopowder surface.These results constitute important information for improving nanopowder surface modification based on nonthermal DBD treatment for additional optoelectronic, environmental and energy applications.

    Acknowledgments

    The first author extends her sincere gratitude to her senior,Mr Kentaro Morimoto, for initiating the development of the rotary floating electrode reactor for particulate material treatment and another senior, Dr Mohammad Rasel Pervez,for valuable advice.

    一二三四中文在线观看免费高清| 99热网站在线观看| 91精品一卡2卡3卡4卡| 精品久久久噜噜| 亚洲av成人精品一区久久| tube8黄色片| 午夜精品国产一区二区电影| 免费久久久久久久精品成人欧美视频 | 国产精品嫩草影院av在线观看| 91精品一卡2卡3卡4卡| 91在线精品国自产拍蜜月| 日产精品乱码卡一卡2卡三| 欧美三级亚洲精品| 91在线精品国自产拍蜜月| 日韩不卡一区二区三区视频在线| 亚洲av日韩在线播放| 亚洲性久久影院| 久久精品国产自在天天线| 亚洲国产成人一精品久久久| 我的女老师完整版在线观看| 日韩视频在线欧美| 狂野欧美激情性xxxx在线观看| 精品熟女少妇av免费看| 免费大片黄手机在线观看| 国产成人精品一,二区| 亚洲少妇的诱惑av| 日日啪夜夜爽| 建设人人有责人人尽责人人享有的| 亚洲色图 男人天堂 中文字幕 | 国产av码专区亚洲av| 国产精品嫩草影院av在线观看| 亚洲av二区三区四区| 在线观看免费高清a一片| 考比视频在线观看| 丝袜在线中文字幕| 高清在线视频一区二区三区| 欧美成人午夜免费资源| 丁香六月天网| 久久人人爽人人片av| 亚洲人与动物交配视频| 91精品国产国语对白视频| 国产成人免费观看mmmm| 午夜福利,免费看| 国产综合精华液| 永久网站在线| 久久久久久久国产电影| 丰满乱子伦码专区| 一级毛片 在线播放| 免费人妻精品一区二区三区视频| 久久久精品免费免费高清| 亚洲av成人精品一区久久| 18+在线观看网站| 蜜桃久久精品国产亚洲av| 免费不卡的大黄色大毛片视频在线观看| 99久久中文字幕三级久久日本| 最黄视频免费看| av播播在线观看一区| 国产免费福利视频在线观看| 久久毛片免费看一区二区三区| 国产在线一区二区三区精| 嘟嘟电影网在线观看| 欧美日韩亚洲高清精品| 五月开心婷婷网| 久久狼人影院| 亚洲av成人精品一区久久| 日韩电影二区| 亚洲精品美女久久av网站| 亚洲性久久影院| 看免费成人av毛片| 成年人免费黄色播放视频| 国产不卡av网站在线观看| 91精品国产九色| 少妇熟女欧美另类| 国产日韩欧美在线精品| 肉色欧美久久久久久久蜜桃| 美女国产视频在线观看| 高清欧美精品videossex| 午夜精品国产一区二区电影| 亚洲成色77777| 亚洲精品久久久久久婷婷小说| 亚洲精品乱久久久久久| 性色avwww在线观看| 啦啦啦啦在线视频资源| h视频一区二区三区| 欧美人与善性xxx| 国产免费福利视频在线观看| 亚洲av福利一区| 人妻人人澡人人爽人人| 黄色欧美视频在线观看| 全区人妻精品视频| 午夜激情久久久久久久| 高清欧美精品videossex| 97在线人人人人妻| 中文字幕人妻丝袜制服| 久久久久久伊人网av| 精品国产国语对白av| 国产深夜福利视频在线观看| 成人亚洲欧美一区二区av| 日韩伦理黄色片| 观看美女的网站| 亚洲人与动物交配视频| 欧美+日韩+精品| 国产精品成人在线| 亚洲欧美日韩卡通动漫| 国产乱人偷精品视频| 亚洲经典国产精华液单| 熟女电影av网| 男人操女人黄网站| 黄片播放在线免费| 午夜精品国产一区二区电影| .国产精品久久| 一区二区av电影网| 人妻人人澡人人爽人人| h视频一区二区三区| 亚洲国产精品一区二区三区在线| 一级毛片电影观看| 亚洲av综合色区一区| 久久精品国产亚洲av涩爱| 一区二区三区精品91| 精品一区在线观看国产| 丝袜在线中文字幕| 夫妻性生交免费视频一级片| 最近最新中文字幕免费大全7| 国模一区二区三区四区视频| 久久久国产欧美日韩av| 国产女主播在线喷水免费视频网站| 国产国语露脸激情在线看| 91在线精品国自产拍蜜月| 女的被弄到高潮叫床怎么办| 老司机影院毛片| 国产一区二区在线观看av| 热re99久久国产66热| 亚洲精品乱码久久久v下载方式| 久久女婷五月综合色啪小说| 亚洲国产av新网站| 午夜老司机福利剧场| av黄色大香蕉| 国产女主播在线喷水免费视频网站| 精品久久久久久久久av| 国产日韩欧美视频二区| 日本黄色日本黄色录像| 男人操女人黄网站| 久久韩国三级中文字幕| 亚洲国产毛片av蜜桃av| 超色免费av| 99九九线精品视频在线观看视频| 三上悠亚av全集在线观看| 亚洲国产日韩一区二区| 十分钟在线观看高清视频www| 一区二区三区乱码不卡18| 国产高清三级在线| 成年美女黄网站色视频大全免费 | 啦啦啦啦在线视频资源| 亚洲成人av在线免费| 亚洲综合色惰| 亚洲综合精品二区| 美女中出高潮动态图| 永久免费av网站大全| 国产亚洲午夜精品一区二区久久| 国产免费一区二区三区四区乱码| 色婷婷久久久亚洲欧美| 狂野欧美激情性bbbbbb| 十八禁高潮呻吟视频| 日韩欧美一区视频在线观看| 大话2 男鬼变身卡| 日本午夜av视频| 多毛熟女@视频| 中文字幕最新亚洲高清| 黑人欧美特级aaaaaa片| 成人影院久久| 亚洲,一卡二卡三卡| 亚洲欧美中文字幕日韩二区| 18禁动态无遮挡网站| 欧美变态另类bdsm刘玥| 国产成人精品在线电影| 最新中文字幕久久久久| 免费日韩欧美在线观看| 久热这里只有精品99| 久久久亚洲精品成人影院| 成人漫画全彩无遮挡| 国产日韩欧美视频二区| 九草在线视频观看| 日韩三级伦理在线观看| 亚洲成人一二三区av| 免费大片黄手机在线观看| 精品久久久久久电影网| 亚洲欧美中文字幕日韩二区| 黄色配什么色好看| 亚洲精品色激情综合| 国产 精品1| 日日摸夜夜添夜夜添av毛片| 亚洲色图 男人天堂 中文字幕 | 大片免费播放器 马上看| 涩涩av久久男人的天堂| 亚洲激情五月婷婷啪啪| 色视频在线一区二区三区| 国产深夜福利视频在线观看| 中文天堂在线官网| 亚洲精品久久午夜乱码| 亚洲国产毛片av蜜桃av| 欧美亚洲 丝袜 人妻 在线| 中文字幕av电影在线播放| 亚洲精品一区蜜桃| 99国产综合亚洲精品| 有码 亚洲区| 三级国产精品片| 国产在线视频一区二区| 国产伦精品一区二区三区视频9| 精品久久久精品久久久| 日韩在线高清观看一区二区三区| 国产精品一国产av| 午夜福利影视在线免费观看| 国产精品国产av在线观看| 黄片无遮挡物在线观看| 中文字幕精品免费在线观看视频 | 日韩一本色道免费dvd| 搡老乐熟女国产| 女的被弄到高潮叫床怎么办| 国产永久视频网站| 18禁在线无遮挡免费观看视频| 亚洲国产毛片av蜜桃av| 国产精品无大码| 最近中文字幕高清免费大全6| videos熟女内射| 免费看光身美女| 国产精品一国产av| av电影中文网址| 精品99又大又爽又粗少妇毛片| videosex国产| 搡老乐熟女国产| 九九爱精品视频在线观看| 永久免费av网站大全| 人人澡人人妻人| 极品少妇高潮喷水抽搐| 中文欧美无线码| 最近中文字幕高清免费大全6| 国产亚洲精品第一综合不卡 | 国产男女内射视频| 亚洲av不卡在线观看| 一级毛片黄色毛片免费观看视频| 人人澡人人妻人| 如何舔出高潮| 久久99一区二区三区| 国产片内射在线| 午夜精品国产一区二区电影| 精品人妻偷拍中文字幕| 青春草亚洲视频在线观看| 中文字幕免费在线视频6| 国产av码专区亚洲av| 色哟哟·www| 亚洲精品456在线播放app| 最近中文字幕2019免费版| 2018国产大陆天天弄谢| 久久精品国产亚洲av天美| 波野结衣二区三区在线| 精品久久久久久久久av| 亚洲少妇的诱惑av| 国产午夜精品久久久久久一区二区三区| 久久久久人妻精品一区果冻| 91精品国产九色| 亚洲第一区二区三区不卡| 精品一区在线观看国产| av在线老鸭窝| 日本与韩国留学比较| 午夜老司机福利剧场| 少妇被粗大的猛进出69影院 | 少妇被粗大猛烈的视频| 免费黄色在线免费观看| 久久精品人人爽人人爽视色| xxx大片免费视频| 超碰97精品在线观看| 夜夜看夜夜爽夜夜摸| 亚洲av电影在线观看一区二区三区| 99热这里只有精品一区| 22中文网久久字幕| av一本久久久久| 青春草国产在线视频| 日韩,欧美,国产一区二区三区| 五月玫瑰六月丁香| 婷婷色av中文字幕| 寂寞人妻少妇视频99o| 18禁在线播放成人免费| h视频一区二区三区| 国产成人91sexporn| 丝袜脚勾引网站| 欧美+日韩+精品| 国产成人精品婷婷| 精品国产一区二区三区久久久樱花| 99久久中文字幕三级久久日本| 国产精品一二三区在线看| 日本黄色日本黄色录像| 男女国产视频网站| 亚洲国产毛片av蜜桃av| 色婷婷av一区二区三区视频| 成人二区视频| 汤姆久久久久久久影院中文字幕| 曰老女人黄片| 国产高清不卡午夜福利| 夫妻午夜视频| 午夜影院在线不卡| 观看av在线不卡| 中文字幕精品免费在线观看视频 | 最新的欧美精品一区二区| 精品久久久精品久久久| 日韩熟女老妇一区二区性免费视频| 国产精品一区二区在线不卡| 日韩视频在线欧美| 99热网站在线观看| 日韩亚洲欧美综合| 中文字幕久久专区| 人体艺术视频欧美日本| 搡女人真爽免费视频火全软件| 亚洲av电影在线观看一区二区三区| 国产亚洲精品久久久com| 黑人巨大精品欧美一区二区蜜桃 | 欧美老熟妇乱子伦牲交| 国产精品偷伦视频观看了| 极品人妻少妇av视频| 亚洲国产最新在线播放| 18禁观看日本| 欧美人与善性xxx| 欧美bdsm另类| 久久午夜福利片| 免费少妇av软件| 日韩一本色道免费dvd| 高清不卡的av网站| 亚洲少妇的诱惑av| 街头女战士在线观看网站| 中文字幕精品免费在线观看视频 | av福利片在线| 国产精品久久久久久久久免| 汤姆久久久久久久影院中文字幕| 大香蕉97超碰在线| 色94色欧美一区二区| 狂野欧美激情性xxxx在线观看| 国产视频内射| 18在线观看网站| 久久韩国三级中文字幕| 热re99久久国产66热| 一区二区日韩欧美中文字幕 | 精品人妻在线不人妻| 新久久久久国产一级毛片| 亚洲精品亚洲一区二区| av在线观看视频网站免费| 国产精品欧美亚洲77777| 亚洲人成网站在线播| 欧美日韩成人在线一区二区| 亚洲国产精品成人久久小说| 国产女主播在线喷水免费视频网站| 2018国产大陆天天弄谢| 在线亚洲精品国产二区图片欧美 | 午夜激情av网站| 新久久久久国产一级毛片| 午夜av观看不卡| 一本久久精品| 国产不卡av网站在线观看| 亚洲人成77777在线视频| 午夜免费鲁丝| 丁香六月天网| 国产精品国产三级国产av玫瑰| 精品国产国语对白av| 亚洲国产毛片av蜜桃av| 天堂中文最新版在线下载| 国产av国产精品国产| 中文字幕免费在线视频6| 欧美日韩视频精品一区| 亚洲av免费高清在线观看| 免费av不卡在线播放| 一级片'在线观看视频| 涩涩av久久男人的天堂| 国产精品偷伦视频观看了| 秋霞在线观看毛片| 成人亚洲精品一区在线观看| 久久韩国三级中文字幕| 黄色欧美视频在线观看| 十分钟在线观看高清视频www| 国产成人aa在线观看| 午夜福利网站1000一区二区三区| 国产男人的电影天堂91| 亚洲欧美色中文字幕在线| 亚洲精品久久久久久婷婷小说| 国国产精品蜜臀av免费| 三级国产精品片| av.在线天堂| 一本久久精品| 女人久久www免费人成看片| 天美传媒精品一区二区| 日本91视频免费播放| 免费播放大片免费观看视频在线观看| av不卡在线播放| 五月开心婷婷网| 精品午夜福利在线看| 高清在线视频一区二区三区| 制服丝袜香蕉在线| 一本久久精品| 日韩成人伦理影院| 欧美另类一区| 熟妇人妻不卡中文字幕| 少妇丰满av| 日韩欧美精品免费久久| 人人妻人人澡人人爽人人夜夜| 99热国产这里只有精品6| 性色av一级| 久久久久久久久久人人人人人人| 一区二区三区免费毛片| 精品一区二区三卡| 亚洲综合色网址| 国产日韩欧美在线精品| 亚洲国产av新网站| 亚洲不卡免费看| 22中文网久久字幕| 青春草国产在线视频| 中国美白少妇内射xxxbb| 国产精品女同一区二区软件| 国产日韩欧美在线精品| 男女国产视频网站| 久久久久久久久久久丰满| 亚洲av国产av综合av卡| 午夜激情福利司机影院| 熟女电影av网| 热99国产精品久久久久久7| 一个人看视频在线观看www免费| 国产精品女同一区二区软件| 美女中出高潮动态图| 九色成人免费人妻av| 特大巨黑吊av在线直播| 观看av在线不卡| 亚洲欧美中文字幕日韩二区| 亚洲精品久久久久久婷婷小说| 王馨瑶露胸无遮挡在线观看| 久久久久久久亚洲中文字幕| a级毛片黄视频| 欧美日韩在线观看h| 精品国产乱码久久久久久小说| 精品视频人人做人人爽| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看| 热99国产精品久久久久久7| 多毛熟女@视频| 亚洲天堂av无毛| 国产一区亚洲一区在线观看| 欧美精品国产亚洲| 亚洲av免费高清在线观看| 妹子高潮喷水视频| 九九爱精品视频在线观看| 18禁观看日本| 国产探花极品一区二区| 各种免费的搞黄视频| 欧美三级亚洲精品| 美女主播在线视频| 久久精品久久精品一区二区三区| 五月伊人婷婷丁香| 午夜福利影视在线免费观看| 欧美成人午夜免费资源| 成人毛片a级毛片在线播放| 夫妻午夜视频| 亚洲精品国产av成人精品| 欧美精品高潮呻吟av久久| 看免费成人av毛片| 欧美日韩亚洲高清精品| 精品少妇久久久久久888优播| 综合色丁香网| 国产黄色视频一区二区在线观看| 久久久久久久久久久丰满| 成年人免费黄色播放视频| 亚洲精品,欧美精品| 中文字幕最新亚洲高清| 菩萨蛮人人尽说江南好唐韦庄| 国产色婷婷99| 国产高清不卡午夜福利| 国产精品一国产av| 亚洲婷婷狠狠爱综合网| 亚洲在久久综合| 男的添女的下面高潮视频| 午夜久久久在线观看| 国产69精品久久久久777片| 97在线人人人人妻| 高清视频免费观看一区二区| 最近中文字幕2019免费版| 综合色丁香网| 蜜桃国产av成人99| 母亲3免费完整高清在线观看 | 少妇人妻 视频| 国产综合精华液| 成人午夜精彩视频在线观看| 久久国产精品大桥未久av| 午夜激情久久久久久久| 99热6这里只有精品| 国产精品99久久久久久久久| 国产伦精品一区二区三区视频9| 国产av国产精品国产| 亚洲少妇的诱惑av| 全区人妻精品视频| 一区二区三区四区激情视频| 日韩亚洲欧美综合| 免费看不卡的av| 久久久国产一区二区| 欧美xxxx性猛交bbbb| 天天操日日干夜夜撸| 一级毛片电影观看| 久久人人爽人人片av| 精品国产露脸久久av麻豆| 狂野欧美激情性xxxx在线观看| 欧美精品高潮呻吟av久久| 欧美精品一区二区大全| 日日爽夜夜爽网站| 国产精品99久久久久久久久| 2018国产大陆天天弄谢| 亚洲av成人精品一区久久| 99视频精品全部免费 在线| 一级片'在线观看视频| 久久精品国产鲁丝片午夜精品| 婷婷色麻豆天堂久久| 国产成人a∨麻豆精品| 午夜影院在线不卡| 91国产中文字幕| 熟女人妻精品中文字幕| 国产午夜精品一二区理论片| 婷婷色综合大香蕉| 国产精品一区www在线观看| 久久毛片免费看一区二区三区| 国产精品无大码| 亚洲高清免费不卡视频| 国产精品人妻久久久久久| 国产精品成人在线| 校园人妻丝袜中文字幕| 国产精品人妻久久久久久| 视频区图区小说| 欧美3d第一页| 一个人看视频在线观看www免费| 欧美日韩在线观看h| 日韩亚洲欧美综合| a级片在线免费高清观看视频| 欧美精品一区二区免费开放| 欧美日韩国产mv在线观看视频| 国产免费又黄又爽又色| 国产有黄有色有爽视频| 观看美女的网站| 简卡轻食公司| 18+在线观看网站| 精品人妻偷拍中文字幕| 国产一区亚洲一区在线观看| 国产无遮挡羞羞视频在线观看| a级片在线免费高清观看视频| 91久久精品电影网| 精品久久久精品久久久| 秋霞伦理黄片| 观看av在线不卡| 成人二区视频| 我的老师免费观看完整版| 性色avwww在线观看| 少妇的逼水好多| 国产极品天堂在线| 精品少妇内射三级| 午夜福利,免费看| 人人妻人人添人人爽欧美一区卜| 啦啦啦视频在线资源免费观看| 久久99热6这里只有精品| www.av在线官网国产| 国产日韩一区二区三区精品不卡 | 一级毛片我不卡| 中文字幕人妻熟人妻熟丝袜美| 最新中文字幕久久久久| 老司机影院成人| 久久国产精品男人的天堂亚洲 | 99国产精品免费福利视频| 啦啦啦在线观看免费高清www| 久久久国产欧美日韩av| 亚洲av成人精品一二三区| 亚洲人成网站在线播| 两个人的视频大全免费| 国产亚洲精品久久久com| 女性生殖器流出的白浆| 国产免费一区二区三区四区乱码| 久久婷婷青草| 国产精品成人在线| 欧美xxxx性猛交bbbb| 亚洲av日韩在线播放| 下体分泌物呈黄色| 成人亚洲欧美一区二区av| 成人黄色视频免费在线看| 久久久久久久精品精品| 国产又色又爽无遮挡免| 99热网站在线观看| 天天影视国产精品| 日本av免费视频播放| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 夜夜骑夜夜射夜夜干| 精品国产露脸久久av麻豆| 一边亲一边摸免费视频| 十八禁高潮呻吟视频| 寂寞人妻少妇视频99o| 能在线免费看毛片的网站| 91精品三级在线观看| 久久久精品94久久精品| 亚洲精品一区蜜桃| 欧美人与性动交α欧美精品济南到 | kizo精华| 亚洲av中文av极速乱| 99九九在线精品视频| 伦精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 嘟嘟电影网在线观看| 亚洲精品日韩av片在线观看| 人妻少妇偷人精品九色| 国产又色又爽无遮挡免| 日韩三级伦理在线观看| 亚洲av在线观看美女高潮| 亚洲精品日韩在线中文字幕| 美女国产高潮福利片在线看| 久久久久久久久久久久大奶| 嫩草影院入口| 欧美激情 高清一区二区三区| 97在线视频观看|