• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface treatment of titanium dioxide nanopowder using rotary electrode dielectric barrier discharge reactor

    2021-10-31 08:15:42NawRuthaPAWTakumaKIMURATatsuoISHIJIMAYasunoriTANAKAYusukeNAKANOYoshihikoUESUGIShioriSUEYASUShuWATANABEandKeitaroNAKAMURA
    Plasma Science and Technology 2021年10期

    Naw Rutha PAW, Takuma KIMURA, Tatsuo ISHIJIMA,Yasunori TANAKA, Yusuke NAKANO, Yoshihiko UESUGI,Shiori SUEYASU, Shu WATANABE and Keitaro NAKAMURA

    1 Faculty of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192,Japan

    2 Research Center for Production & Technology, Nisshin Seifun Group Inc., Fujimino 356-8511, Japan

    Abstract Titanium dioxide (TiO2) nanopowder (P-25; Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).After RE-DBD treatment, XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°, which can be attributed to the substitution of new functional groups in the TiO2 lattice.The FTIR results show that hydroxyl groups (OH) at 3400 cm?1 increased considerably.The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species, such as OH radical, ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.

    Keywords: dielectric barrier discharge, nanopowder, reactive species, rotary electrodes, surface treatment, titanium dioxide

    1.Introduction

    Among different semiconductors,titanium dioxide(TiO2)[1]has been regarded as a material with multifunctional applications [1–3] due to its diverse and unique properties.In particular, it is crucially important for photocatalytic applications due to its peculiar application prospects for humidity sensors [4], air treatment [5], air purification [6], water splitting [7], self-cleaning [8], super capacitors [9] and solar energy conversion [10, 11].However, a wide band gap and fast recombination of photo-generated electrons and holes are shortcomings that can reduce the efficiency of pure TiO2.To resolve this difficulty,one possible means of improving TiO2performance is efficient light harvesting.Another means is by obtaining a certain number of holes and photo-generated electrons on the surface before recombination.To achieve the desired performance using this technique, the surface structure is modified using metal doping and non-metal doping methods [12, 13].For metal doping methods, metallic elements, such as Fe [13], Ni [14] and Cu [15], are applied for surface treatment.When using the non-metal doping method,N [16], C [17] and S [13] are used as non-metallic dopants.For metal doping, some shortcomings related to thermal and chemical instability of TiO2remain.Although high doping enhances the band gap, the optical/photocatalytic performance is reduced due to increasing carrier recombination centers [18].Another technique for surface treatment is adding Ti3+[19] and defects of oxygen vacancies [20] in the band gap.In contrast to the case of high doping,instead of the recombination center,this method uses oxygen vacancies and Ti3+to construct a trap center to enhance the band gap.To create a trap center using defects of oxygen vacancies in the lattice of TiO2,vacuum activation[18],surface hydrogenation[9, 21, 22] and plasma treatment [23] have been reported as effective methods for TiO2surface treatment.Using the hydrogenation method, photocatalytic activity can be enhanced because the TiO2surface is functionalized by hydroxyl groups.However, a disadvantage of the hydrogenation method is that it necessitates the use of high temperatures.Moreover, the obtained sample becomes black,which is unsuitable for various optoelectronic applications.The vacuum activation method also increases absorption, but also color effect [18], which is not suitable for transparent electrode applications.

    Among the treatment methods, the plasma treatment has also been reported as an effective method for TiO2surface modification due to its diverse and beneficial properties[18, 24, 25].Recently, Liet al[26] modified anatase-TiO2using dielectric barrier discharge (DBD) argon plasma with 20 min treatment time to enhance photocatalytic degradation.Nevertheless, no report in the relevant literature describes a study of the application of air DBD treatment for commercial TiO2nanopowder modification.Moreover, some problems remain for powder and particulate materials.In the case of a fixed sample treatment method using nonthermal plasma, the process effectiveness is expected to decrease due to the shadow effect as a result of overlapped powders [27].To overcome powder surface overlapping and to treat it uniformly with nonthermal plasma, a rotary electrode dielectric barrier discharge reactor (RE-DBDR) was developed to treat and modify the particulate powder material uniformly during nonthermal plasma exposure on the powder surface.

    As described herein, we propose new devices to implement a simple method with low costs that reduce the treatment time for surface modification.With regard to cost effectiveness, gas treatment was conducted by air.Rotary electrodes were placed while dispersing the powder for uniform treatment.It has been reported that the chamber temperature increases concomitantly with increasing operational frequency [28], which would cause thermal damage to the particulate material and raise the cost of power sources and electrical assemblies.To overcome this difficulty, instead of high frequency,low operation frequency was used to generate nonthermal plasma during treatment.We treated the commercial TiO2nanopowder by taking advantage of the REDBDR using air DBD.The plasma treatment time was set to 3 min for this study.To clarify the time effect, the treatment time was varied with it being set at 3 and 10 min.A marked change in the surface properties was observed after treatment using air DBD.The results indicated that the DBD-treated TiO2nanoparticles enhanced hydroxyl groups on the TiO2nanopowder surface compared with the pure TiO2.Lowtemperature DBD might not only provide a new strategy for surface modification as our newly developed RE-DBD reactor can also engender fast and efficient treatment time for additional industrial applications.

    2.Materials and methods

    2.1.Experiment setup and procedures

    The RE-DBDR experiment setup for powder treatment is presented in figure 1.Two rectangular thin metal plates(68 mm in length, 20 mm in height and 1 mm in thickness)were mounted on a rotating axial rod placed at the center of a cylindrical chamber (70 mm in inner diameter, 80 mm in height and 2 mm in thickness) made of polyoxymethylene(POM) material.The two thin metal plates, with upper and lower sides separated by a distance of 20 mm, are connected to a motor axis using an insulated rod, which allows it to act as a floating electrode in a reactor.Two cylindrical aluminum electrodes (74 mm in diameter, 30 mm in height and 0.2 mm in thickness)were mounted on the outside wall of the reactor with the upper and lower electrodes separated by 10 mm by the cylindrical POM insulator to prevent surface discharge on the external surface between the outside electrodes.For this study,DBD was produced using a cylindrical POM reactor at a high voltage (Vpp=30 kV, frequency=60 Hz).The AC voltage power supply was controlled by a 0–130 V voltage regulator.A high-voltage power supply (Neon Transformer,

    Vop=15 kV;LECIP Holdings Corp.)was used to step up the AC voltage power supply.For voltage measurements, two high-voltage probes (P6015A, 40 kV, 4 ns; Tektronix Inc.)were used.High-voltage probe I was used to measure the output voltage of the transformer.Probe II was used to measure the discharge voltage; for discharge current measurement, a current probe (2877; Pearson Electronics) was used.A monitoring capacitor,Cm=2000 pF,was connected in series with the reactor to measure the transferred charge.Electrical characteristics were observed using a digital oscilloscope (MSO6054A, 500 MHz, 4 GSa/s; Agilent Technologies Inc.).An air compressor (10 L, ACP-10A; Earth Man)introduced air into the reactor.The gas flow rate was controlled to 1.5 slm using a mass flow controller(SEC-E40,Air,10 slm; Horiba Stec, Co., Ltd).A DC high-power motor(12 V, 18 800 rpm) was used for rotating and controlling the high-speed floating electrodes, to provide rotational speed of approximate 5000 rpm.Configurations of the RE-DBDR and an image of the DBD during electrode rotating are depicted in figure 2.

    2.2.Sample preparation

    For sample preparation, titanium dioxide (TiO2) nanopowder(CAS: 13463-67-7, P-25; Degussa AG) was used.The powder had an anatase and rutile ratio of 85:15 and purity of 99.9%.Two treatment samples of the TiO2nanopowder were prepared to study fluctuation of the DBD treatment effect.For DBD treatment, 300 mg of TiO2nanopowder was used for each sample.After the nanopowder was introduced to the inner wall of the cylindrical POM reactor, the reactor was enclosed by a PMMA flange with an O-ring seal and a filter for the powder.Then, the electrodes were rotated by the motor at 5000 rpm, while introducing the operational gas species.Before generating DBD, TiO2nanopowder was dispersed by the electrode rotation for about 30 s.The DBD treatment times of the TiO2nanopowder were,respectively,3 and 10 min.After DBD treatment, the DBD-treated TiO2nanopowder samples were prepared to investigate the crystal structure and surface functional groups using x-ray diffraction(XRD), and Fourier-transform infrared (FTIR) analysis.

    2.3.Crystal characterization

    To analyze the structure and composition of the crystalline phase of the treated TiO2, XRD measurements were taken.The crystal structure of the TiO2nanopowder was identified using an x-ray diffractometer (Miniflex600; Rigaku Corp.).The sample powder was scanned using Cu-Kα radiation with operating voltage of 40 kV and operating current of 15 mA.The surface functional groups of the TiO2nanopowder were characterized using an FTIR spectrometer (Nicolet iS5;Thermo Scientific).The scan number was 16.The resolution was 4.To specify the functional groups on the TiO2nanopowder surface, a transmission sampling method was used.The standard powder ratio (100:1) was prepared for thin transparent pellets.For each measurement, 30 mg of TiO2powder sample was compressed using a hydraulic press to produce a 7 mm diameter thin pellet sample.Three sample pellets were replicated to observe the reproducibility.The error bar was approximately 3%.

    3.Results and discussion

    3.1.Electrical characteristics

    The static electrode configuration and an image of its discharge generation during rotation are shown in figure 2.Electrical characteristics of the RE-DBDR are shown in figures 3(a)and(b).DBD was generated between the edges of the rotary plates and the inner wall surface of the reactor.The waveforms of the applied voltageVa(t),discharge currentI(t) and capacitance voltageVc(t) atfapp=60 Hz andVpp=30 kV and rotational speed=~5000 rpm are shown in figure 3(a).DBD in air is generally influenced by filamentary discharge in nature.Discharges can generate effective reactive species, such as atoms, radicals and excited species with high electron densities (1014–1015cm?3)[24, 29].These species are important for surface treatment.The formation mechanism and distribution of current filaments as surface discharge were discussed in earlier reports[24, 29, 30].The transported charge was measured using a 2000 pF monitoring capacitor connected in series with the reactor to calculate the discharge area.The charge voltage(Q–V)area,also known as the Lissajous figure,was obtained by plotting the applied voltage of the reactor on theX-axis and the transferred charge on theY-axis.In figure 3(b), the Lissajous figure atfapp=60 Hz,Vpp=30 kV and rotational speed=~5000 rpm is shown.Power consumption during the DBD generation can be estimated from the energy by multiplying the frequencyfappand area of the Lissajous figure:Pdis=fapp×area of the Lissajous figure.The discharge power consumption during the powder treatment was 0.75 W.The Lissajous figure resembles an ellipse, indicating the presence of residual ions at all times.The shape effect and characteristics of the Lissajous figure were discussed in the report of an earlier study [29].

    3.2.Optical characteristics

    The optical emission spectra (OES) at 5000 rpm rotational speed are shown in figure 4.To identify the reactive species present in the DBD air plasma, the optical emission spectra were observed at wavelengths of 300–450 nm,as presented in figure 4.The main contributions to the emission spectrum of the air DBD produced by rotary floating electrodes are the nitrogen molecular band spectra of the second positive system(C–B).Moreover, a small peak of OH radical at 308 nm wavelength can also be investigated.The SPS of nitrogen can engender the formation of oxygen atom, producing ozone[29,31,32].Ozone is an active species due to its long lifetime and high oxidation potential.The ozone concentration was monitored using a UV O3analyzer (Model 49i; Thermo Scientific, Inc.) during DBD air discharge.Results show that the average ozone concentration by DBD air plasma was 250 ppm.In general, the initial ozone can be created according to the following equation [32]:

    Therein, M is the third collision molecule, which can be O2,O3or N2.In addition, high UV radiation, oxygen atoms and nitrogen oxides contribute to the decomposition of ozone in the reactor [24, 32].Reactive atomic oxygen can be created from the ozone decomposition process, the surface layer of TiO2.The rotational and vibrational temperatures were 300 and 2500 K,respectively,based on the massive OES[33–35].Based on these results, the surface layer functional group mechanism can be changed by reactive species, such as OH radicals, ozone and atomic oxygen.These oxidative species can play a key role in improving surface properties.

    3.3.XRD analysis

    XRD patterns of pure TiO2nanopowder and DBD-treated TiO2are shown in figure 5(a).The phase theta structure in TiO2powder clearly illustrates the anatase and rutile phases.The phase peaks at 25.3°, 38°, 48°, 62.8° and 69° represent the anatase crystalline phase,whereas the peaks at 27.42°,36.2°,41.4°,54°and 55.4° are assigned to the rutile crystalline phase [36].The crystalline peaks remained the same,indicating that no heat effect caused by the DBD treatment exists on the crystalline structure.In figure 5(b), significant peak shift at anatase (101) and rutile(101) after DBD treatment is shown.Compared with the pure TiO2,the phase theta of anatase shifted from 25.3°to 25.1°.The rutile phase structure peak shifted in a similar way from 27.4°to 27.2° in the DBD-treated TiO2.However, no new peak can be observed in the XRD pattern.Because there was no change in the crystal phase of anatase and rutile peak performance,we assume that the peak shifting is attributed to the new functional group formed on the TiO2[37].

    3.4.FTIR analysis

    To confirm the fluctuation level, we produced three pellets of TiO2nanopowder using 0,3 and 10 min treatment.Figure 6(a)shows the FTIR spectra of pure TiO2at 3 and 10 min DBDtreated TiO2nanopowder at wavenumbers of 400–4000 cm?1.Figure 6(b) shows peaks at 1800–1200 cm?1.The obtained FTIR spectra had similar profiles for each treatment time,suggesting that uniform treatment of TiO2nanopowder surface was realized using RE-DBDR.Figure 6(a)shows transmittance in the vibrational band of 400–1250 cm?1, which is the result produced by the O–Ti–O lattice[38,39].Change in the O–Ti–O peak was observed after 3 min treatment.The peak at around 1630 cm?1was assigned to the Ti–O structure [36].Peaks at 350–3000 cm?1are denoted by bending vibration of the hydroxyl(OH)or H2O group.Formation of the OH groups has been reported [38, 39].This group has very high and strong oxidation capability.Results show that Ti–O–Ti and OH band did not appear clearly with increasing DBD treatment time,suggesting TiO2nanopowder modification.The DBD-treated TiO2nanopowder shows gas phase CO2band at 2348 cm?1,indicating CO2adsorption on the surface [40,41].Figure 6(b)shows a functional group peak at 1385 cm?1after DBD plasma treatment; the peak is assigned to C–H/COO groups.The C–H/COO group was detected due to the formation of CO2[26, 40, 42] on the TiO2surface.These results indicate a porous carbon layer formation on the TiO2nanopowder, presumably due to chemical and physical activation processes[42,43].The carbon source might be the air compressor or the reactor wall from the POM chamber by etching due to DBD.Identification of the carbon layer formation and its carbon source remains a subject for future work.Formation of the C–H/COO group and the gas phase CO2band at 2348 cm?1showed a stronger peak in both DBD treatments, indicating that the surface functional groups of commercial TiO2surface properties can be enhanced remarkably with the assistance of reactive species in DBD.

    Figure 1.Experiment setup for a RE-DBDR.

    Figure 2.Schematic diagram of a RE-DBDR.(a) Top view, (b) cross-sectional view and (c) photograph of a RE-DBDR with DBD generation while rotating.

    Figure 3.Electrical characteristic of RE-DBDR.(a) Voltage and current waveforms of RE-DBDR; I(t) is discharge current, Va(t) is applied voltage and Vc(t) is capacitance voltage; (b) Lissajous figure at fapp=60 Hz, Vpp=30 kV, rotational speed=5000 rpm.

    Figure 4.OES of RE-DBDR at fapp=60 Hz, Vpp=30 kV and 5000 rpm rotational speed.

    Figure 5.XRD patterns.(a)TiO2 nanoparticles,DBD-treated TiO2(3 min)and DBD-treated TiO2(10 min);(b)XRD pattern at anatase(101)and rutile (101) at fapp=60 Hz, Vpp=30 kV and 5000 rpm rotational speed.

    Figure 6.FTIR spectra of pure TiO2 nanoparticles.3 min and 10 min DBD-treated TiO2 in the wavenumber between (a) 400 cm?1 and 3800 cm?1 and (b) 1200 cm?1 and 1800 cm?1 at fapp=60 Hz,Vpp=30 kV and 5000 rpm rotational speed.

    4.Conclusion

    In conclusion, we processed and modified surface properties of RE-DBDR-treated P-25 TiO2nanopowders.Nonthermal barrier filamentary discharge was generated to treat and modify the TiO2nanoparticle surface in an air atmosphere using RE-DBDR.Using RE-DBDR, we treated the TiO2nanopowder at low temperatures for 3 and 10 min.It would be more interesting to apply RE-DBD in a continuous process, because the present study was conducted in a batch process.More detailed treatment time dependence is necessary as future work.Treatment with air DBD engenders remarkable modification of the TiO2nanopowder surface properties compared with untreated TiO2.The XRD patterns show that the peak shifted to a lower theta degree.Moreover,the FTIR results confirmed the surface functional groups and the porous carbon layer formation on the power surface.OES analyses elucidated the mechanism of the surface layer functional group.The main contributions to the emission spectrum of the air DBD produced by rotatable floating electrodes are the nitrogen molecular band spectra of the second positive system (C–B).Based on the OES results,reactive species, such as OH radical, ozone and atomic oxygen can play key roles in hydroxyl formation on TiO2nanopowder surface.These results constitute important information for improving nanopowder surface modification based on nonthermal DBD treatment for additional optoelectronic, environmental and energy applications.

    Acknowledgments

    The first author extends her sincere gratitude to her senior,Mr Kentaro Morimoto, for initiating the development of the rotary floating electrode reactor for particulate material treatment and another senior, Dr Mohammad Rasel Pervez,for valuable advice.

    a 毛片基地| 一本久久精品| 免费黄色在线免费观看| 亚洲国产毛片av蜜桃av| 久久久国产精品麻豆| 一级,二级,三级黄色视频| 日本wwww免费看| 欧美日韩视频高清一区二区三区二| 国产片特级美女逼逼视频| videos熟女内射| 久久久久国产网址| 一区二区三区精品91| 一级片'在线观看视频| videossex国产| 超碰97精品在线观看| 精品视频人人做人人爽| 纵有疾风起免费观看全集完整版| 多毛熟女@视频| 免费日韩欧美在线观看| 久久狼人影院| 肉色欧美久久久久久久蜜桃| av网站在线播放免费| 国产在视频线精品| 天天躁狠狠躁夜夜躁狠狠躁| av有码第一页| 制服诱惑二区| 卡戴珊不雅视频在线播放| 啦啦啦啦在线视频资源| 亚洲精华国产精华液的使用体验| 国产精品熟女久久久久浪| 精品人妻一区二区三区麻豆| 狠狠婷婷综合久久久久久88av| 黄片无遮挡物在线观看| 日韩av在线免费看完整版不卡| 国语对白做爰xxxⅹ性视频网站| 国产精品嫩草影院av在线观看| 在线亚洲精品国产二区图片欧美| 精品国产一区二区三区四区第35| 90打野战视频偷拍视频| 大香蕉久久成人网| 2018国产大陆天天弄谢| 人妻人人澡人人爽人人| 天天躁夜夜躁狠狠躁躁| 欧美激情 高清一区二区三区| 欧美xxⅹ黑人| 国产97色在线日韩免费| 亚洲国产精品一区三区| 美国免费a级毛片| 在线亚洲精品国产二区图片欧美| 免费在线观看完整版高清| 亚洲国产精品一区二区三区在线| av免费观看日本| 丰满乱子伦码专区| 中文字幕精品免费在线观看视频| 久久久久国产精品人妻一区二区| 少妇熟女欧美另类| 伊人久久大香线蕉亚洲五| 亚洲少妇的诱惑av| 一区二区日韩欧美中文字幕| 人人妻人人爽人人添夜夜欢视频| 国产精品无大码| 观看美女的网站| 婷婷色av中文字幕| 亚洲成色77777| 极品人妻少妇av视频| 国产成人a∨麻豆精品| 18禁观看日本| av.在线天堂| 国产一区亚洲一区在线观看| 中文乱码字字幕精品一区二区三区| 免费少妇av软件| 亚洲av日韩在线播放| 一级片'在线观看视频| 曰老女人黄片| 尾随美女入室| 波多野结衣一区麻豆| 精品少妇久久久久久888优播| av电影中文网址| 亚洲av在线观看美女高潮| 欧美最新免费一区二区三区| av网站在线播放免费| 黄色视频在线播放观看不卡| 亚洲男人天堂网一区| 男人操女人黄网站| 久久精品国产综合久久久| 国产乱人偷精品视频| 熟女电影av网| 欧美另类一区| 中文字幕亚洲精品专区| 大陆偷拍与自拍| 亚洲成国产人片在线观看| 日日摸夜夜添夜夜爱| a级毛片黄视频| 高清在线视频一区二区三区| 大话2 男鬼变身卡| 欧美精品国产亚洲| 欧美日韩精品成人综合77777| 国产成人精品婷婷| 日韩欧美精品免费久久| 丝袜在线中文字幕| 免费看不卡的av| 伊人亚洲综合成人网| 亚洲av男天堂| 啦啦啦视频在线资源免费观看| 久久国内精品自在自线图片| 韩国精品一区二区三区| 国产毛片在线视频| 欧美日韩视频精品一区| 免费观看无遮挡的男女| 青春草视频在线免费观看| 日韩av在线免费看完整版不卡| 国产日韩欧美在线精品| 亚洲成人av在线免费| 中国三级夫妇交换| 狂野欧美激情性bbbbbb| 亚洲第一青青草原| 亚洲av.av天堂| av不卡在线播放| 国产淫语在线视频| av福利片在线| 亚洲国产色片| 国产不卡av网站在线观看| 男人操女人黄网站| 亚洲av免费高清在线观看| 在线观看免费视频网站a站| 亚洲精品自拍成人| 91精品伊人久久大香线蕉| 午夜福利视频在线观看免费| 亚洲人成电影观看| 精品卡一卡二卡四卡免费| 一级爰片在线观看| 日本av免费视频播放| 久久国产亚洲av麻豆专区| 国产乱人偷精品视频| 国产福利在线免费观看视频| 久久99热这里只频精品6学生| 韩国精品一区二区三区| 精品福利永久在线观看| 日日爽夜夜爽网站| 久久国产精品男人的天堂亚洲| 电影成人av| 在线观看国产h片| 美女视频免费永久观看网站| 男女免费视频国产| av在线播放精品| 国产亚洲精品第一综合不卡| 日韩一本色道免费dvd| 国产高清国产精品国产三级| 欧美 日韩 精品 国产| 国产毛片在线视频| 99国产综合亚洲精品| 国产深夜福利视频在线观看| av视频免费观看在线观看| 亚洲av电影在线进入| 一级,二级,三级黄色视频| 亚洲国产av影院在线观看| 丰满迷人的少妇在线观看| 欧美人与性动交α欧美软件| 亚洲三区欧美一区| 国产日韩欧美在线精品| 九草在线视频观看| 免费高清在线观看视频在线观看| 久久久久国产一级毛片高清牌| 天天躁日日躁夜夜躁夜夜| 自线自在国产av| 亚洲精品美女久久av网站| 久久免费观看电影| 777米奇影视久久| 美国免费a级毛片| 午夜免费鲁丝| 精品少妇一区二区三区视频日本电影 | 欧美 亚洲 国产 日韩一| 999精品在线视频| 18+在线观看网站| 国产男女超爽视频在线观看| freevideosex欧美| av天堂久久9| 伊人久久大香线蕉亚洲五| 亚洲av日韩在线播放| 久久人人爽av亚洲精品天堂| 久久久国产欧美日韩av| 国产精品一国产av| 老司机亚洲免费影院| 欧美黄色片欧美黄色片| 亚洲国产欧美在线一区| 男人舔女人的私密视频| 男女免费视频国产| 嫩草影院入口| 在线观看免费视频网站a站| 欧美人与性动交α欧美精品济南到 | 纯流量卡能插随身wifi吗| 免费女性裸体啪啪无遮挡网站| 精品第一国产精品| 巨乳人妻的诱惑在线观看| 大香蕉久久成人网| 国产免费男女视频| 国产一区二区激情短视频| 成年女人毛片免费观看观看9| 亚洲欧美激情在线| 51午夜福利影视在线观看| 亚洲情色 制服丝袜| 日本五十路高清| 一级,二级,三级黄色视频| 看片在线看免费视频| 午夜福利欧美成人| 极品人妻少妇av视频| 国产乱人伦免费视频| 亚洲中文av在线| 免费久久久久久久精品成人欧美视频| av中文乱码字幕在线| 丝袜人妻中文字幕| 岛国在线观看网站| 露出奶头的视频| 老司机深夜福利视频在线观看| 欧美黄色片欧美黄色片| 国产成人欧美在线观看| 天天躁夜夜躁狠狠躁躁| 十八禁人妻一区二区| 国产亚洲精品一区二区www| 黄片小视频在线播放| 三级毛片av免费| 黄色成人免费大全| 亚洲精品中文字幕一二三四区| 夜夜躁狠狠躁天天躁| 波多野结衣av一区二区av| 亚洲五月婷婷丁香| 在线十欧美十亚洲十日本专区| 国产欧美日韩精品亚洲av| 91麻豆av在线| 男女午夜视频在线观看| 在线观看日韩欧美| 亚洲专区国产一区二区| 亚洲欧美一区二区三区黑人| 91在线观看av| 久久中文看片网| 精品国产一区二区久久| 国产成人啪精品午夜网站| 亚洲一区二区三区欧美精品| 成人国语在线视频| 亚洲专区字幕在线| 亚洲国产精品999在线| 日韩欧美免费精品| 夜夜夜夜夜久久久久| 看黄色毛片网站| 日韩免费av在线播放| 国产片内射在线| 国产精品1区2区在线观看.| 欧美黑人精品巨大| 黄片大片在线免费观看| 久久人妻av系列| 不卡一级毛片| 欧美老熟妇乱子伦牲交| 男女下面插进去视频免费观看| www.精华液| 国产亚洲av高清不卡| 国产成年人精品一区二区 | 国产伦一二天堂av在线观看| 99re在线观看精品视频| av网站免费在线观看视频| 最新美女视频免费是黄的| 最好的美女福利视频网| 黄色片一级片一级黄色片| 又紧又爽又黄一区二区| 国产成人精品无人区| 在线观看免费高清a一片| 在线永久观看黄色视频| 老司机福利观看| 久久久久久人人人人人| 国产精华一区二区三区| 侵犯人妻中文字幕一二三四区| 少妇裸体淫交视频免费看高清 | 久久精品aⅴ一区二区三区四区| 很黄的视频免费| 国产一区二区三区视频了| 久久亚洲真实| 亚洲va日本ⅴa欧美va伊人久久| 女性生殖器流出的白浆| 欧美最黄视频在线播放免费 | 精品午夜福利视频在线观看一区| 国产av在哪里看| 香蕉国产在线看| 国产精品99久久99久久久不卡| 亚洲性夜色夜夜综合| 国产99久久九九免费精品| 少妇被粗大的猛进出69影院| 亚洲国产中文字幕在线视频| 午夜福利欧美成人| 国产人伦9x9x在线观看| 精品人妻在线不人妻| 国产区一区二久久| 99久久人妻综合| 后天国语完整版免费观看| 久热爱精品视频在线9| 一夜夜www| 亚洲av片天天在线观看| 国产免费现黄频在线看| 色在线成人网| 免费在线观看亚洲国产| 伊人久久大香线蕉亚洲五| 欧美成狂野欧美在线观看| 国产精品免费视频内射| 久久天躁狠狠躁夜夜2o2o| 老司机深夜福利视频在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲情色 制服丝袜| 国产av一区二区精品久久| 亚洲欧美精品综合久久99| 女人高潮潮喷娇喘18禁视频| 99久久国产精品久久久| 午夜精品国产一区二区电影| 69精品国产乱码久久久| 欧美亚洲日本最大视频资源| 十八禁人妻一区二区| 水蜜桃什么品种好| 老鸭窝网址在线观看| 国产免费男女视频| 51午夜福利影视在线观看| 欧美乱码精品一区二区三区| 国产av精品麻豆| 99国产精品99久久久久| 琪琪午夜伦伦电影理论片6080| 精品国产乱子伦一区二区三区| 国产精品久久久人人做人人爽| 久久久久国产一级毛片高清牌| 亚洲精品一区av在线观看| 久99久视频精品免费| 身体一侧抽搐| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区二区三区色噜噜 | 9热在线视频观看99| 亚洲七黄色美女视频| 美国免费a级毛片| 亚洲人成77777在线视频| 久久 成人 亚洲| 国产一区二区三区综合在线观看| 50天的宝宝边吃奶边哭怎么回事| 天堂动漫精品| 国产激情欧美一区二区| 国产一区二区在线av高清观看| 亚洲欧美日韩高清在线视频| 80岁老熟妇乱子伦牲交| 黄色丝袜av网址大全| 婷婷六月久久综合丁香| 免费av中文字幕在线| 男女下面进入的视频免费午夜 | 欧美成人性av电影在线观看| 国产精品国产高清国产av| 久久人妻熟女aⅴ| 久久精品亚洲精品国产色婷小说| 18禁美女被吸乳视频| 国产精品久久久久成人av| 久久久精品欧美日韩精品| 国产成人精品久久二区二区免费| 国产成人精品在线电影| 国产熟女xx| 99精国产麻豆久久婷婷| 欧美乱色亚洲激情| 黄频高清免费视频| 免费日韩欧美在线观看| 大型av网站在线播放| 在线十欧美十亚洲十日本专区| 18禁美女被吸乳视频| 超碰成人久久| 国产成人精品无人区| 岛国在线观看网站| 一级,二级,三级黄色视频| av免费在线观看网站| 亚洲精华国产精华精| 老司机在亚洲福利影院| 视频在线观看一区二区三区| 亚洲人成网站在线播放欧美日韩| 男人的好看免费观看在线视频 | 很黄的视频免费| 久久久久亚洲av毛片大全| 无人区码免费观看不卡| 国产三级在线视频| 欧美成人免费av一区二区三区| 亚洲国产精品sss在线观看 | 国产三级在线视频| 婷婷丁香在线五月| 日韩欧美一区视频在线观看| 欧美中文综合在线视频| 亚洲激情在线av| 最新美女视频免费是黄的| 免费在线观看完整版高清| 人人澡人人妻人| 91精品三级在线观看| 一级毛片女人18水好多| 欧美日韩中文字幕国产精品一区二区三区 | 欧美成人免费av一区二区三区| 日本欧美视频一区| 国内久久婷婷六月综合欲色啪| 一进一出好大好爽视频| 黄片播放在线免费| 黄色视频不卡| 精品卡一卡二卡四卡免费| 俄罗斯特黄特色一大片| www日本在线高清视频| 高清黄色对白视频在线免费看| 欧美日韩av久久| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩另类电影网站| 男人操女人黄网站| 神马国产精品三级电影在线观看 | 国产高清激情床上av| 在线播放国产精品三级| 日韩欧美三级三区| 亚洲精品av麻豆狂野| 久久久久久久午夜电影 | 久久亚洲真实| 亚洲三区欧美一区| 操出白浆在线播放| 国产精品久久久久成人av| 国产成人精品久久二区二区91| 国产精品一区二区精品视频观看| 嫁个100分男人电影在线观看| 欧美日韩黄片免| 在线观看日韩欧美| 亚洲成人免费av在线播放| 成人三级做爰电影| 亚洲成人国产一区在线观看| 可以在线观看毛片的网站| 欧美日韩中文字幕国产精品一区二区三区 | 久久午夜综合久久蜜桃| 久久精品影院6| 国产成人精品久久二区二区免费| 精品免费久久久久久久清纯| 黄色成人免费大全| 久久精品亚洲av国产电影网| 成人国产一区最新在线观看| 一级作爱视频免费观看| 久久香蕉精品热| 国产成年人精品一区二区 | x7x7x7水蜜桃| 一二三四在线观看免费中文在| av在线天堂中文字幕 | 午夜视频精品福利| 亚洲人成电影观看| a级毛片黄视频| 国产亚洲精品久久久久5区| 中文字幕av电影在线播放| 国产欧美日韩一区二区三| 欧美黄色淫秽网站| 久久人人97超碰香蕉20202| 一区二区三区精品91| 在线观看66精品国产| 最近最新中文字幕大全免费视频| 91九色精品人成在线观看| 99re在线观看精品视频| 狂野欧美激情性xxxx| 午夜免费成人在线视频| 日韩有码中文字幕| 色哟哟哟哟哟哟| 热99re8久久精品国产| 久久国产乱子伦精品免费另类| 亚洲精品国产一区二区精华液| 丰满的人妻完整版| 日日摸夜夜添夜夜添小说| 黑丝袜美女国产一区| 亚洲国产精品合色在线| 91国产中文字幕| 大型黄色视频在线免费观看| 99久久综合精品五月天人人| 精品人妻1区二区| 视频区图区小说| 99国产精品一区二区蜜桃av| 91精品三级在线观看| 亚洲精品国产一区二区精华液| 亚洲精品一区av在线观看| 免费在线观看黄色视频的| 亚洲人成网站在线播放欧美日韩| 交换朋友夫妻互换小说| 欧美 亚洲 国产 日韩一| 亚洲狠狠婷婷综合久久图片| 亚洲 欧美一区二区三区| a级片在线免费高清观看视频| 首页视频小说图片口味搜索| 国产精品影院久久| 极品人妻少妇av视频| 久久人人97超碰香蕉20202| 免费在线观看黄色视频的| 亚洲全国av大片| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产超薄肉色丝袜足j| 日本免费a在线| 亚洲色图 男人天堂 中文字幕| 99国产精品一区二区三区| 极品教师在线免费播放| 一区二区三区国产精品乱码| 国产三级黄色录像| 人人妻人人添人人爽欧美一区卜| 亚洲av美国av| 久久人人爽av亚洲精品天堂| 亚洲视频免费观看视频| svipshipincom国产片| 久久精品国产亚洲av香蕉五月| 亚洲精品国产一区二区精华液| 男人舔女人下体高潮全视频| 大码成人一级视频| 日韩成人在线观看一区二区三区| 性少妇av在线| 国产男靠女视频免费网站| 99热国产这里只有精品6| 午夜视频精品福利| 欧美日韩福利视频一区二区| 国产无遮挡羞羞视频在线观看| 91成年电影在线观看| 真人做人爱边吃奶动态| 19禁男女啪啪无遮挡网站| 脱女人内裤的视频| 日韩三级视频一区二区三区| 黄色a级毛片大全视频| 亚洲av美国av| 91老司机精品| 99精品欧美一区二区三区四区| 日本三级黄在线观看| 中文字幕人妻丝袜一区二区| 国产在线精品亚洲第一网站| 欧美黄色片欧美黄色片| 最近最新中文字幕大全电影3 | 久久久久国内视频| 少妇 在线观看| 久久精品成人免费网站| 精品国产超薄肉色丝袜足j| 国产精华一区二区三区| 久久久久久免费高清国产稀缺| 亚洲五月婷婷丁香| 超碰97精品在线观看| 99香蕉大伊视频| 精品电影一区二区在线| 69精品国产乱码久久久| 三上悠亚av全集在线观看| 别揉我奶头~嗯~啊~动态视频| 一进一出抽搐gif免费好疼 | 12—13女人毛片做爰片一| 久久性视频一级片| 久久婷婷成人综合色麻豆| 99久久国产精品久久久| 97碰自拍视频| 夜夜夜夜夜久久久久| 天天影视国产精品| 成人三级做爰电影| 男女做爰动态图高潮gif福利片 | 别揉我奶头~嗯~啊~动态视频| ponron亚洲| 日本wwww免费看| 久久久国产欧美日韩av| 国产单亲对白刺激| 在线观看免费视频网站a站| 高清在线国产一区| 国产一卡二卡三卡精品| 久久久久久久久免费视频了| 十八禁网站免费在线| 亚洲精品av麻豆狂野| 一个人免费在线观看的高清视频| 搡老熟女国产l中国老女人| 性色av乱码一区二区三区2| 亚洲色图av天堂| 久久精品成人免费网站| 欧美日韩黄片免| 国产国语露脸激情在线看| 他把我摸到了高潮在线观看| 国产成人啪精品午夜网站| 国产精品免费一区二区三区在线| 久久午夜综合久久蜜桃| 欧美老熟妇乱子伦牲交| 99精品在免费线老司机午夜| 亚洲人成77777在线视频| 中文字幕精品免费在线观看视频| 亚洲av熟女| 女性被躁到高潮视频| 电影成人av| 黄网站色视频无遮挡免费观看| 久久午夜亚洲精品久久| 18禁观看日本| 久久久国产成人精品二区 | av网站在线播放免费| 国产欧美日韩一区二区三| 淫妇啪啪啪对白视频| 国产精品九九99| 国产精品久久久久成人av| a级毛片在线看网站| 在线观看www视频免费| 国产成人av教育| 亚洲欧美日韩无卡精品| 日韩欧美在线二视频| 在线免费观看的www视频| 日日摸夜夜添夜夜添小说| 91av网站免费观看| 国产精品99久久99久久久不卡| 成年人黄色毛片网站| 成人国产一区最新在线观看| 精品欧美一区二区三区在线| 国产欧美日韩一区二区三| 国产精品电影一区二区三区| 成在线人永久免费视频| 不卡av一区二区三区| 日韩大码丰满熟妇| 国产成人欧美| 俄罗斯特黄特色一大片| 99国产精品一区二区三区| 色精品久久人妻99蜜桃| 亚洲精品国产区一区二| 99久久国产精品久久久| 亚洲第一av免费看| xxx96com| 极品教师在线免费播放| 国产精品1区2区在线观看.| 欧美色视频一区免费| av中文乱码字幕在线| 熟女少妇亚洲综合色aaa.| 久久精品国产清高在天天线| 国产99久久九九免费精品| 国产精品av久久久久免费| 757午夜福利合集在线观看|