• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rapid online analysis of trace elements in steel using a mobile fiber-optic laserinduced breakdown spectroscopy system

    2020-07-09 04:20:08QingdongZENG曾慶棟GuanghuiCHEN陳光輝XiangangCHEN陳獻剛BoyunWANG王波云BoyangWAN萬博陽MengtianYUAN袁夢甜YangLIU劉洋HuaqingYU余華清LianboGUO郭連波andXiangyouLI李祥友
    Plasma Science and Technology 2020年7期
    關鍵詞:劉洋光輝

    Qingdong ZENG (曾慶棟),Guanghui CHEN (陳光輝),Xiangang CHEN (陳獻剛),Boyun WANG (王波云),Boyang WAN (萬博陽),Mengtian YUAN (袁夢甜),Yang LIU (劉洋),Huaqing YU (余華清),Lianbo GUO (郭連波) and Xiangyou LI (李祥友)

    1 School of Physics and Electronic-information Engineering,Hubei Engineering University,Xiaogan 432000,People’s Republic of China

    2 Wuhan National Laboratory for Optoelectronics (WNLO),Huazhong University of Science and Technology,Wuhan 430074,People’s Republic of China

    3 Faculty of Physics and Electronic Science,Hubei University,Wuhan 430062,People’s Republic of China

    4 Inner Mongolia North Heavy Industries Group Corp.Ltd,Baotou 014033,People’s Republic of China

    Abstract

    Keywords:laser-induced breakdown spectroscopy,optical fiber,rapid analysis,online detection,steel

    1.Introduction

    The content of trace elements in a steel alloy has a remarkable effect on the performance of the steel [1,2].Accordingly,rapid and accurate detection of the concentration of trace elements is critical to steel performance,production efficiency,and cost reduction of human resource.However,the traditional analytical methods are unsuitable for the direct measurement of large steel tubes,especially in harsh environments.For example,inductively coupled plasma(ICP)is a traditional method of steel analysis that involves cutting of a small piece of steel at the end of the steel tube and then preparing it for analysis through complex sample processing.The analysis processes are labor-intensive and time-consuming due to the complex preparation and extensive analysis cycle.

    Laser-induced breakdown spectroscopy (LIBS) is an effective elemental analytical method that analyzes the composition of substances by detecting the atomic emission spectroscopy of the target sample [3–7].Unlike traditional analytical methods,the LIBS technique is versatile due to its various advantages of minimal sample preparation,fast analysis,and the ability to identify multiple elements at the same time [8–11].LIBS is a promising fast detection technology and regarded as a ‘future superstar’ due to these advantages[12].However,because of its large size,complex structure,and sensitivity to disturbance from the outside environment,the traditional LIBS is only suitable for laboratory research and not practicable for online detection and analysis in the industrial field [13].

    Therefore,the development of a transportable,robust,and cost-effective LIBS system is an urgent requirement for online analysis in the industrial field.Several research groups have devoted their efforts to the development of a robust,cost-effective,and even mobile or portable LIBS system suitable for industrial applications.Gravel et al[14]utilized a compact fiber laser coupled with three different spectrometers to ablate aluminum and copper samples and analyze their elements.They found that,under some given conditions,the compact spectrometer could obtain low limits of detection(LODs) that operate at fast rates.They suggested that the robust fiber laser has great potential for various industrial LIBS applications.Scharun et al [15]developed a mobile LIBS setup utilizing a multi-kHz fiber laser as the light source for metal analysis.The set-up achieved accuracy comparable to or even better than that of spark discharge optical emission spectroscopy within a given concentration range,under corresponding conditions; however,obtaining a single spectrum without continuous background emission using a compact spectrometer and an inexpensive CCD detector is difficult due to the multi-kHz repetition frequency [16].Several specialist LIBS set-ups have been successfully applied in the industrial field.For example,Sturm et al [17]used an automated LIBS device for analyzing the liquid slag in a slag transporter online with temperature ranging from 600 °C to 1400 °C.It should be mentioned that this equipment is large,adapted to a specific situation,and difficult to maneuver unlike a mobile or portable device.Wang et al[18]utilized a handheld micro-LIBS device to analyze different types of steel.They reported that the absolute errors (AEs)and sample-to-sample relative standard deviation(RSD)of Si,Cr,Mn,and Ni are improved by utilizing the partial leastsquares algorithm with spectral standardization.

    The aforementioned works provided versatile approaches and obtained progress in LIBS application from the laboratory to industrial sites; however,the majority of these LIBS systems have difficulty in obtaining satisfactory results in terms of volume and performance.Decreased robustness and low accuracy and precision are the major drawbacks of LIBS systems in quantitative analysis.Using special fibers can conveniently deliver the laser beam to the target by avoiding the complex optical path systems and interferences from the outside,which improves the anti-interference ability of the system; several researchers have utilized special fibers to deliver the laser beam and build a fiber-optic laser-induced breakdown spectroscopy (FO-LIBS) system [13,19–22].It is worth mentioning that Thornton et al [22]developed and successfully deployed a deep-sea LIBS instrument(Chemi-Cam) to study the chemical composition of seawater and mineral deposits at depths of over 1000 m.They utilized a 4 m long fiber-optic cable to deliver a laser beam to the target surface and the whole device was mounted on a remotely operated vehicle(ROV).Limited methods can be used for the online quantitative analysis of trace elements of large-diameter steel tubes in industrial sites.

    Figure 1.FO-LIBS system.(a) Schematic and (b) prototype.

    In this study,a mobile FO-LIBS prototype is developed and applied to the online quantitative analysis of a largediameter steel pipe in a steel mill.The Mn,Cr,Ni,V,Cu,and Mo in the steel are quantitatively analyzed.Polynomial fitting and linear fitting are performed to establish calibration curves,and their results are compared to improve the analysis accuracy.The AE,relative error(RE),and LOD of each element in the large-diameter steel pipe are measured.

    2.Experimental set-up and methodology

    2.1.Experimental set-up

    The schematic of the proposed FO-LIBS system is illustrated in figure 1(a).A compact Q-switch Nd:YAG laser (Model:Ultra 50; Bigsky Co.,Ltd; United States) with stability and robustness in tolerating harsh conditions is utilized as the light source.This laser has a wavelength of 532 nm,repetition rate of 10 Hz,and maximum output laser energy per pulse ofapproximately 29 mJ.After coupling with the optical fiber,with core diameter of 1 mm,via a coupling model,the laser beam leaves the fiber and is collimated by a collimating lens.The laser beam is then reflected by a dichroic mirror.The laser beam is focused onto the sample surface for producing plasma.The emission line of the plasma is acquired using a compact time-integrated spectrometer (AvaSpec-2048-USB2,10 μm slit,2400 lines/mm (VE) grating).The spectral range of the spectrometer is from approximately 295 nm to 1020 nm split jointed by six channels,with a spectral resolution of 0.08–0.11 nm.The spectrometer is coupled with a gated 2048 pixel CCD array detector (model Sony 554).The detector in charge of receiving the plasma spectrum converts the optical signal into an electrical signal.The spectral signal is subsequently transmitted through the USB interface and displayed on a laptop.In this work,the integration time of each acquisition was set to 1.1 ms and the delay time was 1.3 μs after the laser pulse.Every sample was measured 30 times unless specified,and each measurement was averaged by 10 spectra.

    Table 1.Reference concentrations of the six trace elements in six carbon steel samples (wt%).

    The prototype of the FO-LIBS system is shown in figure 1(b).The equipment consists of two parts,namely,the main case and the probe.The main case,containing the compact laser,spectrometer,circuit system,optical system,control system,and power system,is approximately 40 cm×50 cm×70 cm in size and 50 kg in weight.The probe,composed of a mini lens and the optical fiber,is approximately 20 cm in length.The system is equipped with a laptop and self-developed LIBSystemX software,which is applied for qualitative and quantitative analyses,database building,spectral data extraction,and other functions.The entire equipment is supplied with 220 V AC electricity and designed with wheels for easy mobility.

    2.2.Samples

    Six standard carbon steel samples (GBW01211-01216; purchased from Fushun Steel Shares Co.,Ltd),seven standard samples of microalloy steel (GSB 03-2453-2008-1-7),and eleven standard samples of low-alloy steel (purchased from the National Institute of Standards and Technology [NIST]),are used to build the calibration curve models in this work.The concentration information of Mn,Cr,Ni,V,Cu,and Mo in all calibration samples is listed in tables 1–3.Five special steel materials,including large-diameter steel tubes,weredetected and analyzed.The concentration information of Mn,Cr,Ni,V,Cu,and Mo in the detection target is presented in table 4.

    Table 2.Reference concentrations of the six trace elements in the microalloy steel samples (wt%).

    3.Results and discussion

    3.1.Establishment of calibration curve

    The spectrum signal obtained using the mobile FO-LIBS prototype is shown in figure 2.The spectra are acquired from carbon steel sample C-1.The calibration curve models are established prior to the quantitative analysis.Twenty-four standard steel samples are used for broadening the concentration range,and improving the analytical accuracy and building the calibration curve models of Mn,Cr,Ni,V,Cu,and Mo.Describing the relation between the spectral line intensity and element concentration via linear fitting was difficult due to the large concentration range of elements in the samples.Therefore,the calibration curve models were established through polynomial fitting.In general,the majority of spectral data can be successfully fitted through quadratic or cubic polynomial fitting.However,in a few special cases,quadratic or cubic polynomial fitting in the calibration curve model of Cu is difficult due to the selfabsorption effect [11].In view of the above-mentioned reasons,the fourth-order polynomial curve fitting method was adopted in this study to establish the calibration curve model for Cu.According to the NIST atomic spectral database and considering the absence of or minimal interference,the spectral lines of Mn 476.24 nm,Cr 434.45 nm,V 440.85 nm,Ni 346.17 nm,Cu 327.40 nm and Mo 386.41 nm were chosen as the analytical spectral lines.Considering little or no selfabsorption,no interference from other elements,and proximity to the analytical spectral lines,the matrices spectral Fe 426.05 nm,Fe 430.79 nm,Fe 426.05 nm,Fe 358.12 nm,Fe 358.12 nm and Fe 387.85 nm were adopted as the reference lines for Mn 476.24 nm,Cr 434.45 nm,V 440.85 nm,Ni 346.17 nm,Cu 327.40 nm and Mo 386.41 nm,respectively.In this work,the polynomial and linear fitting methods were performed to establish calibration curve models.The calibration curves for the intensity ratios of Mn 476.24 nm/Fe 426.05 nm,Cr 434.45 nm/Fe 430.79 nm,Ni 346.17nm/Fe 358.12 nm,V 440.85 nm/Fe 426.05 nm,Cu 327.40 nm/Fe358.12 nm,and Mo 386.41 nm/Fe 387.85 nm were established and are shown in figures 3(a)–(f).

    Table 3.Reference concentrations of the six trace elements in the low-alloy steel samples (wt%).

    Table 4.Reference concentrations of the six trace elements in the special steel materials (wt%).

    In general,when the coefficients of determination (R2factors) of a calibration curve are above 0.98,such a curve can be used for quantitative analysis.The R2factors of the calibration curves established by polynomial fitting and linear fitting for Mn,Cr,Ni,V,Cu,and Mo are presented in figure 3.As shown in figures 3(a)–(f),the R2factors of the calibration curves are improved with the use of polynomial fitting,and most are above 0.99,except for Cu (R2=0.98),indicating the elements’strong self-absorption effect[11].As shown in figure 3,the R2factors in the polynomial fitting method are obviously better than those in the linear fitting method,which is mainly due to the nonlinearity in the calibration curve caused by the self-absorption effect.In order to broaden the measuring range of this FO-LIBS prototype,the number of samples was increased and the concentration range of elements was broadened.It is acknowledged that the selfabsorption effect of the spectrum is different at different concentrations.When the element’s concentration is low,the self-absorption effect is small and the intensity of the spectral line changes closer to the linear relationship with the concentration; however,when the concentration is high or a strong line is employed to pursue high sensitivity,the selfabsorption is difficult to avoid,and the calibration curve is nonlinear.To improve the analysis accuracy,employing more samples and a polynomial fitting method can better approach the actual data points of the spectrum intensity in calibration curve,thus avoiding the influence of the nonlinearity in the quantitative analysis caused by the self-absorption effect.

    In addition,RSD is improved in this mobile LIBS system.For example,the average RSD for the intensity ratios of Mn 476.24 nm/Fe 426.05 nm was about 4.6%.The results suggest that the precision of this prototype is slightly better than that of most LIBS systems [23–26].

    3.2.Quantitative analysis

    After obtaining the calibration curves for the elements,the spectrum data of the measured materials were inputted into the calibration curve equation to calculate the concentration of each trace element.In this work,five special steel materials(including large-diameter steel pipes) were rapidly and quantitatively analyzed via the mobile FO-LIBS prototype.Thirty spectra were obtained for each measured material,and each spectrum was acquired by taking the average of ten separate measurements.The predicted concentration value of each element was calculated according to its calibration curve equations.In addition,the AEs and REs of Mn,Cr,and V are listed in table 5(a),and those of Ni,Cu,and Mo in table 5(b).

    Figure 3.Calibration curves of trace elements:(a) Mn,(b) Cr,(c) Ni,(d) V,(e) Cu,and (f) Mo.

    As shown in tables 5(a)and(b),the average AEs of Mn,Cr,V,Ni,Cu,and Mo in the five special steel materials were 0.039 wt%,0.440 wt%,0.033 wt%,0.057 wt%,0.003 wt%,and 0.07 wt%,whereas their average REs were 10.7%,11.0%,9.0%,15.7%,2.9%,and 7.8%,respectively.The accuracy of analysis in the field was slightly inferior to that in the laboratory due to the harsh environment and interference in the steel mill.However,the on-site performance analysis of the mobile LIBS prototype is similar to that of most traditional LIBS systems [27–29].The accuracy results of this study were slightly inferior to those detected via ICP-optical emission spectrometry (ICP-OES).Nevertheless,the results of the prototype analysis could be used for the preliminary detection of trace elements in steel material.Furthermore,the ambiguous results could be sent to the laboratory for further chemical analysis.

    3.3.LOD

    LOD is used to evaluate the sensitivity of an instrument or method.LOD indicates the minimum concentration of an element that can be detected with the appropriate confidence level.As shown in equation(1),the 3σ principle was applied to calculate the LOD of each element according to the stipulation of the International Union of Pure and AppliedChemistry.

    Table 5.(a).AEs and REs of Mn,Cr,and V in five special steel materials using FO-LIBS(wt%).(b).AEs and REs of Ni,Cu,and Mo in five special steel materials using FO-LIBS (wt%).

    whereσBrepresents the standard deviation of background noise and k denotes the slope of the calibration curve.In this work,the wavelength region of 409.45–409.87 nm was chosen as the background noise.The LODs of the six trace elements in steel are calculated using equation(1)and shown in table 6.

    As shown in table 6,the LODs of elements detected by the mobile FO-LIBS prototype were slightly better than those obtained in the laboratory in our previous work,likely because the cylindrical cavity wall (2 mm in diameter) of the muzzle of the probe is equivalent to a space-constraining cavity,which can restrict plasma.Therefore,improved LOD values in the space-constraining cavity could enhance the intensity of the spectral line and detection sensitivity[30–32].

    4.Conclusions

    In summary,a mobile FO-LIBS prototype was developed and used in the online quantitative analysis of trace elements in steel materials.The polynomial fitting method and linear fitting method were compared and used to establish calibration curve models for Mn,Cr,V,Ni,Cu,and Mo.The R2factors in the polynomial fitting method are obviously better than those in the linear fitting method.In the polynomial fitting method,most of the R2factors of calibration curves were above 0.99,except for Cu,indicating the elements’ strong self-absorption effect.The average AEs of Mn,Cr,V,Ni,Cu,and Mo of the five special steel materials were 0.039 wt%,0.440 wt%,0.033 wt%,0.057 wt%,0.003 wt%,and 0.07 wt%,respectively,and their average REs were within the range of 2.9%–15.7%.The results suggest that polynomial fitting can better approach the actual data points of the intensity in the calibration curve,thus avoiding the influence of the nonlinearity in the quantitative analysis caused by the selfabsorption effect and improving the analysis accuracy.The LODs of these elements were 39,31,36,89,131,and 290 ppm,respectively.These results suggest that the on-site performance analysis of the mobile LIBS prototype is similar to or even slightly better than that of most traditional LIBS systems.Hence,the FO-LIBS prototype could be used for the preliminary detection of trace elements in industrial sites due to its advantages of flexibility and robustness.Moreover,FO-LIBS provides a feasible approach for promoting LIBS from the laboratory to industry.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.61705064,11647122),the Natural Science Foundation of Hubei Province (Nos.2018CFB773,2018CFB672),and the Project of the Hubei Provincial Department of Education (No.T201617).

    猜你喜歡
    劉洋光輝
    光輝的學習榜樣
    今日民族(2022年9期)2022-10-09 05:35:26
    A class of two-dimensional rational maps with self-excited and hidden attractors
    又見劉洋
    海峽姐妹(2020年6期)2020-07-25 01:26:10
    劉洋作品
    藝術家(2019年9期)2019-12-17 08:28:19
    春在飛
    就在家門口
    世界家苑(2018年11期)2018-11-20 10:50:58
    劉洋 藏石欣賞
    寶藏(2018年8期)2018-08-31 07:28:00
    劉洋作品
    小新筆記
    一次路遇
    美女国产视频在线观看| 国产精品久久久久久久久免| 国产精品久久久av美女十八| 熟女电影av网| 黄片无遮挡物在线观看| 搡老乐熟女国产| 国产老妇伦熟女老妇高清| 亚洲国产精品国产精品| 老司机影院毛片| 日韩伦理黄色片| 观看美女的网站| 久久久久精品性色| 亚洲三级黄色毛片| 男女下面插进去视频免费观看| 成人国语在线视频| 国产精品嫩草影院av在线观看| 啦啦啦在线观看免费高清www| 黄色怎么调成土黄色| 久久人人爽人人片av| tube8黄色片| 国产男女超爽视频在线观看| 人人妻人人澡人人看| 亚洲色图综合在线观看| 亚洲精品在线美女| 黄色配什么色好看| 亚洲国产av影院在线观看| 亚洲精品av麻豆狂野| 国产无遮挡羞羞视频在线观看| 久久久欧美国产精品| 精品人妻偷拍中文字幕| 日韩av免费高清视频| 免费在线观看视频国产中文字幕亚洲 | 十八禁高潮呻吟视频| 美女高潮到喷水免费观看| 两性夫妻黄色片| 国产精品一区二区在线不卡| 夫妻午夜视频| 久久人人爽人人片av| 少妇被粗大的猛进出69影院| 只有这里有精品99| 精品第一国产精品| 国产精品一二三区在线看| 日韩在线高清观看一区二区三区| 欧美日韩视频精品一区| 卡戴珊不雅视频在线播放| 国产精品蜜桃在线观看| 国产成人精品在线电影| 各种免费的搞黄视频| 看免费av毛片| 精品亚洲乱码少妇综合久久| 久久精品国产亚洲av高清一级| 日韩三级伦理在线观看| a 毛片基地| 精品一品国产午夜福利视频| 日产精品乱码卡一卡2卡三| 伦理电影免费视频| 国产一级毛片在线| 欧美最新免费一区二区三区| 少妇的丰满在线观看| 又黄又粗又硬又大视频| 国产高清国产精品国产三级| 一区二区三区激情视频| 国产欧美亚洲国产| 成人国产麻豆网| 91精品伊人久久大香线蕉| 久久人人97超碰香蕉20202| 亚洲中文av在线| 欧美日韩一级在线毛片| 亚洲综合精品二区| 久久精品aⅴ一区二区三区四区 | 亚洲一区中文字幕在线| 亚洲精品一二三| 国产极品天堂在线| 啦啦啦视频在线资源免费观看| 久久久久久久国产电影| 亚洲经典国产精华液单| 中文精品一卡2卡3卡4更新| 亚洲四区av| 亚洲三级黄色毛片| 天天躁夜夜躁狠狠久久av| www.熟女人妻精品国产| 久久久久久久大尺度免费视频| av有码第一页| 国产男人的电影天堂91| 欧美日韩精品网址| 久久久久精品人妻al黑| av免费在线看不卡| 国产成人aa在线观看| 久热这里只有精品99| 亚洲精品视频女| 国产亚洲午夜精品一区二区久久| 亚洲av综合色区一区| 免费大片黄手机在线观看| 人人妻人人澡人人看| av国产久精品久网站免费入址| 91成人精品电影| 日本免费在线观看一区| 欧美精品av麻豆av| 久久人人97超碰香蕉20202| 欧美日韩综合久久久久久| 色吧在线观看| 侵犯人妻中文字幕一二三四区| 亚洲精华国产精华液的使用体验| 日韩精品有码人妻一区| www日本在线高清视频| 青春草视频在线免费观看| 男女边摸边吃奶| 一级毛片电影观看| 免费看av在线观看网站| 五月开心婷婷网| 性少妇av在线| 亚洲五月色婷婷综合| 亚洲,欧美精品.| 欧美日韩视频精品一区| 国产精品久久久久成人av| 男女无遮挡免费网站观看| 日韩av在线免费看完整版不卡| 婷婷色麻豆天堂久久| 亚洲精品国产色婷婷电影| 超碰97精品在线观看| 性高湖久久久久久久久免费观看| 午夜激情久久久久久久| 久热久热在线精品观看| 亚洲国产精品一区二区三区在线| 在线观看美女被高潮喷水网站| 久久久久久久国产电影| 伊人亚洲综合成人网| 国产日韩一区二区三区精品不卡| 日韩制服丝袜自拍偷拍| 男女啪啪激烈高潮av片| 毛片一级片免费看久久久久| 午夜福利乱码中文字幕| 久久久久精品久久久久真实原创| 曰老女人黄片| 日韩熟女老妇一区二区性免费视频| 中国三级夫妇交换| 久久久精品区二区三区| 免费观看在线日韩| 国产精品女同一区二区软件| 国产亚洲精品第一综合不卡| 久久精品亚洲av国产电影网| 日韩免费高清中文字幕av| 精品人妻在线不人妻| 久久99蜜桃精品久久| 午夜福利视频精品| 欧美变态另类bdsm刘玥| 日本午夜av视频| 亚洲欧美一区二区三区久久| av视频免费观看在线观看| 国产精品偷伦视频观看了| 国产免费视频播放在线视频| 国产亚洲av片在线观看秒播厂| 成人毛片a级毛片在线播放| 制服人妻中文乱码| 亚洲国产毛片av蜜桃av| 婷婷色综合大香蕉| 亚洲欧美一区二区三区久久| 欧美黄色片欧美黄色片| 中文字幕色久视频| 国产精品久久久久久久久免| 久久久久久久久久久久大奶| 男男h啪啪无遮挡| 精品国产一区二区三区四区第35| 欧美亚洲 丝袜 人妻 在线| 国产1区2区3区精品| 91成人精品电影| 老汉色av国产亚洲站长工具| 极品人妻少妇av视频| 91精品伊人久久大香线蕉| 99九九在线精品视频| 国产精品熟女久久久久浪| 国产探花极品一区二区| 亚洲人成77777在线视频| 日韩一卡2卡3卡4卡2021年| 亚洲国产最新在线播放| 成人毛片60女人毛片免费| 亚洲精品,欧美精品| 国产精品免费大片| 欧美 亚洲 国产 日韩一| av线在线观看网站| 性高湖久久久久久久久免费观看| 久久这里只有精品19| 午夜91福利影院| 丁香六月天网| 亚洲av日韩在线播放| 亚洲美女视频黄频| 国产视频首页在线观看| 亚洲成人一二三区av| 亚洲色图综合在线观看| 国产成人精品一,二区| 男女下面插进去视频免费观看| 色视频在线一区二区三区| 新久久久久国产一级毛片| 1024视频免费在线观看| 午夜福利影视在线免费观看| 黄色一级大片看看| 亚洲av电影在线观看一区二区三区| 伊人久久国产一区二区| 欧美精品一区二区免费开放| 国产 精品1| 女人久久www免费人成看片| 一级片'在线观看视频| 美女视频免费永久观看网站| 亚洲精品aⅴ在线观看| 一区二区三区四区激情视频| 久久久精品免费免费高清| 亚洲美女视频黄频| 亚洲av综合色区一区| 午夜福利在线观看免费完整高清在| 丰满迷人的少妇在线观看| 涩涩av久久男人的天堂| 精品国产乱码久久久久久小说| 亚洲一区中文字幕在线| 国产精品av久久久久免费| 国产人伦9x9x在线观看 | 哪个播放器可以免费观看大片| 国产精品久久久久成人av| 伦精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 久久精品久久久久久久性| 在线天堂最新版资源| 国产一区二区 视频在线| 91成人精品电影| 香蕉国产在线看| 在现免费观看毛片| 亚洲av电影在线进入| 欧美精品av麻豆av| 午夜影院在线不卡| 99香蕉大伊视频| 久久久久网色| 欧美日韩综合久久久久久| 9色porny在线观看| h视频一区二区三区| 久久这里只有精品19| 日韩一区二区三区影片| 欧美日韩一区二区视频在线观看视频在线| 在线观看免费高清a一片| 国产午夜精品一二区理论片| 欧美日韩亚洲国产一区二区在线观看 | 女人精品久久久久毛片| 狠狠精品人妻久久久久久综合| 欧美精品一区二区大全| 亚洲综合精品二区| 国产精品一区二区在线观看99| 国产片内射在线| 久久久国产欧美日韩av| 亚洲国产av影院在线观看| 一区二区三区激情视频| 男女边摸边吃奶| 国产免费一区二区三区四区乱码| 国产在线免费精品| 日本爱情动作片www.在线观看| 日韩一区二区视频免费看| 精品一区二区三区四区五区乱码 | 女性生殖器流出的白浆| 免费在线观看黄色视频的| 你懂的网址亚洲精品在线观看| 街头女战士在线观看网站| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三区在线| 午夜福利在线免费观看网站| 性少妇av在线| 国产精品熟女久久久久浪| 久久狼人影院| 精品国产露脸久久av麻豆| 极品人妻少妇av视频| 少妇熟女欧美另类| 十八禁网站网址无遮挡| 日本-黄色视频高清免费观看| 成人漫画全彩无遮挡| 国产爽快片一区二区三区| 岛国毛片在线播放| 国产精品免费大片| 久久精品久久久久久久性| 国产有黄有色有爽视频| 成人影院久久| 热re99久久精品国产66热6| 久久久国产精品麻豆| 最近最新中文字幕免费大全7| 国产精品免费视频内射| 国产高清不卡午夜福利| 亚洲内射少妇av| 婷婷成人精品国产| 人体艺术视频欧美日本| 搡老乐熟女国产| 日韩制服丝袜自拍偷拍| 日本-黄色视频高清免费观看| 亚洲欧洲精品一区二区精品久久久 | 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美日韩另类电影网站| 午夜福利,免费看| 青草久久国产| 午夜福利视频精品| 日韩电影二区| 国产精品秋霞免费鲁丝片| 97人妻天天添夜夜摸| 五月开心婷婷网| www.熟女人妻精品国产| 精品亚洲乱码少妇综合久久| 亚洲精品日韩在线中文字幕| 9色porny在线观看| 丝瓜视频免费看黄片| 最新的欧美精品一区二区| 街头女战士在线观看网站| 久久国内精品自在自线图片| 亚洲成av片中文字幕在线观看 | 妹子高潮喷水视频| 久久精品国产亚洲av高清一级| 免费观看无遮挡的男女| 国产又色又爽无遮挡免| 99久久中文字幕三级久久日本| 国产一级毛片在线| 美女大奶头黄色视频| 久久99热这里只频精品6学生| 国产野战对白在线观看| 亚洲精品,欧美精品| 99久久精品国产国产毛片| 亚洲国产毛片av蜜桃av| 精品久久久久久电影网| 国产在线一区二区三区精| 一区在线观看完整版| 麻豆精品久久久久久蜜桃| 美女大奶头黄色视频| 老司机亚洲免费影院| 国产高清不卡午夜福利| 日韩av不卡免费在线播放| 热99国产精品久久久久久7| 丝袜美腿诱惑在线| 精品久久久精品久久久| 99re6热这里在线精品视频| 国产亚洲最大av| 国产精品香港三级国产av潘金莲 | 黄片无遮挡物在线观看| 成人二区视频| 69精品国产乱码久久久| 亚洲国产欧美日韩在线播放| 久久精品国产自在天天线| 超碰97精品在线观看| 免费人妻精品一区二区三区视频| 韩国高清视频一区二区三区| 黄片无遮挡物在线观看| 亚洲精品在线美女| 一区在线观看完整版| 亚洲av综合色区一区| 成人手机av| 天堂俺去俺来也www色官网| 午夜日本视频在线| 亚洲精品成人av观看孕妇| 国产精品 国内视频| 五月天丁香电影| 午夜福利在线免费观看网站| 精品卡一卡二卡四卡免费| 女人久久www免费人成看片| 亚洲色图综合在线观看| 国产白丝娇喘喷水9色精品| 日日爽夜夜爽网站| 国产免费现黄频在线看| 欧美日韩国产mv在线观看视频| 亚洲av电影在线进入| 丝袜美足系列| 99国产综合亚洲精品| 午夜老司机福利剧场| 欧美日韩综合久久久久久| 午夜91福利影院| 色网站视频免费| 毛片一级片免费看久久久久| 国产精品一区二区在线观看99| 精品少妇内射三级| 在线天堂最新版资源| 亚洲欧美清纯卡通| 亚洲av日韩在线播放| 女性被躁到高潮视频| 久久精品国产亚洲av高清一级| 美国免费a级毛片| 久久精品人人爽人人爽视色| 一区二区三区乱码不卡18| 亚洲成人av在线免费| 色播在线永久视频| 国产熟女欧美一区二区| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 一区二区三区激情视频| 婷婷色综合大香蕉| 久久人人97超碰香蕉20202| 精品国产一区二区久久| 久久久国产欧美日韩av| 日韩av免费高清视频| 午夜福利乱码中文字幕| 在线观看国产h片| 蜜桃在线观看..| 搡老乐熟女国产| 久久av网站| 人人妻人人添人人爽欧美一区卜| 免费在线观看完整版高清| 久久综合国产亚洲精品| 赤兔流量卡办理| 久久久久久伊人网av| 男人舔女人的私密视频| 性少妇av在线| 另类精品久久| 亚洲av国产av综合av卡| 国产成人精品婷婷| 久久婷婷青草| 美女xxoo啪啪120秒动态图| 亚洲精品一二三| 黄片播放在线免费| 伦理电影大哥的女人| 99九九在线精品视频| 你懂的网址亚洲精品在线观看| 99久国产av精品国产电影| 成人毛片60女人毛片免费| 一二三四在线观看免费中文在| 2022亚洲国产成人精品| 如何舔出高潮| 国产成人免费观看mmmm| 亚洲国产看品久久| 亚洲av电影在线观看一区二区三区| 欧美+日韩+精品| 日日爽夜夜爽网站| 香蕉丝袜av| 美女国产高潮福利片在线看| 免费人妻精品一区二区三区视频| 999久久久国产精品视频| 色婷婷av一区二区三区视频| 国产淫语在线视频| 亚洲av电影在线观看一区二区三区| 精品人妻熟女毛片av久久网站| 人人澡人人妻人| 欧美激情极品国产一区二区三区| 午夜老司机福利剧场| 在线看a的网站| 九色亚洲精品在线播放| 亚洲美女黄色视频免费看| 中文字幕亚洲精品专区| av免费在线看不卡| 两个人免费观看高清视频| 国产精品女同一区二区软件| 亚洲成色77777| 2021少妇久久久久久久久久久| 电影成人av| 亚洲精品在线美女| 久久这里只有精品19| 久久久久久久亚洲中文字幕| 男女国产视频网站| www.av在线官网国产| 91精品国产国语对白视频| 国产有黄有色有爽视频| 久久久久国产精品人妻一区二区| 波多野结衣一区麻豆| 久久精品国产a三级三级三级| 国产一区二区在线观看av| 国产xxxxx性猛交| 成人影院久久| 看十八女毛片水多多多| 色婷婷久久久亚洲欧美| 久久精品亚洲av国产电影网| 欧美日韩av久久| 亚洲精品日韩在线中文字幕| 亚洲国产成人一精品久久久| 亚洲精品乱久久久久久| 亚洲精品一二三| 日日爽夜夜爽网站| 天堂中文最新版在线下载| 久久精品夜色国产| 婷婷色综合大香蕉| 欧美精品高潮呻吟av久久| 欧美少妇被猛烈插入视频| 在线精品无人区一区二区三| 亚洲欧美一区二区三区久久| 日韩人妻精品一区2区三区| 欧美亚洲日本最大视频资源| 桃花免费在线播放| 国产av一区二区精品久久| 最近中文字幕高清免费大全6| 老司机影院毛片| 9热在线视频观看99| 香蕉国产在线看| 高清在线视频一区二区三区| 一级毛片电影观看| 美女高潮到喷水免费观看| 欧美 亚洲 国产 日韩一| 18在线观看网站| 成年av动漫网址| 天堂中文最新版在线下载| 精品少妇一区二区三区视频日本电影 | 日本-黄色视频高清免费观看| 少妇人妻精品综合一区二区| 又大又黄又爽视频免费| 亚洲第一av免费看| 久久综合国产亚洲精品| 熟女电影av网| 精品少妇一区二区三区视频日本电影 | 亚洲精品日韩在线中文字幕| 久久人人97超碰香蕉20202| 亚洲综合色网址| 伦精品一区二区三区| 咕卡用的链子| 2022亚洲国产成人精品| 乱人伦中国视频| 色哟哟·www| 18禁国产床啪视频网站| 午夜福利视频精品| 伊人亚洲综合成人网| 欧美 日韩 精品 国产| 中文字幕色久视频| 青春草视频在线免费观看| 日韩成人av中文字幕在线观看| 精品国产乱码久久久久久男人| 亚洲欧美日韩另类电影网站| 国产一区二区在线观看av| 一区二区日韩欧美中文字幕| 久久国产亚洲av麻豆专区| 制服丝袜香蕉在线| 婷婷成人精品国产| 精品久久蜜臀av无| 国产精品二区激情视频| 婷婷色综合www| 免费人妻精品一区二区三区视频| 精品亚洲成a人片在线观看| 国产人伦9x9x在线观看 | 九色亚洲精品在线播放| 搡女人真爽免费视频火全软件| 久久精品熟女亚洲av麻豆精品| 日本av手机在线免费观看| 黄频高清免费视频| 丰满饥渴人妻一区二区三| 女人精品久久久久毛片| 欧美黄色片欧美黄色片| 欧美人与性动交α欧美软件| 国产精品一国产av| 国产又爽黄色视频| 一区二区三区四区激情视频| 欧美精品一区二区大全| 免费黄网站久久成人精品| √禁漫天堂资源中文www| 国产精品.久久久| 水蜜桃什么品种好| 亚洲av成人精品一二三区| 两个人免费观看高清视频| 毛片一级片免费看久久久久| 亚洲精品自拍成人| 国产日韩欧美亚洲二区| 久久综合国产亚洲精品| 永久网站在线| 18禁动态无遮挡网站| 亚洲内射少妇av| 五月开心婷婷网| 国产黄色视频一区二区在线观看| 亚洲国产av影院在线观看| 考比视频在线观看| 亚洲欧美一区二区三区久久| 国产黄频视频在线观看| 在线观看一区二区三区激情| xxxhd国产人妻xxx| 精品福利永久在线观看| 丝瓜视频免费看黄片| 成人影院久久| 最近的中文字幕免费完整| 久久这里只有精品19| 亚洲精华国产精华液的使用体验| 午夜福利影视在线免费观看| 制服诱惑二区| 国产色婷婷99| 精品第一国产精品| 寂寞人妻少妇视频99o| 欧美 日韩 精品 国产| www.精华液| 免费高清在线观看日韩| 韩国高清视频一区二区三区| 大码成人一级视频| 伦理电影大哥的女人| 精品少妇一区二区三区视频日本电影 | 一级,二级,三级黄色视频| 高清在线视频一区二区三区| 黄片播放在线免费| 国产女主播在线喷水免费视频网站| 久久人人97超碰香蕉20202| 国产人伦9x9x在线观看 | 亚洲精品第二区| 中国三级夫妇交换| 日韩,欧美,国产一区二区三区| a级毛片黄视频| 人人妻人人澡人人看| kizo精华| 老司机亚洲免费影院| 成人国产麻豆网| 宅男免费午夜| 国产精品嫩草影院av在线观看| 人人妻人人澡人人看| 亚洲第一青青草原| 免费日韩欧美在线观看| 成人国产麻豆网| 亚洲,欧美精品.| 亚洲精品日本国产第一区| 久久精品国产自在天天线| 18+在线观看网站| 国产精品久久久久成人av| 青草久久国产| 国产一区有黄有色的免费视频| 免费观看无遮挡的男女| 18在线观看网站| 巨乳人妻的诱惑在线观看| 免费观看无遮挡的男女| 汤姆久久久久久久影院中文字幕| 国产日韩欧美在线精品| 少妇猛男粗大的猛烈进出视频| 最新的欧美精品一区二区| 涩涩av久久男人的天堂| 亚洲色图综合在线观看| 亚洲av国产av综合av卡| 久久国产精品男人的天堂亚洲| 久久 成人 亚洲| 最新的欧美精品一区二区| videos熟女内射| 亚洲,一卡二卡三卡|