• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods

    2020-07-09 04:20:06ZhongqiFENG馮中琦DachengZHANG張大成BowenWANG王博文JieDING丁捷XuyangLIU劉旭陽andJiangfengZHU朱江峰
    Plasma Science and Technology 2020年7期
    關(guān)鍵詞:張大博文

    Zhongqi FENG (馮中琦),Dacheng ZHANG (張大成),Bowen WANG (王博文),Jie DING (丁捷),Xuyang LIU (劉旭陽) and Jiangfeng ZHU (朱江峰)

    School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,People’s Republic of China

    Abstract

    Keywords:laser-induced breakdown spectroscopy,principal component analysis Mahalanobis distance,partial least squares discriminant analysis,classification of complex organics

    1.Introduction

    The analysis on organics,especially the rapid identification of bacteria,explosives and plastics,is important for disease prevention,public safety and waste recycling [1–3].Various techniques such as the near-infrared spectroscopy (NIR),X-ray fluorescence spectroscopy(XRF),Raman spectroscopy or mass spectrometry can be used for organics analysis for their good detection ability of molecules [4–6].NIR has the high precision and speed but poor recognition results for these black or heavily polluted organics [4].XRF is suitable for identifying organic molecules with heavy atoms such as chlorine,but is not sensitive to light elements [5].Raman spectroscopy can determine the molecular structure by detecting scattered light on the sample surface.However,it is difficult to analyze the trace molecular via Raman spectroscopy because its signal is proportional to the number of molecules excited by laser[6,7].The mass spectrometry is a sensitive technology for elements and molecular analysis.But it needs sample preparation and runs in vacuum [8].For on-line monitoring applications,it is urgent to find a realtime,in situ and without sample preparation method for classifying organics.

    Laser-induced breakdown spectroscopy (LIBS),as a powerful tool for element detection,and has acquired great interest in recent years [9–14].It allows for fast contact-less analysis of any materials and has unique versatility and capabilities for on-line composition determination [15,16].For organics,especially synthetic organics such as plastics and explosives,the major elements are C,H,O,and N.It is difficult to classify these materials by LIBS directly [17–19].If machine learning or chemometric methods are applied to analyze the data of LIBS,the organics can be classified by comparing slight difference of their spectra [20,21].Several methods such as artificial neural networks(ANN)[3,22,23],support vector machines (SVM) [24,25],principal component analysis (PCA) [22,26]and partial least squares discriminant analysis (PLS-DA) [27,28]have been used for LIBS application.

    Moench et al first carried out identification of polymers by LIBS.The recognition rate of four kinds of plastics by ANN algorithm was 87%–100% [23].Unnikrishnan et al used PCA and statistical parameters to classify four kinds of common plastics.The average accuracy of these plastics is more than 90% [26].Yu et al correctly identified 9 out of 11 kinds of plastics by SVM [24].Delucia et al first used LIBS to distinguish explosives from other energetic materials [2],and a very high identification accuracy was obtained by PLSDA[27].Wang et al successfully distinguished the simulation spectrum of TNT molecules from seven kinds of plastics by chemometric methods [29].Samuels et al reported the identification of bacterial spores by LIBS [1].Rao et al classified different microorganisms by combining PCA with the algorithm of random forest[30].Wu et al identified waste oil and edible oil rapidly by PCA and ANN methods [22].Yu et al identified the powder of green tea and matcha by PCA and linear discriminant analysis (LDA) [31].

    From the above work,it can be found that LIBS has been extensively studied on classifying different organics.However,there are few reports on the classification of more complex organics such as the fresh plant tissues.Rapid identification of fresh plant tissues by LIBS technology could be significant for plant traceability on-line.However,the intensity of lines is easily affected by physical and chemical properties of fresh plant tissues,which will result in large fluctuations in the spectra of samples and increase the difficulties for identification.Optimization algorithm can help to improve the accuracy of classification for fresh plant tissues.In this paper,the identification methods of complex organics by LIBS were studied.Three kinds of plant leaves were measured and two chemometric methods PCA-MD and PLSDA were used for classifying leaves.

    2.Experimental setup and sample presentation

    The experiments were carried out with a Nd:YAG laser(Dawa-300,Beamtech,China) which can deliver up to 300 mJ pulse energy at its fundamental wavelength.The pulse duration is 7 ns and the repetition rate is 10 Hz.Figure 1 shows the schematic drawing of the LIBS system in this work.The pulse energy of laser was monitored by an energy meter (J-MB-HE,Coherent,USA).The laser beam was focused on the sample using a quartz lens with 60 mm focal length.Plasma emission was focused to a bifurcated fiber cable by a pair of plano-convex lenses.The fiber was connected to a two-channel fiber optic spectrometer (AvaSpec-ULS2048-2-USB2,Avantes,Netherlands)with a spectral resolution of 0.08–0.11 nm in the range of 220–432 nm.The signals were recorded by CCD detectors with 2 ms minimum gate width.A versatile digital delay generator (DG645,SRS Inc.USA) was used to trigger the laser and the spectrometer so that the delay time between detector and laser pulse can be adjusted.The samples were stuck in a 3D motorized translation stage to refresh the target point and avoid the destruction of samples.All the experiments were carried out in air without any control of the surrounding atmosphere.

    The samples were three kinds of leaves (Ligustrum lucidum Ait,Viburnum odoratissinum,Bamboo).To avoid the interfere of environments of different regions,all samples in this work were collected in our campus.100 pieces of each kind of leaves were collected to measure the spectra.They are all matured leaves with similar growth state.In experiments,each piece was used only one time.The leaves were cleaned by distilled water firstly and dried in air naturally to remove the dust on their surface.The pulse energy was controlled to 30 mJ.The delay time between laser ignition and spectral acquisition was optimized at 300 ns.To improve the repeatability of measurements,100 spectra were acquired for each kind of leaves and each spectrum was an averaged result of 100 laser pulses.

    3.Results and discussion

    The LIBS spectra from three kinds of leaves are presented in figure 2.More than 16 kinds of elements and molecules were identified according to the National Institute of Standard and Technology (NIST) atomic spectroscopy database and our previous work[32,33].The spectra from these three kinds of leaves are so similar that it is difficult to classify them directly.

    Chemometrics are multivariate classification methods.They are commonly used to recognize the kinds of samples by establishing mathematical models [34].Once a classification model is established,the unknown samples can be predicted as one of the defined classes.In this work,the two methods PCA-MD and PLS-DA are used to classify the leaves.

    To build a prediction model,arbitrary 70 spectra of each kind of leaves were used as the training set and the other 30 spectra were used as the test set.The lines from 16 elements and molecules listed in table 1 were used as the input data.The lines were normalized by the sum of all line’s intensity firstly.

    3.1.Principal component analysis Mahalanobis distance(PCA-MD)

    Principal component analysis (PCA) is a popular method for extracting information from data.It is normally used for dimensionality reduction.To reduce the dimension,PCA uses some new components to replace the variables in the original data [34].The new components should be less than the variables and be independent completely.The PCA was used to reduce the dimensionality of the data matrix by finding the underlying relationship between the variables [35].

    Figure 1.Schematic of the LIBS experimental setup.

    Figure 2.The LIBS spectrum of three kinds of leaves.

    Mahalanobis distance (MD) is a distance measure and it can be used to identify different patterns with respect to a reference baseline [36].The equation for computing the distance is given as follows:

    Figure 3.Principal component contribution rate.

    Table 1.The characteristic lines used as input data.

    where X is the spectral variable matrix,μ and v are the mean and covariance of X respectively,D is the value of MD.

    Figure 4.The 3D pattern based on the first three principal components of three kinds of leaves.

    Figure 5.The correct rate of PCA-MD as a function of principal component numbers.

    As shown in figure 3,the variance contribution rates of the first 18 principal components were obtained by performing PCA operation on the normalized data.A 3D pattern drawn by the first three principal components which accumulated 85.42%of variation information is shown in figure 4.It can be found that the information from first three principal components could not classify these three kinds of leaves accurately.However,if the number of principal components exceeded four,it was impossible to establish an intuitive PCA classification pattern in Cartesian coordinates.

    Figure 6.The correct rate of cross-validation with PLS-DA as a function of k.

    When the features of the data were extracted by PCA,the MD was computed by different number of principal components.The training set was used to find the centroids of three kinds of spectra data points.In the process,the sum of MDs between the points of the same sample and their centroid is the smallest.Then the points in test set were used to obtain prediction results.The label of centroid with minimum MD will represent the kind of points in the test set.Figure 5 shows that the accuracy of the PCA-MD is maximum when the number of principal components is more than 12.The accuracies can be up to 100% and 93.3% for the training set and the test set,respectively.It means that PCA-MD can classify these plant leaves clearly.The method can also simplify the computation process for lower dimensional data.

    3.2.Partial least squares discriminant analysis

    Partial least squares discriminant analysis (PLS-DA) is a linear classification method.It combines the properties of partial least squares regression with the discrimination power of a classification technique[37].The method can effectively reduce the influence of noise,missing values and outliers of modeled sample data by searching for PLS components.It just requires enough data to establish a classification model,but not need to study the physical laws of the samples [28].The PLS-DA program was operated under the MATLAB environment.In PLS-DA,the intensity of lines was transformed into a matrix X,and the class labels were transformed into a matrix Y.Both X and Y in training set were used to train PLS-DA model.To build the model,the number of PLS components should be optimized.It was carried out by crossvalidation in many works [37–39].In this work,the k-fold cross-validation method was adopted for its strong calibration capabilities on model.As shown in figure 6,the value of k was set to 10,5,and 3,which means that the training set was divided into 10,5,and 3 groups.Each cross-validation group took the same interval.They were not obviously different when the value of k was reduced from 10 to 5 and then to 3.It means that the PLS-DA model established by the training set was robust.It also can be found that there was no obvious improvement for the cross-validation results if the number of PLS components exceeded 9.Thus,the number of PLS components was optimized from 9 to 18 in our PLS-DA model.

    Figure 7.The correct rate of PLS-DA as a function of PLS component numbers.

    Figure 8.The classification results of two methods.

    The test set was predicted by the PLS-DA model here.Figure 7 shows the classification accuracy by this method.It can be found that the correct rates for classifying three leaves are both increasing with the number of PLS components.The maximum classification accuracies are 100% and 97.8% for training set and test set,respectively.

    3.3.Comparison of PCA-MD and PLS-DA

    The LIBS spectra of these three kinds of leaves have been classified by PCA-MD and PLS-DA.The classification results of these two methods for the test set are shown in figure 8.

    Both PCA-MD and PLS-DA can obtain relatively high accuracy.On the whole,PLS-DA has higher prediction accuracy than PCA-MD in this work.When the feature extraction is performed,a high-dimensional spectral data is reduced to a lower dimension and the computational efficiency can be improved.The PCA does not take the class information of the samples into account when it reduces the dimensionality of the spectral change matrix.Thus,the larger spectral difference in the samples,the more serious deviation between the principal components extracted by PCA for MD discrimination and real classification.However,the covariance between the matrix X (spectral change) and the matrix Y (sample label) is included in PLS-DA,so that the PLS components can be optimized and the shortcomings of PCA can be overcome[34].In short,PLS-DA is more suitable for classifying fresh leaves spectra than PCA-MD.

    4.Conclusions

    In this work,LIBS was used to rapidly identify the fresh plant leaves.The PCA-MD and PLS-DA were studied to classify the spectra from the leaves,and a high discrimination accuracy rate for fresh plant samples was obtained.The best prediction result was 93.3% for PCA-MD when the number of principle components exceeded 11,while the best prediction result was up to 97.8% for PLS-DA with more than 14 PLS components.By comparing these two methods as a whole,the prediction result of PLS-DA for the test set is more accurate than that of PCA-MD.For extracting feature components,PLS-DA takes the change of both spectra and leaves types into account at the same time.But the PCA-MD includes the maximum spectral change information no matter whether this information is useful for classifying plant leaves or not.Therefore,the PLS components in PLS-DA are more helpful for classifying leaves than the principle components in PCA-MD.In brief,PLS-DA has a stronger ability to recognize plant leaves species than PCA-MD for its optimal PLS components between each kind of leaves.This result can provide a reference for further rapid detection and classification of organics such as plant traceability.

    Acknowledgments

    This work was supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.JB190501),Science and Technology Innovation Team of Shaanxi Province(No.2019TD-002)and National Natural Science Foundation of China (No.11774277).

    猜你喜歡
    張大博文
    中國兩會
    華人時刊(2022年4期)2022-04-14 09:27:56
    第一次掙錢
    Shape coexistence in 76Se within the neutron-proton interacting boson model
    Uniformly Normal Structure and Uniform Non-Squareness of Orlicz-Lorentz Sequence Spaces Endowed with the Orlicz Norm
    張大林美術(shù)作品欣賞
    張大春讓健康從業(yè)者偉大起來
    誰和誰好
    張大勤
    意林(2016年22期)2016-11-30 19:06:08
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    打電話2
    噜噜噜噜噜久久久久久91| 我要看日韩黄色一级片| 在现免费观看毛片| 亚洲av电影不卡..在线观看| 免费看光身美女| av在线观看视频网站免费| 久久久久久伊人网av| 免费观看人在逋| 日韩亚洲欧美综合| 免费在线观看日本一区| .国产精品久久| 少妇丰满av| 观看美女的网站| 韩国av在线不卡| 国产精品野战在线观看| 大型黄色视频在线免费观看| 亚洲精品国产成人久久av| 在线观看午夜福利视频| 亚洲久久久久久中文字幕| 国产亚洲精品av在线| 国产毛片a区久久久久| 国产伦一二天堂av在线观看| 淫秽高清视频在线观看| 91久久精品国产一区二区成人| 午夜爱爱视频在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产在视频线在精品| 真人做人爱边吃奶动态| 成年版毛片免费区| .国产精品久久| 欧美一区二区精品小视频在线| 3wmmmm亚洲av在线观看| 国产精品人妻久久久影院| 久久久久久久精品吃奶| 欧美色欧美亚洲另类二区| 成人一区二区视频在线观看| 一级黄色大片毛片| 男人舔奶头视频| 久久久成人免费电影| 18禁在线播放成人免费| 日本a在线网址| 真人一进一出gif抽搐免费| 一级av片app| 精品久久久久久久久久免费视频| 国产精品不卡视频一区二区| 免费无遮挡裸体视频| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久亚洲av鲁大| 日韩中字成人| 亚洲18禁久久av| 黄色视频,在线免费观看| 国产亚洲av嫩草精品影院| 热99re8久久精品国产| 久久久久精品国产欧美久久久| 国产在线精品亚洲第一网站| 亚洲在线观看片| 看免费成人av毛片| 又紧又爽又黄一区二区| 国产精品一区二区性色av| 久久精品久久久久久噜噜老黄 | 人人妻人人澡欧美一区二区| 亚洲精品在线观看二区| 日本成人三级电影网站| 成人综合一区亚洲| 成人综合一区亚洲| 成人永久免费在线观看视频| 1024手机看黄色片| 99精品久久久久人妻精品| 特大巨黑吊av在线直播| 国产久久久一区二区三区| 精品久久久久久久人妻蜜臀av| 99热精品在线国产| 免费搜索国产男女视频| 国产亚洲精品久久久com| 久久精品国产亚洲网站| 国产伦精品一区二区三区四那| 午夜免费男女啪啪视频观看 | 99久国产av精品| 欧美一级a爱片免费观看看| 小蜜桃在线观看免费完整版高清| 国产老妇女一区| 一区二区三区高清视频在线| 欧美bdsm另类| 精品乱码久久久久久99久播| 久久久久久大精品| 中亚洲国语对白在线视频| 乱系列少妇在线播放| 国产伦精品一区二区三区四那| 国产三级中文精品| 日本a在线网址| 99热这里只有精品一区| 动漫黄色视频在线观看| 亚洲性夜色夜夜综合| 国产69精品久久久久777片| 国产精品亚洲美女久久久| 国产午夜精品久久久久久一区二区三区 | 免费人成在线观看视频色| 在线观看av片永久免费下载| 搡老妇女老女人老熟妇| 精品人妻一区二区三区麻豆 | 亚洲精品亚洲一区二区| 最近视频中文字幕2019在线8| 女人被狂操c到高潮| 黄色配什么色好看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人成伊人成综合网2020| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久大av| 国产精华一区二区三区| 国产亚洲精品av在线| 亚洲国产精品sss在线观看| 日日干狠狠操夜夜爽| 九九爱精品视频在线观看| 欧美日韩综合久久久久久 | 色尼玛亚洲综合影院| 国产视频一区二区在线看| 天堂动漫精品| 日本黄色片子视频| 国产精品98久久久久久宅男小说| 十八禁网站免费在线| 国产麻豆成人av免费视频| netflix在线观看网站| 精品久久久久久,| 久久久久久久精品吃奶| 99精品在免费线老司机午夜| 国产真实伦视频高清在线观看 | 国产熟女欧美一区二区| 哪里可以看免费的av片| 麻豆精品久久久久久蜜桃| 亚洲性久久影院| 亚洲国产精品sss在线观看| 91久久精品国产一区二区成人| 久久久久精品国产欧美久久久| 成人特级黄色片久久久久久久| 亚洲国产欧洲综合997久久,| 很黄的视频免费| 欧美人与善性xxx| 男人舔女人下体高潮全视频| 亚洲四区av| 美女被艹到高潮喷水动态| 欧美+亚洲+日韩+国产| 一级毛片久久久久久久久女| 女的被弄到高潮叫床怎么办 | 欧美色视频一区免费| 亚洲中文日韩欧美视频| 成人国产麻豆网| a在线观看视频网站| 成人美女网站在线观看视频| 色在线成人网| a在线观看视频网站| 啦啦啦观看免费观看视频高清| 国内少妇人妻偷人精品xxx网站| 最近视频中文字幕2019在线8| 极品教师在线视频| 免费在线观看影片大全网站| 免费大片18禁| 乱码一卡2卡4卡精品| 麻豆久久精品国产亚洲av| 成年女人永久免费观看视频| 女的被弄到高潮叫床怎么办 | 国产精品一区www在线观看 | 中亚洲国语对白在线视频| 亚洲av成人精品一区久久| 国产爱豆传媒在线观看| 亚洲欧美日韩卡通动漫| 人妻丰满熟妇av一区二区三区| 大型黄色视频在线免费观看| 嫩草影院新地址| 欧美国产日韩亚洲一区| 又粗又爽又猛毛片免费看| 一级毛片久久久久久久久女| 成人美女网站在线观看视频| 美女免费视频网站| 一本一本综合久久| 在线播放无遮挡| 3wmmmm亚洲av在线观看| 国产精品一区www在线观看 | 国产人妻一区二区三区在| 亚洲国产日韩欧美精品在线观看| 久久精品国产清高在天天线| 国产视频内射| 夜夜看夜夜爽夜夜摸| 有码 亚洲区| 啦啦啦啦在线视频资源| 免费观看在线日韩| 综合色av麻豆| 久久精品国产鲁丝片午夜精品 | 韩国av在线不卡| 99久久九九国产精品国产免费| 美女高潮喷水抽搐中文字幕| 国产精品伦人一区二区| 色av中文字幕| 国产成人av教育| 欧美3d第一页| 国产aⅴ精品一区二区三区波| 色综合婷婷激情| 午夜福利在线观看免费完整高清在 | 男插女下体视频免费在线播放| 男人狂女人下面高潮的视频| 欧美日本视频| 在线观看av片永久免费下载| 国产高清视频在线观看网站| 亚洲欧美日韩高清专用| 国产大屁股一区二区在线视频| av天堂中文字幕网| 日韩精品有码人妻一区| 亚洲av第一区精品v没综合| 麻豆精品久久久久久蜜桃| 中文资源天堂在线| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久黄片| 18禁裸乳无遮挡免费网站照片| 尤物成人国产欧美一区二区三区| 成人高潮视频无遮挡免费网站| 人人妻,人人澡人人爽秒播| 精品久久久久久久久av| 日韩亚洲欧美综合| 亚洲三级黄色毛片| 国产精品1区2区在线观看.| eeuss影院久久| 欧美成人a在线观看| 亚洲人成网站在线播| 成人永久免费在线观看视频| 麻豆久久精品国产亚洲av| 欧美黑人欧美精品刺激| 久久久久国内视频| 精品久久久久久成人av| 亚洲国产精品合色在线| 亚洲欧美日韩无卡精品| 欧美成人性av电影在线观看| 亚洲人成网站在线播| 亚洲经典国产精华液单| 亚洲av.av天堂| 久久午夜亚洲精品久久| 人妻丰满熟妇av一区二区三区| 日本-黄色视频高清免费观看| 欧美精品国产亚洲| 最近在线观看免费完整版| 日本一本二区三区精品| 国产精品一区二区性色av| 亚洲熟妇中文字幕五十中出| 午夜精品久久久久久毛片777| 亚洲中文日韩欧美视频| 午夜免费成人在线视频| 欧美一区二区亚洲| 国产单亲对白刺激| 色5月婷婷丁香| 久久精品夜夜夜夜夜久久蜜豆| 69人妻影院| 极品教师在线视频| 在线观看66精品国产| 91麻豆精品激情在线观看国产| 最后的刺客免费高清国语| 久久人妻av系列| 国产极品精品免费视频能看的| 哪里可以看免费的av片| 久久久久性生活片| 国产亚洲精品综合一区在线观看| av国产免费在线观看| 美女xxoo啪啪120秒动态图| 中文字幕精品亚洲无线码一区| netflix在线观看网站| 亚洲成人中文字幕在线播放| 在线观看午夜福利视频| 大又大粗又爽又黄少妇毛片口| 又粗又爽又猛毛片免费看| 超碰av人人做人人爽久久| 成人二区视频| h日本视频在线播放| 亚洲国产欧洲综合997久久,| av女优亚洲男人天堂| 日韩在线高清观看一区二区三区 | 午夜亚洲福利在线播放| 九九爱精品视频在线观看| 又紧又爽又黄一区二区| 亚州av有码| 美女 人体艺术 gogo| 赤兔流量卡办理| 亚洲精品日韩av片在线观看| 91在线精品国自产拍蜜月| 人妻久久中文字幕网| av天堂中文字幕网| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美国产一区二区入口| 免费看美女性在线毛片视频| 女的被弄到高潮叫床怎么办 | 少妇裸体淫交视频免费看高清| 别揉我奶头 嗯啊视频| 22中文网久久字幕| 最近中文字幕高清免费大全6 | 久久精品91蜜桃| 国产精品一区二区三区四区久久| 在线免费十八禁| 国产免费男女视频| 香蕉av资源在线| 99精品久久久久人妻精品| 日韩欧美在线乱码| 最好的美女福利视频网| 国产伦人伦偷精品视频| 精品久久久久久成人av| av天堂中文字幕网| 亚洲熟妇中文字幕五十中出| 国产亚洲欧美98| 欧美区成人在线视频| 麻豆国产97在线/欧美| 国产视频内射| 婷婷精品国产亚洲av| 国产一区二区在线av高清观看| 麻豆精品久久久久久蜜桃| 99久久九九国产精品国产免费| 88av欧美| 非洲黑人性xxxx精品又粗又长| 看免费成人av毛片| 十八禁网站免费在线| 麻豆av噜噜一区二区三区| 黄色日韩在线| 长腿黑丝高跟| 最新在线观看一区二区三区| 看十八女毛片水多多多| 日本熟妇午夜| 国产 一区精品| 中亚洲国语对白在线视频| 天堂av国产一区二区熟女人妻| 亚洲自拍偷在线| 欧美xxxx黑人xx丫x性爽| 精品久久久噜噜| 国产男靠女视频免费网站| 一个人观看的视频www高清免费观看| 又黄又爽又刺激的免费视频.| 亚洲专区中文字幕在线| 欧美激情在线99| 精品久久久久久久久久免费视频| av天堂在线播放| 国产成人影院久久av| 搡老熟女国产l中国老女人| 他把我摸到了高潮在线观看| 51国产日韩欧美| 白带黄色成豆腐渣| 欧美精品国产亚洲| 成熟少妇高潮喷水视频| 国产爱豆传媒在线观看| 女人十人毛片免费观看3o分钟| 欧美一级a爱片免费观看看| 成人三级黄色视频| 免费观看的影片在线观看| 午夜日韩欧美国产| 免费av毛片视频| 亚洲成人久久爱视频| 少妇熟女aⅴ在线视频| 美女高潮喷水抽搐中文字幕| 麻豆av噜噜一区二区三区| 国产精品亚洲一级av第二区| 国产一区二区三区在线臀色熟女| 真实男女啪啪啪动态图| 久久人人精品亚洲av| 99riav亚洲国产免费| 欧美日本视频| 国产精品国产三级国产av玫瑰| 老司机福利观看| 欧美一区二区精品小视频在线| 天天躁日日操中文字幕| 国产色爽女视频免费观看| 村上凉子中文字幕在线| videossex国产| 色综合婷婷激情| 亚洲一级一片aⅴ在线观看| 欧美中文日本在线观看视频| 1000部很黄的大片| 69人妻影院| 中文字幕久久专区| av国产免费在线观看| 日韩亚洲欧美综合| 国语自产精品视频在线第100页| 亚洲内射少妇av| 九九爱精品视频在线观看| 嫩草影视91久久| 久久九九热精品免费| 搞女人的毛片| 精品久久国产蜜桃| 老司机福利观看| 我的老师免费观看完整版| 69人妻影院| 99热精品在线国产| 久久亚洲精品不卡| 美女 人体艺术 gogo| 三级男女做爰猛烈吃奶摸视频| 女生性感内裤真人,穿戴方法视频| 久久精品国产亚洲av天美| 欧美又色又爽又黄视频| 最后的刺客免费高清国语| 尾随美女入室| 亚洲精品粉嫩美女一区| 免费黄网站久久成人精品| 国产高潮美女av| 一边摸一边抽搐一进一小说| 日日摸夜夜添夜夜添小说| 久久久成人免费电影| 免费看av在线观看网站| 国产女主播在线喷水免费视频网站 | 国产成人一区二区在线| 88av欧美| 精品99又大又爽又粗少妇毛片 | 国产中年淑女户外野战色| 国产精品久久久久久久电影| 国内毛片毛片毛片毛片毛片| 精品久久久久久久久久免费视频| 久久国产乱子免费精品| 久99久视频精品免费| 黄色配什么色好看| 欧美bdsm另类| 午夜爱爱视频在线播放| 国产免费男女视频| 日韩欧美精品v在线| 精品一区二区三区视频在线| 亚洲精品一卡2卡三卡4卡5卡| 最近视频中文字幕2019在线8| 国产精品一区二区免费欧美| 亚洲成人中文字幕在线播放| 热99re8久久精品国产| 日本黄大片高清| 午夜老司机福利剧场| 欧美精品啪啪一区二区三区| 成年女人永久免费观看视频| 精品人妻一区二区三区麻豆 | 国产精品综合久久久久久久免费| 久久久久国内视频| 欧美激情久久久久久爽电影| 亚洲国产欧美人成| 国产高清三级在线| 国产伦精品一区二区三区视频9| 色视频www国产| 在线观看av片永久免费下载| 免费观看的影片在线观看| 国产乱人伦免费视频| 最近中文字幕高清免费大全6 | 亚洲欧美日韩无卡精品| 国产美女午夜福利| 国产午夜福利久久久久久| 最后的刺客免费高清国语| 国产精品一区二区三区四区免费观看 | 五月伊人婷婷丁香| 美女 人体艺术 gogo| 两个人的视频大全免费| 最后的刺客免费高清国语| 91在线精品国自产拍蜜月| 国产精品永久免费网站| 日韩中字成人| 欧美中文日本在线观看视频| 日韩欧美国产一区二区入口| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看电影| 18+在线观看网站| 国产精品一区二区三区四区久久| 久久久久久久久久久丰满 | 毛片一级片免费看久久久久 | 国产主播在线观看一区二区| 性欧美人与动物交配| 精品人妻偷拍中文字幕| 一本一本综合久久| 夜夜看夜夜爽夜夜摸| 亚洲四区av| 亚洲成人免费电影在线观看| 久久天躁狠狠躁夜夜2o2o| 午夜日韩欧美国产| 哪里可以看免费的av片| 日本一本二区三区精品| 国产精品av视频在线免费观看| 中出人妻视频一区二区| 欧美又色又爽又黄视频| 成人性生交大片免费视频hd| 国产精品亚洲一级av第二区| 久久午夜福利片| 欧美绝顶高潮抽搐喷水| 亚洲性夜色夜夜综合| 久久久久久久久中文| 亚洲熟妇熟女久久| 又爽又黄a免费视频| 日韩精品有码人妻一区| 极品教师在线视频| 国产一区二区三区av在线 | 国产成年人精品一区二区| 久久国产精品人妻蜜桃| 99热网站在线观看| 国产综合懂色| 色吧在线观看| 在线播放国产精品三级| 一区福利在线观看| 性欧美人与动物交配| 神马国产精品三级电影在线观看| 日韩亚洲欧美综合| av.在线天堂| 亚洲精品久久国产高清桃花| 国产高清不卡午夜福利| 99久久无色码亚洲精品果冻| 欧美激情久久久久久爽电影| 国产高清有码在线观看视频| 国产伦一二天堂av在线观看| 乱人视频在线观看| 国产在线男女| 亚洲无线在线观看| 尾随美女入室| 99九九线精品视频在线观看视频| 国产亚洲精品综合一区在线观看| 亚洲无线在线观看| 赤兔流量卡办理| 久久久精品欧美日韩精品| 亚洲无线观看免费| 俄罗斯特黄特色一大片| 91狼人影院| 最近中文字幕高清免费大全6 | avwww免费| 亚洲人成网站在线播| 国产伦精品一区二区三区视频9| 特大巨黑吊av在线直播| 亚洲成人中文字幕在线播放| 很黄的视频免费| 日韩欧美国产一区二区入口| bbb黄色大片| 国产精品久久久久久亚洲av鲁大| 免费在线观看成人毛片| 无遮挡黄片免费观看| 欧美中文日本在线观看视频| 国产 一区精品| 亚洲欧美精品综合久久99| 五月伊人婷婷丁香| 成人亚洲精品av一区二区| 99久久精品热视频| 国产大屁股一区二区在线视频| 久久久久久久久大av| 亚洲在线观看片| 国产精品爽爽va在线观看网站| 国产伦一二天堂av在线观看| 欧美成人性av电影在线观看| 亚洲av五月六月丁香网| 色精品久久人妻99蜜桃| 亚洲专区国产一区二区| 嫁个100分男人电影在线观看| 成年女人看的毛片在线观看| 久久久色成人| 22中文网久久字幕| 国产亚洲欧美98| 久久国产乱子免费精品| 欧美另类亚洲清纯唯美| 久久99热这里只有精品18| 亚洲天堂国产精品一区在线| 精品乱码久久久久久99久播| 欧美一级a爱片免费观看看| 亚洲熟妇熟女久久| 色综合婷婷激情| 超碰av人人做人人爽久久| 伊人久久精品亚洲午夜| 少妇猛男粗大的猛烈进出视频 | 嫩草影院精品99| 91狼人影院| 一区二区三区四区激情视频 | 免费看av在线观看网站| 黄片wwwwww| 尤物成人国产欧美一区二区三区| 99热只有精品国产| 美女被艹到高潮喷水动态| 国产一区二区三区在线臀色熟女| 国产精品99久久久久久久久| 免费人成视频x8x8入口观看| 色综合色国产| 桃红色精品国产亚洲av| 两个人的视频大全免费| 欧美色欧美亚洲另类二区| 久久国产乱子免费精品| 内地一区二区视频在线| 亚洲一级一片aⅴ在线观看| 99热精品在线国产| 极品教师在线免费播放| 成人国产综合亚洲| a在线观看视频网站| 老熟妇仑乱视频hdxx| 麻豆精品久久久久久蜜桃| 国产一区二区在线观看日韩| 精品久久久久久久久久久久久| 五月玫瑰六月丁香| 午夜日韩欧美国产| 搡老妇女老女人老熟妇| 变态另类成人亚洲欧美熟女| 亚洲四区av| 久久久午夜欧美精品| 色av中文字幕| 日韩欧美三级三区| 中文字幕av在线有码专区| 免费观看人在逋| 网址你懂的国产日韩在线| 午夜福利视频1000在线观看| 午夜福利高清视频| 欧美色欧美亚洲另类二区| 婷婷色综合大香蕉| 中文字幕人妻熟人妻熟丝袜美| 亚洲av成人av| 国产午夜精品论理片| 嫩草影院入口| 悠悠久久av| 97超级碰碰碰精品色视频在线观看| 黄片wwwwww| 人妻丰满熟妇av一区二区三区| 免费看美女性在线毛片视频| av福利片在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲精品一区av在线观看| 亚洲不卡免费看| 国产男人的电影天堂91| 亚洲国产日韩欧美精品在线观看| 啪啪无遮挡十八禁网站| 国内精品美女久久久久久| 美女 人体艺术 gogo| 少妇丰满av| 精品久久久噜噜| 我要看日韩黄色一级片|