• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods

    2020-07-09 04:20:06ZhongqiFENG馮中琦DachengZHANG張大成BowenWANG王博文JieDING丁捷XuyangLIU劉旭陽andJiangfengZHU朱江峰
    Plasma Science and Technology 2020年7期
    關(guān)鍵詞:張大博文

    Zhongqi FENG (馮中琦),Dacheng ZHANG (張大成),Bowen WANG (王博文),Jie DING (丁捷),Xuyang LIU (劉旭陽) and Jiangfeng ZHU (朱江峰)

    School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,People’s Republic of China

    Abstract

    Keywords:laser-induced breakdown spectroscopy,principal component analysis Mahalanobis distance,partial least squares discriminant analysis,classification of complex organics

    1.Introduction

    The analysis on organics,especially the rapid identification of bacteria,explosives and plastics,is important for disease prevention,public safety and waste recycling [1–3].Various techniques such as the near-infrared spectroscopy (NIR),X-ray fluorescence spectroscopy(XRF),Raman spectroscopy or mass spectrometry can be used for organics analysis for their good detection ability of molecules [4–6].NIR has the high precision and speed but poor recognition results for these black or heavily polluted organics [4].XRF is suitable for identifying organic molecules with heavy atoms such as chlorine,but is not sensitive to light elements [5].Raman spectroscopy can determine the molecular structure by detecting scattered light on the sample surface.However,it is difficult to analyze the trace molecular via Raman spectroscopy because its signal is proportional to the number of molecules excited by laser[6,7].The mass spectrometry is a sensitive technology for elements and molecular analysis.But it needs sample preparation and runs in vacuum [8].For on-line monitoring applications,it is urgent to find a realtime,in situ and without sample preparation method for classifying organics.

    Laser-induced breakdown spectroscopy (LIBS),as a powerful tool for element detection,and has acquired great interest in recent years [9–14].It allows for fast contact-less analysis of any materials and has unique versatility and capabilities for on-line composition determination [15,16].For organics,especially synthetic organics such as plastics and explosives,the major elements are C,H,O,and N.It is difficult to classify these materials by LIBS directly [17–19].If machine learning or chemometric methods are applied to analyze the data of LIBS,the organics can be classified by comparing slight difference of their spectra [20,21].Several methods such as artificial neural networks(ANN)[3,22,23],support vector machines (SVM) [24,25],principal component analysis (PCA) [22,26]and partial least squares discriminant analysis (PLS-DA) [27,28]have been used for LIBS application.

    Moench et al first carried out identification of polymers by LIBS.The recognition rate of four kinds of plastics by ANN algorithm was 87%–100% [23].Unnikrishnan et al used PCA and statistical parameters to classify four kinds of common plastics.The average accuracy of these plastics is more than 90% [26].Yu et al correctly identified 9 out of 11 kinds of plastics by SVM [24].Delucia et al first used LIBS to distinguish explosives from other energetic materials [2],and a very high identification accuracy was obtained by PLSDA[27].Wang et al successfully distinguished the simulation spectrum of TNT molecules from seven kinds of plastics by chemometric methods [29].Samuels et al reported the identification of bacterial spores by LIBS [1].Rao et al classified different microorganisms by combining PCA with the algorithm of random forest[30].Wu et al identified waste oil and edible oil rapidly by PCA and ANN methods [22].Yu et al identified the powder of green tea and matcha by PCA and linear discriminant analysis (LDA) [31].

    From the above work,it can be found that LIBS has been extensively studied on classifying different organics.However,there are few reports on the classification of more complex organics such as the fresh plant tissues.Rapid identification of fresh plant tissues by LIBS technology could be significant for plant traceability on-line.However,the intensity of lines is easily affected by physical and chemical properties of fresh plant tissues,which will result in large fluctuations in the spectra of samples and increase the difficulties for identification.Optimization algorithm can help to improve the accuracy of classification for fresh plant tissues.In this paper,the identification methods of complex organics by LIBS were studied.Three kinds of plant leaves were measured and two chemometric methods PCA-MD and PLSDA were used for classifying leaves.

    2.Experimental setup and sample presentation

    The experiments were carried out with a Nd:YAG laser(Dawa-300,Beamtech,China) which can deliver up to 300 mJ pulse energy at its fundamental wavelength.The pulse duration is 7 ns and the repetition rate is 10 Hz.Figure 1 shows the schematic drawing of the LIBS system in this work.The pulse energy of laser was monitored by an energy meter (J-MB-HE,Coherent,USA).The laser beam was focused on the sample using a quartz lens with 60 mm focal length.Plasma emission was focused to a bifurcated fiber cable by a pair of plano-convex lenses.The fiber was connected to a two-channel fiber optic spectrometer (AvaSpec-ULS2048-2-USB2,Avantes,Netherlands)with a spectral resolution of 0.08–0.11 nm in the range of 220–432 nm.The signals were recorded by CCD detectors with 2 ms minimum gate width.A versatile digital delay generator (DG645,SRS Inc.USA) was used to trigger the laser and the spectrometer so that the delay time between detector and laser pulse can be adjusted.The samples were stuck in a 3D motorized translation stage to refresh the target point and avoid the destruction of samples.All the experiments were carried out in air without any control of the surrounding atmosphere.

    The samples were three kinds of leaves (Ligustrum lucidum Ait,Viburnum odoratissinum,Bamboo).To avoid the interfere of environments of different regions,all samples in this work were collected in our campus.100 pieces of each kind of leaves were collected to measure the spectra.They are all matured leaves with similar growth state.In experiments,each piece was used only one time.The leaves were cleaned by distilled water firstly and dried in air naturally to remove the dust on their surface.The pulse energy was controlled to 30 mJ.The delay time between laser ignition and spectral acquisition was optimized at 300 ns.To improve the repeatability of measurements,100 spectra were acquired for each kind of leaves and each spectrum was an averaged result of 100 laser pulses.

    3.Results and discussion

    The LIBS spectra from three kinds of leaves are presented in figure 2.More than 16 kinds of elements and molecules were identified according to the National Institute of Standard and Technology (NIST) atomic spectroscopy database and our previous work[32,33].The spectra from these three kinds of leaves are so similar that it is difficult to classify them directly.

    Chemometrics are multivariate classification methods.They are commonly used to recognize the kinds of samples by establishing mathematical models [34].Once a classification model is established,the unknown samples can be predicted as one of the defined classes.In this work,the two methods PCA-MD and PLS-DA are used to classify the leaves.

    To build a prediction model,arbitrary 70 spectra of each kind of leaves were used as the training set and the other 30 spectra were used as the test set.The lines from 16 elements and molecules listed in table 1 were used as the input data.The lines were normalized by the sum of all line’s intensity firstly.

    3.1.Principal component analysis Mahalanobis distance(PCA-MD)

    Principal component analysis (PCA) is a popular method for extracting information from data.It is normally used for dimensionality reduction.To reduce the dimension,PCA uses some new components to replace the variables in the original data [34].The new components should be less than the variables and be independent completely.The PCA was used to reduce the dimensionality of the data matrix by finding the underlying relationship between the variables [35].

    Figure 1.Schematic of the LIBS experimental setup.

    Figure 2.The LIBS spectrum of three kinds of leaves.

    Mahalanobis distance (MD) is a distance measure and it can be used to identify different patterns with respect to a reference baseline [36].The equation for computing the distance is given as follows:

    Figure 3.Principal component contribution rate.

    Table 1.The characteristic lines used as input data.

    where X is the spectral variable matrix,μ and v are the mean and covariance of X respectively,D is the value of MD.

    Figure 4.The 3D pattern based on the first three principal components of three kinds of leaves.

    Figure 5.The correct rate of PCA-MD as a function of principal component numbers.

    As shown in figure 3,the variance contribution rates of the first 18 principal components were obtained by performing PCA operation on the normalized data.A 3D pattern drawn by the first three principal components which accumulated 85.42%of variation information is shown in figure 4.It can be found that the information from first three principal components could not classify these three kinds of leaves accurately.However,if the number of principal components exceeded four,it was impossible to establish an intuitive PCA classification pattern in Cartesian coordinates.

    Figure 6.The correct rate of cross-validation with PLS-DA as a function of k.

    When the features of the data were extracted by PCA,the MD was computed by different number of principal components.The training set was used to find the centroids of three kinds of spectra data points.In the process,the sum of MDs between the points of the same sample and their centroid is the smallest.Then the points in test set were used to obtain prediction results.The label of centroid with minimum MD will represent the kind of points in the test set.Figure 5 shows that the accuracy of the PCA-MD is maximum when the number of principal components is more than 12.The accuracies can be up to 100% and 93.3% for the training set and the test set,respectively.It means that PCA-MD can classify these plant leaves clearly.The method can also simplify the computation process for lower dimensional data.

    3.2.Partial least squares discriminant analysis

    Partial least squares discriminant analysis (PLS-DA) is a linear classification method.It combines the properties of partial least squares regression with the discrimination power of a classification technique[37].The method can effectively reduce the influence of noise,missing values and outliers of modeled sample data by searching for PLS components.It just requires enough data to establish a classification model,but not need to study the physical laws of the samples [28].The PLS-DA program was operated under the MATLAB environment.In PLS-DA,the intensity of lines was transformed into a matrix X,and the class labels were transformed into a matrix Y.Both X and Y in training set were used to train PLS-DA model.To build the model,the number of PLS components should be optimized.It was carried out by crossvalidation in many works [37–39].In this work,the k-fold cross-validation method was adopted for its strong calibration capabilities on model.As shown in figure 6,the value of k was set to 10,5,and 3,which means that the training set was divided into 10,5,and 3 groups.Each cross-validation group took the same interval.They were not obviously different when the value of k was reduced from 10 to 5 and then to 3.It means that the PLS-DA model established by the training set was robust.It also can be found that there was no obvious improvement for the cross-validation results if the number of PLS components exceeded 9.Thus,the number of PLS components was optimized from 9 to 18 in our PLS-DA model.

    Figure 7.The correct rate of PLS-DA as a function of PLS component numbers.

    Figure 8.The classification results of two methods.

    The test set was predicted by the PLS-DA model here.Figure 7 shows the classification accuracy by this method.It can be found that the correct rates for classifying three leaves are both increasing with the number of PLS components.The maximum classification accuracies are 100% and 97.8% for training set and test set,respectively.

    3.3.Comparison of PCA-MD and PLS-DA

    The LIBS spectra of these three kinds of leaves have been classified by PCA-MD and PLS-DA.The classification results of these two methods for the test set are shown in figure 8.

    Both PCA-MD and PLS-DA can obtain relatively high accuracy.On the whole,PLS-DA has higher prediction accuracy than PCA-MD in this work.When the feature extraction is performed,a high-dimensional spectral data is reduced to a lower dimension and the computational efficiency can be improved.The PCA does not take the class information of the samples into account when it reduces the dimensionality of the spectral change matrix.Thus,the larger spectral difference in the samples,the more serious deviation between the principal components extracted by PCA for MD discrimination and real classification.However,the covariance between the matrix X (spectral change) and the matrix Y (sample label) is included in PLS-DA,so that the PLS components can be optimized and the shortcomings of PCA can be overcome[34].In short,PLS-DA is more suitable for classifying fresh leaves spectra than PCA-MD.

    4.Conclusions

    In this work,LIBS was used to rapidly identify the fresh plant leaves.The PCA-MD and PLS-DA were studied to classify the spectra from the leaves,and a high discrimination accuracy rate for fresh plant samples was obtained.The best prediction result was 93.3% for PCA-MD when the number of principle components exceeded 11,while the best prediction result was up to 97.8% for PLS-DA with more than 14 PLS components.By comparing these two methods as a whole,the prediction result of PLS-DA for the test set is more accurate than that of PCA-MD.For extracting feature components,PLS-DA takes the change of both spectra and leaves types into account at the same time.But the PCA-MD includes the maximum spectral change information no matter whether this information is useful for classifying plant leaves or not.Therefore,the PLS components in PLS-DA are more helpful for classifying leaves than the principle components in PCA-MD.In brief,PLS-DA has a stronger ability to recognize plant leaves species than PCA-MD for its optimal PLS components between each kind of leaves.This result can provide a reference for further rapid detection and classification of organics such as plant traceability.

    Acknowledgments

    This work was supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.JB190501),Science and Technology Innovation Team of Shaanxi Province(No.2019TD-002)and National Natural Science Foundation of China (No.11774277).

    猜你喜歡
    張大博文
    中國兩會
    華人時刊(2022年4期)2022-04-14 09:27:56
    第一次掙錢
    Shape coexistence in 76Se within the neutron-proton interacting boson model
    Uniformly Normal Structure and Uniform Non-Squareness of Orlicz-Lorentz Sequence Spaces Endowed with the Orlicz Norm
    張大林美術(shù)作品欣賞
    張大春讓健康從業(yè)者偉大起來
    誰和誰好
    張大勤
    意林(2016年22期)2016-11-30 19:06:08
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    打電話2
    午夜福利视频1000在线观看| 国产av麻豆久久久久久久| 少妇丰满av| 久久久成人免费电影| 女警被强在线播放| 小蜜桃在线观看免费完整版高清| 中文在线观看免费www的网站| 在线播放国产精品三级| 国产亚洲精品久久久com| 桃红色精品国产亚洲av| 老司机午夜十八禁免费视频| 亚洲国产中文字幕在线视频| 免费人成在线观看视频色| 免费av观看视频| 国产黄片美女视频| 五月伊人婷婷丁香| 校园春色视频在线观看| 亚洲一区二区三区色噜噜| 男人的好看免费观看在线视频| 成熟少妇高潮喷水视频| 日本熟妇午夜| 午夜老司机福利剧场| 欧美日韩精品网址| 99国产精品一区二区三区| 精品一区二区三区人妻视频| 在线视频色国产色| 成人特级av手机在线观看| 成人无遮挡网站| x7x7x7水蜜桃| 99热精品在线国产| 精品一区二区三区视频在线观看免费| 中文字幕人成人乱码亚洲影| 午夜福利免费观看在线| 成人av在线播放网站| 欧美中文综合在线视频| 99国产精品一区二区三区| 亚洲成人久久性| 国产高清激情床上av| 乱人视频在线观看| 国产麻豆成人av免费视频| 久久伊人香网站| 在线国产一区二区在线| 麻豆久久精品国产亚洲av| 午夜福利欧美成人| 国产高清有码在线观看视频| 久久精品国产99精品国产亚洲性色| 中文字幕久久专区| 欧美三级亚洲精品| 高清日韩中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 桃色一区二区三区在线观看| 日韩欧美在线乱码| 老熟妇仑乱视频hdxx| av欧美777| 丰满乱子伦码专区| 欧美日韩福利视频一区二区| 成人av一区二区三区在线看| 国产野战对白在线观看| 亚洲av成人av| 国产精品久久视频播放| 欧美极品一区二区三区四区| 国产伦在线观看视频一区| 国产午夜福利久久久久久| 国产一区在线观看成人免费| 亚洲在线自拍视频| 丰满人妻一区二区三区视频av | 亚洲精品一区av在线观看| 国产高清有码在线观看视频| 亚洲一区二区三区不卡视频| 欧美最黄视频在线播放免费| 久久午夜亚洲精品久久| 亚洲成人中文字幕在线播放| 老熟妇乱子伦视频在线观看| 国产伦精品一区二区三区四那| 中出人妻视频一区二区| 日韩欧美精品免费久久 | 国产91精品成人一区二区三区| 岛国视频午夜一区免费看| 亚洲精品粉嫩美女一区| 亚洲国产欧洲综合997久久,| 人人妻人人澡欧美一区二区| 又黄又粗又硬又大视频| 国产午夜精品论理片| 精品人妻一区二区三区麻豆 | 一卡2卡三卡四卡精品乱码亚洲| 色综合婷婷激情| 国产精品综合久久久久久久免费| 亚洲无线在线观看| e午夜精品久久久久久久| 麻豆一二三区av精品| 悠悠久久av| 五月玫瑰六月丁香| 99精品久久久久人妻精品| 国内精品久久久久精免费| 亚洲中文字幕日韩| 国产国拍精品亚洲av在线观看 | 日本熟妇午夜| 国产精品av视频在线免费观看| 国产黄色小视频在线观看| 欧美3d第一页| 欧美日韩瑟瑟在线播放| 久久亚洲精品不卡| 亚洲五月婷婷丁香| 国产激情偷乱视频一区二区| 男人舔奶头视频| 少妇的逼好多水| 午夜精品在线福利| 看片在线看免费视频| 精品国产亚洲在线| 久久欧美精品欧美久久欧美| 啦啦啦韩国在线观看视频| 国产成人av教育| 国产黄色小视频在线观看| 中文字幕人成人乱码亚洲影| 日本成人三级电影网站| 可以在线观看毛片的网站| 午夜福利成人在线免费观看| 国产v大片淫在线免费观看| 国产精品久久久久久久久免 | 一个人免费在线观看的高清视频| 亚洲性夜色夜夜综合| 18禁在线播放成人免费| 亚洲无线在线观看| 免费大片18禁| 午夜亚洲福利在线播放| 高清毛片免费观看视频网站| 亚洲成av人片免费观看| 国产淫片久久久久久久久 | 中国美女看黄片| 亚洲欧美一区二区三区黑人| 免费高清视频大片| av中文乱码字幕在线| 精品一区二区三区人妻视频| 在线a可以看的网站| 欧美日韩精品网址| 在线天堂最新版资源| 久久久久久人人人人人| 久久香蕉精品热| 国产精品久久久久久久电影 | a在线观看视频网站| 精品欧美国产一区二区三| 国产真实乱freesex| 夜夜夜夜夜久久久久| 色尼玛亚洲综合影院| 99久久成人亚洲精品观看| 欧美高清成人免费视频www| 制服人妻中文乱码| 国产精品综合久久久久久久免费| 18禁美女被吸乳视频| 精品99又大又爽又粗少妇毛片 | 中文字幕高清在线视频| 人人妻,人人澡人人爽秒播| 久久精品人妻少妇| 免费无遮挡裸体视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av不卡在线观看| 久久草成人影院| 麻豆成人午夜福利视频| 国产欧美日韩一区二区精品| 国产成人aa在线观看| 国产97色在线日韩免费| 国产97色在线日韩免费| 国产69精品久久久久777片| 性欧美人与动物交配| 精品人妻一区二区三区麻豆 | 日日干狠狠操夜夜爽| 日韩高清综合在线| 久9热在线精品视频| 精品99又大又爽又粗少妇毛片 | 女警被强在线播放| 少妇熟女aⅴ在线视频| 91av网一区二区| 男女视频在线观看网站免费| 国产精品野战在线观看| 国产一区二区在线观看日韩 | 欧美日本视频| 日本 av在线| 成人无遮挡网站| 精品一区二区三区av网在线观看| 免费看a级黄色片| 国产黄色小视频在线观看| 99热这里只有精品一区| 日本黄大片高清| 九九热线精品视视频播放| 美女高潮的动态| 国产伦一二天堂av在线观看| 国产主播在线观看一区二区| 亚洲欧美日韩高清专用| 亚洲国产精品合色在线| 久久精品影院6| 欧美丝袜亚洲另类 | 欧美成人免费av一区二区三区| 亚洲色图av天堂| 深夜精品福利| 首页视频小说图片口味搜索| 午夜福利在线观看免费完整高清在 | 日韩有码中文字幕| 欧美又色又爽又黄视频| 国产三级黄色录像| 国模一区二区三区四区视频| 特大巨黑吊av在线直播| 久久久久国产精品人妻aⅴ院| 午夜福利欧美成人| 日日干狠狠操夜夜爽| 国产单亲对白刺激| 在线播放无遮挡| 此物有八面人人有两片| 日本精品一区二区三区蜜桃| 18禁在线播放成人免费| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲av一区麻豆| 午夜精品一区二区三区免费看| 少妇高潮的动态图| 日韩中文字幕欧美一区二区| 97人妻精品一区二区三区麻豆| 变态另类丝袜制服| 成人午夜高清在线视频| 少妇人妻精品综合一区二区 | 国产高潮美女av| 岛国视频午夜一区免费看| 岛国在线免费视频观看| 久久久久性生活片| 成人精品一区二区免费| 亚洲国产高清在线一区二区三| 淫秽高清视频在线观看| 观看免费一级毛片| 国产一区二区在线观看日韩 | 精品福利观看| 最近视频中文字幕2019在线8| 国产精品久久电影中文字幕| av天堂在线播放| 免费看十八禁软件| 无限看片的www在线观看| 99热只有精品国产| 亚洲人成网站在线播| 麻豆久久精品国产亚洲av| 亚洲av第一区精品v没综合| 国产成人av激情在线播放| 国产午夜精品久久久久久一区二区三区 | 在线观看免费午夜福利视频| 亚洲专区国产一区二区| or卡值多少钱| 精品一区二区三区av网在线观看| 一a级毛片在线观看| 久久久国产成人免费| 成人高潮视频无遮挡免费网站| 免费高清视频大片| 尤物成人国产欧美一区二区三区| 欧美av亚洲av综合av国产av| 操出白浆在线播放| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 成人一区二区视频在线观看| 香蕉av资源在线| 日本黄色片子视频| 日韩欧美 国产精品| 亚洲欧美日韩卡通动漫| 18+在线观看网站| 精品国产美女av久久久久小说| 国产成人av教育| 国产精品嫩草影院av在线观看 | 黄片大片在线免费观看| 搡老熟女国产l中国老女人| 亚洲美女视频黄频| 天天躁日日操中文字幕| 欧美另类亚洲清纯唯美| 人人妻人人看人人澡| 国产高清视频在线播放一区| avwww免费| av视频在线观看入口| 日本撒尿小便嘘嘘汇集6| 中文字幕av在线有码专区| 国产免费一级a男人的天堂| 国产精品久久久久久精品电影| 十八禁人妻一区二区| 国产又黄又爽又无遮挡在线| 欧美日韩瑟瑟在线播放| 亚洲成人精品中文字幕电影| 欧美日韩乱码在线| 少妇的丰满在线观看| 国产伦一二天堂av在线观看| 少妇人妻一区二区三区视频| 免费观看人在逋| 欧美中文日本在线观看视频| 少妇熟女aⅴ在线视频| 一进一出好大好爽视频| 女人被狂操c到高潮| 国产极品精品免费视频能看的| 午夜亚洲福利在线播放| av专区在线播放| 国产精品久久久久久精品电影| 美女高潮的动态| 亚洲成人久久性| 日本 欧美在线| 国产伦一二天堂av在线观看| 噜噜噜噜噜久久久久久91| 真实男女啪啪啪动态图| 日韩欧美一区二区三区在线观看| 欧美3d第一页| av中文乱码字幕在线| 久久午夜亚洲精品久久| 成人特级黄色片久久久久久久| 日日干狠狠操夜夜爽| 少妇的逼水好多| 久久中文看片网| 亚洲第一欧美日韩一区二区三区| 欧美日本亚洲视频在线播放| 在线免费观看不下载黄p国产 | 亚洲午夜理论影院| АⅤ资源中文在线天堂| 亚洲av成人精品一区久久| 国产精品香港三级国产av潘金莲| 亚洲av免费高清在线观看| 特级一级黄色大片| a级毛片a级免费在线| 真实男女啪啪啪动态图| 高清日韩中文字幕在线| 在线播放国产精品三级| 久久婷婷人人爽人人干人人爱| 国产69精品久久久久777片| ponron亚洲| 午夜福利视频1000在线观看| 久久香蕉精品热| 欧美激情在线99| 搡老熟女国产l中国老女人| 亚洲精品国产精品久久久不卡| 最近最新中文字幕大全电影3| 一a级毛片在线观看| 夜夜夜夜夜久久久久| 国产爱豆传媒在线观看| 一级作爱视频免费观看| 日韩中文字幕欧美一区二区| 十八禁人妻一区二区| 手机成人av网站| 欧美性猛交黑人性爽| 亚洲在线观看片| 午夜免费观看网址| 制服人妻中文乱码| 免费电影在线观看免费观看| 中文在线观看免费www的网站| 午夜a级毛片| 女人被狂操c到高潮| 午夜福利在线在线| 亚洲精品影视一区二区三区av| 亚洲精品乱码久久久v下载方式 | 91在线精品国自产拍蜜月 | 波多野结衣高清无吗| 琪琪午夜伦伦电影理论片6080| 亚洲成a人片在线一区二区| 亚洲欧美日韩东京热| 草草在线视频免费看| 一边摸一边抽搐一进一小说| 国产 一区 欧美 日韩| 国产免费一级a男人的天堂| 噜噜噜噜噜久久久久久91| 婷婷丁香在线五月| 亚洲一区二区三区色噜噜| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩一级在线毛片| 国产伦在线观看视频一区| 欧美bdsm另类| 午夜福利视频1000在线观看| 可以在线观看毛片的网站| 美女高潮喷水抽搐中文字幕| 亚洲天堂国产精品一区在线| 91麻豆精品激情在线观看国产| 亚洲人成网站在线播| 国产真人三级小视频在线观看| 欧美黄色淫秽网站| 午夜福利18| 免费在线观看成人毛片| 欧美日本亚洲视频在线播放| 久久精品国产99精品国产亚洲性色| 亚洲真实伦在线观看| 国产美女午夜福利| 亚洲 国产 在线| 国产成人aa在线观看| 一进一出抽搐gif免费好疼| 毛片女人毛片| 久久香蕉精品热| 午夜老司机福利剧场| 欧美最新免费一区二区三区 | 一个人观看的视频www高清免费观看| 夜夜躁狠狠躁天天躁| 亚洲精品一区av在线观看| 中国美女看黄片| 久久久久久久久中文| 国产主播在线观看一区二区| 亚洲欧美激情综合另类| 999久久久精品免费观看国产| 国内毛片毛片毛片毛片毛片| 亚洲av成人精品一区久久| 日韩成人在线观看一区二区三区| av女优亚洲男人天堂| 日韩精品中文字幕看吧| 成人特级av手机在线观看| 亚洲精品乱码久久久v下载方式 | 99热6这里只有精品| 黄色成人免费大全| 俄罗斯特黄特色一大片| 淫妇啪啪啪对白视频| 欧美av亚洲av综合av国产av| 99精品久久久久人妻精品| 日韩精品中文字幕看吧| 精品久久久久久久毛片微露脸| 蜜桃久久精品国产亚洲av| 日本免费一区二区三区高清不卡| 亚洲精品影视一区二区三区av| 午夜视频国产福利| 国产91精品成人一区二区三区| 97超级碰碰碰精品色视频在线观看| 国产老妇女一区| 中文字幕熟女人妻在线| 午夜精品一区二区三区免费看| 丁香欧美五月| 亚洲美女黄片视频| 俺也久久电影网| 国产高清videossex| 少妇熟女aⅴ在线视频| 99国产极品粉嫩在线观看| 色综合站精品国产| 国产亚洲欧美98| 小说图片视频综合网站| 变态另类丝袜制服| 蜜桃久久精品国产亚洲av| 欧美又色又爽又黄视频| 最后的刺客免费高清国语| 欧美乱色亚洲激情| 亚洲熟妇熟女久久| 欧美国产日韩亚洲一区| 国产av在哪里看| 亚洲欧美日韩高清专用| 国产乱人伦免费视频| 国产精品自产拍在线观看55亚洲| 国产 一区 欧美 日韩| av国产免费在线观看| 18禁黄网站禁片午夜丰满| 欧美日韩综合久久久久久 | 小蜜桃在线观看免费完整版高清| 欧美性感艳星| 欧美不卡视频在线免费观看| 99riav亚洲国产免费| 午夜福利在线观看免费完整高清在 | 一个人免费在线观看电影| 国产成人福利小说| 亚洲第一欧美日韩一区二区三区| 在线天堂最新版资源| 欧美黑人巨大hd| 欧美乱码精品一区二区三区| 综合色av麻豆| 国产成人a区在线观看| 欧美午夜高清在线| 一卡2卡三卡四卡精品乱码亚洲| 男女午夜视频在线观看| bbb黄色大片| 国产午夜福利久久久久久| 超碰av人人做人人爽久久 | 久久国产精品影院| 欧美在线一区亚洲| 欧美+日韩+精品| 亚洲18禁久久av| 色综合欧美亚洲国产小说| 每晚都被弄得嗷嗷叫到高潮| 欧美在线一区亚洲| 91九色精品人成在线观看| 亚洲熟妇熟女久久| 尤物成人国产欧美一区二区三区| 91av网一区二区| 精品熟女少妇八av免费久了| 国产伦一二天堂av在线观看| 五月伊人婷婷丁香| 一区二区三区免费毛片| 天堂网av新在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲狠狠婷婷综合久久图片| 99久久综合精品五月天人人| 三级男女做爰猛烈吃奶摸视频| 国产高清激情床上av| 久久精品91无色码中文字幕| 淫妇啪啪啪对白视频| 精品电影一区二区在线| 舔av片在线| 又爽又黄无遮挡网站| 欧美精品啪啪一区二区三区| 欧美在线黄色| 天美传媒精品一区二区| 国产成人欧美在线观看| 岛国在线观看网站| 欧美在线黄色| 国产高清有码在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩瑟瑟在线播放| 美女大奶头视频| 欧美成人a在线观看| 精品人妻一区二区三区麻豆 | 天堂动漫精品| 久99久视频精品免费| 欧美+日韩+精品| 热99在线观看视频| 在线看三级毛片| 久久久久久九九精品二区国产| 1024手机看黄色片| 欧美日本亚洲视频在线播放| 欧美国产日韩亚洲一区| 一二三四社区在线视频社区8| 可以在线观看毛片的网站| 香蕉丝袜av| 免费无遮挡裸体视频| 午夜精品在线福利| 国产三级在线视频| 亚洲精品乱码久久久v下载方式 | 好看av亚洲va欧美ⅴa在| 欧美激情在线99| 日本黄色视频三级网站网址| 51国产日韩欧美| 五月伊人婷婷丁香| 久久国产精品人妻蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 国产精品乱码一区二三区的特点| 日本一二三区视频观看| 又粗又爽又猛毛片免费看| 欧美成人免费av一区二区三区| 久久久久久久久大av| 麻豆一二三区av精品| 欧美成人性av电影在线观看| 国产精品久久久久久久电影 | eeuss影院久久| 国产精品永久免费网站| 亚洲精品粉嫩美女一区| 亚洲国产精品合色在线| 免费观看的影片在线观看| 亚洲精品亚洲一区二区| 蜜桃亚洲精品一区二区三区| 91麻豆精品激情在线观看国产| 麻豆一二三区av精品| 69人妻影院| 午夜福利在线观看免费完整高清在 | 久久久久国内视频| 精品电影一区二区在线| 校园春色视频在线观看| 波多野结衣高清作品| 成人永久免费在线观看视频| 十八禁人妻一区二区| 日韩人妻高清精品专区| 亚洲男人的天堂狠狠| 变态另类丝袜制服| 日韩国内少妇激情av| 毛片女人毛片| 日韩成人在线观看一区二区三区| 日韩欧美国产在线观看| 嫩草影院精品99| 亚洲专区国产一区二区| 国产美女午夜福利| 国产高清激情床上av| 99久久精品一区二区三区| 亚洲欧美一区二区三区黑人| 精品一区二区三区人妻视频| 蜜桃亚洲精品一区二区三区| 在线免费观看的www视频| 国产亚洲精品av在线| 一边摸一边抽搐一进一小说| 91字幕亚洲| 蜜桃久久精品国产亚洲av| 久久香蕉国产精品| 日韩精品中文字幕看吧| 成人av在线播放网站| 最新中文字幕久久久久| 国产激情欧美一区二区| 91久久精品国产一区二区成人 | 岛国在线免费视频观看| 亚洲一区二区三区色噜噜| 日韩亚洲欧美综合| 在线观看免费视频日本深夜| 久久久久久久精品吃奶| 国产毛片a区久久久久| 最近最新中文字幕大全免费视频| 国内精品一区二区在线观看| 我要搜黄色片| 在线十欧美十亚洲十日本专区| 舔av片在线| 一个人看视频在线观看www免费 | 亚洲国产欧美网| 丰满乱子伦码专区| 91九色精品人成在线观看| 免费看美女性在线毛片视频| 亚洲欧美日韩东京热| 亚洲国产精品成人综合色| 网址你懂的国产日韩在线| 天天躁日日操中文字幕| 日韩中文字幕欧美一区二区| 1024手机看黄色片| 在线观看av片永久免费下载| 黄色片一级片一级黄色片| 麻豆久久精品国产亚洲av| 国产成人aa在线观看| 日韩精品青青久久久久久| 欧美色欧美亚洲另类二区| 欧美在线黄色| 中文在线观看免费www的网站| 最近视频中文字幕2019在线8| 欧美日韩综合久久久久久 | АⅤ资源中文在线天堂| 日韩国内少妇激情av| 一级作爱视频免费观看| 一a级毛片在线观看| 一区二区三区国产精品乱码| 午夜福利在线观看吧| 神马国产精品三级电影在线观看| 欧美大码av| 51午夜福利影视在线观看| 两个人的视频大全免费| 亚洲国产精品久久男人天堂| 亚洲性夜色夜夜综合| 99视频精品全部免费 在线| 少妇的丰满在线观看|