• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy

    2020-07-09 07:45:48GuodongWANG王國(guó)棟LanxiangSUN孫蘭香WeiWANG汪為TongCHEN陳彤MeitingGUO郭美亭andPengZHANG張鵬
    Plasma Science and Technology 2020年7期
    關(guān)鍵詞:陳彤張鵬

    Guodong WANG (王國(guó)棟),Lanxiang SUN (孫蘭香),Wei WANG (汪為),Tong CHEN (陳彤),Meiting GUO (郭美亭) and Peng ZHANG (張鵬)

    1 State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,People’s Republic of China

    2 Key Laboratory of Networked Control Systems,Chinese Academy of Sciences,Shenyang 110016,People’s Republic of China

    3 Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,People’s Republic of China

    4 University of Chinese Academy of Sciences,Beijing 100049,People’s Republic of China

    5 Author to whom any correspondence should be addressed.

    Abstract

    Keywords:laser-induced breakdown spectroscopy,feature selection,ridge regression,recursive feature elimination,quantitative analysis

    1.Introduction

    The laser-induced breakdown spectroscopy (LIBS)technique generates a transient plasma by utilizing a focusing lens focusing the laser beams on the sample surface to realize the ablation excitation of the measured sample,then qualitative and quantitative analysis of the element components of tested sample could be conducted by the collection and analysis of plasma emission spectrum.The LIBS technique has been widely used in chemical element analysis,as it has many advantages such as full-element,in situ,on-line,quick and without sample preparation[1,2].However,most of samples contain complex element information,which makes the univariate method usually be unreliable as the determination of analytical element is easily affected by other elements[3].By contrast,the multivariable analysis method can make full use of the information of spectroscopy to obtain a better analysis[4,5],but too much feature data as model inputs will significantly increase the model complexity and easily lead to over-fitting.Hence,it is important to carry out the feature selection of high dimension spectral data to reduce the dimension of the input data [6,7].

    According to the manner of feature subset generation,feature selection can be divided into three pattern including filter,wrapper and embedding [8,9].Bella et al [10]conducted the characteristic selection of the spectral data by exploiting the method of analysis of variance,using the most useful features to fast identify the parchment.Larsson et al[11]used the median of the standard deviation of the peak intensity to set the intensity threshold so that removing the redundant spectrum for biological sample classification.These filter feature selection methods can screen a single characteristic line by calculating a certain statistical index for spectrum feature selection,and eventually receive spectrum futures with a huge number of similar properties.

    Considering the influence of the overall spectral characteristic line of feature subset on fitting result,the wrapper manner firstly uses intelligent optimization algorithm such as genetic algorithm (GA) and particle swarm optimization algorithm(PSO)to produce a feature subset,and then applies the ultimate fitting model to evaluate the feature subset,and the optimal feature subset could be found according to the module fitting result.Kong et al [12]utilized the GA to generate a feature subset,and for five elements including Mn,Ni,Cr,Si and Fe in the low alloy steel,they proved that the spectrum selection manner using GA in combination with internal calibration method can receive the best consequence for internal calibration analysis.Yan et al [13]applied V-WSP filter feature selection manner to remove regardless and redundancy feature in advance,then exploit PSO algorithm to generate feature subsets,and then the feature selection way of V-WSP-PSO selected 114 dimension features from the 27 620 dimension features,effectively reducing input dimension.The wrapper method evaluates the feature subset by the fitting result of the ultimate fitting model,whose final fitting result generally preceded the manner of filter which evaluates the individual spectral lines [14].However,this will bring out the problem of over-fitting,when we apply the final fitting model to evaluate the subset.Besides,the random search algorithm for subset selection is generally time-consuming because of the large searching space of subsets.

    The embedding method utilizes the model whose loss function with L1 or L2 regular penalty term to implement concentration fitting,and estimates the importance of every feature according to the model fitting coefficients.The absolute value of the coefficients of unimportant features is usually zero or close to zero during the fitting procedure.Shen et al [15]obtained spectrum data from traditional Chinese medicine ‘SanQi’,and compared three multivariable regression model that are Lasso,LS-SVM,and PLS,with the full spectrum characteristic lines and characteristic lines selected by Lasso as model inputs.Their result indicates that the performance of the LS-SVM as regression model is superior to that of other model when the spectrum feature selection is carried out through Lasso,for the five elements of K,Ca,Mg,Zn,and B.Compared with the wrapper method,the embedding feature selection method conducts model training only for one time,so that the whole process deucedly depends on the model fitting result.

    This paper presents a wrapped feature selection method combining ridge regression and recursive feature elimination(Ridge-RFE).To overcome the problem of over-fitting and too large feature subset search space of the wrapped method,this method takes advantage of the ridge regression [16,17]for feature selection,which can not only relieve the overfitting produced by too much spectrum feature,but also process the multicollinearity problem [18,19]which is common in spectrum data treatment.During a round of subset selection procedure,we can eliminate the feature with the minimum absolute value of the coefficient in the regression equation by recursive feature elimination(RFE)[20],and use residual features as inputs of PLS model for cross validation.By repeating the above steps until all features are deleted,we can finally find the optimal feature subset according to the root mean square error of cross-validation (RMSECV).

    2.Experimental

    2.1.Instrument

    The experimental device is a portable LIBS analyzer developed by the Shenyang Institute of Automation,Chinese Academy of Sciences.The excitation light source is YLP-C-20 fiber laser from China Jiepu,the maximum power is 20 W,the single pulse energy is 0.8 mJ,the pulse width is 200 ns,and the excitation frequency is 25 kHz.The laser source was focused on the surface of the sample through a 40 mm focal lens.The spectral signal which is a 1×4094 dimensional vector was collected using the AvaSpec-Mini spectrometer from Avantes B.V.of the Netherlands,and the wavelength range of the spectrometer is 215–394 nm.

    2.2.Sample and spectral data

    In this experiment,fifty-one standard aluminum alloy samples,including 5 samples made by the Benxi Alloy Plant of China Nonferrous Metals Industry Corporation,and 11 samples made by Shenyang Fushun Aluminum Plant Standard Sample Research Institute,and the remaining samples made by the Southwest Aluminum Co.,Ltd.Smelting plant,were used for the analysis.The concentrations of major elements,Mg,Si,Mn,Fe,Cu,and Zn are shown in table 1.LIBSport has a line scan function that scans 22 points in per measurement.There is no time resolution in the spectrumacquisition,each spectrum is the cumulative spectrum of 6 life cycles of the plasma,and the average spectrum of 22 spectra is taken as the spectrum obtained in one measurement.In order to reduce the uncertainty in the line intensities,each sample is measured at 10 different positions,and the average of 10 spectra is taken as the spectral data of each sample.The final spectral data is 51×4094.In order to obtain normalized spectral data normalization with the whole spectrum area[21]is applied.For analysis,we selected 6 random samples for validation and the rest of those were as a calibration set.In order to reduce the influence of different characteristic line dimensions on the calibration results,a standardized method was used for calibration set and validation set.The specific standardization process is as follows:

    whereXis the original data;uis the mean of the calibration original data;σis the standard deviation of the calibration original data; 'Xis the standardized data.

    2.3.Evaluation method

    The determination coefficients of cross-validation (),the RMSECV and the root mean square error of prediction(RMSEP) were used to assess the performance of the calibration and prediction qualities of the model.The following equation was used to calculate:

    whereNis the number of calibration samples.RMSEP is defined as in equation (4):

    whereNpis the number of validation samples.

    3.Algorithm structure

    3.1.Ridge regression

    For multivariate linear regression,the principle formula is as follows:

    where,the solutions ofωandbareω* andb* respectively,andyirepresents the true value.The input matrix of independent variablexiisX,and the actual output valueyiconstitutes a vectory.The solution of regression equation is usually obtained by the following formula:

    where,XTrepresents the transposed matrix ofX.However,in spectral data,there is multicollinearity between characteristic lines of the same element,then the matrixX XT is a singular matrix,which makes the accurate regression analysis can not be obtained by the ordinary least square method.At this point,data dimensionality reduction or regularization is needed to solve the problem.Ridge regression was first proposed by Hoerl [18]to solve the problem of multicollinearity among independent variables,and the standard deviation of parameters obtained by ridge regression was relatively small.The ridge regression is to introduce the diagonal matrix ofrIin equation (7) when calculating the solution of parameterω,that is,to introduce the L2 regular term into the loss function

    In equations (8) and (9),r>0,which makesXTX+rImuch less strange thanX X.T The introduction of L2 regular term in loss function can alleviate the over-fitting problem to some extent.

    3.2.Feature selection based on ridge regression

    RFE is a kind of wrapped[22]feature selection method.This method uses a base model for multi-round training.After each round of training,several features of weight coefficients are removed,and the next round of training is based on a new feature subset.The RFE method recursively reduces the size of feature subsets by sequential backward selection.At the earliest time,RFE was used for feature selection to solve classification problems.In this paper,the ridge regression is used as the basic model of RFE to solve the quantitative problem.The ridge regression model is used to fit the calibration set data,and the regression coefficients are recorded.The spectral features are sorted according to the absolute value of the regression coefficients.The lowest ranking spectral feature is deleted from the feature set in each cycle.In order to evaluate the features,residual features are used as inputs of PLS model for validation and RMSECV is recorded,until the features are all deleted.Finally,the optimal feature subset is determined according to the minimal RMSECV recorded in each iteration.The algorithm flow is shown in figure 1.

    4.Results and discussion

    4.1.PLS calibration results

    Figure 1.Detailed process based on ridge regression algorithm.

    Partial least squares regression(PLS)is a classical method of multivariate statistical analysis.Especially for data with small dimension and low sample and multicollinearity problem between independent variables,this method can reduce the independent variable dimension by extracting principal components to ensure the maximum expression of independent variable information.At the same time,it can guarantee the high correlation between the principal components of the dependent variable and the principal components of the independent variable.Therefore,it is called the second generation regression method.The full spectrum features were used as the input of PLS model to quantify the concentration of six elements of Fe,Si,Mg,Cu,Zn and Mn in aluminum alloy samples,and the best calibration results were obtained by changing the number of principal components with the method of leave-one-out cross validation.The calibration results are displayed in figure 2.

    From the calibration results in figure 2,theof the Fe element is only 0.9566,the RMSECV is 0.0601 wt%,and the RMSEP is 0.0476 wt%.The possible reason for this result is that the content of Fe in the aluminum alloy is low,and using the cumulative spectrum,the continuous spectrum generated by bremsstrahlung and recombination radiation has a greater interference with the characteristic spectrum of Fe element[23,24].Therefore,the calibration result of the model is relatively poor.In addition to the Fe element,though theof the other five elements all reached 0.98 or more,the RMSECV and RMSEP of the fitting results were all relatively high.Among them,for the Si element the RMSECV reached 0.3123 wt%and the RMSEP reached 0.1642 wt%.Thence,to obtain better calibration results,the calibration model needs to be improved.

    4.2.PLS calibration results after feature selection

    To reduce the effect of noise on the PLS model,the abovementioned ridge-REF method is adopted.Grid search is used to optimize the parameters of the algorithm mentioned in figure 1.By setting the parameter range,the grid search traverses all possible hyperparameter pairs and uses cross validation tofor each pair of hyperparameters.Theof each hyperparameter pair is compared to obtain training hyperparameters for model training[25].In addition,in order to better evaluate the method proposed in this paper,GA was used to select the spectrum and compare the analysis results.The start number and the length of the segment needed to be optimized while using GA.The parameters of GA are chosen as:(1) length of maximum Chromosome:100 pixels;(2) population size:50 chromosomes; (3) number of maximum generations:200 generations.Using RMSECV as the fitness function value of the GA.The calibration results of the six elements are shown in figure 3.

    In figure 3,after the feature selection,theof Fe element is increased from 0.9566 to 0.9887;the RMSECV of Si element is decreased from 0.3123% to 0.1621%,and RMSEP is decreased from 0.1642 wt% to 0.0995 wt%.Moreover,the results of calibration of Mg,Cu,and Mn elements in a relatively low concentration range are greatly improved.Comparing figure 3 with figure 2,the fitting results of each element in the low concentration range have been significantly improved.Furthermore,the calibration results of the randomly selected 6 test set samples have been further improved.Comparing the calibration results of Ridge-RFE PLS and GA PLS in figure 3,GA PLS can obtain better results on the training set than the original spectrum,and the calibration results of Mg,Zn and Cu elements perform the same as the Ridge-RFE PLS calibration results.However,on the test set,the RMSEP results after GA feature selection are not satisfactory,especially for the Si and Cu elements.Due to the over-fitting problems,the calibration models have unsatisfactory generalization abilities.The specific fitting results are shown in table 2 and figure 4.

    After the feature selection,the noise features unrelated to the calibration target elements are removed,and the selected specific input feature dimensions are shown in table 3.Comparing the results of PLS model after feature selection with PLS model,the calibration results of five elements of Fe,Si,Mg,Mn and Cu are significantly improved in both the cross-validation results of the training set and the verification results on the test set.

    The spectral lines used to calibrate the six elements after Ridge-RFE feature selection are shown in figure 5(left).As can be seen from figure 5(left),a large amount of background and redundant information was filtered out compared with original spectrum in figure 5(right).The spectral lines for Fe is in the wavelength range of 273–275 nm.The final characteristic lines retained for Cu included those of Cu II 221.0 nm,Cu II 221.8 nm,Cu II 224.7 nm and other spectral lines.In the case of Mg,the emission lines at Mg II 279.9 nm and Mg I 285.2 nm contributed significantly to quantitative analysis.Mn II 259.3 nm and Mn II 260.6 nm contributed significantly to the calibration of Mn concentration.Si I 251.4 nm,Si I 251.6 nm and Si I 288.5 nm contributed significantly to the calibration of Si concentration.Zn I 251.5 nm,Zn I 330.2 nm and Zn I 334.5 nm contributed significantly to the calibration of Zn concentration.The spectral lines finally retained are all concentrated in a certain wavelength range.In addition to the target elements,the spectral lines of other elements that have contributed to the calibration results are also included.The calibration results of the target elements are contributed to by a variety of other elements.

    Figure 3.(a2)–(f2) Represents the Ridge-RFE PLS calibration results of the elements of Fe,Si,Mg,Cu,Zn and Mn after feature selection;(a3)–(f3) represents the GA PLS calibration results of the elements of Fe,Si,Mg,Cu,Zn and Mn after feature selection.

    Figure 3.(Continued.)

    Figure 4.Left and right plots are the RMSECV results for the cross-validation of the training set using PLS and the RMSEP results for the test set using PLS after the feature selection,respectively.

    Figure 5.Left plot is the spectrum with retained features to the calibration of Fe,Cu,Mg,Mn,Si and Zn after Ridge-RFE;right plot is raw spectrum.

    Table 2.Results of PLS and PLS after feature selection.

    5.Conclusion

    In this paper,the RFE method based on ridge regression is proposed to reduce spectral data dimension.The absolute values of ridge regression coefficients are used to evaluate the single feature,and the spectral lines with the lowest fitting feature weight are eliminated.Finally,PLS model is used to fit the selected features.After feature selection,the feature dimension of PLS input data is less than 100 dimensions,and the calibration results of six elements are notably improved.Compared with other wrapper selection methods,this method selects features through ridge regression fitting results andgradually reduces the size of feature subsets,which greatly reduces the randomness of spectral line selection compared with random search methods.The over-fitting problem is effectively alleviated by using the ridge regression sacrificial fitting deviation to improve the generalization ability,and by using the cross validation to evaluate the whole selected characteristic spectral line subsets.

    Table 3.Feature selection dimension.

    Acknowledgments

    This work is supported by National Key Research and Development Program of China(No.2016YFF0102502),the Key Research Program of Frontier Sciences,CAS (No.QYZDJ-SSW-JSC037),and the Youth Innovation Promotion Association,CAS,LiaoNing Revitalization Talents Program(No.XLYC1807110).

    猜你喜歡
    陳彤張鵬
    Quantitative analysis of the main components in ceramic raw materials based on the desktop LIBS analyzer
    蘆薈藥材化學(xué)成分鑒定及UPLC指紋圖譜分析
    中草藥(2022年8期)2022-04-19 05:43:34
    Competitive effect between roughness and mask pattern on charging phenomena during plasma etching
    張鵬、文靜伉儷的內(nèi)畫情緣
    金橋(2022年1期)2022-02-12 01:37:18
    基于PLC控制的平移式自動(dòng)門設(shè)計(jì)
    攝影作品欣賞
    —— 巴基斯坦一瞥
    人民之聲(2019年9期)2019-10-19 06:39:52
    理發(fā)風(fēng)波
    張鵬產(chǎn)品設(shè)計(jì)作品
    《離婚律師》編劇陳彤:哲學(xué)“呆女”成了熱播劇女王
    新青年(2014年12期)2014-12-12 03:49:34
    編劇陳彤: 從哲學(xué)“呆女”到熱播劇女王
    成人国语在线视频| 亚洲国产av新网站| 国内毛片毛片毛片毛片毛片| videos熟女内射| 亚洲精品第二区| 丰满少妇做爰视频| 免费在线观看视频国产中文字幕亚洲 | 在线观看免费视频网站a站| 丁香六月天网| 精品一区二区三卡| 国产亚洲av片在线观看秒播厂| 丰满饥渴人妻一区二区三| 欧美日韩亚洲高清精品| 久久精品国产a三级三级三级| 精品亚洲成a人片在线观看| 精品一区二区三卡| 亚洲久久久国产精品| 色94色欧美一区二区| 日韩三级视频一区二区三区| 亚洲久久久国产精品| 国产精品av久久久久免费| 人成视频在线观看免费观看| 久久久国产成人免费| 一本—道久久a久久精品蜜桃钙片| 亚洲色图 男人天堂 中文字幕| 日本wwww免费看| 99久久精品国产亚洲精品| 777米奇影视久久| 国产高清videossex| av国产精品久久久久影院| 一区二区三区乱码不卡18| 曰老女人黄片| 国产老妇伦熟女老妇高清| 亚洲熟女毛片儿| 999久久久国产精品视频| 天天影视国产精品| 午夜福利一区二区在线看| 日本精品一区二区三区蜜桃| 久久国产精品大桥未久av| 满18在线观看网站| 制服诱惑二区| 在线av久久热| 丰满迷人的少妇在线观看| 男男h啪啪无遮挡| 侵犯人妻中文字幕一二三四区| 91字幕亚洲| 一区福利在线观看| www.999成人在线观看| 大陆偷拍与自拍| 老鸭窝网址在线观看| tocl精华| 免费看十八禁软件| 汤姆久久久久久久影院中文字幕| 日本wwww免费看| 久久午夜综合久久蜜桃| 黑人操中国人逼视频| a 毛片基地| 狠狠精品人妻久久久久久综合| 精品一区二区三卡| 久久久久精品人妻al黑| 久久精品国产亚洲av高清一级| 中亚洲国语对白在线视频| 男人操女人黄网站| 极品人妻少妇av视频| 亚洲avbb在线观看| 色视频在线一区二区三区| 大片免费播放器 马上看| 成年人午夜在线观看视频| 韩国高清视频一区二区三区| 国产野战对白在线观看| 久久亚洲国产成人精品v| 大香蕉久久网| 男女下面插进去视频免费观看| 亚洲五月婷婷丁香| 亚洲精品乱久久久久久| 精品第一国产精品| 美国免费a级毛片| 国产日韩欧美视频二区| 人人妻,人人澡人人爽秒播| 欧美老熟妇乱子伦牲交| 亚洲性夜色夜夜综合| 久久性视频一级片| 91麻豆av在线| 久久人人爽av亚洲精品天堂| 国产亚洲精品一区二区www | 狠狠狠狠99中文字幕| 国产成人影院久久av| 久9热在线精品视频| 成人三级做爰电影| 免费一级毛片在线播放高清视频 | 久久久国产一区二区| 亚洲色图综合在线观看| 欧美日韩精品网址| 欧美+亚洲+日韩+国产| 久热这里只有精品99| 一个人免费在线观看的高清视频 | av一本久久久久| 久久精品国产综合久久久| 动漫黄色视频在线观看| 美女午夜性视频免费| 欧美黄色片欧美黄色片| 国产免费福利视频在线观看| 免费高清在线观看视频在线观看| 女人精品久久久久毛片| 黄色a级毛片大全视频| 亚洲自偷自拍图片 自拍| 国产成人精品久久二区二区免费| 国产精品国产三级国产专区5o| 国产真人三级小视频在线观看| 久久久水蜜桃国产精品网| 欧美精品人与动牲交sv欧美| 国产成人av教育| 亚洲精品国产色婷婷电影| 欧美精品啪啪一区二区三区 | 国产一区二区三区在线臀色熟女 | 狠狠狠狠99中文字幕| a在线观看视频网站| 午夜激情久久久久久久| 久久国产亚洲av麻豆专区| 国产精品国产三级国产专区5o| 国产淫语在线视频| 精品国产一区二区三区久久久樱花| 男人操女人黄网站| 国产片内射在线| 国产精品熟女久久久久浪| 老熟妇仑乱视频hdxx| 国产又色又爽无遮挡免| 美女脱内裤让男人舔精品视频| 精品熟女少妇八av免费久了| 久久久久精品国产欧美久久久 | 精品亚洲乱码少妇综合久久| 亚洲精品国产精品久久久不卡| a在线观看视频网站| 熟女少妇亚洲综合色aaa.| 女人爽到高潮嗷嗷叫在线视频| 飞空精品影院首页| 国产欧美日韩一区二区三 | 一本色道久久久久久精品综合| 精品国内亚洲2022精品成人 | 99精国产麻豆久久婷婷| 午夜精品久久久久久毛片777| 午夜久久久在线观看| 在线观看舔阴道视频| 中文字幕制服av| www.999成人在线观看| av超薄肉色丝袜交足视频| 成年女人毛片免费观看观看9 | 新久久久久国产一级毛片| 国产精品九九99| 成人黄色视频免费在线看| 久久国产精品人妻蜜桃| 久久国产精品影院| 日韩电影二区| 国内毛片毛片毛片毛片毛片| 午夜老司机福利片| 脱女人内裤的视频| 亚洲中文字幕日韩| 久热这里只有精品99| 欧美精品一区二区大全| 一本—道久久a久久精品蜜桃钙片| 亚洲中文日韩欧美视频| 中文字幕制服av| 18禁国产床啪视频网站| 亚洲七黄色美女视频| 欧美黄色淫秽网站| 老司机深夜福利视频在线观看 | 黄色片一级片一级黄色片| 窝窝影院91人妻| 岛国在线观看网站| 国产亚洲精品第一综合不卡| 最近中文字幕2019免费版| 少妇人妻久久综合中文| 日本av手机在线免费观看| 亚洲中文字幕日韩| 亚洲精品久久成人aⅴ小说| 日本a在线网址| 首页视频小说图片口味搜索| 国产成人精品久久二区二区免费| 999久久久国产精品视频| 亚洲中文av在线| 免费观看a级毛片全部| 国产99久久九九免费精品| 女人被躁到高潮嗷嗷叫费观| 国产欧美亚洲国产| 国产熟女午夜一区二区三区| av在线播放精品| 国产欧美日韩一区二区三区在线| 在线天堂中文资源库| 午夜精品久久久久久毛片777| 精品一区二区三区av网在线观看 | 窝窝影院91人妻| 美女视频免费永久观看网站| 久久久欧美国产精品| 亚洲国产精品一区二区三区在线| 亚洲第一欧美日韩一区二区三区 | 亚洲av电影在线观看一区二区三区| 亚洲精品成人av观看孕妇| 黄片小视频在线播放| 国产精品偷伦视频观看了| 青青草视频在线视频观看| 亚洲精品国产区一区二| www.999成人在线观看| 美女主播在线视频| 真人做人爱边吃奶动态| 欧美日韩黄片免| 精品少妇黑人巨大在线播放| 后天国语完整版免费观看| 精品一区二区三区av网在线观看 | netflix在线观看网站| 国产亚洲精品第一综合不卡| 亚洲七黄色美女视频| 午夜成年电影在线免费观看| 午夜激情av网站| 日韩欧美一区二区三区在线观看 | 色婷婷久久久亚洲欧美| 精品人妻在线不人妻| 久久久久久久久久久久大奶| 国产激情久久老熟女| 亚洲精品第二区| 亚洲av美国av| 欧美成狂野欧美在线观看| 亚洲 欧美一区二区三区| 久久人人97超碰香蕉20202| 黄色视频,在线免费观看| 一本色道久久久久久精品综合| a级毛片黄视频| 国产xxxxx性猛交| 久久精品成人免费网站| 精品第一国产精品| 天堂俺去俺来也www色官网| 国产欧美亚洲国产| 人人妻人人澡人人看| 欧美日韩国产mv在线观看视频| 人人妻,人人澡人人爽秒播| 欧美激情高清一区二区三区| 人妻久久中文字幕网| 亚洲精品一卡2卡三卡4卡5卡 | 桃红色精品国产亚洲av| 久久影院123| 天天躁夜夜躁狠狠躁躁| 国产亚洲精品久久久久5区| 午夜久久久在线观看| 在线观看www视频免费| www.av在线官网国产| e午夜精品久久久久久久| 女性被躁到高潮视频| 国产91精品成人一区二区三区 | 久久久精品国产亚洲av高清涩受| 久久 成人 亚洲| 国产日韩欧美亚洲二区| 男女免费视频国产| 夫妻午夜视频| 精品国产超薄肉色丝袜足j| 成年人免费黄色播放视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩高清在线视频 | 国产精品久久久久久精品古装| a级片在线免费高清观看视频| 欧美日韩成人在线一区二区| 免费在线观看日本一区| 精品亚洲乱码少妇综合久久| 少妇裸体淫交视频免费看高清 | 国产精品一区二区在线观看99| 爱豆传媒免费全集在线观看| 777久久人妻少妇嫩草av网站| 亚洲男人天堂网一区| 精品国产乱码久久久久久小说| 欧美乱码精品一区二区三区| 国产又爽黄色视频| 最新的欧美精品一区二区| 亚洲欧洲精品一区二区精品久久久| 热re99久久精品国产66热6| 精品人妻熟女毛片av久久网站| 国产极品粉嫩免费观看在线| 又黄又粗又硬又大视频| 午夜福利乱码中文字幕| 国产精品成人在线| 大片免费播放器 马上看| 日韩视频在线欧美| 这个男人来自地球电影免费观看| 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| 最近中文字幕2019免费版| 多毛熟女@视频| 亚洲国产欧美日韩在线播放| 丝袜美腿诱惑在线| 丰满人妻熟妇乱又伦精品不卡| 婷婷成人精品国产| 国产一区二区三区在线臀色熟女 | 国产精品成人在线| 久久人人爽av亚洲精品天堂| 丝瓜视频免费看黄片| 亚洲九九香蕉| 伦理电影免费视频| 18禁观看日本| 久久精品国产亚洲av高清一级| av天堂久久9| 自线自在国产av| 亚洲欧美精品自产自拍| 欧美少妇被猛烈插入视频| 韩国高清视频一区二区三区| 女性生殖器流出的白浆| 色综合欧美亚洲国产小说| 韩国高清视频一区二区三区| 国产亚洲欧美在线一区二区| 国产97色在线日韩免费| 亚洲一区中文字幕在线| 国产不卡av网站在线观看| 国产精品偷伦视频观看了| 久久国产亚洲av麻豆专区| 欧美av亚洲av综合av国产av| 亚洲一区二区三区欧美精品| 精品国内亚洲2022精品成人 | 性色av乱码一区二区三区2| 午夜成年电影在线免费观看| 12—13女人毛片做爰片一| 99国产综合亚洲精品| 欧美一级毛片孕妇| 老司机影院成人| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久| 亚洲欧美清纯卡通| 精品乱码久久久久久99久播| 国产老妇伦熟女老妇高清| 黑人巨大精品欧美一区二区mp4| 欧美激情极品国产一区二区三区| 女人精品久久久久毛片| 国产精品久久久久久精品电影小说| 十八禁网站免费在线| 日本vs欧美在线观看视频| 免费在线观看视频国产中文字幕亚洲 | 男女午夜视频在线观看| 欧美精品高潮呻吟av久久| 亚洲av日韩在线播放| 亚洲av电影在线观看一区二区三区| av在线app专区| 大香蕉久久成人网| 王馨瑶露胸无遮挡在线观看| 成年动漫av网址| 免费在线观看黄色视频的| 咕卡用的链子| 18禁国产床啪视频网站| 亚洲精华国产精华精| 久久久久久久精品精品| 久久久久久久国产电影| 久久99一区二区三区| 看免费av毛片| 啦啦啦免费观看视频1| 在线观看免费午夜福利视频| a 毛片基地| 国产免费现黄频在线看| 黄色片一级片一级黄色片| 五月天丁香电影| 国产免费现黄频在线看| av天堂久久9| av在线老鸭窝| 中文欧美无线码| 成年女人毛片免费观看观看9 | 亚洲精品国产精品久久久不卡| 色综合欧美亚洲国产小说| 纯流量卡能插随身wifi吗| 99国产精品一区二区蜜桃av | 久久精品国产亚洲av高清一级| 一级毛片女人18水好多| 国产精品久久久av美女十八| 高清黄色对白视频在线免费看| 亚洲精品国产色婷婷电影| 韩国精品一区二区三区| 免费人妻精品一区二区三区视频| 一区二区三区乱码不卡18| 国产一卡二卡三卡精品| 成人国产av品久久久| 精品久久久精品久久久| 国产欧美日韩一区二区三 | 精品久久久精品久久久| 精品乱码久久久久久99久播| 大码成人一级视频| 少妇粗大呻吟视频| 老鸭窝网址在线观看| 精品少妇内射三级| 91麻豆精品激情在线观看国产 | 日日夜夜操网爽| 久久久精品免费免费高清| 性少妇av在线| 超碰97精品在线观看| 99国产精品一区二区蜜桃av | 亚洲一码二码三码区别大吗| 91精品国产国语对白视频| 人妻 亚洲 视频| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产区一区二| 欧美xxⅹ黑人| 一区二区三区四区激情视频| 日韩精品免费视频一区二区三区| 久久这里只有精品19| 久久久久国产精品人妻一区二区| 久久中文字幕一级| 脱女人内裤的视频| 他把我摸到了高潮在线观看 | 亚洲精品乱久久久久久| 亚洲 国产 在线| 亚洲五月婷婷丁香| 大片免费播放器 马上看| 黄片小视频在线播放| 国产精品免费大片| 涩涩av久久男人的天堂| 在线观看免费午夜福利视频| 黄网站色视频无遮挡免费观看| 99国产精品一区二区蜜桃av | 亚洲av欧美aⅴ国产| 黑人操中国人逼视频| 黄色视频不卡| 亚洲av电影在线观看一区二区三区| 亚洲 国产 在线| 后天国语完整版免费观看| 一级黄色大片毛片| 一个人免费在线观看的高清视频 | 黑人巨大精品欧美一区二区mp4| 免费观看人在逋| 男男h啪啪无遮挡| 欧美老熟妇乱子伦牲交| 91麻豆av在线| 精品人妻一区二区三区麻豆| 欧美成狂野欧美在线观看| 777久久人妻少妇嫩草av网站| 国产有黄有色有爽视频| 丁香六月欧美| 高清视频免费观看一区二区| 国产男女内射视频| 国产精品麻豆人妻色哟哟久久| 精品久久久久久电影网| 啦啦啦啦在线视频资源| 亚洲av欧美aⅴ国产| 黑人操中国人逼视频| www.av在线官网国产| 国产一区二区 视频在线| 亚洲欧美色中文字幕在线| 亚洲欧美成人综合另类久久久| 999精品在线视频| 亚洲人成电影观看| 老司机在亚洲福利影院| 性色av乱码一区二区三区2| 亚洲一区二区三区欧美精品| 久久ye,这里只有精品| 午夜福利乱码中文字幕| 可以免费在线观看a视频的电影网站| 亚洲精品一区蜜桃| 久久香蕉激情| 999精品在线视频| 久久九九热精品免费| 一级黄色大片毛片| 欧美精品一区二区大全| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产精品一区二区三区在线| 男男h啪啪无遮挡| 美女高潮到喷水免费观看| 久久99热这里只频精品6学生| 亚洲第一青青草原| 一级毛片电影观看| 成年动漫av网址| 欧美一级毛片孕妇| 一个人免费看片子| 两人在一起打扑克的视频| 精品亚洲乱码少妇综合久久| 久久久精品国产亚洲av高清涩受| 狠狠精品人妻久久久久久综合| 麻豆国产av国片精品| 建设人人有责人人尽责人人享有的| 精品福利永久在线观看| 国产精品久久久久久精品古装| 18在线观看网站| 亚洲欧美精品综合一区二区三区| 肉色欧美久久久久久久蜜桃| 91九色精品人成在线观看| 90打野战视频偷拍视频| 91精品国产国语对白视频| 啦啦啦 在线观看视频| 国精品久久久久久国模美| 老汉色av国产亚洲站长工具| 淫妇啪啪啪对白视频 | 69精品国产乱码久久久| 午夜两性在线视频| 国产精品 国内视频| 日日爽夜夜爽网站| 99re6热这里在线精品视频| 亚洲国产精品一区三区| 80岁老熟妇乱子伦牲交| av网站在线播放免费| 国产精品久久久av美女十八| 狂野欧美激情性xxxx| 欧美av亚洲av综合av国产av| 操美女的视频在线观看| av在线app专区| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品第一综合不卡| 国产97色在线日韩免费| videos熟女内射| 两人在一起打扑克的视频| 自线自在国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 97精品久久久久久久久久精品| 最近最新中文字幕大全免费视频| 在线十欧美十亚洲十日本专区| 国产福利在线免费观看视频| 老熟妇乱子伦视频在线观看 | 欧美黄色淫秽网站| 午夜福利视频在线观看免费| 中文字幕色久视频| 欧美97在线视频| 大片电影免费在线观看免费| 亚洲精品久久成人aⅴ小说| 欧美少妇被猛烈插入视频| 亚洲国产看品久久| av网站在线播放免费| 精品一品国产午夜福利视频| 国产亚洲午夜精品一区二区久久| 免费少妇av软件| 高清av免费在线| 少妇被粗大的猛进出69影院| 一本色道久久久久久精品综合| 国产野战对白在线观看| 国产区一区二久久| 丁香六月天网| 老司机福利观看| 男人添女人高潮全过程视频| 午夜久久久在线观看| 亚洲视频免费观看视频| 人人澡人人妻人| 国产欧美亚洲国产| 精品少妇内射三级| 免费观看人在逋| 曰老女人黄片| 欧美亚洲 丝袜 人妻 在线| 丝袜在线中文字幕| 亚洲国产av影院在线观看| 少妇精品久久久久久久| 国产激情久久老熟女| 黄片小视频在线播放| av在线播放精品| 天天添夜夜摸| 亚洲自偷自拍图片 自拍| 亚洲av日韩在线播放| 国产精品久久久久久精品电影小说| 免费看十八禁软件| 一二三四在线观看免费中文在| 免费女性裸体啪啪无遮挡网站| 亚洲一区中文字幕在线| 麻豆av在线久日| 亚洲中文字幕日韩| 国产欧美日韩一区二区精品| 欧美+亚洲+日韩+国产| 国产97色在线日韩免费| 国产日韩欧美在线精品| 亚洲国产中文字幕在线视频| 国产又色又爽无遮挡免| 91老司机精品| 女性生殖器流出的白浆| 国产在视频线精品| 黑丝袜美女国产一区| 女人爽到高潮嗷嗷叫在线视频| 少妇裸体淫交视频免费看高清 | 久久99一区二区三区| 久久国产精品影院| 男人操女人黄网站| 日本五十路高清| 亚洲avbb在线观看| 国产一卡二卡三卡精品| 成人影院久久| 91精品三级在线观看| 精品少妇内射三级| 亚洲欧美一区二区三区黑人| 97人妻天天添夜夜摸| 欧美xxⅹ黑人| 一边摸一边做爽爽视频免费| 欧美成狂野欧美在线观看| 丝瓜视频免费看黄片| 婷婷丁香在线五月| 欧美午夜高清在线| 国产av国产精品国产| 亚洲性夜色夜夜综合| 97人妻天天添夜夜摸| 久9热在线精品视频| 涩涩av久久男人的天堂| 精品久久蜜臀av无| 他把我摸到了高潮在线观看 | 脱女人内裤的视频| 99精国产麻豆久久婷婷| 黄色视频在线播放观看不卡| 男人操女人黄网站| 国产亚洲精品第一综合不卡| 法律面前人人平等表现在哪些方面 | 亚洲av欧美aⅴ国产| 亚洲精品中文字幕在线视频| 国产成人免费观看mmmm| 国产精品国产av在线观看| 中文字幕av电影在线播放| 香蕉丝袜av| 黑人巨大精品欧美一区二区mp4| 在线观看免费午夜福利视频| 国产精品久久久av美女十八| 中文字幕最新亚洲高清| 欧美日韩中文字幕国产精品一区二区三区 | 巨乳人妻的诱惑在线观看| 国产精品一区二区在线不卡| 亚洲精品粉嫩美女一区| 不卡av一区二区三区| 青草久久国产| 妹子高潮喷水视频| 亚洲av男天堂| 国产一卡二卡三卡精品| 热re99久久国产66热| 母亲3免费完整高清在线观看| 欧美日韩黄片免| 国产精品亚洲av一区麻豆| 久久中文看片网|